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1. Introduction

Fractional calculus, fractional differential equations (FDEs) and the qualitative theory of these
equations have all been included in the discipline of mathematical analysis over the past three
decades, both on a theoretical level and in terms of its practical applications. Fundamentally, the
theory of fractional calculus, the qualitative theory of fractional differential and fractional
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integro-differential equations, their numerical simulations, and symmetry analysis are mathematical
analysis tools used to study arbitrary order integrals and derivatives, which unifies and generalizes the
traditional notions of differentiation and integration. Nonlinear operators with fractional order are
more practical than classical formulations. Numerous scientific disciplines, including fluid
mechanics, physics, viscoelasticity, biology, chemistry, signal processing, dynamical systems, entropy
theory, and others, can involve the qualitative theory of FDEs and fractional order operators. Because
of this, the applications of the theory of fractional calculus and the qualitative theory of the
aforementioned equations have drawn the attention of academics throughout the world, and many
scholars have included them in their latest study.

The applicability of controllability in numerous disciplines of science and engineering for various
types of linear and nonlinear dynamical systems has been taken into consideration in many
publications using diverse methodologies, see [1]. It is to be stressed that there are numerous
definitions of controllability for dynamical systems, including approximate controllability, exact
controllability, null controllability, and others. See [2] for a comprehensive list of publications on the
approximate controllability of semilinear evolution systems in abstract spaces. For further
information about the exact controllability of differential control systems by various writers,
check [3].

Due to their effective applications to issues in electricity, mechanics, physics, economics, and
several fields of engineering, stochastic differential equations (SDEs) have gained a lot of attention in
recent years. See [4] and its references for further information. Researchers specifically looked at the
controllability of stochastic dynamical control systems in infinite dimensional spaces; for further
information. The study of controllability issues for SEEs with nonlocal conditions has, however,
received very little attention; for examples, see [5], where the authors assume that nonlocal item g is a
fully continuous map. A coherent theory of integration for stochastic process integrals with respect to
stochastic processes can be defined owing to the subject of mathematics that interacts with stochastic
processes. It is employed to model systems with unexpected responses.

Nabulsi et al. [6] worked on the Vlasov equation, waves and dispersion relations in fractal
dimensions. Montangero et al. [7] studied Loop-free tensor network, Nabulsi et al. [8, 9] a mapping
from Schrodinger equation and [10] quantum effects in metal oxide semiconductor field effect
transistor in fractal dimensions. Alfaro et al. [11] worked on the modelling of spatially heterogeneous
nonlocal diffusion. Physics serves as a significant source of inspiration for researching fractional
evolution equations. The fractional derivative in space and time is a component of fractional diffusion
equations, which are abstract partial DEs. The fractional order diffusion-wave equation, for instance,
was covered by EI-Sayed [12]. For the fractional diffusion equation, Eidelman and Kochubei [13]
looked at the Cauchy problem. Fractal anomalous diffusion is described by fractional diffusion
equations, as mentioned in [13]. A useful tool for describing the memory and inherited qualities of
diverse materials and processes can be found in this class of equations. In order to approximate
Brownian motion, Louis Bachelier and Albert Einstein developed the Wiener process, which bears
Norbert Wiener’s name. Since the 1970s, the Wiener process has been extensively employed in
financial mathematics and economics to explain how stock values and bond interest rates have
changed over time. Stochastic processes are a collection of random variables used to model the
evolution of a system over time. Stochastic processes involve an element of randomness or
uncertainty. In probability theory and similar topics, a stochastic or random process is typically
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described as a family of random variables. The issue of mild solutions for abstract DEs with fractional
derivatives was examined in a few recent studies [14–16]. Since the description of mild solutions
obtained from deviations of constant formulas in integer order abstract DEs cannot be effectively
summarized to fractional order abstract DEs, Zhou and Jiao [17] give a suitable idea on mild solutions
by using the laplace transform and probability density functions for the evolution equation with the
Caputo fractional derivative. Zhou et al. [18] provided a suitable notion on mild solutions for the
evolution problem with the RL fractional derivative utilizing the same methodology.

The Cauchy problems for linear and semilinear time fractional evolution equations with almost-
sectorial operators was studied by Wang [19]. The generalized RL fractional derivative, or Hilfer
fractional derivative (HFD), was proposed by Hilfer [20] and incorporates the RL fractional derivative
as well as the Caputo fractional derivative. In the theoretical simulation of dielectric relaxation in
glass-forming materials, this operator was present. In [21], Furati et al. discussed an initial value
issue for a family of HFD based nonlinear FDEs. In [22], the Mittag-Leffler functions and Fox’s
H-function were used to derive the solution of a fractional diffusion equation with a HFD. To the
best of our knowledge, the evolution equations using HFD have no results. Abuasbeh et al. [23–
27] worked on Time-Fractional Initial Boundary Value Problems and fractional differential equation.
Mouman et al. [28,29] studied simpson type inequalities and fractional integral pantograph differential
equations. Boulares et al. [30] worked on fractional pantograph problems using fixed point theory and
Ghafli et al. [31] studied topological structure of fractional control delay problem. Shafqat et al. [32]
investigated the mild solution for the Navier-Stokes equation. Let (Ωpr,G, {Gr}r≥0,Rm) be a filtered
complete probability space that meets the normal requirement which means that the filter is a right
continuous increasing family and G0 contains all P-null sets. Let {ek, k ∈ N} be a complete orthonormal
basis ofK . {W(r) : r ≥ 0} is a cylinderical K-valued Brownian motion or Weiner process specified on

the probability space (Ωpr,G, {Gr}r≥0,Rm). We denote =r (Q) =
∞∑

k=1
αk = α < ∞ with the finite trace

nuclear covariance operator Q ≥ 0 which satisfies that Qek = αkek, k ∈ N.
Let {Wk (r) , k ∈ N} be a sequence of one-dimensional standard Weiner processes that are mutually

independent on
(
Ωpr,G, {Gr}r≥0,Rm

)
to the extent that

W (r) =

∞∑
k=1

√
αkWk (r) ek, r ≥ 0.

Suppose that a finite trace nuclear covariance operator ℵ ≥ 0 and a K-valued Brownian motion or
Weiner processW(r) : r ≥ 0 distinct in filtered complete probability space (Ωpr,G, {Gr}r≥0,Rm).

In this paper, the FSEEs were used as a Hilfer derivative of finite approximate controllability as{
D

υ,µ
0+ χ(r) = Aχ(r) + G(r, χ(r)) +$(r, χ(r))dw(r)

dr +Du(r), r ∈ (0, c],
I(1−υ)(1−µ)
0+ χ(0) = χ0,

(1.1)

whereDυ,µ
0+ is the HFD of order 0 < υ ≤ 1 and 0 < µ ≤ 1.

~ andK are two separable Hilbert spaces (HS) and the state χ(.) takes its values in ~. Also, a closed
linear operator A : D(A) ⊂ ~ → ~ and infinitesimal generator -A of a C0 − semigroup =(r)(r ≥ 0)
on ~.

The control function u(.) is a Banach space (BS) of admissible control functions on a separable
HS U. The first innovative aspect of this article is that the methods employed in [33] are invalid for
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the current work since the nonlocal term g(x), defined by 1.1, depends on every value of x over the
entire interval [0, b]. Under weaker conditions when χ0 lacks Lipschitz continuity or compactness,
the approximate controllability conclusions are established using stochastic analysis, approximation
techniques, a diagonal argument and Schauder fixed-point theorem. To put it more explicitly, the
nonlocal term χ0 has just continuity and a few weak growth conditions, and it depends on every value
of x throughout the whole interval [0, b]. The theorems discovered here build upon and complete
those discovered in [34–37]. The second novel aspect of this article is that while stochastic dynamical
systems are the focus of our investigation, the techniques we employ in this paper can be extended to
investigate the approximate controllability of deterministic systems under initial conditions by
appropriately utilizing abstract space and norm. The analogous findings for deterministic systems
with local conditions are likewise novel. The third novelty, we use the HFD to find our results. As a
result, only a few papers have been published on the study of controllability for equation 1.1. This
study uses the Hilfer derivative to examine the fractional stochastic evolution equations’ finite
approximate controllability. Though the majority of them were first order differential equations, some
researchers found FDE results in the literature. In our study, we obtained the results for Hilfer
derivatives of order (0,1). In differential equation theory, stability plays a crucial role in both theory
and application. As a result, controllability is a major area of research, and over the past 20 years,
research articles on controllability for FDE have been published. We employ the fixed point theorem
and the approximation technique with fractional stochastic evolution equations. Because of its wide
range of applications in areas of science such engineering, robotics, mechanics, control, thermal
systems, electrical, and signal processing, the theory of fractional stochastic evolution equation
continues to attract researchers’ attention. In Section 2, we offer some basic concepts and definitions
that will be helpful in the whole work. We find a moderately mild solution to the system 1.1 in
Section 3. In Section 4, we state and demonstrate the approximate finite controllability of the
system 1.1. In Section 5, we use an example to explain our findings. In the last section, we illustrate
the conclusion.

2. Preliminaries

We go over the notations, definitions, and introductions that will be utilised in this work in this
portion.

Lemma 2.1. [38] If ı : [0, c] × ~→ L (K , ~) is continuous and χ ∈ B
(
[0, c] ,L2

(
Ωpr, ~

))
then

E

∥∥∥∥∥∥
∫

[0,c]
ı (r, χ (r)) dW (r)

∥∥∥∥∥∥2

≤ =r (Q)
∫

[0,c]
E ‖k (r, χ (r))‖2dr.

Definition 2.1. [39] For a mapping z : (0,+∞) → Rm of order µ > 0, the RL fractional integral is
given by

Iµ0Y (r) =
1

Γ (β)

r∫
0

(r − ζ)µ−1
Y (ζ) dζ,

if the R.H.S is described pointwise on 0 < r < ∞.
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Definition 2.2. [40] For a function Y : [0,+∞)→ Rm of order µ > 0, the RLF derivative is given by

D
µ
0Y (r) =

1
Γ (m − µ)

(
d
dr

)m r∫
0

Y (ζ)
(r − ζ)µ−m+1 dζ,

where m =
[
µ
]
+ 1, as long as the R.H.S is specified point-wise on 0 < r < ∞.

Definition 2.3. [40] The CFD of a function of order µ > 0 of a function z :[0,+∞)→ Rm is given by

cD
µ
0z (r) = D

µ
0

z (χ) −
m−1∑
k=0

rk

k!
Y

(k) (0)

 ,
where m =

[
µ
]
+ 1, as long as the R.H.S is described pointwise on 0 < r < ∞.

Definition 2.4. (HFD, see [20]) The generalized RL fractional derivative of order 0 ≤ υ ≤ 1 and
0 < µ < 1 with lower limit a is defined as

Dυ,µ
0+ f (r) = Iυ(1−µ)

a+

d
dr

I(1−υ)(1−µ)
a+ f (r),

for operations that result in the existence of the phrase on the right.

Remark 2.1. (i) When υ = 0, 0 < µ < 1 and a = 0, the HFD corresponds to the classical RL fractional
derivative:

D0,µ
0+ f (r) =

d
dr

I1−µ
0+ f (r) = Dµ

0+ f (r).

(ii) When υ = 0, 0 < µ < 1 and a = 0, the HFD corresponds to the classical Caputo fractional
derivative:

D1,µ
0+ f (r) = I1−µ

0+

d
dr

f (r) =c Dµ
0+ f (r).

Remark 2.2. (i) If f ∈ Bn [0,+∞), then

cD
µ
0 f (r) =

1
Γ (m − µ)

r∫
0

f (m) (ζ)
(r − ζ)β−m+1 dζ = Im−µ

0 f (m) (r) .

(ii) If z(r) is an abstract function with values in E, then the integrals that exist in Definitions 2.2–2.4
are defined in Bochner’s interpretation.

(iii) A constant’s Caputo derivative is 0.

Lemma 2.2. The Cauchy problem 1.1 is equivalent to the integral equation

χ(r) =
χ0

Γ(υ(µ) + µ)
r(υ−1)(1−µ) +

1
Γ(µ)

∫ r

0
(r − ζ)µ−1[Aχ(ζ) + G(ζ, χ(ζ) +Du(ζ))]dζ

+

∫ r

0
(r − ζ)µ−1$(ζ, χ(ζ))dW(ζ), r ∈ (0, 1).
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The Wright function Mµ(σ) is defined by

Mµ(σ) =

∞∑
n=1

(−σ)m−1

(m − 1)!Γ(1 − µm)
, 0 < µ < 1, σ ∈ C,

which satisfies the following equality:∫ ∞

0
ϑδMµ(ϑ)dϑ =

Γ(1 + δ)
Γ(1 + µδ)

, f or ϑ ≥ 0.

Lemma 2.3. [41] The operators Kµ(r)(r ≥ 0) and Sµ(r)(r ≥ 0) validate the below properties:

(i) For each fixed r > 0 , both operators are linear and bounded in ~ for each χ ∈ ~∥∥∥Kµ (r) χ
∥∥∥ ≤ M‖χ‖ , ∥∥∥Sµ (r) χ

∥∥∥ ≤ M
Γ (µ)

‖χ‖ . (2.1)

(ii) For all χ ∈ ~, r → Kµ (r) χ and r → Sµ (r) χ, are continuous functions from [0,∞) into H ,
respectively.

(iii) These operators exhibit strong continuous behaviour.
(iv) These operators are norm-continuous if a semi-group =(r) is compact as well as being likewise

compact in ~, for r > 0.

Definition 2.5. Let u ∈ L2
G

([0, c] ,U) then the mild solution on [0, c] is claimed to be a stochastic
process χ if χ ∈ ~

(
[0, c] ,L2

(
Ωpr, ~

))
and

(i) χ(r) is a measurable variable that has been adapted to Fr.

(ii) The integral equation below is satisfied by the value χ(r):

χ(r) = Sυ,µ(r)χ0 +

∫ r

0
Kµ(r − ζ)[G(ζ, χ(ζ) +Du(ζ))]dζ +

∫ r

0
Kµ(r − ζ)$(ζ, χ(s))dW(ζ).

Lemma 2.4. [42] (Holder inequality) Assume that p, q ≥ 1 and 1
p + 1

q = 1. If f ∈ Lp(J,Rm), g ∈
Lq(J,Rm), then f g ∈ L1(J,Rm) and

‖ f g‖LJ ≤ ‖ f ‖Lp J‖g‖Lq .

Definition 2.6. [43]

(a) The system 1.1 is approximately controllable on the interval [0, c] if Rm(c) = L2(Ωpr, ~).
(b) For χc ∈ L

2(Ωpr, ~) and ε > 0 the system 1.1 is called finitely-approximately controllable on
interval [0, c] if ∃ a control uε ∈ L2

F
(J ,U) such that the corresponding solution χ (c; uε) of 1.1

satisfies the conditions:

E ‖χ(c; uε) − χc‖ < ε,

πEχ(c; uε) = πEχc.

To demonstrate the main finding, we require the following limitations:
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(℘1) There is a Caratheodory continuous function G : [0, c] × ~ → ~, as well as a function ξG ∈

L
(
[0, c] ,Rm+) and nondecreasing continuous function ψG : Rm+ → Rm+,

E‖G(r, χ)‖2 ≤ ξG(r)ψG
(
E‖χ‖2

)
, a.e.t ∈ [0, c] ,∀χ ∈ ~.

(℘2) There is a Caratheodory continuous function $ : [0, c] × ~ → L0
2 as well as a function ξ$ ∈

L
1
p
(
[0, c] ,Rm+) for constant p ∈ (0, 2µ−1) and a nondecreasing continuous function ψ$ : Rm+ →

Rm+ such that
E ‖$(r, χ)‖2

L0
2
≤ ξ$(r)ψ$

(
E‖χ‖2

)
, a.e.t ∈ [0, c] ,∀χ ∈ ~.

(℘3) There is a Caratheodory continuous function h : [0, c] × H → ~ as well as a function ξh ∈

L
(
[0, c] ,Rm+) and a nondecreasing continuous function ψh : Rm+ → Rm+ such that

E‖h(r, χ)‖2 ≤ ξh(r)ψh

(
E‖χ‖2

)
, a.e.t ∈ [0, c] ,∀χ ∈ ~.

(℘4) The linear fractional differential system

χ(r) = Sυ,µ(r)χ0 +

r∫
0

Kµ(r − ζ)Du(ζ)dζ (2.2)

is approximately controllable in [0, c].
It is understood that system approximately controllable on [0, c] if the condition D∗K∗µ (c − ζ) φ =

0, 0 ≤ s ≤ c implies that φ = 0.
For any ε > 0, we define an essential functional φ ∈ ~,

Jε (φ, χ) = 1
2

c∫
0

(c − ζ)µ−1E
∥∥∥D∗K∗µ (c − ζ) φ

∥∥∥2
dζ + ε

(
E‖(I − πε) φ‖2

) 1
2
− E (φ, ρ (r)) , (2.3)

where

ρ(χ) = χc −Sυ,µ(c)χ0 +

∫ c

0
Kµ(c − ζ)G(ζ, χ(ζ))dζ +

∫ c

0
Kµ(c − ζ)$(ζ, χ(ζ))dW(ζ).

3. Definition of mild solution

In this section, we find the mild solution of system 1.1.
The system 1.1 is equivalent to the following integral equation:

χ(r) =
χ0

Γ(υ(1−µ)+µ)r
(υ−1)(1−µ) +

∫ r

0
(r − ζ)µ−1[Aχ(ζ) + G(ζ, χ(ζ) +Du(ζ))]dζ

+
∫ r

0
(r − ζ)µ−1$(ζ, χ(ζ))dW(ζ).

(3.1)

Theorem 3.1. If Eq 3.1 holds, then

χ(r) = Sυ,µ(r)χ0 +
∫ r

0
Kµ(r − ζ)[G(ζ, χ(ζ) +Du(ζ))]dζ +

∫ r

0
Kµ(r − ζ)$ (ζ, χ (ζ)) dW (ζ) , (3.2)

where
Kµ(r) = rµ−1Pµ(r), Pµ(r) =

∫ ∞
0
µϑMµ(ϑ)Q(rµϑ)dϑ and S υ,µ(r) = Iυ(1−µ)

0+ Kµ(r).
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Proof. Let λ > 0. Taking laplace transform on both sides of Eq 3.1, we get

v(λ) = λ(1−υ)(1−µ)(χ0) +
1
λµ
Aχ(λ) +

1
λµ
ω(λ) +

1
λ
ς(λ)

= λυ(µ−1)
∫ ∞

0
e−λµζQ(ζ)χ0dζ +

∫ ∞

0
e−λµζQ(ζ)ω(λ)dζ +

∫ ∞

0
e−λµζQ(ζς(λ))dζ (3.3)

provided that the integrals in (3.3) exist, where I is the identity operator defined on X. Let

ψµ(θ) =
µ

θµ+1 Mµ(θ)−µ,

whose Laplace transform is given by∫ ∞

0
e−λθψµ(θ)dθ = e−λ

µ

, where µ ∈ (0, 1). (3.4)

Using (3.4), we have∫ ∞

0
e−λµζQ(ζ)χ0dζ =

∫ ∞

0
µrµ−1e−(λr)µQ(rµ)χ0dr

=

∫ ∞

0

∫ ∞

0
µψµ(θ)e−λrθQ(rµ)rµ−1χ0dθdr

=

∫ ∞

0

∫ ∞

0
µψµ(θ)e−λrQ

( rµ

θµ

)rµ−1

θµ
χ0dθdr

=

∫ ∞

0
e−λr

[
µ

∫ ∞

0
ψµ(θ)Q

( rµ

θµ

)rµ−1

θµ
χ0dθ

]
dr

=

∫ ∞

0
e−λrrµ−1Pµ(r)χ0dr, (3.5)∫ ∞

0
e−λ

µ
ζ Q(ζ)ω(λ)dζ =

∫ ∞

0
µrµ−1e−(λr)µQ(rµ)e−λζ[G(ζ, χ(ζ) +Du(ζ))]dζdr

=

∫ ∞

0

∫ ∞

0

∫ ∞

0
µrψµ(θ)e−(λrθ)Q(rµ)e−λζrµ−1[G(ζ, χ(ζ) +Du(ζ))]dθdζdr

=

∫ ∞

0

∫ ∞

0

∫ ∞

0
µrψµ(θ)e−(λrθ)Q

( rµ

θµ

)rµ−1

θµ
[G(ζ, χ(ζ) +Du(ζ))]dθdζdr

=

∫ ∞

0
e−λr

[
µ

∫ r

0

∫ ∞

0
ψµ(θ)Q

( (r − ζ)µ

θµ

) (r − ζ)µ−1

θµ
[G(ζ, χ(ζ) +Du(ζ))]dθdζ

]
dr

=

∫ ∞

0
e−λr

[ ∫ r

0
(r − ζ)µ−1Pµ(r − ζ)

(r − ζ)µ−1

θµ
[G(ζ, χ(ζ) +Du(ζ))]dζ

]
dr, (3.6)

λµ−1

∞∫
0

e−λ
µζQ(ζ)ς(λ)dζ = λµ−1

∫ ∞

0
e−λ

µζQ(ζ)e−λζG(ζ, χ(ζ))dW(ζ)

= λµ−1
∫ ∞

0

∫ ∞

0
µrµ−1e−(λr)µQ(rµ)e−λζG(ζ, χ(ζ))dζdW(r)

=

∫ ∞

0

∫ ∞

0

∫ ∞

0
ωψβ(ω)e−λrωQ(rµ)e−λζG(ζ, χ(ζ))dωdζdW(r). (3.7)
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Since the Laplace inverse transform of λυ(µ−1) is

L−1(λυ(µ−1)) =

 c
0

rυ(1−µ)−1

Γ(υ(1−µ)) , 0 < υ ≤ 1,

δ(r), υ = 0,

where δ(r) is the Delta function. Thus, by 3.3, 3.6 and 3.7 in Eq 3.2, we get

χ(r) = (L−1(λυ(µ−1) ∗ Kµ(r))χ0 +

∫ r

0
Kµ(r − ζ)[G(ζ, χ(ζ) +Du(ζ))]dζ +

∫ r

0
Kµ(r − ζ)$ (ζ, χ (ζ)) dW (ζ)

= (Iυ(1−µ)
0+ Kµ(r))χ0 +

∫ r

0
Kµ(r − ζ)[G(ζ, χ(ζ) +Du(ζ))]dζ +

∫ r

0
Kµ(r − ζ)$ (ζ, χ (ζ)) dW (ζ)

= Sυ,µ(r)χ0 +

∫ r

0
Kµ(r − ζ)[G(ζ, χ(s) +Du(ζ))]dζ +

∫ r

0
Kµ(r − ζ)$ (ζ, χ (ζ)) dW (ζ) . (3.8)

This completes the proof.

4. Results on finite approximate controllability

Lemma 4.1. Assume that the assumptions (℘1) → (℘3) are satisfied. Then the following conclusions
hold:

(1) In Bg, ρ is continuous.
(2)

{
ρ (χ) : χ ∈ Bg

}
is relatively compact in ~.

Proof. Let χm → χ in Bg, then we have
G (r, χm (r))→ G (r, χ (r)) , $ (r, χm (r))→ $ (r, χ (r)) , h (r, χm (r))→ h (r, χ (r)) (n→ ∞).
Furthermore, for any r ∈ [0, c] , using Holder Inequality 2.4 and Lebesgue dominated convergence
Theorem 2.1 on Eq 3.8, we get

E
∥∥∥∫ c

0
Kµ(c − ζ)[G(r, χn(r)) − G(r, χ(r))]dζ

∥∥∥2
≤M2

∫ c

0
dζ

∫ c

0
‖[G(ζ, χm(ζ)) − G(ζ, χ(ζ))]‖2dζ

≤ c2M2
c∫

0

∥∥∥[G (ζ, χn (ζ)) − G (ζ, χ (ζ))
]∥∥∥2

dζ → 0 (m→ ∞) .
(4.1)

Similarly,∥∥∥∥∥∥ c∫
0

Kµ(c − ζ)
[
$ (ζ, χm (ζ)) −$ (ζ, χ (ζ))

]
dζ

∥∥∥∥∥∥2

≤=r (Q)M2
c∫

0
‖$ (ζ, χm (ζ)) −$ (ζ, χ (ζ))‖2dW (ζ)

→ 0 (m→ ∞) .
(4.2)

And ∥∥∥Sβ (c) (h (χm) − h (χ))
∥∥∥2
≤

(
M

Γ (β)

)2

‖h (χm) − h (χ)‖2 → 0 (m→ ∞) . (4.3)

Using the inequality found above, we arrive at

‖(ρ (χm) − ρ (χ))‖2 ≤ 3E
∥∥∥Sβ (c) (h (χm) − h (χ))

∥∥∥2
+3E

∥∥∥∫ c

0
Kµ(c − ζ)

[
G (ζ, χm (ζ)) − G (ζ, χ (ζ))

]
dζ

∥∥∥2

+3E
∥∥∥∥∥∥ c∫

0
Kµ(c − ζ)

[
$ (ζ, χm (ζ)) −G (ζ, χ (ζ))

]
ds

∥∥∥∥∥∥→ 0 (m→ ∞) .

(4.4)
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Therefore, ρ is continuous in Bg.

Secondly, define an operator Yε,v for all ε ∈ (0, c) and all v > 0 on Bg by the formula

(Yε,vχ) (c) =

c−ε∫
0

∞∫
v

ϕµ (ω)= ((c − ζ)µω)G (ζ, χ (ζ)) dωdζ +

c−ε∫
0

∞∫
v

ϕβ (ω)= ((c − ζ)µω)$ (ζ, χ (ζ)) dωdWζ

= = (εµv)
∫ c−ε

0

∫ ∞

v
ϕµ (ω)= ((c − ζ)µω − εµv)G (ζ, χ (ζ)) dωdζ + = (εµv)

∫ c−ε

0

∫ ∞

v
ϕµ (ω)

= ((c − ζ)µω − εµv)$ (ζ, χ (ζ)) dωdWζ.

Then the set
{
(Yε,vχ) (c) : χ ∈ Bg

}
is relatively compact in Bg because = (εµv) is compact. We denote

(Y1χ) (c) =

∫ c

0

∫ ∞

0
ϕµ (ω)= ((c − ζ)µω)G (ζ, χ (ζ)) dωdζ+

∫ c

0

∫ ∞

0
ϕµ (ω)= ((c − ζ)µω)$ (ζ, χ (ζ)) dωdWζ.

(4.5)
Furthermore,

‖(Y1χ) (c) − (Yε,vχ) (c)‖2 ≤ 4E

∥∥∥∥∥∥∥∥
c∫

0

∞∫
0

ϕµ (ω)= ((c − ζ)µω)G (ζ, χ (ζ)) dωdζ

∥∥∥∥∥∥∥∥
2

+4E

∥∥∥∥∥∥∥∥
c∫

0

∞∫
0

ϕµ (ω)= ((c − ζ)µω)$ (ζ, χ (ζ)) dωdW (ζ)

∥∥∥∥∥∥∥∥
2

−4E

∥∥∥∥∥∥∥∥
c−ε∫
0

∞∫
v

ϕµ (ω)= ((c − ζ)µω)G (ζ, χ (ζ)) dωdζ

∥∥∥∥∥∥∥∥
2

−4E

∥∥∥∥∥∥∥∥
c−ε∫
0

∞∫
v

ϕµ (ω)= ((c − ζ)µω)$ (ζ, χ (ζ)) dωdW (ζ)

∥∥∥∥∥∥∥∥
2

≤ 4E

∥∥∥∥∥∥∥∥
c∫

0

v∫
0

ϕµ (ω)= ((c − ζ)µω)G (ζ, χ (ζ)) dωdζ

∥∥∥∥∥∥∥∥
2

+4E

∥∥∥∥∥∥∥∥
c∫

0

v∫
0

ϕµ (ω)= ((c − ζ)µω)$ (ζ, χ (ζ)) dωdW (ζ)

∥∥∥∥∥∥∥∥
2

+4E

∥∥∥∥∥∥∥∥
c∫

c−ε

∞∫
v

ϕµ (ω)= ((c − ζ)µω)G (ζ, χ (ζ)) dωdζ

∥∥∥∥∥∥∥∥
2

+4E

∥∥∥∥∥∥∥∥
c∫

c−ε

∞∫
v

ϕµ (ω)= ((c − ζ)µω)$ (ζ, χ (ζ)) dωdW (ζ)

∥∥∥∥∥∥∥∥
2

≤ 4M2

c∫
0

dζ

c∫
0

E‖G (ζ, χ (ζ))‖2ds


v∫

0

ϕµ (ω) dω


2
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+4M2

c∫
c−ε

ds

c∫
c−ε

E‖G (ζ, χ (ζ))‖2dζ + 4=r (Q)M2

c∫
0

dζE‖$ (ζ, χ (ζ))‖L0
2

2dζ


v∫

0

ϕµ (ω) dω


2

+4=r (Q)M2

c∫
c−ε

dζE‖$ (ζ, χ (ζ))‖L0
2

2dζ

≤
4M2c2ψG (Rm)

∥∥∥ξG∥∥∥L[0,c]

2


v∫

0

ϕµ (ω) dω


2

+ 4M2ψG (R)
∥∥∥ξG∥∥∥L[0,c]

ε2µ−1

2µ − 1

+4=r (Q)M2ψ$ (R)
(

1 − p
2µ − 1 − p

)1−p

‖ξ$‖
L

1
p


v∫

0

ϕµ (ω) dω


2

+4=r (Q)M2β2ψ$ (R)
(

1 − p
2µ − 1 − p

)1−p

‖ξ$‖
L

1
p
ε2µ−1−p → 0 (ε, v→ 0) (n→ ∞) . (4.6)

Therefore, there are relatively compact set
{
(Yε,vχ) (c) : χ ∈ Bg

}
arbitrary close to the

set
{
(Yε,vχ) (c) : χ ∈ Bg

}
in ~. Hence

{
ρ (χ) : χ ∈ Bg

}
is relatively compact in ~.

Lemma 4.2. If assumptions (℘1)–(℘4) are satisfied, then the following conclusions hold for any χ ∈ Bg,

(i) E‖uε (r, χ)‖2 ≤ Lu;
(ii) uε (r, χ) is continuous in Bg, where Lu = ‖D‖2

(
M

Γ(µ)

)2
Lε .

Lemma 4.3. Assume that in a HS,-A generates a compact of uniformly bounded operators.
Let (℘1)–(℘4) hold, the following condition is satisfied:

(℘5) There is a constant σ ∈ (0,c) such that for any r ∈ [0, c] G (r, χ1 (r)) = G (r, χ2 (r)),
$ (r, χ1 (r)) = $ (r, χ2 (r)), h (r, χ1 (r)) = h (r, χ2 (r)) , where
χ1, χ2 ∈ ~

(
[0, c] ,L2

(
Ωpr, ~

))
χ1 (r) = χ2 (r) (r ∈ [σ, c]) .

The nonlocal problem will have at least one mild solution in Bg if there is a +ve constant Rm such that

3M2cψk (R) ‖ξk‖L[0,c] + 3c0

(
2ψG (R)

∥∥∥ξG∥∥∥L[0,c]
+ 2c‖D‖2Lu

)
+3c1=r (Q)ψ$ (R) ‖ξ$‖

L
1
p
≤ R, (4.7)

where

c0 =
M2c2

2
, c1 =M2

(
1 − p
2 − p

)1−p

c2−p.

Proof. For any r > 0, define

Bg (σ) =
{
χ ∈ ~

(
[σ, c] ,L2

(
Ωpr, ~

))
: E‖χ (r)‖2 ≤ r,∀r ∈ [σ, c]

}
.

It is obvious that, a function Υ ∈ Bg exists that satisfies χ(r) = Υ(r), r ∈ [σ, c]. Define the following
mappings on Bg(σ) by

(G∗χ) (r) = G (r,Υ (r)) , r ∈ [0, c] ($∗χ) (r) = $ (r,Υ (r)) , r ∈ [0, c] h∗ (χ) = h (Υ) .
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Then by conditions (℘1)–(℘3) and (℘5), it is easy to see that G∗, $∗, h∗ is well defined on Bg(σ) and
continuous. In addition,

‖(G∗χ) (r)‖2 ≤ ξG (r)ψG
(
E‖χ‖2

)
, a.e.t, , r ∈ [0, c] ,∀χ ∈ Bg (σ)

‖($∗χ) (r)‖2
L0

2
≤ ξ$ (r)ψ$

(
E‖χ‖2

)
, a.e.t, r ∈ [0, c] ,∀χ ∈ Bg (σ)

E‖h∗ (χ)‖2 ≤ cψh (h) ‖ξh‖L[0,c],∀χ ∈ Bg (σ) .

Define an operator Gσ on Bg(σ) as follows:

(Gσχ) (r) = Sυ,µ(r)χ0 +
∫ r

0
Kµ(r − ζ)

[
(G∗χ) (ζ) +Du∗ (ζ, χ)

]
dζ +

r∫
0

Kµ(r − ζ) ($∗χ) (ζ) dW (ζ) , r ∈ [σ, c] ,

here u∗ε (ζ, χ) is defined by u∗ε (r, χ) = D∗K∗µ (c − r) Φ∗ε (χ) and Φ∗ε (χ) is the critical point of Jε (φ, χ)
of ρ∗ (χ) where

ρ∗ (χ) = χc −

Sυ,µ(r)χ0 +
∫ r

0
Kµ(r − ζ) (G∗χ) (ζ) dζ +

c∫
0

Kµ(r − ζ)Kµ (c − ζ) ($∗χ) (ζ) dW (ζ)
 .

Evidently, the results in Lemma 4.3 hold for u∗ε (ζ, χ). Then, using schauder’s fixed point theorem, we
show that Gσ has a fixed point. To do so, we first verify that there is a positive number Rm such that Gσ
maps Bg(σ) into itself. For any χ ∈ Bg(σ) and r ∈ [σ, c] , it follows

E‖(Gσχ) (r)‖2 ≤ 3E
∥∥∥Sυ,µ (r) χ0

∥∥∥2
+ 3E

∥∥∥∥∥∥∥∥
r∫

0

Kµ(r − ζ)
[
(G∗χ) (ζ) +Duε

∗ (ζ, χ)
]
dζ

∥∥∥∥∥∥∥∥
2

+3E

∥∥∥∥∥∥∥∥
r∫

0

Kµ(r − ζ) ($∗χ) (s) dW (ζ)

∥∥∥∥∥∥∥∥
2

≤
3M2bψh (r) ‖ξh‖L[0,c]

Γ2 (µ)
+

3M2b2

2

r∫
0

E‖(G∗χ) (µ) +Du∗ (ζ, χ)‖2dζ

+3=r (Q)M2

r∫
0

E ‖($∗χ) (ζ)‖2
L0

2
dW (ζ)

≤ 3M2cψh (R) ‖ξh‖L[0,c] + 3c0

(
2ψG (R)

∥∥∥ξG∥∥∥L[0,c]
+ 2c‖D‖2Lu

)
+3c1=r (Q)ψ$ (R) ‖ξ$‖

L
1
p

≤ R.

As a result, Gσ maps Bg (σ) to Bg (σ). Second, we can show that Gσ : Bg (σ) → Bg (σ) is a
continuous operators and the set

{
(Gσχ) (r) : χ ∈ Bg (σ)

}
is relatively compact in ~ for r ∈ [σ, c] .

We’ll demonstrate that Gσ
(
Bg (σ)

)
is an equicontinuous family of functions on [σ, c]. For

any χ ∈ Bg (σ) and σ ≤ r1 < r2 ≤ c, we get that

E‖(Gσχ) (r2) − (Gσχ) (r1)‖2
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= 5E
∥∥∥∥(Sµ (r2) −Sµ (r1)

)
(χ0)

∥∥∥∥2
+ 5E

∥∥∥∥∥∥∥∥
r2∫

0

Kµ(r2 − ζ)
[
(G∗χ) (ζ) +Duε

∗ (ζ, χ)
]
dζ

∥∥∥∥∥∥∥∥
2

+5E

∥∥∥∥∥∥∥∥
r2∫

0

Kµ(r2 − ζ) ($∗χ) (ζ) dW (ζ)

∥∥∥∥∥∥∥∥
2

− 5E

∥∥∥∥∥∥∥∥
r1∫

0

Kµ(r1 − ζ)
[
(G∗χ) (ζ) +Duε

∗ (ζ, χ)
]
dζ

∥∥∥∥∥∥∥∥
2

−5E

∥∥∥∥∥∥∥∥
r1∫

0

Kµ(r1 − ζ) ($∗χ) (ζ) dW (ζ)

∥∥∥∥∥∥∥∥
2

= 7E
∥∥∥∥(Sβ (r2) −Sβ (r1)

)
(χ0)

∥∥∥∥2
+ 7E

∥∥∥∥∥∥∥∥∥
r2∫

r1

Kµ(r2 − ζ)
[
(G∗χ) (ζ) +Duε

∗ (ζ, χ)
]
dζ

∥∥∥∥∥∥∥∥∥
+7E

∥∥∥∥∥∥∥∥
r1∫

0

Kµ(r2 − ζ)
[
(G∗χ) (ζ) +Duε

∗ (ζ, χ)
]
dζ

∥∥∥∥∥∥∥∥
2

+ 7E

∥∥∥∥∥∥∥∥
r1∫

0

Kµ(r1 − ζ)
[
(G∗χ) (ζ) +Duε

∗ (ζ, χ)
]
dζ

∥∥∥∥∥∥∥∥
2

+7E

∥∥∥∥∥∥∥∥∥
r2∫

r1

Kµ(r2 − ζ) ($∗χ) (ζ) dW (ζ)

∥∥∥∥∥∥∥∥∥
2

+ 7E

∥∥∥∥∥∥∥∥
r1∫

0

Kµ(r2 − ζ)Kµ (r2 − ζ) ($∗χ) (ζ) dW (ζ)

∥∥∥∥∥∥∥∥
2

+7E

∥∥∥∥∥∥∥∥
r1∫

0

Kµ(r1 − ζ) − Kµ (r1 − ζ) ($∗χ) (ζ) dW (ζ)

∥∥∥∥∥∥∥∥
2

= I0 + I1 + I2 + I3 + I4 + I5 + I6.

In order to prove that E‖(Gσχ) (r2) − (Gσχ) (r1)‖2 → 0 (r2 − r1 → 0), we only need to check Ii → 0
independently of χ ∈ Bg (σ) when (r2 − r1 → 0) for i = 0, 1, 2, ..., 6. Clearly, I0 → 0 as (r2 − r1 → 0)

I1 = 7E

∥∥∥∥∥∥∥∥∥
r2∫

r1

Kµ(r2 − ζ)
[
(G∗χ) (ζ) +Duε

∗ (ζ, χ)
]
dζ

∥∥∥∥∥∥∥∥∥
2

≤ 7M2

r2∫
r1

dζ

r2∫
r1

E‖(G∗χ) (ζ) +Duε
∗ (ζ, χ)‖2dζ

≤ 7M2
(
2ψG (R)

∥∥∥ξG∥∥∥L[0,c]
+ 2‖D‖2Luc

)
.
(r2 − r1) 2

2
→ 0 (r2 − r1 → 0) ,

I4 = 7E

∥∥∥∥∥∥∥∥∥
r2∫

r1

Kµ(r2 − ζ) ($∗χ) (ζ) dW (ζ)

∥∥∥∥∥∥∥∥∥
2

≤ 7=r (Q)M2

r2∫
r1

‖($∗χ) (ζ)‖2dζ + 7=r (Q)M2ψ$
(
Rm

)
‖ξ$‖

L
1
P

(r2 − r1)1−P
→ 0 (r2 − r1 → 0) .

AIMS Mathematics Volume 8, Issue 7, 16094–16114.



16107

Similarly, for I2 and I5, we get

I2 = 7E

∥∥∥∥∥∥∥∥
r1∫

0

[
(r2 − ζ)µ−1

− (r1 − ζ)µ−1
]

Kµ(r2 − ζ)
[
(G∗χ) (ζ) +Duε

∗ (ζ, χ)
]
dζ

∥∥∥∥∥∥∥∥
2

≤ 7M2

r1∫
0

[
(r2 − ζ)µ−1

− (r1 − ζ)µ−1
]2

dζ

r1∫
0

E‖(G∗χ) (ζ) +Duε
∗ (ζ, χ)‖2ds

≤ 7M2
(
2ψG (R)

∥∥∥ξG∥∥∥L[0,c]
+ 2‖D‖2Luc

) r1∫
0

[
(r2 − ζ)µ−1

− (r1 − ζ)µ−1
]2

dζ → 0 (r2 − r1 → 0) ,

I5 = 7E

∥∥∥∥∥∥∥∥
r1∫

0

[
(r2 − ζ)µ−1

− (r1 − ζ)β−1
]

Kµ(r2 − ζ) ($∗χ) (ζ) dW (ζ) dζ

∥∥∥∥∥∥∥∥
2

≤ 7=r (Q)M2

r1∫
0

[
(r2 − ζ)µ−1

− (r1 − s)µ−1
]2

E‖($∗χ) (ζ)‖2dζ

≤ 7M2
(
2ψ$ (R) ‖ξ$‖

L
1
P

) 
r1∫

0

[
(r2 − ζ)µ−1

− (r1 − ζ)µ−1
] 2

1−P dζ


1−P

→ 0 (r2 − r1 → 0) .

Additionally, if 0 < ε < r1 is sufficiently small for I3 and I6, we derive the following inequalities:

I3 = 7E

∥∥∥∥∥∥∥∥
r1∫

0

[Kµ(r2 − ζ) − Kµ(r1 − ζ)]
[
(G∗χ) (ζ) +Duε

∗ (ζ, χ)
]
dζ

∥∥∥∥∥∥∥∥
2

≤ 14E

∥∥∥∥∥∥∥∥
r1−ε∫
0

[Kµ(r2 − ζ) − Kµ(r1 − ζ)]
[
(G∗χ) (ζ) +Duε

∗ (ζ, χ)
]
dζ

∥∥∥∥∥∥∥∥
2

+14E

∥∥∥∥∥∥∥∥∥
r1∫

r1−ε

[Kµ(r2 − ζ) − Kµ(r1 − ζ)]
[
(G∗χ) (ζ) +Duε

∗ (ζ, χ)
]
dζ

∥∥∥∥∥∥∥∥∥
2

≤ 14 sup
ζ∈[0,r1−]

∥∥∥Kµ (r2 − ζ) − Kµ (r1 − ζ)
∥∥∥2 (

2ψG (R)
∥∥∥ξG∥∥∥L[0,c]

+ 2‖D‖2Luc
)
×

r2
1 − ε

2

2

+56M2
(
2ψG (R)

∥∥∥ξG∥∥∥L[0,c]
+ 2‖D‖2Luc

) ε2

2
→ 0 (r2 − r1 → 0 and ε → 0) ,

I6 = 7E

∥∥∥∥∥∥∥∥
r1∫

0

Kµ (r2 − ζ) − Kµ (r1 − ζ) ($∗χ) (ζ) dW (ζ)

∥∥∥∥∥∥∥∥
2

≤ 14E

∥∥∥∥∥∥∥∥
r1−ε∫
0

Kµ (r2 − ζ) − Kµ (r1 − ζ) ($∗χ) (ζ) dW (ζ)

∥∥∥∥∥∥∥∥
2
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+14E

∥∥∥∥∥∥∥∥∥
r1∫

r1−ε

Kµ (r2 − ζ) − Kµ (r1 − ζ) ($∗χ) (ζ) dW (ζ)

∥∥∥∥∥∥∥∥∥
2

≤
14=r (Q) (1 − p)ψ$ (R)

2 − p
sup

ζ∈[0,r1−ζ]
(Kµ (r2 − ζ) − Kµ (r1 − s))

∥∥∥ξG∥∥∥
L

1
p
×

(
r

2−p2
1−p

1 − ε

)
+56=r (Q)M2ψ$ (R) ‖ξ$‖

L
1
p
→ 0 (r2 − r1 → 0 and ε → 0) .

Overall, Ii → 0 is equal to r2 − r1 → 0 and ε → 0, implying that 1(Bg(σ)) is equicontinuous. According
to the Schauder fixed point theorem, Gσ has atleast one fixed point in χ̄ ∈ Bg (σ),

χ (r) = Sµ
(
χ0

)
+

r∫
0

Kµ (r − ζ)
[
(G∗χ) (ζ) +Duε

∗ (ζ, χ)
]
dζ +

r∫
0

Kµ (r − ζ) ($∗χ) (ζ) dW (ζ) , r ∈ [σ, c] ,

z (r) = Sµ (r)
(
χ0 + h∗ (χ)

)
+

r∫
0

(r − ζ)µ−1Kµ (r − ζ)
[
(G∗χ) (ζ) +Duε

∗ (ζ, χ)
]
dζ

+

r∫
0

(r − ζ)µ−1Kµ (r − ζ) ($∗χ) (ζ) dW (ζ), r ∈ [0, c] .

Clearly, χ (r) = z (r) for r ∈ [σ, c]. From the definitions of G∗, h∗, $∗, it follows immediately that

z (r) = Sµ (r)
(
0 + h (z)

)
+

r∫
0

(r − ζ)µ−1Kµ (r − ζ)
[
G (ζ, z (ζ)) +Duε

∗ (ζ, )
]
ds

+
r∫

0
(r − ζ)β−1Kµ (r − ζ)$ (ζ,  (ζ)) dW (ζ), r ∈ [0, c] ,

that is,  is mild solution of given system in Bg.

For each σ ∈ (0, c) and arbitrary χ ∈ ~([0, c],L2(Ωpr, ~) write

(Lσχ) (r) =

{
χ (σ) , r ∈ [0, σ],
χ (r) , r ∈ [σ, c],

(4.8)

and

Gσ (r, χ (r)) = Gσ (r, χ (r)) , r ∈ [0, c] ,
$σ (r, χ (r)) = $σ (r, χ (r)) , r ∈ [0, c] ,
hσ (r, χ (r)) = hσ (r, χ (r)) , r ∈ [0, c] .

It is easy to see that Gσ, $σ and hσ defined above satisfy condition (℘5), thus we obtain.

Lemma 4.4. Assume that in a HS H , A generates a compact C0 semigroup =(r)(r ≥ 0) of uniformly
bounded operators. Let Assumptions (℘1)–(℘4) hold. Then the following nonlocal problem:

D
υ,µ
0+ χ (r) = Aχ (r) + Gσ (r, χ (r)) +$σ (r, χ (r)) dw(r)

dr +Duε (r,Lσχ) , r ∈ [0, c],

I(1−υ)(1−µ)
0+ χ(0) = χ0.

(4.9)
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Lemma 4.5. Assume that in a HS ~, A generates a compact C0 semigroup =(r)(r ≥ 0 of uniformly
bounded operators. Let Assumptions (℘1) − (℘4) satisfied, then fractional stochastic control system
with 1.1 has atleast one mild solution χ ∈ ~ [σ, c] ,L2

(
Ωpr, ~

)
in provided that there exists a positive

constant Rm.

Proof. To begin with, let {σm : m ∈ N} be a decreasing sequence in (0, c) with lim
m→∞

σm = 0. For every
n, 

D
υ,µ
0+ χ (r) = Aχ (r) + Gσ (r, χ (r)) +$σ (r, χ (r)) dw(r)

dr +Duε (r,Lσχ) , r ∈ [0, c],

I(1−υ)(1−µ)
0+ χ(0) = χ0,

(4.10)

has mild solution χm ∈ Bg if constant Rm satisfies , which is expressed by

χn (r) = Sυ,µ (r) χ0 +

r∫
0

Kµ (r − ζ)
[
Gσm (ζ, χm (ζ)) +Duε

(
ζ,Lσnχm

)]
dζ

+

r∫
0

Kµ (r − ζ)$σm (ζ, χm (ζ)) dW (ζ) , r ∈ [0, c] ,

vm (r) =

{
χn (σm) , r ∈ [0, σm],
χn (r) , r ∈ [σm, c],

(4.11)

then vm ∈ Bg. In view of definitions Gσm , hσm , $σm , we conclude that

χm (r) = Sυ,µ (r) v0 +
r∫

0
Kµ (r − ζ)

[
G (ζ, vm (ζ)) +Duε (ζ, vm)

]
dζ

+
r∫

0
Kµ (r − ζ)$ (ζ, vm (ζ)) dW (ζ) , r ∈ [0, c].

(4.12)

Furthermore, we will show that the {χm : m ∈ N) is precompact. For this purpose, we introduce the
following definition:

ηn (r) = Sυ,µv0,

ϕm (r) =

r∫
0

Kµ (r − ζ)
[
G (ζ, vm (ζ)) +Duε (ζ, vm)

]
dζ +

r∫
0

Kµ (r − ζ)$ (ζ, vm (ζ)) dW (ζ) , r ∈ [0, c].

Therefore, we only need to show that the set {ηm : m ∈ N} and {ϕm : m ∈ N} are percompact
in ~([0, c]),L2(Ωpr, ~). From the expression of vm(r) we know that vm(r) ∈ Bg. This implies
that (℘1)–(℘3) hold for G(ζ, vm(ζ)), $(ζ, vm(ζ)). Furthermore, uε(ζ, vm) satisfies the estimates (i)
and (ii) of Lemma 4.2. As a result, using arguments close to those used in the proof of Lemma 4.3, it
is easy to show that the set {ηm : n ∈ N} is precompact in ~([0, c]),L2(Ωpr, ~. We’ll also demonstrate
that the range {ϕm : m ∈ N} is precompact in ~([0, c]),L2(Ωpr, ~).
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5. Application

The following fractional stochastic control scheme exemplifies the key result:
∂

2
3

∂r
2
3
χ ( , r) − ∂2χ( ,r)

∂χ2 =
(

rχ( ,r)
2(1+|χ( ,r)|) + χ ( , r)

)
+ (erχ ( , r) + cos χ ( , r)) dW(r)

dr + u ( , r) ,

r ∈ [0, c] , z ∈ (0, 1] ,
χ (0, r) = χ (1, r) , r ∈ [0, c] ,
χ ( , 0) = χ0,  ∈ (0, 1],

(5.1)

where W(r) is a standard one dimensional Brownian motion defined on the filtered probability
space

(
Ωpr,G, {Gr}r≥0,Rm

)
. To write the above system into the abstract form of 1.1. Let

~ = E = U=L2(0, 1] with norm ‖.‖. Define the operatorA : D(A) ⊂ X → ~ by

Av = −v′′, v ∈ D(A),

D(A) = {v ∈ ~, v, v′ are absolutely continuous, v′′ ∈ H , v(0) = v(1) = 0}. We know that -A generates
a compact, analytic semigroup =(r) (r ≥ 0) in ~ and

= (r) v =

∞∑
m=1

e−m2r (v, vm) vm,
∥∥∥= (r)

∥∥∥ ≤ e−r,

where vm =
√

2cos(ns), m = 1,2,3,... is the orthogonal set of eigenvectors in A. For any r ∈ [0, c], let
χ(r)( ) = χ( , r), Du(r)( ) = u( , r), G (r, χ (r)) (z) =

rχ( ,r)
2(1+|χ( ,r)|) + χ ( , r) , $ (r, χ (r)) ( ) = erχ ( , r) +

cos χ ( , r) . Then above problem can be rewritten in the abstract form of (1.1). In addition,

‖σ(r, χ)‖2 =

∫ 1

0

∣∣∣∣∣ 1
1 + ee

χ( , r)
(1 + χ2( , r))

∣∣∣∣∣2d 

≤
1
2

∫ 1

0
|χ( , r)|2d 

=
1
2
||χ(r)‖2,

‖h(r, χ‖2 =

∫ 1

0

∣∣∣∣∣r2cos
(
χ( , r)

r

)∣∣∣∣∣2d 

≤ r2
∫ 1

0
|χ(z, r)|2d 

= r2‖χ(r)‖2.

So, the assumption (℘1) and (℘2) hold ξ f (r) = r2

2 , ξσ(r) = 1
2 , ξh(r) = r2, and ψ f (ζ) = ψσ(ζ) = ψh(s) = s.

As a result, all of the hypotheses (℘1) through (℘3) are true.

6. Conclusions

This work investigates the HS by using Hilferderivative-based approximate controllability for a
category of FSEEs. We eliminate the Lipschitz condition or compactness requirement found in several
literatures, leaving only a weak growth condition on the nonlocal term. Additionally, our future study
will focus on the regularity of mild solutions for FSEEs with nonlocal beginning conditions.
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