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Abstract: An element x in a semigroup is said to be regular if there exists an element y in the
semigroup such that x = xyx. The element y is said to be a regular part of x. Define the Cayley
regularity graph of a semigroup S to be a digraph with vertex set S and arc set containing all ordered
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1. Introduction

The study of graphs in connection to an algebraic system is a branch of algebraic graph theory. Some
properties in the algebraic system will be applied for determining properties of graphs induced by the
algebraic system. One of several graphs induced from algebraic systems is the Cayley graph which
was introduced by Arthur Cayley in 1878. This concept was considered to interpret the structures of
abstract groups which are expressed as the set of group generators and then applied to problems about
graphs. Furthermore, the construction of Cayley graphs is also applied to semigroups. As the fact that
Cayley graphs of semigroups can reflect the structural properties of semigroups, such semigroups can
be visualized by constructing their Cayley graphs. To prescribe the definition of Cayley graphs, let S
be a semigroup and A a subset of S . The Cayley graph Cay(S , A) of a semigroup S with respect to
the set A is defined to be a digraph with vertex set S and arc set containing all ordered pairs (x, xa)
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for some a ∈ A and x is an arbitrary element in S . We call A a connection set of Cay(S , A). It is
easily visible that if A is an empty set, then Cay(S , A) is considered to be an empty graph. In order
to present another new relation between algebra and graph theory, we construct the Cayley regularity
graph CR(S ) of a semigroup S which is a digraph whose vertex set is the semigroup S and arc set is
the set of all ordered pairs (x, y), where x, y ∈ S , such that y is the regular part of x, that is, x = xyx. In
addition, we generally study the structural properties consisting of connectedness and completeness of
CR(S ). Furthermore, the equivalence digraph properties of CR(S ) are also completely investigated.

Recently, the Cayley graphs of semigroups were widely studied and they have received serious
attention in the literature. In order to apply the connection between graph theory and semigroup theory,
a lot of work has been done on the study of Cayley graphs of semigroups with respect to their graph
theoretical properties. Many results of Cayley graphs of particular types of semigroups have been
investigated. In 2006, Kelarev [1] described all inverse semigroups with Cayley graphs which are
disjoint unions of complete graphs. In 2007, Fan and Zeng [2] obtained a complete description of
all vertex-transitive Cayley graphs of bands. Later in 2010, Hao and Luo [3] investigated the basic
structures and properties of Cayley graphs of left groups and right groups. In the same year, Khosravi
and Mahmoudi [4] characterized the Cayley graphs of rectangular groups and studied their vertex-
transitivity. Further in 2011, Luo, Hao, and Clarke [5] considered Cayley graphs of completely simple
semigroups. In addition, they studied some structural properties such as completeness and strongly
connected bipartite Cayley graphs. Indeed, it turns out that Cayley graphs of semigroups are significant
not only in semigroup theory, but also in constructions of various interesting types of graphs with nice
combinatorial properties. Several algebraic properties of those graph constructions have been presented
in numerous journals (see for example, [6–8]).

In this part, other basic preliminaries and relevant notations about digraphs, semigroups and Cayley
graphs of semigroups are described. Moreover, we are willing to refer to [9] for more information
about digraphs, and [10–12] for others on semigroups. All sets mentioned in this research are assumed
to be finite. A digraph D (directed graph) is a pair (V(D), E(D)) where V(D) is a nonempty set, called
a vertex set, whose elements are called vertices and E(D) is the subset of the set of ordered pairs of
elements of V(D). In other words, the set E(D) can be considered as a relation on the set V(D). The
elements of E(D) are called the arcs of D and E(D) is called an arc set. Furthermore, an arc of the form
(u, u) is called a loop of D. A digraph D is called a complete digraph if for each u, v ∈ V(D), (u, v) ∈
E(D). Moreover, the digraph D is said to be semi-complete if for every u, v ∈ V(D), (u, v) ∈ E(D) or
(v, u) ∈ E(D). Furthermore, D is said to be directed complete if, for every u, v ∈ V(D) with u , v,
either (u, v) ∈ E(D) or (v, u) ∈ E(D).

Let D be a digraph. Consider a sequence P := v1, v2, . . . , vk of distinct vertices in V(D). If P satisfies
the condition that (vi, vi+1) ∈ E(D) or (vi+1, vi) ∈ E(D) for all i = 1, 2, . . . , k − 1, then P is said to be a
semidipath from v1 to vk in D. Moreover, if P satisfies that (vi, vi+1) ∈ E(D) for all i = 1, 2, . . . , k − 1,
then P is said to be a dipath from v1 to vk in D. For convenience, throughout this paper, the notation
[u, v]-semidipath ([u, v]-dipath) stands for the semidipath (dipath) from u to v. For any two distinct
vertices u and v in V(D), a digraph D is said to be strongly connected if an [u, v]-dipath exists in D.
Moreover, the digraph D is said to be weakly connected if an [u, v]-semidipath exists in D. The digraph
D is said to be locally connected whenever an [u, v]-dipath exists in D, a [v, u]-dipath must exist in D
as well. In addition, D is said to be unilaterally connected if an [u, v]-dipath or a [v, u]-dipath exists in
D. A digraph D is called an equivalence digraph if E(D) is an equivalence relation on the set V(D).
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Example 1.1. Take S 1 = {a, b, c}, S 2 = {d, e, f }, S 3 = {g, h, i, j}, S 4 = {l,m, n},
S 5 = {o, p, q} with the defining multiplications ∗1, ∗2, ∗3, ∗4, ∗5 as shown in Figure 1. Then
(S 1, ∗1), (S 2, ∗2), (S 3, ∗3), (S 4, ∗4), (S 5, ∗5) are semigroups and we get the Cayley regularity graphs of
S 1, S 2, S 3, S 4, S 5 as indicated in Figure 1.

Figure 1. The Cayley regularity graphs CR(S 1),CR(S 2),CR(S 3),CR(S 4) and CR(S 5).

From Example 1.1, we observe that:

CR(S 1) is strongly connected, but CR(S 2),CR(S 3),CR(S 4) and CR(S 5) are not;

CR(S 1),CR(S 2),CR(S 4) and CR(S 5) are weakly connected, but CR(S 3) is not;

CR(S 1) and CR(S 3) are locally connected, but CR(S 2),CR(S 4) and CR(S 5) are not;

CR(S 1),CR(S 4) and CR(S 5) are unilaterally connected, but CR(S 2) and CR(S 3) are not;

CR(S 1) is complete, but CR(S 2),CR(S 3),CR(S 4) and CR(S 5) are not;

CR(S 1),CR(S 4) and CR(S 5) are semi-complete, but CR(S 2) and CR(S 3) are not;

CR(S 4) is directed complete, but CR(S 1),CR(S 2),CR(S 3) and CR(S 5) are not;

CR(S 1) and CR(S 3) are equivalence digraphs, but CR(S 2),CR(S 4) and CR(S 5) are not.

Thus in this research, we shall investigate connectedness and completeness of Cayley regularity
graphs of semigroups. We determine conditions of semigroups that Cayley regularity graphs satisfy
the property of being strongly connected, weakly connected, locally connected, unilaterally connected,
complete, semi-complete, directed complete, and equivalence digraphs. Moreover, we apply structural
properties of the Cayley regularity graphs to study perfect matchings of commuting graphs of groups.

2. Connectedness and completeness of CR(S )

In this section, we investigate a class of connectedness and a class of completeness for Cayley
regularity graphs of semigroups. Recall that CR(S ) denotes the Cayley regularity graph of a semigroup
S with vertex set V(CR(S )) = S and arc set E(CR(S )) = {(x, y) ∈ S × S : x = xyx}. For each element
s in a semigroup S , we define

R+(s) = {t ∈ S : s = sts} and R−(s) = {t ∈ S : t = tst}.

First, we consider a condition of semigroups that Cayley regularity graphs are strongly connected.
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Theorem 2.1. Let S be a semigroup. Then CR(S ) is strongly connected if and only if each couple of
vertices x, y of CR(S ) satisfies the condition that there exist x0, x1, x2, . . . , xk ∈ S such that x0 = x,
xk = y and xi ∈ R+(xi−1) for all 1 ≤ i ≤ k.

Proof. Assume that CR(S ) is strongly connected. We first prove the necessary condition. Let x, y ∈ S .
By the strongly connectedness of CR(S ), there exists a dipath joining from x to y, say P. Hence
P can be expressed as a sequence of vertices x0, x1, x2, . . . , xk−1, xk where x0 = x and xk = y for
some x1, x2, . . . , xk−1 ∈ S . For each i ∈ {1, 2, . . . , k}, we obtain (xi−1, xi) ∈ E(CR(S )). That means
xi−1 = xi−1xixi−1 which implies xi ∈ R+(xi−1), as required.

Conversely, assume that the condition holds. Let x, y be vertices of CR(S ). By our assumption,
there exist x0, x1, x2, . . . , xk ∈ S such that x0 = x, xk = y and xi ∈ R+(xi−1) for all 1, 2, . . . , k. Thus
xi−1 = xi−1xixi−1, that is, (xi−1, xi) ∈ E(CR(S )) for all 1, 2, . . . , k. Therefore, x0, x1, x2, . . . , xk−1, xk is an
[x, y]-dipath in CR(S ) which yields that CR(S ) is strongly connected. This completes the proof. �

Consider the strongly connected digraph CR(S 1) in Example 1.1. We see at once that CR(S 1)
contains a cycle abca such that b ∈ R+(a), c ∈ R+(b) and a ∈ R+(c). It follows that each couple of
vertices in CR(S 1) satisfies the condition in Theorem 2.1.

From Example 1.1, we see that CR(S 2) is weakly connected, but not unilaterally connected. The
next theorem gives a condition of semigroups that Cayley regularity graphs are weakly connected.

Theorem 2.2. Let S be a semigroup. Then CR(S ) is weakly connected if and only if each couple of
vertices x, y of CR(S ) satisfies the condition that there exist x0, x1, x2, . . . , xk ∈ S where x0 = x and
xk = y such that xi ∈ R+(xi−1) or xi ∈ R−(xi−1) for all 1 ≤ i ≤ k.

Proof. Assume that CR(S ) is weakly connected. Let x, y ∈ S . By the weakly connectedness of CR(S ),
there exists a semidipath joining between x and y. Let the [x, y]-semidipath, say P, be expressed as a
sequence of vertices x0, x1, x2, . . . , xk ∈ S where x0 = x and xk = y such that either (xi−1, xi) ∈ E(CR(S ))
or (xi, xi−1) ∈ E(CR(S )) for all i = 1, 2, . . . , k. Hence xi−1 = xi−1xixi−1 or xi = xixi−1xi, that means
xi ∈ R+(xi−1) or xi ∈ R−(xi−1) for all 1 ≤ i ≤ k.

Conversely, assume that the condition holds. Let x, y be two vertices of CR(S ). By the assumption,
there exists x0, x1, x2, . . . , xk ∈ S where x0 = x and xk = y such that xi ∈ R+(xi−1) or xi ∈ R−(xi−1)
for all i = 1, 2, . . . , k. We obtain xi−1 = xi−1xixi−1 or xi = xixi−1xi for all i = 1, 2, . . . , k, that is,
(xi−1, xi) ∈ E(CR(S )) or (xi, xi−1) ∈ E(CR(S )). Thus CR(S ) contains a semidipath joining between x
and y. Consequently, CR(S ) is a weakly connected digraph. �

Consider the weakly connected digraph CR(S 2) again. We see that CR(S 2) contains a semidipath
d f e such that f ∈ R−(e) and e ∈ R+( f ). It follows that each couple of vertices in CR(S 2) satisfies the
condition in Theorem 2.2.

We also see that, in Example 1.1, CR(S 3) is locally connected, but not weakly connected. In the
next theorem, we give a condition of semigroups that Cayley regularity graphs are locally connected.

Theorem 2.3. Let S be a semigroup. Then CR(S ) is locally connected if and only if each couple of
vertices x, y of CR(S ) satisfies the condition that if there exist x0, x1, x2, . . . , xk ∈ S where x0 = x and
xk = y such that xi ∈ R+(xi−1) for all i = 1, 2, . . . , k, then there exist y0, y1, y2, . . . , yl ∈ S where y0 = y
and yl = x such that y j ∈ R+(y j−1) for all j = 1, 2, . . . , l.
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Proof. Let S be a semigroup. To prove the necessity, assume that CR(S ) is locally connected. Let
x, y ∈ S be such that there exist x0, x1, x2, . . . , xk ∈ S where x0 = x and xk = y such that xi ∈ R+(xi−1)
for all i = 1, 2, . . . , k. It follows that xi−1 = xi−1xixi−1 which leads to (xi−1, xi) ∈ E(CR(S )) for all
i = 1, 2, . . . , k. We thus get x0, x1, x2, . . . , xk−1, xk is an [x, y]-dipath in CR(S ). As a result of the locally
connectedness of CR(S ), there exists a [y, x]-dipath in CR(S ). Assume that such the [y, x]-dipath is
denoted by P. Hence P can be written as a sequence of vertices y0, y1, y2, . . . , yl−1, yl where y0 = y
and yl = x for some y0, y1, y2, . . . , yl−1 ∈ S and (y j−1, y j) ∈ E(CR(S )) for all j = 1, 2, . . . , l. Thus
y j−1 = y j−1y jy j−1 which means y j ∈ R+(y j−1) for all j = 1, 2, . . . , l.

For proving the sufficiency, assume that the condition holds. Let x, y ∈ S . Suppose that there exists
an [x, y]-dipath in CR(S ), say T . Hence there exist x1, x2, . . . , xk−1 ∈ S such that they form the dipath T
as x0, x1, x2, . . . , xk−1, xk where x0 = x and xk = y in which (xi−1, xi) ∈ E(CR(S )) for all i = 1, 2, . . . , k.
It implies that xi ∈ R+(xi−1) for all i = 1, 2, . . . , k. By the assumption, there exist y0, y1, y2, . . . , yl ∈ S
where y0 = y and yl = x such that y j ∈ R+(y j−1) for all j = 1, 2, . . . , l. Then y j−1 = y j−1y jy j−1 which leads
to (y j−1, y j) ∈ E(CR(S )) for all j = 1, 2, . . . , l. We can conclude that CR(S ) contains a [y, x]-dipath.
Consequently, CR(S ) is a locally connected digraph. �

We now turn to consider the locally connected digraph CR(S 3). It is easily seen that CR(S 3) has
two components. The first component contains a cycle gig such that i ∈ R+(g) and g ∈ R+(i). The
second component contains a cycle h jh such that h ∈ R+( j) and j ∈ R+(h). It follows that each couple
of vertices in CR(S 3) satisfies the condition in Theorem 2.3.

In Example 1.1, we see that CR(S 4) is unilaterally connected, but not locally connected and strongly
connected. We now present a condition of semigroups that Cayley regularity graphs are unilaterally
connected.

Theorem 2.4. Let S be a semigroup. Then CR(S ) is unilaterally connected if and only if each couple
of vertices x, y of CR(S ) satisfies the condition that there exist x0, x1, x2, . . . , xk ∈ S where x0 = x and
xk = y such that xi ∈ R+(xi−1) for all 1 ≤ i ≤ k or xi−1 ∈ R+(xi) for all 1 ≤ i ≤ k.

Proof. Assume that CR(S ) is unilaterally connected. Let x, y ∈ S . Since CR(S ) is unilaterally
connected, there exists a dipath joining from x to y or from y to x. If we let P1 be the [x, y]-
dipath, then P1 can be written as a sequence x0, x1, x2, . . . , xk−1, xk with x0 = x and xk = y for some
x1, x2, . . . , xk−1 ∈ S . Hence (xi−1, xi) ∈ E(CR(S )) for all i = 1, 2, . . . , k. Thus xi−1 = xi−1xixi−1 which
leads to xi ∈ R+(xi−1) for all i = 1, 2, . . . , k. Further, if P2 is the [y, x]-dipath, then we can obtain,
similarly to the above argument, that there exist x0, x1, x2, . . . , xk ∈ S where x0 = x and xk = y in which
xi−1 ∈ R+(xi) for all i = 1, 2, . . . , k.

In order to prove the converse, we assume that the condition holds. Let x, y ∈ S . By our assumption,
there exist x0, x1, x2, . . . , xk ∈ S where x0 = x and xk = y such that xi ∈ R+(xi−1) for all 1 ≤ i ≤ k or
xi−1 ∈ R+(xi) for all 1 ≤ i ≤ k. It is not hard to verify that there exists an [x, y]-dipath or a [y, x]-dipath
in CR(S ). Therefore CR(S ) is unilaterally connected, as desired. �

We now consider the unilaterally connected digraph CR(S 4) again. We see that CR(S 4) contains
a dipath nml such that m ∈ R+(n) and l ∈ R+(m). It follows that each couple of vertices in CR(S 4)
satisfies the condition in Theorem 2.4.

The characterizations for various types of completeness of CR(S ) are presented as follows. We first
present a condition of semigroups that Cayley regularity graphs satisfy the property of completeness.
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Theorem 2.5. Let S be a semigroup. Then CR(S ) is complete if and only if R+(s) = S for all s ∈ S .

Proof. Let CR(S ) be a complete digraph. Further, let s ∈ S . Clearly, R+(s) ⊆ S . Let t ∈ S . By the
completeness of CR(S ), (s, t) ∈ E(CR(S )). Then s = sts which implies that t ∈ R+(s). Therefore,
R+(s) = S .

Conversely, assume that R+(s) = S for all s ∈ S . Let u, v ∈ S . We have v ∈ S = R+(u). This implies
that u = uvu and hence (u, v) ∈ E(CR(S )). We consequently conclude that CR(S ) is a complete
digraph. �

Consider the complete digraph CR(S 1) in Example 1.1. By the definition of ∗1, we have R+(a) =

R+(b) = R+(c) = S 1. It follows that the condition of Theorem 2.5 is satisfied.
In Example 1.1, we see that CR(S 5) is semi-complete, but not complete and directed complete. We

now give a condition of semigroups that Cayley regularity graphs are semi-complete.

Theorem 2.6. Let S be a semigroup. Then CR(S ) is semi-complete if and only if R+(s) ∪ R−(s) = S
for all s ∈ S .

Proof. Let CR(S ) be semi-complete and let s ∈ S . We only need to prove that S is contained in
R+(s) ∪ R−(s). Let t ∈ S . Since CR(S ) is semi-complete, we have (s, t) ∈ E(CR(S )) or (t, s) ∈
E(CR(S )). If (s, t) ∈ E(CR(S )), then s = sts which implies that t ∈ R+(s). Similarly, we get t ∈ R−(s)
in the case where (t, s) ∈ E(CR(S )). This yields that S = R+(s) ∪ R−(s).

Conversely, assume that R+(s) ∪ R−(s) = S for all s ∈ S . Let u, v ∈ S . Hence v ∈ R+(s) ∪ R−(s).
If v ∈ R+(u), then u = uvu and thus (u, v) ∈ E(CR(S )). If v ∈ R−(u), then v = vuv which implies that
(v, u) ∈ E(CR(S )). Therefore CR(S ) is semi-complete which completely proves the assertion. �

We now turn to consider the semi-complete digraph CR(S 5). By the definition of ∗5, we have
R+(o) = {o, p},R−(o) = {o, p, q},R+(p) = {o, p},R−(p) = {o, p, q},R+(q) = {o, p, q} and R−(q) = {q}. It
follows that the condition of Theorem 2.6 is satisfied.

From Example 1.1, we also see that CR(S 4) is directed complete, but not semi-complete. In the next
theorem, we present a condition of semigroups that Cayley regularity graphs are directed complete.

Theorem 2.7. Let S be a semigroup. Then CR(S ) is directed complete if and only if S \ {s} is the
disjoint union of R+(s) \ {s} and R−(s) \ {s} for all s ∈ S .

Proof. Let CR(S ) be directed complete and let s ∈ S . We first show that S \ {s} is contained in
R+(s) ∪ R−(s). Let t ∈ S \ {s}. Then t , s. Since CR(S ) is directed complete, we obtain either
(s, t) ∈ E(CR(S )) or (t, s) ∈ E(CR(S )). If (s, t) ∈ E(CR(S )), then s = sts which implies that t ∈
R+(s) \ {s}. Similarly, we can observe that t ∈ R−(s) \ {s} whether (t, s) ∈ E(CR(S )). Consequently,
S \ {s} = (R+(s) \ {s}) ∪ (R−(s) \ {s}). Next, we will prove that the sets R+(s) \ {s} and R−(s) \ {s}
are disjoint. We now suppose to the contrary that there exists x ∈ (R+(s) \ {s}) ∩ (R−(s) \ {s}). Thus
s = sxs and x = xsx which imply that (s, x) ∈ E(CR(S )) and (x, s) ∈ E(CR(S )). This contradicts to the
directed completeness of CR(S ) since every pair of distinct vertices u and v in CR(S ) must be joined
by only one directed edge. Therefore R+(s) \ {s} and R−(s) \ {s} are mutually disjoint.

Conversely, assume that the condition holds. We will investigate that CR(S ) is directed complete.
Let x, y be two distinct vertices of CR(S ). Suppose that (y, x) < E(CR(S )). Then y < R−(x) and
so y < R−(x) \ {x}. From y , x and by the assumption, we have y ∈ R+(x) \ {x}. That means
(x, y) ∈ E(CR(S )). Moreover, we can observe that both of (x, y) and (y, x) can not lie in E(CR(S )) at
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the same time. As the result of (x, y), (y, x) ∈ E(CR(S )), it implies that y ∈ (R+(x) \ {x}) ∩ (R−(x) \ {x})
which contradicts to the assumption. Accordingly, the assertion is completely proved. �

We now consider the directed complete digraph CR(S 4) again. By the definition of ∗4, we get
R+(l) \ {l} = ∅,R−(l) \ {l} = {m, n},R+(m) \ {m} = {l},R−(m) \ {m} = {n},R+(n) \ {n} = {l,m} and
R−(n) \ {n} = ∅. It follows that the condition of Theorem 2.7 is satisfied.

3. Equivalence digraphs CR(S )

This section provides some characterizations of equivalence digraphs CR(S ). We first need to
prescribe some terminologies as follows. A digraph D′ = (V ′, E′) is said to be a subdigraph of a
digraph D = (V, E) if V ′ ⊆ V and E′ ⊆ E. Moreover, for any nonempty subset W of V , a subdigraph
of D induced by W called an induced subdigraph, which is denoted by [W], is a subdigraph of D
satisfying the condition that if u, v ∈ W and (u, v) ∈ E, then (u, v) is an arc of [W], as well. In addition,
let S be a semigroup. A nonempty subset A of S is said to be perfect regular if x = xyx for all x, y ∈ A.
Furthermore, let k ∈ N and P := {P1, P2, . . . , Pk} be a partition of S . For the Cayley regularity graph
CR(S ), the partition P is said to be well-turned if induced subdigraphs [P1], [P2], . . . , [Pk] are maximal
weakly connected subdigraphs of CR(S ).

Theorem 3.1. Let S be a semigroup. The following conditions are equivalent.

(1) CR(S ) is an equivalence digraph.
(2) CR(S ) is the disjoint union of complete subdigraphs.
(3) S can be partitioned into its disjoint subsets which each of them is perfect regular and this

partition is well-turned.

Proof. (1)⇒ (2) : Let CR(S ) be an equivalence digraph. Then E(CR(S )) is an equivalence relation on
S . For convenience, we denote by E the arc set E(CR(S )). We will use the symbol S/E to denote the
quotient set of S by the equivalence relation on S induced by the edge set E. It follows that S/E forms
a partition of S . We may assume that S/E = {A1, A2, . . . , Ak} for some k ∈ N.

Firstly, we will show that subdigraphs of CR(S ) induced by classes Ai in S/E are complete for all
i = 1, 2, . . . , k. Let j ∈ {1, 2, . . . , k} and a, b ∈ A j. Since A j is an equivalence class of S , a and b
are mutually related. Thus (a, b) ∈ E which implies that an induced subdigraph [A j] is a complete
subdigraph of CR(S ). Furthermore, we obtain S/E is a pairwise disjoint set since it is a partition of S .
Hence there is no edge joined between two different vertices where they are in different classes. We

conclude that
k⋃

i=1
[Ai] is the disjoint union of complete subdigraphs where each of them is induced by a

class in S/E.

Secondly, we will prove that CR(S ) =
k⋃

i=1
[Ai]. It suffices to verify that

k⋃
i=1

[Ai] contains CR(S ).

Obviously, each vertex of CR(S ) is contained in the vertex set of
k⋃

i=1
[Ai]. Consider an arc (u, v) ∈ E.

Since CR(S ) is an equivalence digraph, both of u and v must be contained in the same class, say
Al for some l ∈ {1, 2, . . . , k}. More precisely, it is clear that (u, v) is an arc of [Al]. Consequently,

CR(S ) =
k⋃

i=1
[Ai], as required.
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(2) ⇒ (3) : Assume that CR(S ) is the disjoint union of complete subdigraphs D1,D2, . . . ,Dk. It
follows that P = {V(D1),V(D2), . . . ,V(Dk)} is a partition of S and [V(D j)] = D j is a maximal weakly
connected subdigraph of CR(S ). Since D j is a complete subdigraph of CR(S ), V(D j) is perfect regular
for all j ∈ {1, 2, . . . , k}. Therefore the well-turned property of P is completely proved.

(3) ⇒ (1) : Suppose that S can be partitioned as its disjoint perfect regular subsets A1, A2, . . . , Ak

for some k ∈ N, and suppose thatA = {A1, A2, . . . , Ak} is well-turned. We will prove that E(CR(S )) is
an equivalence relation on S .

Reflexivity : Let a ∈ S . Then a ∈ Ai for some index i. Since Ai is a perfect regular subset of S , we
have a = aaa. Hence (a, a) ∈ E(CR(S )).

Symmetry : Let a, b ∈ S and (a, b) ∈ E(CR(S )). Consider the case where a ∈ Ai and b ∈ A j

for some indices i , j. Thus a and b are vertices of induced subdigraphs [Ai] and [A j] of CR(S ),
respectively. Let H be a subdigraph of CR(S ) whose vertex set is {a, b} and arc set is {(a, b)}. We
obtain that [Ai] ∪ [A j] ∪ H is a weakly connected subdigraph of CR(S ) containing [Ai] and [A j]. This
contradicts to the maximality of [Ai] and [A j] followed from the well-turned property of the partition
A. Therefore, both of vertices a and b must be contained in the same set, say Al for some index l. By
the perfect regularity of Al, we get that b = bab which leads to (b, a) ∈ E(CR(S )).

Transitivity : Let a, b, c ∈ S be such that (a, b), (b, c) ∈ E(CR(S )). By the same arguments
mentioned above, we can obtain by the well-turned property of A that a, b, c ∈ A j for some index
j. Again from A j is a perfect regular subset of S , we have a = aca. That means (a, c) ∈ E(CR(S )), as
required. �

Consider CR(S 3) in Example 1.1. We see that CR(S 3) is an equivalence digraph which is the
disjoint union of two complete subdigraphs [{g, i}] and [{h, j}]. We also see that {g, i} and {h, j} are
perfect regular, and {{g, i}, {h, j}} is well-turned.

4. Theoretical applications of CR(S )

To illustrate some usefulness of Cayley regularity graphs, certain imaginable applications of such
digraphs are partly provided in this section. We first apply concepts of the connectedness and
completeness to Cayley regularity graph of a semigroup Zn, the semigroup of integers modulo n under
the multiplication. Those structural properties of CR(Zn) are investigated as follows.

Theorem 4.1. Let n ∈ N and CR(Zn) be the Cayley regularity graph of Zn.

(1) CR(Zn) is never strongly connected for all n ≥ 2.
(2) CR(Zn) is always weakly connected for all n ≥ 2.
(3) CR(Zn) is never unilaterally connected for all n ≥ 3.
(4) CR(Zn) is never locally connected for all n ≥ 2.
(5) CR(Zn) is never complete for all n ≥ 2.
(6) CR(Zn) is never semi-complete for all n ≥ 2.
(7) CR(Zn) is never directed complete for all n ≥ 3.

Proof. Let n ≥ 2. For convenience, we let Zn = {0, 1, 2, . . . , n − 1}.
(1) Since (x, 0) < E(CR(Zn)) for all x ∈ Zn \ {0}, there is no dipath joining from such elements x

to 0. This implies that CR(Zn) is not strongly connected.
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(2) By the structure of CR(Zn), (0, x) ∈ E(CR(Zn)) for all x ∈ Zn. Surely, we can find a semidipath
between vertices u and v through 0 for any u, v ∈ Zn. Therefore CR(Zn) is weakly connected.

(3) Consider CR(Z2) shown in Figure 2.

Figure 2. The Cayley regularity graphs of Z2 and Z4.

We clearly conclude from the definition of unilaterally connectedness that CR(Z2) is unilaterally
connected. Next, we consider the case n ≥ 3. By the definition of having arcs in Cayley regularity
graphs, we can say that there exists an arc (x, y) if and only if y is the regular part of x where x, y
are vertices of digraphs. Evidently, it is simple to observe that the regular part of 1 ∈ Zn is only 1
itself. That means (1, u) < E(CR(Zn)) for all u ∈ Zn \ {1}. We next consider the regular part of
n−1 ∈ Zn. Suppose that r is the regular part of n−1. Then n−1 = (n−1)(r)(n−1) = (n−1)2(r). From
(n−1)2 = 1 ∈ Zn, the regular part of n−1 must be n−1, only. This also means that (n−1, v) < E(CR(Zn))
for all v ∈ Zn \ {n − 1}. Consequently, there is no any dipath joining between 1 and n − 1 in CR(Zn).
Hence CR(Zn) is not unilaterally connected.

(4) As we have described in (3) that there is no dipath going out from 1 to other vertices, this implies
that CR(Zn) is not locally connected because CR(Zn) contains a [0, 1]-dipath but not a [1, 0]-dipath.

(5) It is not difficult to verify that CR(Zn) is never complete since (x, 0) < E(CR(Zn)) for all x ∈
Zn \ {0}.

(6) By the construction of CR(Zn), (1, n − 1), (n − 1, 1) < E(CR(Zn)) which implies that CR(Zn) is
not semi-complete.

(7) Since (1, 2), (2, 1) < E(CR(Zn)), CR(Zn) is not directed complete. �

Consider CR(Z4) in Figure 2. We see that CR(Z4) is weakly connected, but not strongly connected,
unilaterally connected, locally connected, complete, semi-complete and directed complete.

For further results, Cayley regularity graphs can be used to determine some invariant parameters
of graphs or digraphs. In this context, we begin with some descriptions of a commuting graph of a
finite group and then consider the edge independence number of the commuting graph. For more basic
concepts of commuting graphs, we recommend the readers to [13–15].

Let G be a finite group and X a nonempty subset of G. A commuting graph of a group G associated
with the subset X, denoted by ∆(G, X), is defined to be a graph whose vertex set is X and two different
vertices are joined by edge if they commute in G. If G and X coincide, then ∆(G, X) will be called
a commuting graph of G and shortly denoted by ∆(G). Moreover, if G is an abelian group, then all
commuting graphs induced from G and subsets of G will be complete. Hence, in this case, we consider
a non-abelian group G in the construction of its commuting graphs.

For a part of invariant properties of graphs we focus in this context, it is the edge independence
number or sometimes called a matching number of a graph. Let H be a finite graph and E(H) a set of
all edges of H. A nonempty subset I of E(H) is called an edge independent set (matching) of H if all
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edges in I are pairwise independent, that is, they have no vertex in common. The maximum cardinality
among edge independent sets of H is said to be the edge independence number (matching number) of
H and will be denoted by α(H). It is easy to check that α(K2n) = n. Now, we apply the concept of the
Cayley regularity graph to investigate the edge independent number of commuting graphs associated
with some special sets.

Let G be a group. Obviously, we see that two vertices of CR(G) are joined by edge in CR(G) if and
only if they are mutually inverse elements in G. That means, for any a, b ∈ G, we have a = aba if
and only if b = a−1. Actually, if a and b are mutually inverse elements in G, then directed edges (a, b)
and (b, a) will occur in CR(G). For convenience, in this part, we will write an undirected edge joining
them, denoted by {a, b}, instead of writing such two directed edges.

Example 4.2. Consider the dihedral group D6 =
〈
a, x | a6 = x2 = e, ax = xa−1

〉
whose Cayley

regularity graph CR(D6) is shown in Figure 3. Let X = {e, a, a2, a3, a4, a5}. We check at once that each
couple of elements in X commute. It follows that ∆(D6, X) � K6. We thus get E(∆(D6, X) ∩ CR(D6)) =

{{a, a5}, {a2, a4}} is an edge independent set of ∆(D6, X).

Figure 3. The Cayley regularity graph of D6.

Lemma 4.1. Let G be a finite group and X a nonempty subset of G. Then the commuting graph
∆(G, X) ∩ CR(G) is an induced subgraph of CR(G) where the edge set E(∆(G, X) ∩ CR(G)) forms an
edge independent set of ∆(G, X).

Proof. It is easily seen that ∆(G, X) ∩ CR(G) is a subgraph of CR(G). We now let {a, b} ∈ E(CR(G))
where a, b ∈ X. By the definition of CR(G), we have a = aba and then b = a−1 by the above description.
Thus ab = ba and it follows that {a, b} ∈ E(∆(G, X)). This ensures that ∆(G, X) ∩ CR(G) is an
induced subgraph of CR(G). To investigate the independence of E(∆(G, X)∩CR(G)), let {a, b}, {c, d} ∈
E(∆(G, X) ∩ CR(G)) be such that {a, b} ∩ {c, d} = ∅. Since two edges lie in CR(G), we have b = a−1

and d = c−1. By the uniqueness of an inverse element in a group, we can conclude that such two edges
never be adjacent. Therefore E(∆(G, X) ∩ CR(G)) forms an independent set of ∆(G, X). �

We now present upper and lower bounds of the edge independence number of ∆(G, X).

Theorem 4.3. Let G be a finite group and X a nonempty subset of G. Then

|E(∆(G, X) ∩ CR(G))| ≤ α(∆(G, X)) ≤ |E(∆(G, X) ∩ CR(G))| +
⌊
|X \ I|

2

⌋
,
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where I is a subset of X containing all non-self-inverse elements in X.

Proof. By Lemma 4.1, E(∆(G, X) ∩ CR(G)) forms an independent set of ∆(G, X). Consequently,
α(∆(G, X)) ≥ |E(∆(G, X) ∩ CR(G))|.

Now, let I be the set containing all non-self-inverse elements in X. Without loss of generality, we
assume that I is nonempty. Then the graph ∆(G, I) ∩ CR(G) can be considered as the disjoint union of
paths of order 2 where such two vertices are mutually inverse elements in G. Hence E(∆(G, X)∩CR(G))
forms an edge independent set of ∆(G, X). We now consider an induced subgraph T of ∆(G, X) induced
by X \ I. It is not complicated to investigate that

α(T ) ≤
⌊
|X \ I|

2

⌋
,

since each edge of any graph incident with 2 vertices. Further, since ∆(G, I)∩CR(G) and T are disjoint
and the union of their vertex sets is X, we can conclude that

α(∆(G, X)) ≤ |E(∆(G, X) ∩ CR(G))| +
⌊
|X \ I|

2

⌋
.

The lower and upper bounds for α(∆(G, X)) are completely proved. �

Consider ∆(D6, X) in Example 4.2. We have α(∆(D6, X)) = 3, because ∆(D6, X) � K6. Furthermore,
we get

⌊
|X\I|

2

⌋
= 1, because D6 has only four non-self-inverse elements a, a2, a4 and a5. We see that 2 ≤

α(∆(D6, X)) ≤ 2 + 1.
Surprisingly, if we let X to be the set of all non-self-inverse elements of a finite group G, then

E(∆(G, X)∩CR(G)) forms a perfect matching of ∆(G, X) which is a matching such that each vertex of
∆(G, X) is incident to an edge in E(∆(G, X) ∩ CR(G)). Moreover, we see that |X| is even and equal to
2|E(∆(G, X)∩CR(G))|. Therefore, the following corollary is directly obtained by applying the bounds
mentioned in Theorem 4.3.

Corollary 4.1. Let G be a finite group and X the set of all non-self-inverse elements of G. Then

α(∆(G, X)) = |E(∆(G, X) ∩ CR(G))| =
|X|
2

.

Consider the dihedral group D6 in Example 4.2. Let X = {a, a2, a4, a5}. We get E(∆(D6, X) ∩
CR(D6)) = {{a, a5}, {a2, a4}} and ∆(D6, X) � K4, because each couple of elements in X commute. We
see that α(∆(D6, X)) = |E(∆(D6, X) ∩ CR(D6))| = |X|

2 = 2.

5. Conclusions

In this research, we introduced the Cayley regularity graph which is a new relation between
algebra and graph theory. We presented conditions of semigroups that Cayley regularity graphs
satisfy the property of being strongly connected, weakly connected, locally connected, unilaterally
connected, complete, semi-complete, directed complete, and equivalence digraphs. Moreover, we
applied structural properties of the Cayley regularity graphs to study perfect matchings of commuting
graphs of groups.
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