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Abstract: In this work, an adaptive backstepping position tracking control using neural network (NN)
approximation mechanism is proposed with respect to the translational system of quadrotor unmanned
aerial vehicle (QUAV). Concerning the translational system of QUAV, on the one hand, it does not
satisfy the matching condition and is an under-actuation dynamic system; on the other hand, it is with
strong nonlinearity containing some uncertainty. To achieve the control objective, an intermediary
control is introduced to handle the under-actuation problem, then the backstepping technique is
combined with NN approximation strategy, which is employed to compensate the uncertainty of the
system. Compared with traditional adaptive methods, the proposed adaptive NN position control
of QUAV can alleviate the computation burden effectively, because it only trains a scalar adaptive
parameter instead of the adaptive parameter vector or matrix. Finally, according to Lyapunov stability
proof and computer simulation, it is proved that the control tasks can be accomplished.
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1. Introduction

In recent decades, quadrotor unmanned aerial vehicle (QUAV) has been extensively applied to
various fields, such as landscape mapping [1], agricultural survey [2], search and rescue operation [3],
wild fire surveillance [4], due to some of its special features including low cost, simple structure,
precise hovering, rapid maneuvering and vertical takeoff and landing [5]. To complete a control task,
QUAV is driven via the lifted and propelled forces that are produced from the varying rotation
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velocities of four rotors. Compared with conventional unmanned aerial vehicle (UAV), such as
helicopter, fixed-wing aircraft, coaxial helicopter and twin rotor helicopter, QUAV has more excellent
rotational agility and higher maneuverability owing to the special dynamic structure [6].

To control a QUAV system, the design of the position controller is most crucial. Nevertheless,
finding a qualified position controller is a very challenging task because, on the one hand, the QUAV
translational system contains some dynamic uncertainty, on the other hand, it is an under-actuated
system [7]. For the sake of overcoming these challenges to control QUAV in autonomous flying and
high maneuverability, lots of QUAV control approaches have been published in the literature, such as
reinforcement learning optimized strategy [8], proportional-integral-derivative (PID) control [9],
sliding mode control [10], linear quadratic regulator (LQR) control [11] and fuzzy logic (FL)
control [12].

In the past decades, the backstepping technique has become a systematical and standard control
methodology for the nonlinear high-order feedback system [13–16]. Since the technique does not
require matching condition with regard to controlled system, it has a highlighting advantage which
is the design flexibility compared with other control methods. Its design philosophy is to take many
intermediary states as virtual controllers and to find the stable control law for them in accordance with
the Lyapunov theorem [17, 18]. Ultimately, the ordered virtual control sequence will yield the actual
control in the final step. From the process of design, the backstepping technique can ensure the goals
of stabilizing and tracking. Particularly, it has become a popular technique in QUAV system control,
and many interesting results are published, such as [19–22].

In the nonlinear control field, neural network (NN) has always been a popular tool to deal with
the uncertain or unknown dynamics of systems [23–27]. In [23], in order to realize the nonlinear
optimized control, reinforcement learning is constructed by employing the NN approximation. In [24],
dynamic NNs are applied to the adaptive nonlinear identification and trajectory tracking. In [25],
dynamic neural controls related with nonlinear system identification, nonlinear trajectory tracking, etc,
are summarized. In [26], the optimized control of surface vessel is developed by using the adaptive
NN. In [27], a robust asymptotic neuro observer is developed for the control of nonlinear system. In
addition, fuzzy logic system (FLS) can also be as the universal approximator [28–30]. Therefore, NN
or FLS control can be implemented to the complex nonlinear dynamic environment regardless of the
completeness of system information.

However, these traditional NN adaptive controls, such as the above [23–27], require a large
number of adaptive parameters for obtaining the desired accuracy of approximation. It is a stubborn
defect which will result in a very heavy computational burden. As a result, the control will be also
implemented with difficulty. Since QUAV translational system is modeled in a complex nonlinear
strict-feedback dynamic form with some system uncertainty, it is feasible to apply the backstepping
method and adaptive NN approximation strategy to the UAV control design. However, if the
traditional adaptive NN strategies [23–27] are adopted in this control, there will be a large number of
adaptive parameters because of the complex nonlinearity of the QUAV dynamic model.

Being motivated by the above, the paper proposes an adaptive NN backstepping tracking control
approach for the QUAV translational system. The main contribution is introduced in the following.

With regard to the traditional adaptive NN control methods, such as [23–27], they usually update
or train the NN weight vector or matrix directly. For increasing the NN approximation accuracy, the
neuron number needs to become very big. As a result, the computation burden will be greatly increased.
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However, different from these traditional methods, the proposed method needs to only update a scalar
adaptive parameter that is the norm of weight matrix of adaptive NN, hence it can greatly alleviate the
computation burden. This means that the proposed method can reduce the running cost and be easily
applied in practice.

The paper’s organization is introduced as follows. Section 2 is to introduce and describe two
preliminaries of problem statement and neural network corresponding to two subsections. Section 3 is
to share the main results, and it includes two subsections corresponding to control design and theorem
proof. Section 4 is the simulation study, and a simulation example is utilized for illustrating QUAV
position control. Section 5 is the conclusion of this article.

2. QUAV model statement and neural network formulation

2.1. Problem statement

With regard to a QUAV system whose basic configure is shown in Figure 1, it is usually modeled
by two reference frames E = {xe, ye, ze} and B = {xb, yb, zb} that are, respectively, the earth fixed
inertial and body fixed frames. Furthermore, the QUAV movement can be managed by the propeller
forces Fi=1,2,3,4 produced from four rotors that are grouped into two pairs. The one pair is front and
back rotors with clockwise rotation, and the other pair is left and right rotors with counterclockwise
rotation.

Figure 1. The basic configuration of QUAV.

In accordance with Newton-Euler formula, the QUAV position dynamic in the body fixed frame is
expressed as

m̄V̇ = −Ω̄ × m̄V + F, (2.1)

where V = [Vx,Vy,Vz]T ∈ R3 and Ω̄ = [Ω̄1, Ω̄2, Ω̄3]T ∈ R3 respectively denote the linear and rotational
speeds, m̄ is the QUAV mass, × denotes the vector product and F ∈ R3 is the total external force
including gravity, thrust and other body forces [31, 32].

Let Θ(t) = [θrol(t), θpit(t), θyaw(t)]T ∈ R3 signify the three Euler angles of roll, pitch and yaw, which
can indicate the orientation of QUAV. Then the rotation matrix R(Θ) ∈ S O(3) ∈ R3×3 described in
the following can be utilized to execute the coordinate transformation between frame B and frame E,
where S O(3) denotes the triaxial rotation group, i.e., S O(3) = {A|AT A = I3 ∈ R3×3, det(A) = 1}.
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R(Θ) =


c(θpit)c(θyaw)

c(θpit)s(θyaw)

−s(θpit)

s(θrol)s(θpit)c(θyaw) − c(θrol)s(θyaw)

s(θrol)s(θpit)s(θyaw) + c(θrol)c(θyaw)

s(θrol)c(θpit)

c(θrol)s(θpit)c(θyaw) + s(θrol)s(θyaw)

c(θrol)s(θpit)s(θyaw) − s(θrol)c(θyaw)

c(θrol)c(θpit)

 , (2.2)

where c(·) and s(·) respectively denote two trigonometric functions cos(·) and sin(·).
By implementing the coordinate transformation from B to E, the translational dynamic

equation (2.1) of QUAV can be re-expressed in inertial frame E as (referring to [31, 32])

υ̇1(t) =υ2(t),

υ̇2(t) = −
1
m̄

Kυ2(t) −


0
0
g

 + 1
m̄

R(Θ)


0
0
1

 up, (2.3)

where υ1(t) = [x(t), y(t), z(t)] ∈ R3 and υ2(t) = [ẋ(t), ẏ(t), ż(t)]T ∈ R3 are, respectively, the position
and velocity state vectors of QUAV in the inertial frame E, up ∈ R denotes the overall thrust force, g
is the gravity acceleration and K = diag{Kx,Ky,Kz} is the uncertain aerodynamic damping coefficient
matrix [33].

Remark 1. The rotational velocities ωi(t), i = 1, 2, 3, 4 of four rotors are the direct control input of
QUAV. Let τ = [τrol, τpit, τyaw]T denote the ideal attitude control, then up and τ have the following
relations with ωi(t), i = 1, 2, 3, 4.

up =β
(
ω2

1(t) + ω2
2(t) + ω2

3(t) + ω2
4(t)
)
,

τrol =βl
(
ω2

2(t) − ω2
4(t)
)
,

τpit =βl
(
− ω2

1(t) + ω2
3(t)
)
,

τyaw =γ
(
ω2

1(t) − ω2
2(t) + ω2

3(t) − ω2
4(t)
)
, (2.4)

where β ∈ R is the thrust factor, γ ∈ R is the drag factor and l ∈ R is the distance from rotors to the
mass center. When up and τ are specified by designing, a power board will distribute the control input
commands to four rotors by the relations. □

The control objective:
Depending on backstepping technique, design the adaptive NN control for the QUAV translational

dynamic described in (2.3), such that 1) all control signals of the QUVA system are Semi-Globally
Uniformly Ultimately Bounded (SGUUB) [34]; 2) the QUAV position states can track to the reference
trajectories υr(t) = [xυr(t), yυr(t), zυr(t)]T ∈ R3.

Assumption 1. The predefined reference υr(t) and derivation υ̇r(t) are a bounded and measurable
continuous time-function, hence they can be the valid information for the QUAV control design.

Lemma 1. [35] Regarding a positive continuous function F(t) ∈ R, if it satisfies Ḟ(t) ≤ −αF(t) + β
and has the bounded initial value F(0), then it can meet the following inequality

F(t) ≤ e−αtF(0) +
β

α

(
1 − e−αt) , (2.5)

where α and β are two constants with α > 0 and β > 0.
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2.2. Neural network (NN)

NNs have universal approximation ability with respect to a continuous nonlinear function. With
regard to a continuous nonlinear function A(χ) : Rn → Rm on a predefined compact set, the NN
approximation can be described as follows

ANN(χ) = ΨTϖ(χ), (2.6)

where Ψ ∈ Rp×m signifies the NN weight matrix with the neuron number p, ϖ(χ) is the basis function
vector and ϖ(χ) =

[
ϖ1(χ), · · · , ϖp(χ)

]T
∈ Rp with ϖi(χ) = exp

[
−
(
χ − ιi

)T (χ − ιi) /2
]

where ιi =
[ιi1, · · · , ιin]T are the respective field centers, i = 1, 2, · · · , p.

Let Ψ∗ be the ideal NN weight. It is defined as

Ψ∗ ≜ arg min
Ψ∈Rp×m

sup
χ∈Ωχ

∥∥∥A(χ) − ΨTϖ(χ)
∥∥∥ ,

where Ωχ is a compact set. Subsequently, in the light of the ideal NN approximation, the nonlinear
function A(χ) can be rewritten as

A(χ) = Ψ∗Tϖ(χ) + ϵ(χ), (2.7)

where ϵ(χ) ∈ Rm denotes the approximated error, which must be bounded [36].

3. Main results

3.1. Backstepping control design of QUAV position

Since the translational dynamic (2.3) associated with the position tracking control of QUAV is

under-actuated, an intermediary control variable U is introduced with U = 1/m̄R(Θ)


0
0
1

 up, then the

dynamical equation (2.3) can become

υ̇1(t) =υ2(t),

υ̇2(t) = −
1
m̄

Kυ2(t) −


0
0
g

 + U. (3.1)

Remark 2. Applying the rotation matrix (2.2), the relation of U = [Ux,Uy,Uz]T ∈ R3 and up can be
described as

Ux =
(
c(θrol)s(θpit)c(θyaw) + s(θrol)s(θyaw)

)up

m̄
,

Uy =
(
c(θrol)s(θpit)s(θyaw) − s(θrol)c(θyaw)

)up

m̄
,

Uz =c(θrol)c(θpit)
up

m̄
. (3.2)
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By solving (3.2), the actual control up can be obtained as (referring to [32])

up = m̄(U2
x + U2

y + U2
z )

1
2 . (3.3)

Using the desired position trajectory υr(t) = [xυr(t), yυr(t), zυr(t)]T ∈ R3, the position tracking errors
are defined as e1(t) = υ1 − υr and e2(t) = υ2 − αe, where αe ∈ R3 is the virtual control that is specified
later. From (3.1), the error dynamics can be obtained as

ė1(t) =υ2(t) − υ̇r(t),

ė2(t) = −
1
m̄

Kυ2(t) −


0
0
g

 − α̇e + U. (3.4)

According to Assumption 1, the QUAV system is under the suitable attitude, then the QUAV
position tracking control can be derived from the following 2-step backstepping.

Step 1. Applying the coordinate transformation e2(t) = υ2(t) − αe, the 1st error dynamic in (3.4) can
become

ė1(t) =αe + e2(t) − υ̇r(t). (3.5)

The virtual controller αe is given as

αe = −κ1e1(t) + υ̇r(t), (3.6)

where κ1 is the positive gain parameter.
Corresponding to this backstepping step, consider the following Lyapunov function

L1(t) =
1
2

eT
1 (t)e1(t). (3.7)

Along (3.5), its time derivation can be calculated as

L̇1(t) = eT
1 (t)
(
αe + e2(t) − υ̇r(t)

)
. (3.8)

Substitute (3.6) into (3.8) to have

L̇1(t) = −κ1eT
1 e1 + eT

1 e2. (3.9)

According to Young’s inequality and Cauchy–Schwartz inequality, the following one can be got

eT
1 (t)e2(t) ≤

1
2

eT
1 (t)e1(t) +

1
2

eT
2 (t)e2(t). (3.10)
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Inserting (3.10) into (3.9), we can get

L̇1(t) ≤ −
(
κ1 −

1
2

)
eT

1 (t)e1(t) +
1
2

eT
2 (t)e2(t)

= − (2κ1 − 1)L1(t) +
1
2

eT
2 (t)e2(t). (3.11)

Step 2. This is the final backstepping step. The actual QUAV position control based on NN
approximation mechanism is derived in this step.

The velocity error dynamic of (3.4) can be rewritten as

ė2(t) = f (υ2, α̇e) + U, (3.12)

where f (υ2, α̇e) = − 1
m̄ Kυ2(t) −


0
0
g

 − α̇e.

From the dynamic equation (3.12), the position controller needs to involve the function f (υ2, α̇e).
Because the function f (υ2, α̇e) contains the uncertain parameter K, it is not qualified for the design of
controller. However, since the function is continuous, NNs can be employed to approximate it over a
predefined compact set Ωu ∈ R3 by the following form

f (υ2, α̇e) = Ψ∗Tϖ(υ2, α̇e) + ϵ(υ2, α̇e), (3.13)

where Ψ∗ ∈ Rm×3 is the optimal NN weight, ϖ(υ2, α̇e) ∈ Rm is the basis function vector and ϵ(υ2, α̇e) ∈
R3 is the approximation error. There m is the number of neural neuron.

Since the optimal weight matrix Ψ∗ is a constant matrix but unknown, it needs to be adaptively
estimated for the design of controller. Further, the adaptive QUAV position control is designed as

U = −κ2e2(t) − γψ̂(t)∥ϖ(υ2, α̇e)∥2e2(t), (3.14)

where ψ̂(t) ∈ R is the adaptive estimation of optimal NN weight’s norm ψ∗ = ∥Ψ∗∥2 and is updated via
the following rule

˙̂ψ(t) =γ∥ϖ(υ2, α̇e)∥2∥e2(t)∥2 − βψ̂(t), (3.15)

where κ2, γ and β are the positive design parameters.

Remark 3. Since backstepping technique can release the matching condition in a nonlinear control
design, it has become a popular technique in the QUAV control recently [37–40]. In this work, for
handling the unknown or uncertain dynamic problem of the QUAV position control, the backstepping
technique is combined with the adaptive NN approximation strategy, because NN has many remarkable
and significant features, such as universal approximation ability, good robustness and simple structure.

However, the above adaptive control (3.14) with learning law (3.15) has a key difference compared
with the traditional adaptive NN control methods, such as [23–27]. In these traditional control
methods, their adaptive laws are to train the NN weight vector or matrix. If the neuron number
becomes very big for increasing the accuracy of the NN approximation, the computation burden will
be greatly increased. While the learning law (3.15) of the proposed adaptive control is to only train a
scalar adaptive parameter rather than vector or matrix. Therefore, the computation burden can be
greatly alleviated.
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The whole Lyapunov function associated with this backstepping step is chosen as

L2(t) =L1(t) +
1
2

eT
2 (t)e2(t) +

1
2
ψ̃2(t), (3.16)

where ψ̃(t) is the NN weight error with ψ̃(t) = ψ̂(t) − ψ∗.
According to (3.12) and (3.15), the time derivative of L2(t) can be calculated as

L̇2(t) =L̇1(t) + eT
2 (t) ( f (υ2, υ̇r) + U)

+ ψ̃(t)
(
γ∥ϖ(υ2, υ̇r)∥2∥e2(t)∥2 − βψ̂(t)

)
. (3.17)

Substituting (3.13) into (3.17), there is the following result

L̇2(t) =L̇1(t) − eT
2 (t)
(
Ψ∗Tϖ(υ2, υ̇r) + ϵ(υ2, υ̇r) + U

)
+ ψ̃(t)

(
γ∥ϖ(υ2, υ̇r)∥2∥e2(t)∥2 − βψ̂(t)

)
. (3.18)

According to Young’s inequality, there are the following two inequalities

−eT
2 (t)Ψ∗Tϖ(υ2, υ̇r) ≤ γ∥e2(t)∥2ψ∗∥ϖ(υ2, υ̇r)∥2 +

1
γ
,

−eT
2 (t)ϵ(υ2, υ̇r) ≤

1
2

eT
2 (t)e2(t) +

1
2
ϵT (υ2, υ̇r)ϵ(υ2, υ̇r), (3.19)

where ψ∗ = ∥Ψ∗∥2.
Using the above inequalities (3.19), the (3.18) can be re-described as

L̇2(t) ≤L̇1(t) +
1
2

eT
2 (t)e2(t) + γ∥e2(t)∥2ψ∗∥ϖ(υ2, υ̇r)∥2

+ eT
2 (t)U + ψ̃(t)

(
γ∥ϖ(υ2, υ̇r)∥2∥e2(t)∥2 − βψ̂(t)

)
+

1
2
∥ϵ(υ2, υ̇r)∥2 +

1
γ
. (3.20)

Implementing the position control (3.14), the above inequality can become

L̇2(t) ≤L̇1(t) −
(
κ2 −

1
2
)
eT

2 (t)e2(t) − γψ̃(t)∥e2(t)∥2∥ϖ(υ2, υ̇r)∥2

+ ψ̃(t)
(
γ∥ϖ(υ2, υ̇r)∥2∥e2(t)∥2 − βψ̂(t)

)
+

1
2
∥ϵ(υ2, υ̇r)∥2 +

1
γ
. (3.21)

Further, the equation (3.20) can be transformed into the following one,

L̇2(t) =L̇1(t) −
(
κ2 −

1
2
)
eT

2 e2 − βψ̃(t)ψ̂(t) +
1
2
∥ϵ(υ2, υ̇r)∥2 +

1
γ
. (3.22)
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Using ψ̃(t) = ψ̂(t) − ψ∗, there is the following equation

−ψ̃(t)ψ̂(t) = −
1
2
ψ̃2(t) −

1
2
ψ̂2(t) +

1
2
ψ∗2

≤ −
1
2
ψ̃2(t) +

1
2
ψ∗2. (3.23)

Substituting (3.23) into (3.22), there is

L̇2(t) ≤L̇1(t) −
(
κ2 −

1
2
)
eT

2 (t)e2(t) −
β

2
ψ̃2(t)

+
β

2
ψ∗2 +

1
2
∥ϵ(υ2, υ̇r)∥2 +

1
γ
. (3.24)

Substitute the result (3.11) into (3.24) to have

L̇2(t) ≤ − (2κ1 − 1)L1(t) −
(
κ2 − 1

)
eT

2 (t)e2(t)

−
β

2
ψ̃2(t) + c, (3.25)

where c is the boundedness of term β

2ψ
∗2 + 1

2∥ϵ(υ2, α̇e)∥2 + 1
γ
.

Let a = min {2κ1 − 1, 2κ2 − 2, β}, then the following inequality can be got from (3.25)

L̇2(t) ≤ −aL2(t) + c. (3.26)

3.2. Main conclusion

Theorem 1. Refer to the QUAV translation system (2.3) under suitable attitude, if the NN backstepping
position control is implemented via (3.6) and (3.14) with the updating law (3.15), and the design
parameters can meet the conditions κ1 > 1/2, κ2 > 1, β > 0 and γ > 0, then the backstepping control
can be guaranteed that

1). all control variables are SGUUB;
2). the QUAV position state υ1(t) can track the desired reference υr(t) under an ideal accuracy.

Proof of Theorem 1. According to Lemma 1, from (3.26), there is the following one

L2(t) ≤ e−atL2(0) +
c
a
(
1 − e−at) . (3.27)

In the light of the above inequality, it can conclude that all error signals are SGUUB, and both tracking
errors e1(t) and e2(t) can arrive in a small zero neighborhood by selecting the designed parameters large
enough.

Remark 4. The QUAV translational dynamic (2.3) is assumed to accompany with a corrected attitude.
In fact, the QUAV attitude control law can be designed similar with the above position control, and it
is introduced in the appendix section.
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4. Simulation

In this section, the proposed backstepping position control is further demonstrated by a numerical
QUAV system simulation in Matlab environment. The UAV model parameters are Īx = 4.85×10−3(kg ·
m2), Īy = 4.85 × 10−3(kg · m2), Īz = 8.81 × 10−3(kg · m2), m̄ = 0.5(kg) and g = 9.81(m/s2), which
refer to reference [19]. The NN is set with 16 nodes, and the centers ιi are equally distributed in the
space [−9, 9].

There are the desired position trajectory υr = [5s(t), 5c(t), t]T and the initial position set as
υr(0) = [0.35, 0.35, 0.35]T . The attitude signals for assisting position control are assumed to be
produced from the following equation (referring to [8])

θyaw =π/4,

θrol(t) = arcsin
(
m̄

Uxs(θyaw) − Uyc(θyaw)

up

)
,

θpit(t) = arctan
(Uxc(θyaw) + Uys(θyaw)

Uz

)
. (4.1)

The virtual control corresponding to (3.6) of the 1st backstepping step chooses the design parameter
κ1 = 18. The actual control corresponding to (3.14) of the 2nd backstepping step chooses the design
parameter κ2 = 12. Corresponding to (3.15), the updating law is set with the parameters γ = 3 and
β = 2. The initial values are set as υ1(0) = 0.3, υ2(0) = 0.5 and ψ̂(0) = 0.6.

The run results of simulation are displayed by Figures 2–5. Figure 2 shows the tracking
performance, and it shows that QUAV position states track the desired position trajectory. Figures 3
and 4 show the tracking errors of two backstepping steps respectively. The boundedness of NN
weight is displayed by Figure 5. Figures 2–5 further certify that the proposed QUAV position control
method can finally complete the control tasks.

0
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Figure 2. The QUAV position tracking performance.
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Figure 3. The tracking error of 1st backstepping step.
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Figure 4. The tracking error of 2nd backstepping step.
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Figure 5. The boundedness of NN weight.
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In order to show advantage of the proposed method, the traditional adaptive NN method of
reference [35] is implemented to the above QUAV position control, and the results are shown in
Figures 6 and 7. By comparing the two Figures 5 and 7, it can be concluded that, in the similar control
performance, the proposed method can yield the smaller amplitude in adaptive NN weight than the
traditional adaptive NN method of reference [35].
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Figure 6. The QUAV position tracking performance of using the adaptive NN method of
reference [35].
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Figure 7. The NN weight of using the adaptive NN method of reference [35].

5. Conclusions and future works

By combining the backstepping technique with adaptive NN approximation strategy, a position
tracking control scheme of QUAV system is developed. Since the translational system of QUAV is
modeled by the under-actuated nonlinear strict feedback form with some uncertainty, the control
design is very interesting and challenging. In order to achieve the control, an intermediary control is
introduced so that backstepping can be smoothly implemented, then NN approximation is employed

AIMS Mathematics Volume 8, Issue 7, 16191–16207
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to compensate the system uncertainty. Since only a scalar adaptive parameter is updated for the NN
approximation, the control method is with a less computation burden. In accordance with the stability
analysis and simulation, it is certified that this proposed QUAV position control algorithm can achieve
the control objective.

In our future work, the main study will be focused on the multi-QUAV control, and we will develop
the method of QUAV formation control. Different from the single QUAV control, the multi-QUAV
control aims to make the cooperation of multiple QUAVs by using the state coupling controller, and it
can surpass the ability of multiple single QUAVs.

Acknowledgments

This work is supported in part by national natural science foundation of China under grant
No.62173179, in part by the Science and Technology Foundations of Shandong Province under Grant
No.J18KB105, in part by the Natural Science Foundation of Shandong Province under Grant
ZR2021MF088.

Conflict of interest

No potential conflict of interest was reported by the authors.

References

1. P. Rodriguez-Gonzalvez, D. Gonzalez-Aguilera, G. Lopez-Jimenez, I. Picon-Cabrera, Imagebased
modeling of built environment from an unmanned aerial system, Automat. Const., 48 (2014), 44–
52. http://dx.doi.org/10.1016/j.autcon.2014.08.010

2. J. Senthilnath, A. Dokania, M. Kandukuri, K. N. Ramesh, G. Anand, S. N. Omkar, Detection of
tomatoes using spectral-spatial methods in remotely sensed rgb images captured by uav, Biosyst.
Eng., 146 (2016), 16–32. http://dx.doi.org/10.1016/j.biosystemseng.2015.12.003

3. A. Ryan, J. K. Hedrick, A mode-switching path planner for uav-assisted search and
rescue, In: Proceedings 44th IEEE Confrences Decision and Control, 2005, 1471–1476.
http://dx.doi.org/10.1109/CDC.2005.1582366

4. K. Alexis, G. Nikolakopoulos, A. Tzes, L. Dritsas, Coordination of Helicopter UAVs for
Aerial Forest-Fire Surveillance, Appl. Intell. Control Eng. Systems, 39 (2009), 169–193.
http://dx.doi.org/10.1007/978-90-481-3018-4 7

5. X. Liang, Y. Fang, N. Sun, H. Lin, Dynamics analysis and time-optimal motion
planning for unmanned quadrotor transportation systems, Mechatronics, 50 (2018), 16–29.
http://dx.doi.org/10.1016/j.mechatronics.2018.01.009

6. H. Liu, X. Wang, Y. Zhong, Dynamics analysis and time-optimal motion planning for
unmanned quadrotor transportation systems, IEEE T. Ind. Inform., 11 (2017), 406–415.
http://dx.doi.org/10.1109/TII.2015.2397878

7. S. Gupte, P. I. T. Mohandas, J. M. Conrad, A survey of quadrotor unmanned
aerial vehicles, In: 2012 Proceedings of IEEE Southeastcon, 2012, 1–6.
http://dx.doi.org/10.1109/SECon.2012.6196930

AIMS Mathematics Volume 8, Issue 7, 16191–16207

http://dx.doi.org/http://dx.doi.org/10.1016/j.autcon.2014.08.010
http://dx.doi.org/http://dx.doi.org/10.1016/j.biosystemseng.2015.12.003
http://dx.doi.org/http://dx.doi.org/10.1109/CDC.2005.1582366
http://dx.doi.org/http://dx.doi.org/10.1007/978-90-481-3018-4_7
http://dx.doi.org/http://dx.doi.org/10.1016/j.mechatronics.2018.01.009
http://dx.doi.org/http://dx.doi.org/10.1109/TII.2015.2397878
http://dx.doi.org/http://dx.doi.org/10.1109/SECon.2012.6196930


16204

8. G. Wen, W. Hao, W. Feng, K. Gao, Optimized backstepping tracking control using reinforcement
learning for quadrotor unmanned aerial vehicle system, IEEE T. Syst. Man Cy. Syst., 52 (2022),
5004–5015. http://dx.doi.org/10.1109/TSMC.2021.3112688

9. A. L. Salih, M. Moghavvemi, H. A. F. Mohamed, K. S. Gaeid, Modelling and pid
controller design for a quadrotor unmanned air vehicle, In: 2010 IEEE International
Conference on Automation, Quality and Testing, Robotics (AQTR), 1 (2010), 1–5.
http://dx.doi.org/10.1109/AQTR.2010.5520914

10. R. Xu, U. Ozguner, Sliding mode control of a quadrotor helicopter, In: Proceedings
of the 45th IEEE Conference on Decision and Control, (2006), 4957–4962.
https://doi.org/10.1109/CDC.2006.377588

11. P. Castillo, R. Lozano, A. Dzul, Stabilization of a mini rotorcraft with four rotors, IEEE Control
Syst., 25 (2005), 45–55. https://doi.org/10.1109/IROS.2004.1389815

12. M. Santos, V. Lopez, F. Morata, Intelligent fuzzy controller of a quadrotor, In: 2010 IEEE
International Conference on Intelligent Systems and Knowledge Engineering, 2010, 141–146.
https://doi.org/10.1109/ISKE.2010.5680812

13. G. Wen, S. S. Ge, F. Tu, Optimized backstepping for tracking control of
strict-feedback systems, IEEE T. Neur. Net. Lear. Syst., 29 (2018), 3850–3862.
http://dx.doi.org/10.1109/TNNLS.2018.2803726

14. A. Karimi, A. Feliachi, Decentralized adaptive backstepping control of electric power systems,
Electr. Pow. Syst. Res., 78 (2008), 484–493. http://dx.doi.org/10.1016/j.epsr.2007.04.003

15. Q. Xie, Z. Han, H. Kang, Adaptive backstepping control for hybrid excitation
synchronous machine with uncertain parameters, Expert Syst. Appl., 37 (2010), 7280–7284.
http://dx.doi.org/10.1016/j.eswa.2010.03.038

16. G. Wen, C. L. P. Chen, S. S. Ge, Simplified optimized backstepping control for a class of nonlinear
strict-feedback systems with unknown dynamic functions, IEEE T. Cybernetics, 51 (2021), 4567–
4580. http://dx.doi.org/10.1109/TCYB.2020.3002108

17. R. Sakthivel, A. Parivallal, N. Huy Tuan, S. Manickavalli, Nonfragile control design for consensus
of semi-markov jumping multiagent systems with disturbances, Int. J. Adapt. Control Signal Proc.,
35 (2021), 1039–1061. http://dx.doi.org/10.1002/acs.3245

18. A. Parivallal, R. Sakthivel, C. Wang, Guaranteed cost leaderless consensus for uncertain
markov jumping multi-agent systems, J. Exp. Theor. Artif. Int., 35 (2023), 257–273.
http://dx.doi.org/10.1080/0952813X.2021.1960631

19. M. A. Mohd Basri, A. R. Husain, K. A. Danapalasingam, Enhanced backstepping controller design
with application to autonomous quadrotor unmanned aerial vehicle, J. Intell. Robot. Syst., 79
(2015), 295–321. http://dx.doi.org/10.1007/s10846-014-0072-3

20. T. Madani, A. Benallegue, Backstepping control for a quadrotor helicopter, In:
IEEE/RSJ International Conference on Intelligent Robots & Systemn, 2006, 9419317.
http://dx.doi.org/10.1109/IROS.2006.282433

21. T. Madani, A. Benallegue, Backstepping sliding mode control applied to a miniature quadrotor
flying robot, In: IECON 2006-32nd Annual Conference on IEEE Industrial Electronics, 2006,
9430817. http://dx.doi.org/10.1109/IECON.2006.347236

AIMS Mathematics Volume 8, Issue 7, 16191–16207

http://dx.doi.org/http://dx.doi.org/10.1109/TSMC.2021.3112688
http://dx.doi.org/http://dx.doi.org/10.1109/AQTR.2010.5520914
http://dx.doi.org/https://doi.org/10.1109/CDC.2006.377588
http://dx.doi.org/https://doi.org/10.1109/IROS.2004.1389815
http://dx.doi.org/https://doi.org/10.1109/ISKE.2010.5680812
http://dx.doi.org/http://dx.doi.org/10.1109/TNNLS.2018.2803726
http://dx.doi.org/http://dx.doi.org/10.1016/j.epsr.2007.04.003
http://dx.doi.org/http://dx.doi.org/10.1016/j.eswa.2010.03.038
http://dx.doi.org/http://dx.doi.org/10.1109/TCYB.2020.3002108
http://dx.doi.org/http://dx.doi.org/10.1002/acs.3245
http://dx.doi.org/http://dx.doi.org/10.1080/0952813X.2021.1960631
http://dx.doi.org/http://dx.doi.org/10.1007/s10846-014-0072-3
http://dx.doi.org/http://dx.doi.org/10.1109/IROS.2006.282433
http://dx.doi.org/http://dx.doi.org/10.1109/IECON.2006.347236


16205

22. T. Madani, A. Benallegue, Control of a quadrotor mini-helicopter via full state backstepping
technique, In: Proceedings of the 45th IEEE Conference on Decision and Control, 2006, 9409085.
http://dx.doi.org/10.1109/CDC.2006.377548

23. G. Wen, C. L. P. Chen, S. S. Ge, H. Yang, X. Liu, Optimized adaptive nonlinear tracking control
using actor-critic reinforcement learning strategy, IEEE T. Ind. Inform., 15 (2019), 4969–4977.
http://dx.doi.org/10.1109/TII.2019.2894282

24. A. Poznyak, W. Yu, E. Sanchez, J. Perez, Nonlinear adaptive trajectory tracking using dynamic
neural networks, IEEE T. Neur. Net., 10 (1999), 1402–1411. http://dx.doi.org/10.1109/72.809085

25. A. S. Poznyak, W. Yu, E. N. Sanchez, J. P. Perez, Stability analysis of dynamic neural control,
Expert Syst. Appl., 14 (1998), 227–236. http://dx.doi.org/10.1016/S0957-4174(97)00072-9

26. G. Wen, S. S. Ge, C. L. P. Chen, F. Tu, S. Wang, Adaptive tracking control of surface
vessel using optimized backstepping technique, IEEE T. Cybernetics. 49 (2019), 3420–3431.
http://dx.doi.org/10.1109/TCYB.2018.2844177

27. A. Poznyak, W. Yu, Robust asymptotic neuro-observer with time delay term, J. Robust Nonlin.
Control, 10 (2000), 535–559.

28. G. Wen, C. L. P. Chen, J. Feng, N. Zhou, Optimized multi-agent formation control based on an
identifier-actor-critic reinforcement learning algorithm, IEEE T. Fuzzy Syst., 26 (2018), 2719–
2731. http://dx.doi.org/10.1109/TFUZZ.2017.2787561

29. Y. J. Liu, W. Wang, S. C. Tong, Y. S. Liu, Robust adaptive tracking control for nonlinear systems
based on bounds of fuzzy approximation parameters, IEEE T. Syst. Man Cy. A, 40 (2010), 170–184.
http://dx.doi.org/10.1109/TSMCA.2009.2030164

30. X. Shao, S. Tong, Adaptive fuzzy prescribed performance control for mimo stochastic nonlinear
systems, IEEE Access, 6 (2018), 76754–76767. http://dx.doi.org/10.1109/ACCESS.2018.2882634

31. S. Islam, P. X. Liu, A. El Saddik, Nonlinear adaptive control for quadrotor flying vehicle, Nonlinear
Dynam., 78 (2014), 117–133. http://dx.doi.org/10.1007/s11071-014-1425-y

32. F. Kendoul, Z. Yu, K. Nonami, Guidance and nonlinear control system for autonomous
flight of minirotorcraft unmanned aerial vehicles, J. Field Robot., 27 (2010), 311–334.
http://dx.doi.org/10.1002/rob.20327

33. B. Zhao, B. Xian, Y. Zhang, X. Zhang, Nonlinear robust adaptive tracking control of a quadrotor
uav via immersion and invariance methodology, IEEE T. Ind. Electron., 62 (2015), 2891–2902.
http://dx.doi.org/10.1109/TIE.2014.2364982

34. G. Wen, S. S. Ge, F. Tu, Optimized backstepping for tracking control of strict-
feedback systems, IEEE T. Neural Net. Learning Syst., 29 (2018), 3850–3862.
http://dx.doi.org/10.1109/TNNLS.2018.2803726

35. G. X. Wen, C. L. P. Chen, Y. J. Liu, Z. Liu, Neural-network-based adaptive leader-following
consensus control for second-order non-linear multi-agent systems, IET Control Theory Appl., 9
(2015), 1927–1934. https://doi.org/10.1109/TCYB.2016.2608499

36. S. S. Ge, C. C. Hang, T. Zhang, Adaptive neural network control of nonlinear
systems by state and output feedback, IEEE T. Syst. Man Cy. B, 29 (1999), 818–828.
http://dx.doi.org/10.1109/3477.809035

AIMS Mathematics Volume 8, Issue 7, 16191–16207

http://dx.doi.org/http://dx.doi.org/10.1109/CDC.2006.377548
http://dx.doi.org/http://dx.doi.org/10.1109/TII.2019.2894282
http://dx.doi.org/http://dx.doi.org/10.1109/72.809085
http://dx.doi.org/http://dx.doi.org/10.1016/S0957-4174(97)00072-9
http://dx.doi.org/http://dx.doi.org/10.1109/TCYB.2018.2844177
http://dx.doi.org/http://dx.doi.org/10.1109/TFUZZ.2017.2787561
http://dx.doi.org/http://dx.doi.org/10.1109/TSMCA.2009.2030164
http://dx.doi.org/http://dx.doi.org/10.1109/ACCESS.2018.2882634
http://dx.doi.org/http://dx.doi.org/10.1007/s11071-014-1425-y
http://dx.doi.org/http://dx.doi.org/10.1002/rob.20327
http://dx.doi.org/http://dx.doi.org/10.1109/TIE.2014.2364982
http://dx.doi.org/http://dx.doi.org/10.1109/TNNLS.2018.2803726
http://dx.doi.org/https://doi.org/10.1109/TCYB.2016.2608499
http://dx.doi.org/http://dx.doi.org/10.1109/3477.809035


16206

37. W. Yang, G. Cui, Q. Ma, J. Ma, C. Tao, Finite-time adaptive event-triggered command
filtered backstepping control for a quav, Appl. Math. Comput., 423 (2022), 126898.
http://dx.doi.org/10.1016/j.amc.2021.126898

38. N. Koksal, H. An, B. Fidan, Backstepping-based adaptive control of a quadrotor
uav with guaranteed tracking performance, ISA T., 105 (2020), 98–110.
http://dx.doi.org/10.1016/j.isatra.2020.06.006

39. K. Eliker, W. Zhang, Finite-time adaptive integral backstepping fast terminal sliding mode
control application on quadrotor uav, Int. J. Control Autom. Syst., 18 (2020), 415–430.
http://dx.doi.org/10.1007/s12555-019-0116-3

40. F. Chen, L. Wen, K. Zhang, T. Gang, B. Jiang, A novel nonlinear resilient control for a quadrotor
uav via backstepping control and nonlinear disturbance observer, Nonlinear Dynam., 85 (2016),
1281–1295. https://link.springer.com/article/10.1007/s11071-016-2760-y

Appendix: Adaptive attitude control design of QUAV

According to Newton-Euler formula, the rotational dynamic can be depicted in the body fixed frame
B as

ĪΩ̇a = −Ωa×̇ĪΩa + τ, (5.1)

where Ωa = [Ω1,Ω2,Ω3]T ∈ R3 is the rotational speeds; ×̇ denotes the vector product (and also is
called as cross product); Ī = diag{Īx, Īy, Īz} ∈ R

3×3 is the inertia matrix that is a positive definite
constant matrix; τ = [τrol, τpit, τyaw]T ∈ R3 is the control torque.

Let η1(t) = [θrol(t), θpic(t), θyaw(t)]T ∈ R3 denote three Euler angles. By using the rotation matrix
R(η1), the attitude dynamic (5.1) can be transformed from the body frame B to the inertial frame E as
(referring to [8])

η̇1(t) =η2(t),
η̇2(t) = fa(η1, η2) + Φ(η1)Ī−1τ, (5.2)

where
fa(η1, η2) = −Φ(η1)Ī−1(Φ−1(η1)η2(t)×̇ĪΦ−1(η1)η2(t)

)
+ Φ̇(η1)Φ−1(η1)η2(t),

Φ(η1) =


1 s(θrol)t(θpit) c(θrol)t(θpit)

0 c(θrol) −s(θrol)

0 s(θrol)se(θpit) c(θrol)se(θpit)

 ,
and t(·) and se(·) are the abbreviations of trigonometric functions tan(·) and sec(·) respectively.

For assisting the QUAV position control, the attitude control is required to subject to the command
signal vector ηre(t) = [ϕre(t), θre(t), ψre(t)]T . In the command signal vector ηre(t), its yaw command
element ψre(t) needs to be predefined, then the roll and pitch command angles can be generated
from (3.2) as

ϕre(t) = arcsin
(
m̄

U1 sin(ψre) − U2 cos(ψre)
up

)
,
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θre(t) = arctan
(U1 cos(ψre) + U2 sin(ψre)

U3

)
. (5.3)

Define the tracking error variables as eη1(t) = η1(t) − ηre(t) and eη2(t) = η2(t) − αη, where αη ∈ R3 is
the virtual control. From (5.2), the error dynamics can be yielded as follows,

ėη1(t) =η2(t) − η̇re(t),
ėη2(t) = fa(η1, η2) + Φ(η1)Ī−1τ − α̇η, (5.4)

where F(η1, η2, α̇η) = fa(η1, η2) − α̇η.
The QUAV attitude control is derived from 2-step backstepping as well. In the first backstepping

step, the virtual control is designed as

αη = −κ3eη1(t) + η̇re(t), (5.5)

where κ3 is the design parameter with κ3 > 0.
In the second backstepping step, the final QUAV attitude control is derived by using the adaptive

NN in the following.
The NN is used to approximate the uncertain function F(η1, η2, α̇η) as

F(η1, η2, α̇η) = Ψ∗Ta ϖa(η1, η2, α̇η) + ϵa, (5.6)

whereΨ∗a ∈ Rm×3 is the optimal NN weight, ϖa(η1, η2, α̇η) ∈ Rm is the basis function vector and ϵa ∈ R3

is the approximation error.
Then the adaptive attitude control can be similarly designed with the position control (3.14) as

τ = −ĪΦ−1(η1)
(
κ4eη2(t) + γaψ̂a(t)∥ϖa(η1, η2, α̇η)∥2eη2(t)

)
, (5.7)

and the adaptive parameter ψ̂a(t) ∈ R is updated via the following rule:

˙̂ψa(t) =γa∥ϖa(η1, η2, α̇η)∥2∥eη2(t)∥2 − βaψ̂a(t), (5.8)

where κ4, γa and βa are the positive design parameters and ψ̂a(t) is the adaptive estimation of optimal
NN weight’s norm ψ∗a = ∥Ψ

∗
a∥

2.
Since the stability proof of the attitude control is similar to the proof of Theorem 1, it is omitted

here.
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