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1. Introduction

Fractional differential equations have been recently studied by mathematicians and scientists due
to the importance of fractional-order differential equations as a powerful tool for providing a full
description of the physical behavior of various systems and their memory and hereditary properties.
Several generalized formulations of fractional-order operators have been proposed and introduced into
various phenomena in natural science and engineering, chemistry, and physics (see [6, 7, 17, 22, 24]).
Recently, too many researchers have concentrated on the development of new fractional derivatives
and integrals which generalize previous ones in the literature. One of these new operators is the Hilfer
derivative which is introduced in 1999 by Hilfer [18]. We note that the Caputo fractional derivative
and the Riemann-Liouville deriva ve are particular cases for this new derivative.

The authors in [26] proved the existence of solutions for some stochastic differential problems
involving the Hilfer fractional derivative which is driven by fractional Brownian motion. Also, there
are several important papers dealing with the studies of different fractional operators, in this direction,
we can refer the interested readers to the monographs [1, 2, 13–16, 20, 23] and references therein.
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Torres in [27], considered the following problem{
−sDθ

1 0Dθ
sz(s) = f (s, z(s)), s ∈ (0,T ),

z(0) = z(T ) = 0.
(1.1)

Here, sDθ
1 and 0Dθ

s denote respectively the right and the left Riemann Liouville fractional derivatives.
Precisely, to prove that problem (1.1) has a nontrivial weak solution, the author used the well-known
Mountain Pass Theorem. We note that the variational approach is used for the first study of such a
problem by Jiao and Zhou [19]. Next, several published works were studied using different methods
like variational method, fixed points theorem method, iterative method, etc. We refer for instance to [2,
16, 28–30]. Particularly, César [28] studied the following Dirichlet problem with mixed derivatives: −sDθ

1 (ρp

(
0Dθ

sξ(s))
)

= k(s, ξ(s)), s ∈ (0,T ),
ξ(0) = ξ(T ) = 0,

(1.2)

where 0 < 1
p < θ < 1, ρp denotes the p-Laplacian operator which is defined by ρp(s) = |s|p−2s, and

k : [0,T ] × R→ R is a function with Carathéodory type.
Since fractional calculus appear in many applications we cite for example, electrical circuits,

chemistry, viscoelasticity and electromagnetism, many researchers are concentrated on the
development of these operators. Recently, the fractional derivative with respect to another function is
extensively studied by several authors. Kilbas et al. [20, Chapter 2], introduced the ψ-Riemann
Liouville operators. Later, Almeida [3] introduced the ψ-Caputo operators. In 2018, Vanterler et
al. [10] introduced the ψ-Hilfer fractional derivative. We noted that the ψ-Hilfer fractional derivative
is a more general operators in the sense that if ψ(s) = s, then we get the Riemann fractional derivative,
and if ψ(s) = ln(s), then we get the Hadamar fractional derivative. Da Sousa et al. [8] extended and
developed other properties about the ψ-fractional operators. Due to their importance and huge of
applications, there are several papers investigated problems involving these type of operators. Da
Sousa et al. [9], considered some ψ-Hilfer problem with p-Laplacian operator, by the use of the
variational approach, the authors proved that problem (1.2) admits multiple solutions. Very recently,
Da Sousa et al. [11] studied some problems involving the ψ-Hilfer fractional derivatives. Precisely,
they used the variational method approach in order to prove some existence results.

As far as we know, there are few works which discuss singular problems involving fractional
operators, especially those that include the ψ-Hilfer fractional derivative. In this direction, we will
study the following p-fractional boundary value problem with the ψ-Hilfer fractional derivative K

(
‖HD

µ,θ,ψ
0+ z‖p

Lp(0,T )

)
HD

µ,θ,ψ
T

(
ρp

(
HD

µ,θ,ψ
0+ z(s)

))
= λg(s, z(s)) +

f (s)
zγ , s ∈ (0,T ),

Iθ(θ−1);ψ
0+ (0) = Iθ(θ−1);ψ

T (T ) = 0,
(1.3)

where λ > 0 , ‖.‖ denotes the well known Lp(a, b)-norm which is defined by

‖z‖Lr(a,b) =

(∫ b

a
|z(s)|rds

) 1
r

.

µ, θ are such that

1 ≤
1
µ
< p, and 0 ≤ θ ≤ 1.
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HD
µ,θ,ψ
T and HD

µ,θ,ψ
0+ are defined in Definition 2.2, Iθ(θ−1);ψ

0+ and Iθ(θ−1);ψ
T are given in Definition 2.1. The

Kirchhoff term K is defined on R by
K(t) = a + btm,

for some a ∈ [1,∞) and b ∈ (1,∞).
In the rest of this work, we assume that the functions f , g are continuous on [0,T ] × R, moreover

for any s > 0 we have
g(y, sz) = sδ−1g(y, z), for all (y, z) ∈ [0,T ] × R.

Also, we assume the following hypotheses:
(H1) Assume that p < δ < p2 and for some C0 > 0, we have

|G(s, z)| ≤ C0|z|δ, (1.4)

here G(s, z) =
∫ z

0
g(s, ξ)dξ.

(H2) f is a positive function in L
p

p+γ−1 ([0,T ], (0,∞)).

Remark 1.1. Since the function g is positively homogenuous of degree δ − 1 and G(s, 0) = 0, the the
function G satisfies

G(y, sz) = sδG(y, z), for all (y, z) ∈ [0,T ] × R.

If we differentiate the last equation with respect to s and taking s = 1, we get

zg(y, z) = δG(y, z) for all (y, z) ∈ [0,T ] × R.

We note that problem (1.3) is a nonlocal problem since it contain a Kirchhoff term k, and this make
a study of such problem more complicated and gives a higher difficulties in the manipulation of this
type of problems. Problems of type (1.3) are related to the problem investigated by Kirchhoff [21].
Precisley, Kirchhoff [21] studied the following problem

ξ
∂2z

∂t2 −

(
ξ0

h
+ δE

)
∂2z

∂x2 , (1.5)

where ξ and ξ0 denote respectively the mass density and the initial tension, E is the Young modulus of
the material, the area of the cross section is denoted by h and δ is the average which is given by

δ =
1

2T

∫ T

0

∣∣∣∣∣ ∂z
∂x

∣∣∣∣∣ dx.

here T denotes the length of the string.
Recently, Kirchhoff type problems have been extensively studied by several authors, we cite for

example the works [4, 12, 31] and references therein.
Our main result of this paper is the following theorem.

Theorem 1.1. Assume that hypotheses (H1) and (H2) are satisfied. Then problem (1.3) admits a
nontrivial weak solution provided that λ ∈ (0, λ0) for some positive constant λ0.
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2. Preliminaries and variational setting

In this part, we will give some lemmas and preliminaries on the fractional calculus, essentially,
we introduce the ψ-Hilfer fractional operators and present some properties which will be used in the
variational setting of our problem. We note that all results is this section can be found in [20,25]. In the
rest of this work, the Euler gamma function is denoted by Γ, µ > 0, θ > 0 and −∞ ≤ a < b ≤ ∞. The
function ψ : [a, b] → (0,∞) is an increasing function with continuous derivative ψ′(s) , 0 on (a, b).
Finally, for a simplicity, we denote by dψ(x) the following expression:

dψ(x) =
1

ψ′(x)
d
dx
.

Also for a given real number ξ and ρ, we adopt the following notation

ψξ(ρ) = ψ(ξ) − ψ(ρ).

Next, we begin by presenting the notion of fractional integral operators.

Definition 2.1. ( [20,25]) Let z : [a, b]→ R be an integrable function and assume that ψ is of class C1.
We define respectively the left and right fractional integrals of a function z with respect to another
function ψ as follows:

Iθ,ψa+ z(x) :=
1

Γ(θ)

∫ x

a
ψ′(t)(ψx(t))θ−1z(t)dt,

and

Iθ,ψb− z(x) :=
1

Γ(θ)

∫ b

x
ψ′(t)(ψt(x))θ−1z(t)dt.

Now, we give in the next definition the notion of ψ-Hilfer fractional derivative.

Definition 2.2. ( [8,10]) Let z : [a, b]→ R be an integrable function and assume that 0 ≤ θ ≤ 1 and the
function ψ is of class C1. We define respectively the left and right sided ψ-Hilfer fractional derivatives
of order µ and type θ as follows:

HD
µ,θ,ψ
a+ z(s) := Iθ(n−µ),ψ

a+

(
dψ(s)

)n
I(1−θ)(n−µ),ψ
a+ z(s),

and
HD

µ,θ,ψ
b− z(s) := Iθ(n−µ),ψ

b−

(
dψ(s)

)n
I(1−θ)(n−µ),ψ
b− z(s),

here n is an integer satisfying µ ∈ (n − 1, n].

We note that this new fractional derivative generalizes some other fractional derivatives in the
literature. Precisely, we give three cases in the following remark.

Remark 2.1. We have

(i) If θ is very close to zero, then we get

D
µ,ψ
a+ z(x) =

(
dψ(x)

)n
In−µ,ψ
a+ z(x),

and

D
µ,ψ
b− z(x) =

(
−dψ(x)

)n
In−µ,ψ
b− z(x),

whereDµ,ψ
a+ andDµ,ψ

b− are respectively the left and right ψ-Riemann-Liouville fractional derivatives
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(ii) If θ is very close to one, then we get

CD
µ,ψ
a+ z(x) = In−µ,ψ

a+

(
dψ(x)

)n
z(x),

and

CD
µ,θ,ψ
b− z(x) = In−µ,ψ

b−

(
−dψ(x)

)n
z(x),

where CD
µ,ψ
a+ and CD

µ,θ,ψ
b− are respectively the left and right sided ψ-Caputo fractional derivatives

(iii) If δ = µ + θ(n − µ), then we get

HD
µ,θ,ψ
a+ z(x) = Iδ−µ,ψa+ D

δ,ψ
a+ z(x),

and

HD
µ,θ,ψ
b− z(x) = Iδ−µ,ψb− D

δ,ψ
b− z(x).

The principal result used in the variational formulation of integral equation is the integration by
parts. So in this direction, we give the following lemma:

Lemma 2.1. ( [9]) Assume that 0 < µ ≤ 1, 0 ≤ θ ≤ 1 and ψ ia a function of class C1. Let z : [a, b]→ R,
be an absolutely countinous function. If the function ξ : [a, b]→ R is of class C1 with ξ(a) = ξ(b) = 0,
then we have ∫ b

a

HD
µ,θ,ψ
a+ z(s)ξ(s) ds =

∫ b

a
z(s)ψ′(s) HD

µ,θ,ψ
b−

(
ξ(s)
ψ′(s)

)
ds.

Remark 2.2. ( [9, 27]) If r > 1 ≥ µ > 0, and q = r
r−1 , then we have:

(i) If z ∈ Lr(a, b), the Iµ,ψa+ z ∈ Lr(a, b), moreover

‖Iµ,ψa+ z‖Lr(a,b) ≤
(ψb(a))µ

Γ(µ + 1)
‖z‖Lr(a,b).

(ii) If 1
r < µ < 1, then lim

t→a
Iµ,ψa+ z(t) = 0. So, Iµ,ψa+ z is continuous on [a, b], moreover, we get

‖Iµ,ψa+ z‖∞ ≤
(ψb(a))µ−

1
r

Γ(µ) ((µ − 1)q + 1)
1
q

‖z‖Lr(a,b),

where Lr(a, b) denotes the classique Lebesgue space and

‖z‖∞ = ess sup
a≤s≤b

|z(s)|.
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3. Variational fromwork and proof of the main result

In this section, we will apply the min-max method in order to prove Theorem 1.1. So, we denoted
by Eµ,θ,ψ

p the closure of the set C∞0 ([0,T ],R) endowed with the norm

‖z‖Eµ,θ,ψ
p

=
(
‖z‖p

Lp(0,T ) + ‖0D
µ,θ,ψ
t z‖p

Lp(0,T )

) 1
p
.

We collect from [27] that Eµ,θ,ψ
p is also defined as:

Eµ,θ,ψ
p =

{
ξ : [0,T ]→ R : Dµ,θ,ψ

0+ ξ ∈ Lp([0,T ]), Iθ(θ−1);ψ
0+ (0) = Iθ(θ−1);ψ

T (T ) = 0
}
.

Moreover, in the following remark, we collect some important properties about this space.

Remark 3.1. (See [9, 27]) Assume that µ ∈ (0, 1] and θ ∈ [0, 1], then we have

(i) The space Eµ,θ,ψ
p is a separable Banach space which is also reflexive.

(ii) Assume further that either µ > 1
p or 1 − µ > 1

p , then we get

‖z‖Lp(0,T ) ≤
(ψT (0))µ

Γ(µ + 1)
‖D

µ,θ,ψ
0+ z‖Lp(0,T ).

(iii) If 1
p < µ, and q =

p
p−1 , then we have

‖z‖∞ ≤
(ψT (a))µ−

1
r

Γ(µ) ((µ − 1)q + 1)
1
q

‖D
µ,θ,ψ
0+ z‖Lr(0,T ).

We note that, from Remark 3.1, we can endowed the space Eµ,ψ
p by the following norm:

‖z‖µ,ψ = ‖0D
µ,θ,ψ
t z‖Lp(0,T ),

moreover we have

‖z‖∞ ≤
(ψT (a))µ−

1
r

Γ(µ) ((µ − 1)q + 1)
1
q

‖z‖µ,ψ. (3.1)

Now, we are in a position to define the notion of solutions.

Definition 3.1. A function ϕ is said to be a weak solution for problem (1.3), if for every ξ ∈ Eµ,θ,ψ
p we

have:

K
(∫ T

0

∣∣∣HDµ,θ,ψ
0+ ϕ(s)

∣∣∣p ds
) ∫ T

0
|0D

µ,θ,ψ
t ϕ(t)|p−2

0D
µ,θ,ψ
t ϕ(t) 0D

µ,θ,ψ
t ξ(t)dt

= λ

∫ T

0
g(t, ϕ(t)ξ(t)dt +

∫ T

0
f (t)ϕ−γ(t)ξ(t)dt.

Let ξ ∈ C∞0 ([0,T ],R) and let ϕ be a solution of problem (1.3). Multplying the first equation in
system (1.3) by ξ and integrating over [0,T ] we obtain

K
(
‖ϕ‖

p
µ,ψ

) ∫ T

0

HD
µ,θ,ψ
T

(
ρp

(
HD

µ,θ,ψ
0+ ϕ(s)

))
ξ ds = λ

∫ T

0
g(s, ϕ(s))ξ ds +

∫ T

0

f (s)
ϕγ

ξ ds. (3.2)
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Using the Lemma 2.1, we have∫ T

0

HD
µ,θ,ψ
T

(
ρp

(
HD

µ,θ,ψ
0+ ϕ(s)

))
ξ ds =

∫ T

0
ρp

(
HD

µ,θ,ψ
0+ ϕ(s)

)
ψ′(s)HD

µ,θ,ψ
0+

(
ξ(s)
ψ′(s)

)
ds. (3.3)

If for all s ∈ [0,T ] we have HD
µ,θ,ψ
0+

(
ξ(s)
ψ′(s)

)
= 1

ψ′(s)
H
D

µ,θ,ψ
0+ ξ(s), then Eq (3.2) can be rewritten as

K
(
‖ϕ‖

p
µ,ψ

) ∫ T

0
ρp

(
HD

µ,θ,ψ
0+ ϕ(s)

)
HD

µ,θ,ψ
0+ ξ(s) ds = λ

∫ T

0
g(s, ϕ(s))ξ ds +

∫ T

0

f (s)
ϕγ

ξ ds.

Now, if we take ξ = ϕ then we get

K
(
‖ϕ‖

p
µ,ψ

) ∫ T

0

∣∣∣HDµ,θ,ψ
0+ ϕ(s)

∣∣∣p ds = λ

∫ T

0
g(s, ϕ(s))ϕ(s) ds +

∫ T

0
f (s)ϕ1−γ(s) ds.

From Remark 1.1, we can define the functional associate to problem (1.3), ρλ : Eµ,θ,ψ
p → R, as follows:

ρλ(ϕ) =
1
p

K̃(‖ϕ‖p
µ,ψ) − λ

∫ T

0
G(t, ϕ(t))dt −

1
1 − γ

∫ T

0
f (t)|ϕ(t)|1−γ dt,

where K̃(t) =
∫ t

0
K(s) ds.

It is not difficult to show that for all t ≥ 0, we have

K(t) ≥ a, and K̃(t) ≥
t

m + 1
K(t). (3.4)

We note that ρλ is well defined, moreover, due to the singular term, it is not of class C1. So we can not
use the direct variational method to prove the existence of solutions. For this reason, we will apply the
min-max method. So, we begin by proving the following result.

Lemma 3.1. Under the hypotheses (H1) and (H2), if δ < p2, then ρλ is coercive and bounded from
bellow on Eµ,θ,ψ

p .

Proof. Let ϕ ∈ Eµ,θ,ψ
p , then from Eqs (1.4), (3.1), (3.4) hypothesis (H2) and the Hölder inequality, we

obtain

ρλ(ϕ) =
1
p

K̃(‖ϕ‖p
µ,ψ) − λ

∫ T

0
G(t, ϕ(t))dt −

1
1 − γ

∫ T

0
f (t)|ϕ(t)|1−γ dt

≥
1

p(m + 1)
‖ϕ‖

p
µ,ψK(‖ϕ‖p

µ,ψ) − λC0

∫ T

0
|ϕ(t)|δ dt

−
1

1 − γ

(∫ T

0
| f (t)|

p
p+γ−1 dt

) p+γ−1
p

(∫ T

0
|ϕ(t)|p dt

) 1−γ
p

≥
b

p(m + 1)
‖ϕ‖

mp+1
µ,ψ −

T
1−γ

p

1 − γ
‖ f ‖

L
p

p+γ−1 (0,T )
‖ϕ‖1−γ∞

≥
b

p(m + 1)
‖ϕ‖

mp+1
µ,ψ − λC0T

(ψT (a))δ(µ−
1
r )

Γδ(µ) ((µ − 1)q + 1)
δ
q

‖ϕ‖δµ,ψ
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−
T

1−γ
p

1 − γ
‖ f ‖

L
p

p+γ−1 (0,T )

(ψT (a))(1−γ)(µ− 1
r )

Γ1−γ(µ) ((µ − 1)q + 1)
1−γ

q

‖ϕ‖
1−γ
µ,ψ .

Since 0 < 1 − γ < 1 < δ < mp + 1, then we see that ρλ is coercive and bounded from bellow on Eµ,θ,ψ
p .

This ends the proof of Lemma 3.1.

Lemma 3.2. Assume that hypotheses (H1) and (H2) hold. Then, there exists a nonnegative nontrivial
function ϕ0 ∈ Eµ,θ,ψ

p such that ρλ(tϕ0) < 0, provided that t > 0 is small enough.

Proof. Let ϕ0 ∈ C∞([0,T ]). Assume that for some bounded sub-intevals I0 and I1, we
have I0 ⊂ supp(ϕ0) ⊂ I1 ⊂ (0,T ), 0 ≤ ϕ0 ≤ 1 in z1 and ϕ0 = 1 in z0.

ρλ(tϕ0) =
1
p

K̃(‖tϕ0‖
p
µ,ψ) − λtδ

∫ T

0
G(s, ϕ0) ds −

1
1 − γ

t1−γ
∫ T

0
f (s)|ϕ0(s)|1−γ ds

=
atp

p
‖ϕ‖

p
µ,ψ +

btp(m+1)

p(m + 1)
‖ϕ‖

p(m+1)
µ,ψ − λtδ

∫ T

0
G(s, ϕ0) ds −

t1−γ

1 − γ

∫ T

0
f (s)|ϕ0(s)|1−γ ds

≤ tp

(
a
p
‖ϕ‖

p
µ,ψ +

b
p(m + 1)

‖ϕ‖
p(m+1)
µ,ψ

)
−

1
1 − γ

∫ T

0
f (s)|ϕ0(s)|1−γ ds

≤ t1−γ
[
tp+γ−1

(
a
p
‖ϕ‖

p
µ,ψ +

b
p(m + 1)

‖ϕ‖
p(m+1)
µ,ψ

)
−

1
1 − γ

∫ T

0
f (s)|ϕ0(s)|1−γ ds

]
< 0, ∀ t ∈ (0, ν

1
p+γ−1 ),

where

ν = min

1, 1
1−γ

∫ T

0
f (s)|ϕ0(s)|1−γ ds

a
p‖ϕ‖

p
µ,ψ + b

p(m+1)‖ϕ‖
p(m+1)
µ,ψ

 .
According to Lemma 3.1, we can define the following expression:

mλ = inf
u∈Eµ,θ,ψ

p

ρλ(u).

Moreover, from Lemma 3.2, we have mλ < 0.

Lemma 3.3. The functional ρλ attains it’s global minimizer in E. That is, there exists uλ ∈ Eµ,θ,ψ
p , such

that
ρλ(uλ) = mλ < 0.

Proof. Let {un} be a minimizing sequence of ρλ, which means that ρλ → mλ as n → ∞. Since ρλ is
coercive, then {un} is bounded in E. endeed, if not, up to a subsequence, we can assume that ‖un‖ → ∞.
Therefore, the coercivity of ρλ, implies that ρλ(un)→ ∞, which is a contradicts. Hence, {un} is bounded.
Therefore, there exist uλ ∈ Eµ,α,ψ

p , and a subsequence still denoted by {un} such that, as n tends to
infinity, we have {

uk ⇀ uλ, weakly in Eµ,α,ψ
p ,

uk → uλ, in C([0,T ],R).

AIMS Mathematics Volume 8, Issue 7, 16308–16319.
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Since {un} is bounded in Eµ,α,ψ
p , then, from the proof of Lemma 3.1, we have∫ T

0
f (t)|un|

1−γ dt ≤ T
1−γ

p ‖ f ‖
L

p
p+γ−1 (0,T )

(ψT (a))(1−γ)(µ− 1
r )

Γ1−γ(µ) ((µ − 1)q + 1)
1−γ

q

‖un‖
1−γ
µ,ψ .

So, from the absolutely continuity of ‖ f ‖
L

p
p+γ−1 (0,T )

, we deduce that

{∫ T

0
f (t)|un|

1−γ dt, n ∈ N
}
,

is equi-absolutely-continuous. Therefore, using Vitali’s convergence theorem (see [5]) and the fact
that ‖un‖µ,ψ is bounded, we obtain

lim
n→∞

∫ T

0
f (t)|un|

1−γ dt =

∫ T

0
f (t)|uλ|1−γ dt. (3.5)

On the other hand, from (1.4), the continuity of the function G, and the dominated convergence theorem
we get

lim
n→∞

∫ T

0
G(t, un) dt =

∫ T

0
G(t, uλ) dt. (3.6)

Finally, combining Eqs (3.5), (3.6) and the weak lower semi-continuity of the norm, we deduce

mλ ≤ ρλ(uλ) ≤ lim
n→∞

ρλ(un) = mλ.

Hence
ρλ(uλ) = mλ < 0. (3.7)

This ends the proof of Lemma 3.3.

Now, we are in a position to prove the main result of this paper.
Proof of Theorem 1.1. From Lemma 3.3, we get the existence of a function uλ which is a global
minimum for the functional ρλ in Eµ,α,ψ

p . So uλ satisfies the following inequality:

0 ≤ ρλ(uλ + tϕ) − ρλ(uλ), ∀ (t, ϕ) ∈ (0,∞) × Eµ,α,ψ
p . (3.8)

So

0 ≤ lim
t→0

ρλ(uλ + tϕ) − ρλ(uλ)
t

.

Which yelds to

K
(∫ T

0

∣∣∣HDµ,θ,ψ
0+ uλ(s)

∣∣∣p ds
) ∫ T

0
|0D

µ,θ,ψ
t uλ(t)|p−2

0D
µ,θ,ψ
t uλ(t) 0D

µ,θ,ψ
t ϕ(t)dt

−λ

∫ T

0
g(t, uλ(t)ϕ(t)dt −

∫ T

0
f (t)u−γλ (t)ϕ(t)dt ≥ 0.
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The fact that ϕ is arbitrary in Eµ,α,ψ
p , implies that we can replace ϕ by −ϕ in the last inequality, which

yields to

K
(∫ T

0

∣∣∣HDµ,θ,ψ
0+ uλ(s)

∣∣∣p ds
) ∫ T

0
|0D

µ,θ,ψ
t uλ(t)|p−2

0D
µ,θ,ψ
t uλ(t) 0D

µ,θ,ψ
t ϕ(t)dt

−λ

∫ T

0
g(t, uλ(t)ϕ(t)dt −

∫ T

0
f (t)u−γλ (t)ϕ(t)dt = 0.

Therefore, from Definition 3.1, we can see that uλ is a weak solution for problem (1.3). Moreover,
from Eq (3.7), we see that uλ is nontrivial.

The proof of Theorem 1.1 is now completed.

4. Conclusions

This paper considers some classes of Kirchhoff problems involving the ψ-Hilfer fractional derivative
and a singular nonlinearity. Our main tools are based on the combination of the variational method with
the min-max method. More precisely, some important properties of the associated functional energy
are proved in order to ensure the existence of a nontrivial weak solution. This study can be generalized
to similar problems involving the (k, ψ)-Hilfer derivative.
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