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1. Introduction

Let Ω ⊂ R3 be a bounded domain with smooth boundary ∂Ω. For any τ ∈ R, we consider the
following equation:

utt − k(0)4u − 4ut − ε(t)4utt −
∫ ∞

0
k′(s)4u(t − s)ds + f (u) = g(x), in Ω × (τ,∞),

u(x, t) = u0(x, t), ut(x, t) = ∂tu0(x, t), x ∈ Ω, t ≤ τ,

u(x, t) = 0, x ∈ ∂Ω, t ∈ R,

(1.1)

where u = u(x, t) : Ω × (τ,∞) → R is an unknown function, and u0 : Ω × (−∞, τ] → R is a given past
history of u, k(0), k(∞) > 0 and k′(s) ≤ 0 for every s ∈ R+, g(x) ∈ L2(Ω). ε(t) ∈ C1(R) is a decreasing
bounded function with

lim
t→+∞

ε(t) = 0; (1.2)
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especially, there exists a positive constant L such that

sup
t∈R

[|ε(t)| + |ε′(t)|] ≤ L. (1.3)

The function f ∈ C1(R), f (0) = 0, satisfies the conditions

| f ′(s)| ≤ C(1 + |s|2), ∀s ∈ R, (1.4)

and

lim inf
|s|→+∞

f (s)
s

> −λ1, ∀s ∈ R, (1.5)

where C is a positive constant, and λ1 is the first eigenvalue of A = −4 with Dirichlet boundary value
condition.

Nonlinear evolution equations of this type arise as models of a vibration of a nonlinear elastic rod,
which are used to represent the propagation of lengthwise-waves in nonlinear elastic rods and ion-sonic
of space transformation by weak nonlinear effect; see for details [1–3].

Equation (1.1) becomes a strongly damped wave equation with a linear memory term when the
coefficient function ε(t) ≡ 0, and it was discussed clearly in [4] and the references therein. When ε(t) ≡
ε, Eq (1.1) becomes an autonomous evolution equation, and the long-time behavior of the solutions can
be well characterized by using the concept of global attractors under the framework of semigroups. In
this case, when µ(s) = −k′(s) vanishes, Eq (1.1) reduces to the damped wave equation, which has been
extensively discussed by many authors. For instance, Xie and Zhong [5, 6] systematically investigated
the existence of global attractors for (1.1) on weak and strong Hilbert spaces, respectively. Based on the
global well-posedness results given in [7], Sun, Yang and Duan [8] constructed the uniformly
asymptotic regularity of solution with respect to ε ∈ [0, 1] for (1.1) when g ∈ L2(Ω) and g ∈ H−1(Ω),
respectively, and they also obtained the existence of exponential attractors as well as the upper-
semicontinuity of global attractors.

If ε(t) is dependent on t, then Eq (1.1) becomes more complex and interesting. In this case, the long-
time behavior of the solutions for (1.1) can be well characterized by the concept of time-dependent
global attractors under the framework of processes, which have been discussed in [9–13]. Recently,
Ma, Wang and Liu [14] investigated the existence and regularity of the time-dependent attractors for
wave equations by using the operator decomposition technique along with compactness of translation
theorem, also they proved the asymptotic structure as in [13]. In [15], they verified the asymptotic
compactness of wave equations with nonlinear damping and linear memory by using the contractive
functions method which was introduced in [10].

For our problem, by using the method of contractive functions [10], Liu and Ma [16] have obtained
the existence of time-dependent global attractors of a nonlinear evolution equation with nonlinear
damping and µ(s) = −k′(s) = 0 in (1.1). For problem (1.1), we first introduce a new variable that is
used to construct a relatively complicated triple solution space. Second, in order to prove compactness
and regularity we use the decomposition technique as in [14]. Finally, we also prove the asymptotic
structure of time-dependent global attractor as ε(t)→ 0 when t → ∞.

The rest of this article is organized as follows: In the next section, we define some function set,
and we recall some basic definitions and abstract results. In Section 3, the existence and regularity of
time-dependent global attractor are obtained. Finally, in Section 4 we prove the asymptotic structure
of time-dependent global attractor.
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2. Preliminaries

As in [4], we introduce the new variable

ηt(x, s) = u(x, t) − u(x, t − s),

and differentiating the above equation, we get

ηt
t(s) = −ηt

s(s) + ut(t), (2.1)

with

ηt =
∂

∂t
η, ηs =

∂

∂s
η.

For simplicity, we set µ(s) = −k′(s) and k(∞) = 1, where the memory component µ satisfies the
following conditions:

µ ∈ C1(R+) ∩ L1(R+),
∫ ∞

0
µ(s)ds = m0 < +∞, ∀s ∈ R+, (2.2)

µ′(s) ≤ −ρµ(s) ≤ 0, ∀s ∈ R+ and some ρ > 0. (2.3)

Then, we can reformulate (1.1) as the following dynamical system:utt − 4u − 4ut − ε(t)4utt −
∫ ∞

0
µ(s)4ηt(s)ds + f (u) = g(x),

ηt
t + ηt

s = ut,
(2.4)

with initial boundary conditions
u(x, t) = 0, x ∈ ∂Ω, t ≥ τ,

ηt(x, s) = 0, (x, s) ∈ ∂Ω × R+, t ≥ τ,

u(x, τ) = u0(x), ut(x, τ) = u1(x), ηt(x, 0) = 0, x ∈ Ω,

ητ(x, s) = η0(x, s), (x, s) ∈ Ω × R+,

(2.5)

where
u0(x) = u0(x, τ), u1(x) = ∂tu0(x, t)|t=τ,

and
η0 = η0(x, s) = u0(x, τ) − u0(x, τ − s).

Without loss of generality, set H = L2(Ω) with inner product〈·, ·〉 and norm ‖ · ‖. For s ∈ R+ we
define the hierarchy of (compactly) nested Hilbert spaces

H s = D(A
s
2 ), 〈w, v〉s = 〈A

s
2 w, A

s
2 v〉, ‖w‖s = ‖A

s
2 w‖.

Especially, we have the embedding H s+1 ↪→ H s. Also, we denote A = −∆ with domain D(A) =

H2(Ω) ∩ H1
0(Ω).
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For s ∈ R+, let L2
µ(R

+; H s) be the family of Hilbert spaces of functions ϕ : R+ → H s, endowed with
the inner product and norm, respectively,

〈ϕ1, ϕ2〉µ,s = 〈ϕ1, ϕ2〉µ,Hs =

∫ ∞

0
µ(s)〈ϕ1(s), ϕ2(s)〉Hsds,

‖ϕ‖2µ,s = ‖ϕ‖2µ,Hs =

∫ ∞

0
µ(s)‖ϕ(s)‖2sds.

We also need the spaces

H1
µ(R+; H s) = {ϕ : ϕ(r), ∂rϕ(r) ∈ L2

µ(R
+; H s)}.

Now, for t ∈ R and s ∈ R+, we introduce the following time-dependent spaces

H s
t = H s+1 × H s+1

t × L2
µ(R

+; H s+1),

with norms
‖z‖2
H s

t
= ‖{u, v, ηt}‖2

H s
t

= ‖u‖2s+1 + ‖v‖2s + ε(t)‖v‖2s+1 + ‖ηt‖2µ,s+1,

where the space H s+1
t is endowed with the time-dependent norm ‖v‖2s + ε(t)‖v‖2s+1.

The symbol is always omitted whenever zero. In particular, the time-dependent phase space where
we settle the problem is

Ht = H1 × H1
t × L2

µ(R
+; H1),

endowed with the time-dependent product norms

‖z‖2
Ht

= ‖{u, v, ηt}‖2
Ht

= ‖u‖21 + ‖v‖2 + ε(t)‖v‖21 + ‖ηt‖2µ,1.

Now we recall some basic definitions and abstract results that will help us to get our main results.

Definition 2.1. [9, 12] Let {Xt}t∈R be a family of normed spaces. A process is a two parameter family
of mappings U(t, τ) : Xτ → Xt, t ≥ τ, t, τ ∈ R with properties

(i) U(τ, τ) = Id is the identity operator on Xτ , τ ∈ R;
(ii) U(t, s)U(s, τ) = U(t, τ), ∀t ≥ s ≥ τ, τ ∈ R.

For every t ∈ R, let Xt be a family of normed spaces, and we define the R−ball of Xt as follows:

Bt(R) = {z ∈ Xt : ‖z‖Xt ≤ R}.

We denote the Hausdorff semi-distance of two nonempty sets A, B ⊂ Xt by

distXt(A, B) = sup
x∈A

inf
y∈B
‖x − y‖Xt .

Definition 2.2. [9, 12] A family C = {Ct}t∈R of bounded sets Ct ⊂ Xt is called uniformly bounded if
there exists R > 0 such that Ct ⊂ Bt(R), ∀t ∈ R.
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Definition 2.3. [9,12] We say B = {Bt}t∈R is a time-dependent absorbing set for the process U(t, τ), if
Bt ⊂ Bt(R) is uniformly bounded and there exist t0 = t0(C) ≥ 0 such that

U(t, τ)Cτ ⊂ Bt, τ ≤ t − t0,

for every uniformly bounded family C = {Ct}t∈R.

Definition 2.4. [9,12] A family K = {Kt}t∈R is called pullback attracting if it is uniformly bounded and

lim
τ→−∞

distXt(U(t, τ)Cτ,Kt) = 0,

for every uniformly bounded family C = {Ct}t∈R.

Definition 2.5. [9, 12] The time-dependent global attractor is the smallest family A = {At}t∈R ∈ K,
where K = {K = {Kt}t∈R : Kt ⊂ Xt compact, K pullback attracting}, i.e. At ⊂ Kt,∀t ∈ R, for any element
K = {Kt}t∈R ∈ K.

Definition 2.6. [12] The process U(t, τ) is called

• closed if U(t, τ) is a closed map for any pair of fixed times t ≥ τ ;
• T-closed for some T > 0 if U(t, t − T ) is a closed map for all t.

Definition 2.7. [12] We say that A = {At}t∈R is invariant if

U(t, τ)Aτ = At,∀t ≥ τ.

Remark 2.1. [12] If the time-dependent global attractor A exists, and the process U(t, τ) is strongly
continuous (or norm-to-weak continuous, or closed, or T-closed), then A is invariant.

Theorem 2.1. [12] If U(t, τ) is asymptotically compact, then there exists a unique time-dependent
attractor A = {At}t∈R.

If U(t, τ) is a T-closed process for some T > 0 and possesses a time-dependent global attractor
A = {At}t∈R, then A is invariant.

In order to prove the asymptotic structure of the time-dependent global attractors for the process
U(t, τ), we recall some results from [13, 14].

Here, we will focus on the case of a process U(t, τ) acting on a family of spaces {Zt}t∈R of the form

Zt = X ×Yt,

where X is a normed space, and {Yt}t∈R is a family of normed space, endowed with the product norm

‖(x, y)‖2Zt
= ‖x‖2X + ‖y‖2

Yt
.

Let Πt : Zt → X be the projection on the first component of Zt , that is, Πt(x, y) = x. Accordingly, if
Ct ⊂ Zt , then ΠtCt = {x ∈ X : (x, y) ∈ Ct}. If C = {Ct}t∈R, then ΠC = {ΠtCt}t∈R.

Definition 2.8. [13, 14] Let A = {At}t∈R be the time-dependent global attractor of U(t, τ). If A is
invariant, then At = {z(t) ∈ Zt : z CBT o f U(t, τ)} . Accordingly, we can write

A = {z : t → z(t) ∈ Zt with z a CBT of U(t, τ)},

where z : t 7→ z(t) ∈ Zt is a complete bounded trajectory CBT of U(t, τ) if
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supt∈R ‖z(t)‖Zt ≤ ∞ and z(t) = U(t, τ)z(τ),∀t ≥ τ, τ ∈ R.

Lemma 2.1. [13] Assume that, for any sequence zn = (xn, yn) of a complete bounded trajectory (CBT)
of the process U(t, τ) and any tn → ∞ , there exists a complete bounded trajectory (CBT) w of a
semigroup S (t) and s ∈ R for which

‖xn(s + tn) − w(s)‖X → 0,

as n→ ∞ up to a subsequence. Then,

lim
t→∞

distX(ΠtAt, A∞) = 0,

where A∞ is the global attractor in the phase space X for the autonomous system corresponding to the
non-autonomous system with the coefficient ε(t) ≡ 0.

Let F(u) =
∫ u

0
f (s)ds, and we can obtain the following lemma:

Lemma 2.2. [14] From dissipation condition (1.5), there exist two positive constants k1 and k2 and
for some 0 < ν < 1 such that

〈 f (u), u〉 ≥ −(1 − ν)‖u‖21 − k1, ∀u ∈ H1
0(Ω), (2.6)

2〈F(u), 1〉 ≥ −(1 − ν)‖u‖21 − k2, ∀u ∈ H1
0(Ω). (2.7)

Lemma 2.3. [14] Let Y(t) : [τ,∞)→ R+ be an absolutely continuous function satisfying the inequality

d
dt

Y(t) + 2εY(t) ≤ h(t)Y(t) + k,

for some ε > 0, k ≥ 0 and where h : [τ,∞)→ R+ fulfills∫ ∞

τ

h(s)ds ≤ m,

with m ≥ 0 . Then,
Y(t) ≤ Y(τ)eme−ε(t−τ) + kε−1em.

Within this article, we often use Hölder and Young inequalities and denote positive constants by C,
which will change in different lines or even in the same line.

3. Existence of time-dependent global attractors

3.1. Well-posedness and time-dependent absorbing set

In order to obtain the well-posedness of the solution associated with (2.4)–(2.5), we first make a
priori estimates as follows:

Lemma 3.1. Assume that (1.2)–(1.5) and (2.2)–(2.3) hold, and then for any initial data zτ = z(τ) =

(u0, u1, η0) ∈ Bτ(R0) ⊂ Hτ , there exists a constant R > 0, such that

‖U(t, τ)z(τ)‖Ht ≤ R, ∀τ ≤ t.

AIMS Mathematics Volume 8, Issue 7, 16208–16227.
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Proof. Multiplying (2.4)1 with 2ut + 2δu and integrating on Ω, we find that

d
dt

(‖ut‖
2 + ε(t)‖ut‖

2
1 + (1 + δ)‖u‖21 + 2δ〈ut, u〉 + 2δε(t)〈∇ut,∇u〉 + ‖ηt(s)‖2µ,1 + 2〈F(u), 1〉 − 2〈g, u〉)

+ 2‖ut‖
2
1 + 2δ‖u‖21 − 2δ‖ut‖

2 − (2δε(t) + ε′(t))‖ut‖
2
1 + 2〈ηt, ηt

s〉µ,1 − 2δ
∫ ∞

0
µ(s)〈4ηt(s), u(t)〉ds

+ 2δ〈 f , u〉 − 2δ〈g, u〉 = 2δ〈ε′(t)∇ut,∇u〉. (3.1)

First, from condition (1.3), and by the Hölder, Young and Poincaré inequalities, there holds

2δ〈ε′(t)∇ut,∇u〉 ≤ 2δL‖ut‖1‖u‖1 ≤
1
2
‖ut‖

2
1 + 2δ2L2‖u‖21,

where ‖u‖21 ≥ λ1‖u‖2, ∀u ∈ H2(Ω).
Let

E(t) =‖ut‖
2 + ε(t)‖ut‖

2
1 + (1 + δ)‖u‖21 + 2δ〈ut, u〉 + 2δε(t)〈∇ut,∇u〉 + ‖ηt(s)‖2µ,1

+ 2〈F(u), 1〉 − 2〈g, u〉, (3.2)

and

I(t) =(
3
2
− 2δε(t) − ε′(t))‖ut‖

2
1 + (2δ − 2δ2L2)‖u‖21 − 2δ‖ut‖

2 + 2〈ηt, ηt
s〉µ,1

− 2δ
∫ ∞

0
µ(s)〈4ηt(s), u(t)〉ds + 2δ〈 f , u〉 − 2δ〈g, u〉. (3.3)

Then,

d
dt

E(t) + I(t) ≤ 0. (3.4)

Integrating (3.4) from τ to t, we have

E(t) ≤ −
∫ t

τ

I(s)ds + E(τ). (3.5)

Next, we estimate (3.2) and (3.3), respectively. By using (1.3), (2.7) and the Hölder, Young, Poincaré
inequalities, it follows that

2δ|〈ut, u〉| ≤ 2δ‖ut‖‖u‖ ≤ δ‖ut‖
2 +

δ

λ1
‖u‖21,

2δε(t)|〈∇ut,∇u〉| ≤ δε(t)‖ut‖
2
1 + δL‖u‖21,

2|〈g, u〉| ≤
ν

2
‖u‖21 +

2
λ1ν
‖g‖2.

Then,

E(t) ≥ (1 − δ)‖ut‖
2 + (

ν

2
−
δ

λ1
− Lδ)‖u‖21 + ε(t)(1 − δ)‖ut‖

2
1 + ‖ηt(s)‖2µ,1 − (

2
λ1ν
‖g‖2 + k2). (3.6)

AIMS Mathematics Volume 8, Issue 7, 16208–16227.



16215

Using (2.2), (2.3) there holds

2〈ηt, ηt
s〉µ,1 ≥

2ρ
2
‖ηt(s)‖2µ,1 = ρ‖ηt(s)‖2µ,1,

and

2δ|〈
∫ ∞

0
µ(s)4ηt(s)ds, u(t)〉| ≤

ρ

2
‖ηt(s)‖2µ,1 +

2δ2m0

ρ
‖u‖21.

Hence, from (2.6) and the condition (1.3), we get

I(t) ≥ (
3
2
− 2δε(t) − ε′(t))‖ut‖

2
1 + (2δ − 2δ2L2 −

2δ2m0

ρ
)‖u‖21 − 2δ‖ut‖

2 +
ρ

2
‖ηt(s)‖2µ,1

+ 2δ〈 f , u〉 − 2δ〈g, u〉

≥ (
1
2
− 2δε(t) − ε′(t))‖ut‖

2
1 + 2δ(ν − δ − δL2 −

δm0

ρ
)‖u‖21 + (λ1 − 2δ)‖ut‖

2 +
ρ

2
‖ηt(s)‖2µ,1

− 2δk1 −
1

2λ1
‖g‖2

≥ δε(t)‖ut‖
2
1 + δν‖u‖21 + δ‖ut‖

2 +
ρ

2
‖ηt(s)‖2µ,1 − (

1
2λ1
‖g‖2 + 2δk1), (3.7)

where we have chosen 0 < δ small enough such that

1 − δ ≥ δ,
ν

2
−
δ

λ1
− Lδ ≥

ν

4
,

1
2
− 2δε(t) − ε′(t) > δε(t), ν − δ − δL2 −

δm0

ρ
>
ν

2
, λ1 − 2δ > δ.

Let M1 = min{ ν4 , δ}, M2 = min{δ, νδ, ρ2 }, m1 = 2
λ1ν
‖g‖2 + k2, m2 = 1

2λ1
‖g‖2 + 2δk1, and then from (3.5) we

arrive at

M1[‖ut‖
2 + ε(t)‖ut‖

2
1 + ‖u‖21 + ‖ηt(s)‖2µ,1] − m1

≤ −

∫ t

τ

(M2[‖ut(r)‖2 + ε(r)‖ut(r)‖21 + ‖u(r)‖21 + ‖ηr(s)‖2µ,1] − m2)dr + E(τ).

Therefore, taking K0 >
m2
M2

, we have

‖ut(t)‖2 + ε(t)‖ut(t)‖21 + ‖u(t)‖21 + ‖ηt(s)‖2µ,1 ≤ K0, ∀ t ≥ t0.

As a result, if (u, ut, η) is the solution of the system, let Bt =
⋃

t≥τ U(t, τ)Bτ, where

Bτ = {(u0, u1, η
0) ∈ Hτ : ‖u1‖

2 + ε(τ)‖u1‖
2
1 + ‖u0‖

2
1 + ‖η0(s)‖2µ,1 ≤ K0}.

Then, Bt is a bounded absorbing set for process {U(t, τ)}t≥τ.
On the other hand, from the above discussion, there exists a positive constant R(R0) > 0 such that

‖u‖21 + ‖ut‖
2 + ε(t)‖ut‖

2
1 + ‖ηt‖2µ,1 ≤ R, ∀ t ≥ t0 ≥ τ.

The proof is completed. �
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Lemma 3.2. Let the assumptions (1.2)–(1.5) and (2.2)–(2.3) hold, and then for any initial data zτ =

z(τ) = (u0, u1, η0) ∈ Hτ , on any interval [τ, t] with t > τ, there exists a unique solution (u(t), ut(t), ηt(s))
of the system (2.4)–(2.5) satisfying

u ∈ C([τ, t]; H1
0(Ω)), ut ∈ C([τ, t]; H1

0(Ω)), ηt ∈ C([τ, t]; L2
µ(R

+; H1
0(Ω))).

Furthermore, let zi(τ) ∈ Hτ be the initial data such that ‖zi(τ)‖Hτ
≤ R0, (i = 1, 2), and zi(t) be the

solution of problem (2.4)–(2.5). Then, there exists C̃ = C̃(R0) > 0, such that

‖z1(t) − z2(t)‖Ht ≤ eC̃(t−τ)‖z1(τ) − z2(τ)‖Hτ
,∀t ≥ τ. (3.8)

Thus, the system (2.4)–(2.5) generates a strongly continuous process U(t, τ), where U(t, τ) : Hτ →

Ht acting as U(t, τ)z(τ) = {u(t), ut(t), ηt(s)}, with the initial data zτ = {u0, u1, η0} ∈ Hτ.

Proof. Based on Lemma 3.1, we can obtain the existence of a solution for problem (2.4)–(2.5) by using
the Faedo-Galerkin approximation method, and the degenerate coefficient function ε(t) in (2.4) is not
causing a new difficult. See for details [5, 12, 17].

Consequently, we only need to verify the estimate (3.8). For this purpose, we assume that zi(t) =

{ui(t), uit(t), ηt
i(s)}(i = 1, 2) are the solutions of (2.4)–(2.5) with the corresponding initial data zi(τ) =

{u0
i (τ), u1

i (τ), η0
i (s)}(i = 1, 2), and there exists R0 > 0 such that ‖zi(τ)‖Hτ

≤ R0, i = 1, 2. �

According to Lemma 3.1 we ensure that

‖U(t, τ)zi(τ)‖Ht ≤ R, i = 1, 2. (3.9)

Let z(t) = {u(t), ut(t), η
t(s)} = U(t, τ)z1(τ) − U(t, τ)z2(τ), and then z(t) satisfies the following equation:

utt − 4u − 4ut − ε(t)4utt −

∫ ∞

0
µ(s)4ηt(s)ds + f (u1) − f (u2) = 0. (3.10)

Taking the inner product of (3.10) with 2ut in L2(Ω), we get

d
dt

[‖ut‖
2 + ‖u‖21 + ε(t)‖ut‖

2
1 + ‖ηt

‖2µ,1] − ε′(t)‖ut‖
2
1 + 2‖ut‖

2
1 + 2〈ηt, ηt

s〉µ,1

= − 2〈 f (u1) − f (u2), ut〉. (3.11)

In line with (1.4), (3.9), Hölder inequality, Young inequality and embedding H1
0(Ω) ↪→ L6(Ω), it

follows that

−2〈 f (u1) − f (u2), ut〉 ≤C
∫

Ω

(1 + |u1|
2 + |u2|

2)|u||ut|dx

≤C(1 + ‖u1‖
2
L6 + ‖u2‖

2
L6)‖u‖L6‖ut‖

≤C(1 + ‖u1‖
2
1 + ‖u2‖

2
1)‖u‖1‖ut‖

≤C‖u‖1‖ut‖

≤CR(‖u‖21 + ‖ut‖
2); (3.12)

meanwhile, (2.2) and (2.3) mean

〈ηt(s), ηt
s(s)〉µ,1 ≥

ρ

2
‖ηt(s)‖2µ,1. (3.13)
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Together with (3.12) and (3.13), from (3.11) we deduce

d
dt

[‖ut‖
2 + ‖u‖21 + ε(t)‖ut‖

2
1 + ‖ηt

‖2µ,1] ≤ CR(‖u‖21 + ‖ut‖
2) + ρ‖ηt(s)‖2µ,1.

So, according to the norm of (2.5), we can claim

d
dt
‖z(t)‖2

Ht
≤ C̃‖z(t)‖2

Ht
, (3.14)

where C̃ = max{CR, ρ}. Thus, by using the Gronwall lemma with (3.14), we conclude the result (3.8).

Remark 3.1. Based on the argument, there exists R such that B = {Bt(R)}t∈R is a time-dependent
absorbing set for the process {U(t, τ)}t≥τ associated with (2.4) and (2.5), and for M0(R0) > 0 there
holds

sup
zτ∈Bτ(R0)

{‖U(t, τ)zτ‖2Ht
+

∫ ∞

τ

‖ut(y)‖21dy} ≤ M0, ∀τ ∈ R. (3.15)

Proof. Let δ ≡ 0 in equality (3.4), and we get that

d
dt

[‖ut‖
2 + ε(t)‖ut‖

2
1 + ‖u‖21 + ‖ηt(s)‖2µ,1 + 2〈F(u), 1〉 − 2〈g, u〉] + ‖ut(y)‖21 ≤ 0.

Integrating on [τ, t] and using inequality (3.6), we have
∫ ∞
τ
‖ut(y)‖21dy ≤ M0(> 0). Then, together with

Lemma 3.1, we conclude that (3.15) is true. �

3.2. Asymptotic compactness and time-dependent global attractor

In this section, we do as in [14]. We find a suitable decomposition of the process, which is the
sum of a decaying part and compact part. By a direct application of the abstract Theorem 2.1, we do
this strategy to show that the process is asymptotically compact, and then the existence of the time-
dependent global attractor is obtained.

For decomposition we write f = f0 + f1, where f0, f1 ∈ C2(R) satisfy

| f ′1(u)| ≤ C(1 + |u|γ−1), 1 < γ < 3, ∀u ∈ R, (3.16)
| f ′′0 (u)| ≤ C(1 + |u|), ∀u ∈ R, (3.17)

lim inf
|u|→∞

f1(u)
u

> −λ1, ∀u ∈ R, (3.18)

f0(0) = f ′0(0) = 0, f0(u)u ≥ 0, ∀u ∈ R. (3.19)

Let B = {Bt(M0)}t∈R be a time-dependent absorbing set. Then, for any z ∈ Bτ(M0) and fixed τ ∈ R, we
decompose the process U(t, τ) as follows:

U(t, τ)z = {u(t), ut(t), ηt(s)} = U0(t, τ)z + U1(t, τ)z,

where

U0(t, τ)z = {v(t), vt(t), ζ t(s)} and U1(t, τ)z = {w(t),wt(t), ξt(s)},
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solve respectively the systems
vtt + Av + Avt + ε(t)Avtt +

∫ ∞
0
µ(s)Aζ t(s)ds + f0(v) = 0,

ζ t
t (s) = −ζ t

s(s) + vt(t),
v|∂Ω = 0, v(x, τ) = u0(x), vt(x, τ) = u1(x),
ζ t|∂Ω = 0, ζ0(x, s) = u0(x) − u0(x, τ − s),

(3.20)

and 
wtt + Aw + Awt + ε(t)Awtt +

∫ ∞
0
µ(s)Aξt(s)ds + f (u) − f0(v) = g(x),

ξt
t(s) = −ξt

s(s) + wt(t),
w|∂Ω = 0,w(x, τ) = 0,wt(x, τ) = 0,
ξt|∂Ω = 0, ξ0(x, s) = 0.

(3.21)

In the following lemma, the constant C > 0 depends only on B.

Lemma 3.3. If (1.2)–(1.5), (2.2)–(2.3) and (3.16)–(3.19) hold, then there exists δ = δ(B) > 0 such
that

‖U0(t, τ)z(τ)‖Ht ≤ Ce−δ(t−τ). (3.22)

Proof. Repeating word by word the proof of Lemma 3.1 in the case of U0(t, τ), we can get the bound

‖U0(t, τ)z(τ)‖Ht ≤ C. (3.23)

Multiplying Eq (3.20)1 by 2vt + 2δv and integrating on Ω, we find that

d
dt

(‖vt‖
2 + ε(t)‖vt‖

2
1 + (1 + δ)‖v‖21 + 2δ〈vt, v〉 + 2δε(t)〈∇vt,∇v〉 + ‖ζ t(s)‖2µ,1 + 2〈F0(v), 1〉)

+2‖vt‖
2
1 + 2δ‖v‖21 − 2δ‖vt‖

2 − (2δε(t) + ε′(t))‖vt‖
2
1 + 2〈ζ t, ζ t

s〉µ,1 + 2δ
∫ ∞

0
µ(s)〈Aζ t(s), v(t)〉ds

+2δ〈 f0, v〉 = 2δ〈ε′(t)Avt, Av〉. (3.24)

Define

E0(t) = ‖vt‖
2 + ε(t)‖vt‖

2
1 + (1 + δ)‖v‖21 + 2δ〈vt, v〉 + 2δε(t)〈∇vt,∇v〉 + ‖ζ t(s)‖2µ,1 + 2〈F0(v), 1〉,

where
F0(s) =

∫ s

0
f0(y)dy.

Then, we get

d
dt

E0(t) + 2‖vt‖
2
1 + 2δ‖v‖21 − 2δ‖v‖2 − (2δε(t) + ε′(t))‖vt‖

2
1 + 2〈ζ t, ζ t

s〉µ,1

+2δ
∫ ∞

0
µ(s)〈Aζ t(s), v(t)〉ds + 2δ〈 f0, v〉 = 2δ〈ε′(t)Avt, Av〉. (3.25)

From (3.17) and (3.23), we have

1
2
‖U0(t, τ)z(τ)‖2

Ht
≤ E0(t) ≤ C‖U0(t, τ)z(τ)‖2

Ht
. (3.26)
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Therefore, by the same steps of the proof of Lemma 3.1, we deduce

d
dt

E0(t) + δ‖U0(t, τ)z(τ)‖2
Ht
≤ 0.

Thus, combining with (3.26) and using the Gronwall lemma with the above, we complete the proof. �

Remark 3.2. Under the assumptions of Lemma 3.3, the following uniformly bounded holds:

sup
t≥τ

[‖U(t, τ)z(τ)‖Ht + ‖U0(t, τ)z(τ)‖Ht + ‖U1(t, τ)z(τ)‖Ht] ≤ C. (3.27)

Lemma 3.4. If (1.2)–(1.5),(2.2)–(2.3) and (3.16)–(3.19) hold, then there exists M = M(B) > 0 such
that

‖U1(t, τ)z(τ)‖Hσ
t
≤ M, ∀t ≥ τ,

where

0 < σ ≤ min{
1
2
,

3 − γ
2
}. (3.28)

Proof. Multiplying Eq (3.21)1 by 2Aσwt + 2δAσw and integrating it over Ω, we get

d
dt

E1(t) + 2‖wt‖
2
σ+1 + 2δ‖w‖2σ+1 − 2δ‖wt‖

2
σ − (2δε(t) + ε′(t))‖wt‖

2
σ+1 + 2〈ξt, ξt

s〉µ,σ+1

+2δ
∫ ∞

0
µ(s)〈Aξt(s), Aσw(t)〉ds + 2δ〈 f (u) − f0(v) − g, Aσw〉

=2δε′(t)〈Awt, Aσw〉 + I1 + I2 + I3, (3.29)

where

E1(t) =‖U1(t, τ)z‖2
Hσ

t
+ δ‖w‖2σ+1 + 2δ〈wt, Aσw〉 + 2δε(t)〈Awt, Aσw〉

+ 2〈 f (u) − f0(v) − g, Aσw〉 + C,

I1 = 2〈[ f ′0(u) − f ′0(v)]ut, Aσw〉,

I2 = 2〈 f ′0(v)wt, Aσw〉,

I3 = 2〈 f ′1(u)ut, Aσw〉.

Now, by using (1.3), (3.17), (3.27) and the embedding inequality (σ < σ+1
2 ), we have

2〈 f (u) − f0(v), Aσw〉 ≤ 2‖ f (u) − f0(v)‖‖Aσw‖

≤ C‖Aσw‖

≤ C‖A
σ+1

2 w‖

≤
1
4
‖w‖2σ+1 + C,

2〈g, Aσw〉 ≤ 2‖g‖‖Aσw‖ ≤ C‖g‖2 +
1
4
‖w‖2σ+1.

AIMS Mathematics Volume 8, Issue 7, 16208–16227.



16220

Then, using the Hölder, Young inequalities, we get

2δ〈wt, Aσw〉 ≤ 2δ‖wt‖σ‖w‖σ ≤ 2δ‖wt‖
2
σ +

δ

2
‖w‖2σ;

2δε(t)〈Awt, Aσw〉 ≤ 2δε(t)‖wt‖σ+1‖w‖σ ≤
ε(t)
2
‖wt‖

2
σ+1 + 2Lδ2‖w‖2σ.

Choose δ small enough and C > 0 large enough, and we can obtain

1
2
‖U1(t, τ)z(τ)‖2

Hσ
t
≤ E1(t) ≤ 2‖U1(t, τ)z(τ)‖2

Hσ
t

+ 2C. (3.30)

Hence, exploiting (3.17), (3.27) and some Sobolev embeddings H1+σ ↪→ L
6

1−2σ , H1−σ ↪→ L
6

1+2σ , and
the continuous embedding H

(3p−6)
2p ↪→ Lp(Ω) (p > 2), we have

I1 ≤ C
∫

Ω

(1 + |u| + |v|) · |w| · |ut| · |Aσw|dx

≤ C(1 + ‖u‖L6 + ‖v‖L6) · ‖w‖
L

6
1−2σ
· ‖ut‖ · ‖Aσw‖

L
6

1+2σ

≤ C(1 + ‖u‖1 + ‖v‖1) · ‖w‖2σ+1 · ‖ut‖

≤ C‖ut‖‖w‖2σ+1 ≤
δ

4
‖w‖2σ+1 +

C2

δ
‖ut‖

2‖w‖2σ+1

≤
δ

4
E1(t) + C‖ut‖

2‖w‖2σ+1;

I2 ≤ C(‖v‖L6 + ‖v‖2L6) · ‖wt‖L
6

3−2σ
· ‖Aσw‖

L
6

1+2σ

≤ C(‖v‖1 + ‖v‖21) · ‖wt‖σ · ‖Aσw‖1−σ
≤ C‖v‖1 · ‖wt‖σ · ‖w‖σ+1 + C‖v‖21 · ‖wt‖σ · ‖w‖σ+1

≤
δ

2
‖wt‖

2
σ + C(‖v‖21 + ‖v‖41) · ‖w‖2σ+1.

Also, by using (3.16), we have

I3 ≤ C
∫

Ω

(1 + |u|γ−1).|ut|.|Aσw|dx

≤ C‖u‖γ−1

L
6(γ−1)
2(1−σ)

.‖ut‖.‖Aσw‖
L

6
1+2σ

+ C‖ut‖ · ‖Aσw‖

≤ ‖ut‖
2 · ‖w‖2σ+1 + C.

In addition, (2.2) and (2.3) mean

2〈ξt, ξt
s〉µ,σ+1 ≥ ρ‖ξ

t(s)‖2µ,σ+1,

and

2δ
∫ ∞

0
µ(s)〈4ξt(s), Aσw(t)〉ds ≤

ρ

2
‖ξt(s)‖2µ,σ+1 +

2m0δ
2

ρ
‖w‖2σ+1.

As a consequence, we can write (3.29) as

d
dt

E1(t) + δE1(t) + Γ ≤
δ

2
E1(t) + C‖ut‖

2‖w‖2σ+1 + C(‖v‖21 + ‖v‖41)‖w‖2σ+1 + C.
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We can see that for 0 < δ small enough,

Γ =(1 − ε′(t) − 3δε(t))‖wt‖
2
σ+1 + (

λ1

2
− 3δ −

δ

2
)‖wt‖

2
σ + (

ρ

2
− δ)‖ξt‖2µ,σ+1

+ (δ − δ2 − δ2L2 −
2m0δ

2

ρ
)‖w‖2σ+1 − 2δ2〈wt, Aσw〉 − 2δ2ε(t)〈Awt, Aσw〉 > 0.

According to (3.24) and taking δ small enough, we get

d
dt

E1(t) +
δ

2
E1(t) ≤ q(t)E1(t) + C,

where q(t) = C(‖ut‖
2 + ‖v‖21 + ‖v‖41). Remark 3.1 and Lemma 3.3 imply that∫ ∞

τ

q(y)dy ≤ C.

Now, applying Lemma 2.3, we get

E1(t) ≤ CE1(τ)e−
δ
4 (t−τ) + C ≤ C.

Together with (3.22), the proof is completed. �

Especially, taking σ = 1
3 , we directly get

‖U1(t, τ)z(τ)‖
H

1
3

t

≤ C. (3.31)

The proof is similar the above estimation, here we omit it.

Remark 3.3. In order to obtain a compact subset ofHt, we also need the compactness of the memory
term which is verified and proved in Lemma 3.6 in [14].

Theorem 3.1. Assume that (1.2)–(1.5), (2.2)–(2.3), (3.16)–(3.19) hold. The process U(t, τ) : Hτ → Ht

generated by problem (2.4)–(2.5) has an invariant time-dependent global attractor A = {At}t∈R.

Proof. Denote the closure of Ct in L2
µ(R

+,H1
0(Ω)) by Ct. According to Lemma 3.4 and Remark 3.3, we

consider the family K = {Kt}t∈R, where

Kt = {(u, ut) ∈ Hσ+1 × Hσ+1
t : ‖u‖σ+1 + ε(t)‖ut‖σ+1 + ‖ut‖σ ≤ M} × C̄t ⊂ Ht.

Applying the compact embedding Hσ+1×Hσ+1
t ↪→ H1

0(Ω)×H1
0(Ω), together with the compactness of Ct

in L2
µ(R

+,H1
0(Ω)), we know that Kt is compact in Ht; since the injection constant M is independent of

t, the set K is uniformly bounded. Finally, by Theorem 2.1 and Lemmas 3.1, 3.3 and 3.4, we conclude
that there exists a unique time-dependent global attractor A = {At}t∈R, Furthermore, from the strong
continuity of the process state in Lemma 3.2 and from Remark 2.1, the A is invariant. �
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3.3. Regularity of time-dependent global attractor

The main result of this subsection is to prove At is bounded in H1
t . Fix τ ∈ R, and for z ∈ Aτ we

decompose again the process U(t, τ)z into the sum U2(t, τ)z + U3(t, τ)z, where

U2(t, τ)z = {v(t), vt(t), ζ t(s)} and U3(t, τ)z = {w(t),wt(t), ξt(s)},

solve respectively the systems
vtt + Av + Avt + ε(t)Avtt +

∫ ∞
0
µ(s)Aζ t(s)ds = 0,

ζ t
t (s) = −ζ t

s(s) + vt(t),
U2(t, τ)z(τ) = (u0, u1, ζ

0),
(3.32)

and 
wtt + Aw + Awt + ε(t)Awtt +

∫ ∞
0
µ(s)Aξt(s)ds + f (u) = g(x),

ξt
t(s) = −ξt

s(s) + wt(t),
U3(t, τ)z(τ) = 0.

(3.33)

As a particular case of Lemma 3.3, we learn that

‖U2(t, τ)z(τ)‖Ht ≤ Ce−δ(t−τ), ∀t ≥ τ. (3.34)

Lemma 3.5. If (1.2)–(1.5), (2.2)–(2.3), (3.16)–(3.19) hold, then there exists M1 = M1(A) > 0 such that

‖U3(t, τ)z‖H1
t
≤ M1, ∀t ≥ τ.

Proof. Multiplying equation of (3.33)1 by 2Awt + 2δAw and integrating it over Ω, using (3.33)2 we get

d
dt

E3(t) + 2‖wt‖
2
2 − 2δ‖wt‖

2
1 + 2δ‖w‖22 − (ε′(t) + 2δε(t))‖wt‖

2
2 + 2〈ξt, ξt

s〉µ,2

+ 2δ
∫ ∞

0
µ(s)〈Aξt(s), Aw(t)〉ds − 2δ〈g, Aw〉

= 2δε′(t)〈Awt, Aw〉 − 2〈 f (u), Awt〉 − 2δ〈 f (u), Aw〉, (3.35)

where
E3(t) = ‖U3(t, τ)z‖2

H1
t

+ δ‖w‖22 + 2δ〈wt, Aw〉 + 2δε(t)〈Awt, Aw〉 − 2〈g, Aw〉 + C,

and
2〈ξt, ξt

s〉µ,2 ≥ ρ‖ξ
t(s)‖2µ,2;

2δ
∫ ∞

0
µ(s)〈4ξt(s), Aw(t)〉ds ≤

ρ

2
‖ξt(s)‖2µ,2 +

2m0δ
2

ρ
‖w‖22.

Choose δ > 0 small enough and C > 0 large enough, and then we can obtain

1
4
‖U3(t, τ)z‖2

H1
t
≤ E3(t) ≤ 2‖U3(t, τ)z‖2

H1
t

+ 2C. (3.36)

By some calculation as in Lemma 3.4 and taking δ small enough, we deduce

d
dt

E3(t) + δE3(t) ≤ −2〈 f (u), Awt〉 − 2δ〈 f (u), Aw〉 + δC.
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We know from (3.31) that At is bounded in H
1
3

t . Consequently, exploiting some Sobolev embeddings
H

(3p−6)
2p ↪→ Lp(p ≥ 2), H

1
3 ↪→ L

18
7 (Ω), H

4
3 ↪→ L18(Ω), there holds

‖ f (u)‖1 = ‖ f ′(u)A
1
2 u‖ ≤ ‖ f ′(u)‖L9‖A

1
2 u‖

L
18
7
≤ C(1 + ‖u‖2L18) ≤ C,

so

−2〈 f (u), Awt〉 − 2δ〈 f (u), Aw〉 ≤ 2‖ f (u)‖1(‖wt‖1 + ‖w‖1)

≤
δ

2
E3(t) + C,

where C depends on δ, L. We finally get

d
dt

E3(t) +
δ

2
E3(t) ≤ C,

and then applying the Gronwall lemma and calling (3.36) we get the result. �

Theorem 3.2. Assume that (1.2)–(1.5), (2.2)–(2.3), (3.16)–(3.19) hold. Then At is bounded in H1
t ,

with a bound independent of t.

Proof. From (3.34) and Lemma 3.5, for all t ∈ R, it yields

lim
τ→−∞

distt(U(t, τ)Aτ,K1
t ) = 0,

where
K1

t = {z ∈ H1
t : ‖z‖H1

t
≤ M1}.

Since A is invariant, this means
distt(At,K1

t ) = 0.

Hence, At ⊂ K1
t = K1

t , and we get that At is bounded inH1
t with a bound independent of t ∈ R. �

Lemma 3.6. For any τ ∈ R, z = (u, ut, η
t) ∈ At, there exists a positive constant C, such that

sup
t≥τ
{‖ut‖

2
1 + ‖u‖22 + ε(t)‖ut‖

2
2 + ‖ηt‖2µ,2 +

∫ ∞

τ

‖ut(y)‖22dy} ≤ C. (3.37)

Proof. Similar to the proof of Remark 3.1, we can easily get the result. �

4. Asymptotic structure of the time-dependent attractor

In this section we investigate the relationship between the time-dependent global attractor of U(t, τ)
for problem (2.4) and the global attractor of the limit equation formally corresponding to (2.4) when
t → +∞. If ε(t) = 0 in (2.4), we can obtain the following wave equation:

utt − 4u − 4ut −
∫ ∞

0
µ(s)4ηt(s)ds + f (u) = g(x), x ∈ Ω, t > 0,

ηt
t + ηt

s = ut,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

u|∂Ω = 0, x ∈ ∂Ω.

(4.1)
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Within our assumptions on Sections 1 and 2, it is well known that Eq (4.1) generates a strongly
continuous semigroup {S (t)}t≥0 acting on the space H1

0(Ω) × L2(Ω) × L2
µ(R

+,H1
0(Ω)) associated with

the problem (4.1), such that S (t){u0, u1, η0} = {u(t), ut(t), ηt(s)} is the solution of (4.1), where {u0, u1, η0}

is the initial data of (4.1). Furthermore, {S (t)}t≥0 admits the (classical) global attractor A∞ in the space
of H1

0(Ω) × L2(Ω) × L2
µ(R

+,H1
0(Ω)). See [4, 17] for details.

Also, we know that, for any fixed s ∈ R,

A∞ = {ω(s) : ω CBT of S (t)},

where ω : R→ H1
0(Ω) × L2(Ω) × L2

µ(R
+,H1

0(Ω)) is called a CBT of S (t).
Next, we establish the asymptotic closeness of the time-dependent global attractor A = {At}t∈R of

the process generated by (2.4) and the global attractor A∞ of the semigroup {S (t)}t≥0 generated by (4.1).
That is, we can obtain the following result.

Theorem 4.1. Under the assumptions (1.2)–(1.5), (2.2)–(2.3), (3.16)–(3.19), the following limits holds

lim
t→∞

distH1
0 (Ω)×L2(Ω)×L2

µ(R+,H1
0 (Ω))(ΠtAt, A∞) = 0. (4.2)

To prove (4.2), we need to prove the following Lemma which is based on Lemma 4.1.

Lemma 4.1. For any sequence zn = (un, ∂tun, η
t
n) of CBT for the process U(t, τ) and any tn → ∞, there

exists a CBT y = (w,wt, ξ
t) of the semigroup S (t) such that, for every T > 0,

sup
t∈[−T,T ]

‖un(t + tn) − w(t)‖1 → 0, (4.3)

sup
t∈[−T,T ]

‖∂tun(t + tn) − wt(t)‖ → 0, (4.4)

and

sup
t∈[−T,T ]

‖ηt+tn
n (s) − ξt(s)‖µ,1 → 0, (4.5)

as n→ ∞, up to a subsequence.

Proof. From (3.37), for every T > 0, un(· + tn) is bounded in L∞(−T,T,H2) ∩ W1,2(−T,T,H1
0(Ω)),

and ∂tun(· + tn) is bounded in L∞(−T,T,H1) ∩ L2(−T,T,H2
0(Ω)) ∩ W1,2(−T,T,H(Ω)). Then by

direct application of Corollary 5 in [18] show that (un(· + tn), ∂tun(· + tn)) is relatively compact in
C([−T,T ],H1

0(Ω) × L2(Ω)). �

In addition, by Remark 3.3 and together with (3.37), we know that the sequence η·+tn
t (s) is bounded

in the space L∞(−T,T ; L2
µ(R

+,H2) ∩ H1
µ(R+,H1

0(Ω))), so η·+tn
t (s) is relatively compact in C([−T,T ],

L2
µ(R

+,H1
0(Ω))). Hence there exists a function

(w(·),wt(·), ξ·(s)) = y : R × R × (R,R+)→ H1
0(Ω) × L2(Ω) × L2

µ(R
+,H1

0(Ω)),

such that
un(· + tn)→ w(·), ∂tun(· + tn)→ wt(·), η·+tn

n (s)→ ξ·(s),

hold.
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In particular, y = (w,wt, ξ
t(s)) ∈ C(R×R× (R,R+),H1

0(Ω)×L2(Ω)×L2
µ(R

+,H1
0(Ω))). Also, recalling

(3.36), we have

sup
t∈R
‖y(t)‖H1

0 (Ω)×L2(Ω)×L2
µ(R+,H1

0 (Ω)) ≤ C. (4.6)

We are left to show that y solves (4.1). Define

vn(t) = un(t + tn), εn(t) = ε(t + tn), ξt
n(s) = ηt+tn

n (s);

then, we write Eq (2.4) of (vn(t), ∂tvn, ξ
t
n(s)) in the form{

∂ttvn − 4vn − 4∂tvn − εn(t)4∂ttvn −
∫ ∞

0
µ(s)4ξt

n(s)ds + f (vn) = g,
∂tξ

t
n + ∂sξ

t
n = ∂tvn.

We first prove that the sequence εn(t)4∂ttvn converges to zero in the distributional sense. Indeed, for
every fixed T > 0 and every smooth H-valued function ϕ supported on (−T,T ) , we have∫ T

−T
εn(t)〈∆∂ttvn, ϕ(t)〉dt = −

∫ T

−T
εn(t)〈∆∂tvn, ϕ(t)〉dt −

∫ T

−T
ε′n(t)〈∆∂tvn, ϕ(t)〉dt.

Then, exploiting (3.37) again, we get

|

∫ T

−T
εn(t)〈∆∂ttvn, ϕ(t)〉dt| ≤ c

∫ T

−T

√
εn(t)
√
εn(t)‖∆∂tvn‖dt

+ C
∫ T

−T

|ε′n(t)|
√
εn(t)

√
εn(t)‖∆∂tvn‖dt

≤ C
∫ T

−T

√
εn(t)
√
εn(t)‖∂tvn‖2dt

+ C
∫ T

−T

|ε′n(t)|
√
εn(t)

√
εn(t)‖∂tvn‖2dt

≤ C
∫ T

−T

√
εn(t)dt + C

∫ T

−T

|ε′n(t)|
√
εn(t)

dt

≤ CT sup
t∈[−T,T ]

√
εn(t) + C(

√
εn(−T ) −

√
εn(T )),

where the constant C > 0 also depends on ϕ. Since

lim
n→∞

[ sup
t∈[−T,T ]

εn(t)] = 0,

we reach the desired conclusion

lim
n→∞

∫ T

−T
εn(t)〈4∂ttvn, ϕ(t)〉dt = 0.

Now, taking into account (1.4), for every T > 0 , we have the convergence

4vn + f (vn)→ 4w + f (w),
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in the topology of L∞(−T,T ; H−1) for every T > 0. At the same time, the convergences

∂ttvn(t) − ∂t4vn(t)→ wtt(t) − 4wt(t), ∂tξ
t
n(s)→ ∂tξ

t(s),

hold (up to subsequence) in the distributional sense. Therefore, we end up with the equality

wtt − 4w − 4wt −

∫ ∞

0
µ(s)4ξt(s)ds + f (w) = g(x),

which together with (4.6), proves that y(t) is a CBT of the semigroup S (t).

Proof. Proof of Theorem 4.1. According to Lemma 4.1, for our problem, we can apply Lemma 2.1
with X = H1

0(Ω) × L2
µ(R

+,H1
0(Ω)),Yt = H1

0(Ω), the latter space endowed with the norm ‖ · ‖Yt =
√
ε(t)‖ · ‖1 + ‖ · ‖. Combining with Lemma 2.1, the result here should include the convergence of ut in

the space L2(Ω), namely, (4.4). Consequently, we complete the proof of Theorem 4.1. �

5. Conclusions

Based on the theory of time-dependent attractor in time-dependent space, we discussed the
asymptotic compactness for the nonlinear evolution equation with linear memory. By the method
of operator decomposition, which overcoming the difficulty caused by the degenerate coefficient and
memory term, and then the regularity and asymptotic structure of the time-dependent attractor are also
proved, that means the combination for time-dependent attractor with the global attractor of the limit
wave equation when the coefficient ε(t)→ 0 as t → ∞.
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