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Abstract: The concept of single-valued neutrosophic sets (SVNSs) is considered as an attractive tool 

for dealing with highly ambiguous and uncertain information. The correlation coefficient of SVNSs 

acts as an important measure in the single-valued neutrosophic set theory and it has been applied in 

various fields, such as the pattern recognition, medical diagnosis, decision-making and also clustering 

analysis. To alleviate the weakness of the existing correlation coefficients, a novel statistical correlation 

coefficient is put forward to measure the degree of correlation between two SVNSs. This statistical 

correlation coefficient is developed based on the variance and covariance of SVNSs and its value is 

between −1 and 1. When solving the multicriteria decision making problems, the criteria show different 

weight values. To consider the weight information of multiple criteria, the weighted statistical 

correlation coefficient is developed for SVNSs. Afterwards, two numerical examples are given to show 

the effectiveness of the proposed statistical correlation coefficient in the pattern recognition, which can 

accurately classify unknown patterns into known patterns. Finally, the feasibility and practicability of 

the proposed correlation coefficient formula are illustrated by a practical multiple attribute decision 

making problem of traditional Chinese medicine diagnosis. The comparative results show that the 

proposed correlation coefficient formula is rational and effective. 
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1. Introduction 

Medical diagnosis is of great significance to doctors to judge the situations of patients correctly. 

Due to the complexity of the illness, doctors are often not able to determine the specific illness of a 

patient based on the symptoms. There exists uncertainty during the judgment of doctors. Fuzzy sets 

have a great advantage in representing the uncertainty of information. In 1965, Zadeh [1] proposed a 

method of describing the fuzzy phenomena in mathematics, which is called the fuzzy set theory. The 

fuzzy set is a vital definition, which can model the uncertain, imprecise and vague information in a 

quantitative form. In the fuzzy set, each element is represented as a membership value that belongs to 

the interval [0,1] [2]. However, the non-membership value (NMV) is not directly represented in the 

fuzzy sets [3–5]. The NMV of each fuzzy number within the fuzzy sets is considered to be the result 

of (1-membership value). In this case, the hesitant degree is ignored. To accurately describe the positive 

degree, hesitant degree and negative degree of fuzzy information, the concept of intuitionistic fuzzy 

sets (IFSs) was designed by Atanassov [6]. In an IFS, the membership value (MV) P  and NMV P  

satisfy the following conditions:  0,1P  ,  0,1P   and  0,1P P +   [7,8]. Wang et al. [9] 

pointed out that IFSs cannot express the indeterminate information and inconsistent information in an 

explicit way. The neutrosophic sets (NSs) [10,11] are a general fuzzy information modeling framework 

for generalizing fuzzy sets [11], IFSs, picture fuzzy sets [12–14], etc. In each NS, the truth-membership 

value (TV), indeterminacy-membership value (IV) and falsity-membership value (FV) are non-

standard subsets of ]0-,1+[. However, NSs should be specified. Otherwise, they cannot be directly 

applied in real applications. In this case, a special instantiation of neutrosophic sets, called single 

valued NS (SVNS), was proposed by Wang et al. [9]. At present, SVNS are widely used in the medical 

diagnostics. Luo et al. [15] proposed a novel distance between single-valued neutrosophic sets based 

on the matrix norm, and applied the proposed method to pattern recognition and medical diagnoses. 

Hanna et al. [16] proposed a risk classification model for cardiac patients based on the theory of 

neutrosophic sets and compared the proposed method with other commonly used models. Hassan et al. [17] 

used the neutrosophic sets to deal with the system deadlock problem in the use of electronic medical records 

in hospitals and achieved good results. 

Similar to NSs, each single valued neutrosophic number (SVNN) consists of three components, 

TV, IV and FV and these three components are independent of each other [18]. Different from NSs, 

TV, IV and FV in SVNSs belongs to the unit interval [0,1] [19–21]. Due to the complex information 

representation of SVNSs, various measures and decision-making methods have been proposed for 

handling the SVNSs [22,23]. The correlation coefficient is an important measurement metric that is 

used to quantify the correlation between two objects [24]. This measurement metric has been widely 

applied into the fields of pattern recognition [25,26], decision-making methods [27–29] and medical 

diagnosis [30,31]. Because of its valuable use, it has been used to measure the correlation between 

fuzzy variables [32]. It has also been extended to measure the correlation between IFSs [33]. However, 

the complex information representation of SVNSs is different from fuzzy sets and IFSs. Ye [34] first 

developed the correlation coefficient calculation formulas for SVNSs, and applied them for handling 

decision problems. Ye [35] further improved the correlation coefficient calculation formulas and also 

used them to improve the decision-making methods. Meng et al. [36] introduced SVNSs to represent 

the fuzzy information, calculated the attribute weights by the Demental-Analytical Network Process 

(DANP) method, and then used the evaluation based on distance from average solution (EDAS) 

method to rank the alternatives. Song et al. [37] used the feature of neutrosophic sets can describe the 

uncertainty of the problem well and used it in image segmentation algorithm. Gou et al. [38] used the 
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single-valued neutrosophic sets to represent trapezoidal fuzzy numbers and combined with TOPSIS 

method for fuzzy risk analysis. 

However, through the numerical case analysis, it is known that these correlation coefficient 

formulas of SVNSs [34,35] have a value range of [0, 1]. Meanwhile, by looking up the literatures, we 

also found that most of the existing correlation coefficients of SVNSs ignore the negative correlation 

of two SVNSs. 

To overcome the drawbacks of these existing studies, a novel SVNS correlation coefficient is 

proposed in this paper. The contributions of this paper are summarized as follows: 

(1) Several counter-examples are used to analyze the drawbacks of the existing correlation 

coefficients of SVNSs. To overcome these drawbacks, a novel SVNSs correlation coefficient is 

proposed. 

(2) Two application cases related to pattern recognition are used to show that the unknown pattern 

can be properly classified into the known pattern when the proposed SVNSs correlation coefficient is 

used. 

(3) A TCM medical diagnosis case is introduced to compare our proposed correlation coefficient 

with the distance and similarity of SVNSs, the results show that the proposed correlation coefficient 

formula can accurately judge the patient’s condition. 

The rest of this paper is organized as follows. In Section 2, we present the basic knowledge about 

IFSs, SVNSs and analyze the drawbacks of the existing correlation coefficients in the SVNS 

environment. Section 3, a novel correlation coefficient formula of SVNSs is proposed and its 

characteristics are discussed as well. Section 4 shows the application of our proposed correlation 

coefficient in pattern recognition. In Section 5, a TCM medical diagnosis case is provided to show the 

effectiveness of the proposed correlation coefficient. Finally, some valuable conclusions are 

summarized in Section 6. 

2. Preliminaries 

In this section, we will briefly describe the basic concepts and mathematical forms of IFSs and 

SVNSs. Then we will analyze two existing correlation coefficient formulas about SVNSs. Finally, two 

examples will be given to illustrate their limitation. 

2.1. Intuitionistic fuzzy sets 

IFSs [6] use pairs of MV and NMV to describe the uncertain information. The mathematical form 

of an IFS is described as follows. 

Definition 2.1 [6]. Let  1 2, ,..., nU u u u=  be a finite universe of discourse, then an IFS P on U is 

defined as 

( ) ( )( ) ,P PP u u u U =                               (1) 

where ( )  : 0,1P u U →   and ( )  : 0,1P u U →   are the MV and NMV of each element u U  

belonging to the set P, respectively. They satisfy that 0 1P  , 0 1P   and 0 1P P  +  . The 

hesitant degree or indeterminacy degree can be calculated as 1P P P  = − − . 
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2.2. Single-valued neutrosophic sets 

In SVNSs, three important parameters are used together to express the uncertain information, 

which are truth-membership value (TV), indeterminacy-membership value (IV) and falsity-

membership value (FV). 

Definition 2.2 [34]. A single-valued neutrosophic set P on a finite universe of discourse

 1 2, ,..., nU u u u= is defined as 

( ) ( ) ( )( ) , ,P P PP u u u u U  =                        (2) 

where the mathematical symbols ( )P u  , ( )P u   and ( )P u   denote the TV, FV and IV of each 

element u U   belonging to the set P, respectively. They satisfy the conditions: 

( ) ( ) ( )0 , , 1P P Pu u u     and ( ) ( ) ( )0 3P P Pu u u   + +  . 

A triplet of TV, FV and IV of each element, denoted as ( ) ( ) ( )( ), ,P P Pu u u   , is usually called 

as a single-valued neutrosophic number (SVNN) [34,35]. For simplification of operations, it is usually 

denoted as ( ), ,P P P   . 

2.3. The existing correlation coefficients for SVNS 

Definition 2.3 [34]. Let ( ) , ,
i i iP P P iP u U  =    and ( ) , ,

i i is s s iS u U  =    be any two 

SVNSs on the universe of discourse  1 2, ,..., nU u u u= , then the correlation coefficient between P and 

S was defined by Ye [34] as the following form: 

( )
( )

( ) ( ) ( ) ( ) ( ) ( )

1

2 2 2 2 2 2

1 1

,
i i i i i i

i i i i i i

n

P S P S P Si

n n

P P P S S Si i

K P S
     

     

=

= =

+ +
=

   + + + +
      



 
            (3) 

Ye [34] proved that the formula (3) satisfies the following properties: 

(1) ( ) ( ), ,K P S K S P= ; 

(2) ( ), 1K P S =  if P S= ; 

(3) ( )0 , 1K P S  . 

By observing the formula (3) and its properties, it can be easily found that the formula (3) 

proposed by Ye [34] cannot measure the negative correlation between two SVNSs. To show the 

implementation process of the formula, an example about the calculation of the correlation coefficient 

between two SVNSs is given below: 

Example 2.1. Let ( ) ( ) ( ) 0.4,0.3,0.1 , 0.5,0.3,0.2 , 0.4,0.3,0.0P =   and ( ) ( ) 0.1,0.3,0.4 , 0.2,0.3,0.5 ,S =

( )0.0,0.3,0.4  be two SVNSs defined in the set  1 2 3, ,U u u u= . If the formula (3) proposed by Ye 

[34] is used to measure the correlation coefficient between P and S, then we can obtain the result 

( ), 0.6180K P S = . 

Definition 2.4 [35]. Let ( ) , ,
i i iP P P iP u U  =    and ( ) , ,

i i is s s iS u U  =    be any two 
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SVNSs on the universe of discourse  1 2, ,..., nU u u u= , then the correlation coefficient between the 

SVNSs P and S proposed by Ye [35] was defined as the following form: 

( ) ( ) ( ) ( )
1

1
, 1 1 1

3

n

i i i i i i

i

M P S
n

     
=

= − + − + −                     (4) 

where 

max

min max

3

3

i
i

 


 

− −
=

− −
, 

max

min max

3

3

i
i

 


 

− −
=

− −
, 

max

min max

3

3

i
i

 


 

− −
=

− −
, 

i ii P S   = − , min min
i iP S

i
   = − , max max

i iP S
i

   = − , 

i ii P S   = − , min min
i iP S

i
   = − , max max

i iP S
i

   = − , 

i ii P S   = − , min min
i iP S

i
   = − , max max

i iP S
i

   = − . 

Ye [35] proved that the formula (4) also meets the following properties: 

(1) ( ) ( ), ,M P S M S P= ; 

(2) ( ), 1M P S =  if P S= ; 

(3) ( )0 , 1M P S  . 

By observing the formula (4), it can be easily seen that the formula (4) proposed by Ye [35] also 

cannot measure the negative correlation between two SVNSs. 

Example 2.2. Let ( ) ( ) ( ) 0.4,0.3,0.1 , 0.5,0.3,0.2 , 0.4,0.3,0.0P =   and ( ) ( ) 0.1,0.3,0.4 , 0.2,0.3,0.5 ,S =

( )0.0,0.3,0.4  be two SVNSs defined in the set  1 2 3, ,U u u u= . If the formula (4) proposed by Ye 

[35] is used to measure the correlation coefficient between P and S, then we can obtain the result 

( ), 0.7504M P S = . 

In summary, these two correlation coefficient formulas between SVNSs proposed by Ye [34] and 

Ye [35] cannot measure the negative correlation between two SVNSs. To solve this problem, we will 

propose a novel formula of correlation coefficient between two SVNSs, the value of which falls into 

the range of −1 to 1. 

3. Statistical correlation coefficients between two SVNSs 

In this section, the statistical theory is used to develop some novel correlation coefficients for 

SVNSs, and the proposed statistical correlation coefficients are compared with the existing correlation 

coefficients to show the usefulness of the proposed statistical correlation coefficients. Before 

proposing the novel formulas of correlation coefficient between two SVNSs, it is necessary to develop 

some basic concepts based on the statistical knowledge for SVNSs. 

First, the variance of an SVNS P is developed by introducing the variance concept from statistics. 

Definition 3.1. Let ( ) , ,
i i iP P P iP u U  =    be an SVNS on the universe of discourse 

 1 2, ,..., nU u u u= , then the variance of P is statistically defined as: 
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( ) ( )2

1

1 n

i

i

D P d P
n =

=                                      (5) 

where the term ( )id P  is calculated as: 

( ) ( ) ( ) ( )2 2 2
2 2 2

i i ii p p p p p pd P      = − − − − −
 

with 

1

1
i

n

p p

in
 

=

=  , 
1

1
i

n

p p

in
 

=

=  , 
1

1
i

n

p p

in
 

=

=  , 1, 2,...,i n = . 

Next, the covariance formula between two SVNSs is developed based on the conventional 

statistical viewpoint of covariance of two sets. 

Definition 3.2. Let ( ) , ,
i i iP P P iP u U  =   and ( ) , ,

i i is s s iS u U  =   be any two SVNSs 

on the universe of discourse  1 2, ,..., nU u u u= , then the covariance of SVNSs P and S is statistically 

defined as: 

( ) ( ) ( )
1

1
,

n

i i

i

COV P S d P d S
n =

=                               (6) 

where the terms ( )id P  and ( )id S  are calculated as: 

( ) ( ) ( ) ( )2 2 2
2 2 2

i i ii p p p p p pd P      = − − − − − , ( ) ( ) ( )2 2 2
2 2 2( )
i i ii s s s s s sd S      = − − − − − . 

Now, the novel formulas of correlation coefficient between SVNSs are developed based on the 

Pearson correlation coefficient in statistics. 

Definition 3.3. Let ( ) , ,
i i iP P P iP u U  =   and ( ) , ,

i i is s s iS u U  =   be any two SVNSs 

on the universe of discourse  1 2, ,..., nU u u u=  , then the statistical correlation coefficient between 

SVNSs P and S is defined as: 

( )
( )

( ) ( )

( ) ( )

( ) ( )

1

1

2 22

1 1

,
,

n

i i

i

n n

i i

i i

d P d S
COV P S

P S

D P D S d P d S

 =

= =

= =

  



 
                   (7) 

Remark 3.1. The value of the proposed statistical correlation coefficient formula falls into the range 

 1,1− , while the value range of the existing correlation coefficient formulas is  0,1 . As we know, the 

correlation coefficient is used to measure the linear relationship between any two variables or subsets. 

Both of positive correlation and negative correlation have practical significance, and it is unreasonable 

to give up any part of them. Thus, the proposed statistical correlation coefficient formula obtains more 

reasonable values. 

Properties 3.1. Given SVNSs ( ) , ,
i i iP P P iP u U  =   and ( ) , ,

i i is s s iS u U  =  , then we 
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have 

(1) ( ) ( ), ,P S S P = ; 

(2) ( )1 , 1P S−   . 

Proof. (1) Straightforward. 

(2) According to the Cauchy-Schwarz inequality ( ) ( )( )
2

2 2

1 1 1

m m m

k k k kk k k
u v u v

= = =
     with 

( )1 2, ,..., mu u u u=   and ( )1 2, ,..., mv v v v=  , then ( )( ) ( ) ( )
2

2

2
1

1
,

n

i i

i

COV P S d P d S
n =

 
=  

 


( ) ( ) ( ) ( )2 2

1 1

1 1n n

i i

i i

d P d S D P D S
n n= =

  =  . 

Then, we can obtain that: 

( ) ( )( ) ( )( )
1 1

2 2,COV P S D P D S  and ( )( ) ( )( ) ( ) ( )( ) ( )( )
1 1 1 1

2 2 2 2,D P D S COV P S D P D S−   . 

Finally, we have ( )
( )

( ) ( )
1

2

,
1 , 1

COV P S
P S

D P D S

−  = 

  

. 

Example 3.1. Let ( ) ( ) ( ) 0.4,0.3,0.1 , 0.5,0.3,0.2 , 0.4,0.3,0.0P =   and ( ) ( ) 0.1,0.3,0.4 , 0.2,0.3,0.5 ,S =

( )0.0,0.3,0.4  be two SVNSs, then using the formula (7) to calculate the correlation coefficient value 

between P and S can obtain ( ), 1P S = − . 

By comparing the results of Example 2.1, Example 2.2 and Example 3.1, it can be found that the 

result of the proposed statistical correlation coefficient is more reasonable, and the proposed statistical 

correlation coefficient formula can obtain negative correlation between two SVNSs. 

In some practical problems, the elements in the set  1 2, ,..., nU u u u=   shows different 

importance. For example, the criteria in the multicriteria decision-making problems usually own 

different importance. To let the proposed formula (7) of the statistical correlation coefficient be applied 

to solve these practical problems, the proposed formula (7) is extended by considering the importance 

of elements, and its definition is given below. 

Definition 3.4. Let ( ) , ,
i i iP P P iP u U  =   and ( ) , ,

i i is s s iS u U  =   be any two SVNSs 

on the universe of discourse  1 2, ,..., nU u u u= , then the weighted statistical correlation coefficient 

value between SVNSs P and S is calculated as: 

( )

( ) ( )

( ) ( )

( ) ( )

1

1

2 22

1 1

,
( , )

n

i i i

i

n n

i i i i

i i

d P d S
COV P S

P S

D P D S d P d S





 





 

=

= =

= =

  



 

                 (8) 

where the term i   denotes the importance of the element iu   in U, and 

( ) ( ) ( )
1

1
,

n

i i ii
COV P S d P d S

n
 

=
=  , ( )2

1

1
( )

n

i i

i

D P d P
n

 
=

=  , ( ) ( )2

1

1 n

i i

i

D S d S
n

 
=

=  . 
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Properties 3.2. Given SVNSs ( ) , ,
i i iP P P iP u U  =   and ( ) , ,

i i is s s iS u U  =  , then we 

have 

(1) ( ) ( ), ,P S S P  = ; 

(2) ( )1 , 1P S−   . 

Proof. (1) Straightforward. 

(2) According to the Cauchy-Schwarz inequality and the proposed formula (8), the following 

inequality can be obtained as 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2

2 2 2

2
1 1 1

1 1 1
,

n n n

i i i i i i i

i i i

COV P S d P d S d P d S D P D S
n n n

    
= = =

 
=   = 

 
  

. 

Then, we can obtain that: 

( ) ( )( ) ( )( )
1 1

2 2,COV P S D P D S    and ( )( ) ( )( ) ( ) ( )( ) ( )( )
1 1 1 1

2 2 2 2,D P D S COV P S D P D S    −   . 

Hence, we have ( )
( )

( ) ( )
1

2

,
1 , 1

COV P S
P S

D P D S





 

−  = 

  

. 

In the next section, we will apply the proposed statistical correlation coefficients in the form of 

formulas (7) and (8) to solve the problems of pattern recognition and medical diagnosis. 

4. Applications of the proposed statistical correlation coefficients 

To show the usefulness and superiority of the proposed statistical correlation coefficients in terms 

of the formulas (7) and (8), the proposed statistical correlation coefficient formulas are applied to solve 

two practical problems, which are pattern recognition and medical diagnosis, respectively. 

4.1. Application of the statistical correlation coefficient in pattern recognition 

In the practical pattern recognition problem, an unknown pattern is classified into some known 

patterns with the help of various information measures such as the distance measure, divergence 

measure, similarity measure, correlation coefficient, etc. Here, the proposed statistical correlation 

coefficient formula is used for solving the pattern recognition problem. To verify the usefulness and 

superiority of the proposed statistical correlation coefficient formula, the proposed statistical 

correlation coefficient is compared with the existing information measures. 

First, a classical pattern recognition problem under the SVNS environment is formulated as 

follows: 

Problem formulation: Suppose that  1 2, ,..., nP P P   are a series of known patterns that are 

characterized by the following SVNS ( ) , ,
ij ij ijj P P P iP u U  =  . Let ( ) , ,

i i iR R R iR u U  =   

be an unknown pattern, then this pattern recognition problem is how to classify the unknown pattern 

R to one of the known patterns ( )1,2,...,jP j n= . 

There exist various information measures that can be used to solve this pattern recognition 

problem. In this section, we use three kinds of information measures to solve the pattern recognition 
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problem, which are correlation coefficient, distance measure and similarity measure, respectively. The 

methods based on these information measures are given as follows: 

(1) Correlation coefficient method 

Let ( ),jC P R  be the correlation coefficient value between SVNS R and ( )1,2,...,jP j n= , then 

R is considered to be in the same pattern of *j
P , where ( ) * argmax ,jj C P R= , 1,2,...,j n= . 

(2) Distance measure method 

Let ( ),jd P R  be the distance value between SVNS R and ( )1,2,...,jP j n= , then R is considered 

to be in the same pattern of *j
P , where ( ) * argmin ,jj d P R= , 1,2,...,j n= . 

(3) Similarity measure method 

Let ( ),jS P R   be the similarity value between SVNS R and ( )1,2,...,jP j n=  , then R is 

considered to be in the same pattern of *j
P , where ( ) * argmax ,jj S P R= , 1,2,...,j n= . 

To compare the proposed statistical correlation coefficient with the existing information measures 

in the pattern recognition problem, we introduce some information measures for SVNSs as follows: 

Definition 4.1 [39]. Let ( ) , ,
i i iP P P iP u U  =   and ( ) , ,

i i is s s iS u U  =   be two SVNSs 

on the universe of discourse  1 2, ,..., nU u u u= , then the Hamming distance between SVNSs P and S 

are defined as: 

( )  1

1

1
,

2 i i i i i i

n

p S p S p S

i

d P S
n

     
=

= − + − + −                        (9) 

Definition 4.2 [40]. Let ( ) , ,
i i iP P P iP u U  =   and ( ) , ,

i i is s s iS u U  =   be two SVNSs 

on the universe of discourse  1 2, ,..., nU u u u= , then the Euclidean distance between SVNSs P and S 

are defined as: 

( ) ( ) ( ) ( ) 
2 2 2

2

1

1
,

2 i i i i i i

n

p S p S p S

i

d P S
n

     
=

= − + − + −                  (10) 

Definition 4.3 [41]. Let ( ) , ,
i i iP P P iP u U  =   and ( ) , ,

i i is s s iS u U  =   be two SVNSs 

on the universe of discourse  1 2, ,..., nU u u u= , then the Dice similarity between SVNSs P and S are 

defined as: 

( )
( )

( ) ( )( )
1 2 2 2 2 2 2

1

21
,

i i i i i i

i i i i i i

n
P S P S P S

i
P P P S S S

S P S
n

     

     =

 + +
 =
 + + + + +
 

                       (11) 

Definition 4.4 [41]. Let ( ) , ,
i i iP P P iP u U  =   and ( ) , ,

i i is s s iS u U  =   be two SVNSs 

on the universe of discourse  1 2, ,..., nU u u u= , then the cosine similarity between SVNSs P and S are 

defined as: 
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( )
( )

2
2 2 2 2 2 2

1

1
, i i i i i i

i i i i i i

n
P S P S P S

i
P P P S S S

S P S
n

     

     =

+ +
=

+ +  + +
                       (12) 

Here, we give a specific example about solving the pattern recognition problem as follows: 

Example 4.1. There exist three known patterns 1P , 2P  and 3P  that are modelled as the following 

SVNSs: 

( ) ( ) ( ) ( ) ( ) 1 0.4,0.3,0.0 , 0.5,0.1,0.5 , 0.3,0.0,0.5 , 0.0,0.6,0.4 , 0.5,0.1,0.3P = , 

( ) ( ) ( ) ( ) ( ) 2 0.7,0.2,0.2 , 0.3,0.7,0.1 , 0.5,0.2,0.5 , 0.2,0.3,0.7 , 0.0,0.1,0.3P = , 

( ) ( ) ( ) ( ) ( ) 3 0.1,0.1,0.2 , 0.33,0.42,0.55 , 0.6,0.5,0.6 , 0.8,0.2,0.2 , 0.9,0.1,0.0P = . 

Let R be an unknown pattern that is modelled as the following SVNS: 

( ) ( ) ( ) ( ) ( ) 0.5,0.5,0.5 , 0.4,0.1,0.4 , 0.7,0.0,0.7 , 0.1,0.9,0.1 , 0.3,0.8,0.3R = . 

We use the formulas (3), (4), (7), (9), (10), (11) and (12) to calculate the relationship value 

between the unknown pattern and each known pattern, and then we can classify the unknown pattern 

R into one of the known patterns ( )1,2,3jP j = . The results of these information measures are given 

in Table 1. 

Table 1. Results of different information measures regarding Example 4.1. 

 ( )1,P R
 ( )2 ,P R

 ( )3,P R
 Results 

( ),iK P R
 0.8212 0.6708 0.6030 

1P  

( ),iM P R
 0.7440 0.6398 0.5980 

1P  

( ),iP R
 0.4143 0.3248 −0.8804 

1P  

( )1 ,id P R
 0.2133 0.3133 0.3627 

1P  

( )2 ,id P R
 1.2400 2.1100 2.7398 

1P  

( )1 ,iS P R
 0.7862 0.6241 0.6004 

1P  

( )2 ,iS P R
 0.1642 0.1341 0.1206 

1P  

In Table 1, it can be easily found that all these information measures including our proposed 

statistical correlation coefficient achieve the same results and then classify the unknown pattern R to 

𝑃1 . It shows that the classification result that is obtained by our proposed statistical correlation 

coefficient is consistent with those that were obtained by the existing information measures. 

Next, we consider another example about the pattern recognition problem to show the efficiency 

of our proposed statistical correlation coefficient in the counter-intuitive situation. 

Example 4.2. There exist three known patterns 1P , 2P  and 3P  that are modeled as the following 

SVNSs: 
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( ) ( ) ( ) ( ) ( ) 1 0.4,0.4,0.4 , 0.3,0.3,0.2 , 0.3,0.3,0.0 , 0.3,0.0,0.2 , 0.3,0.1,0.1P = , 

( ) ( ) ( ) ( ) ( ) 2 0.7,0.1,0.1 , 0.2,0.3,0.4 , 0.2,0.1,0.5 , 0.1,0.5,0.2 , 0.3,0.3,0.3P = , 

( ) ( ) ( ) ( ) ( ) 3 0.2,0.3,0.4 , 0.4,0.3,0.2 , 0.3,0.4,0.2 , 0.2,0.5,0.3 , 0.5,0.3,0.1P = . 

Let R be an unknown pattern given in terms of a SVNS as 

( ) ( ) ( ) ( ) ( ) 0.1,0.2,0.1 , 0.3,0.4,0.2 , 0.4,0.3,0.2 , 0.7,0.1,0.0 , 0.4,0.2,0.2R = . 

We use the formulas (3), (4), (7), (9), (10), (11), (12) to calculate the relationship value between 

the unknown pattern and each known pattern, and then we can classify the unknown pattern R into one 

of the known patterns ( )1,2,3jP j = . The results of these information measures are given in Table 2. 

Table 2. Results of different information measures regarding Example 4.2. 

 ( )1,P R
 ( )2 ,P R

 ( )3,P R
 Results 

( ),iK P R
 0.7963 0.6126 0.7739 

1P  

( ),iM P R
 0.8116 0.7883 0.8171 

3P  

( ),iP R
 0.4673 −0.4024 −0.5474 

1P  

( )1 ,id P R
 0.1467 0.2200 0.1600 

1P  

( )2 ,id P R
 0.5200 1.1900 0.6800 

1P  

( )1 ,iS P R
 0.8095 0.6401 0.7995 

1P  

( )2 ,iS P R
 0.1593 0.1225 0.1548 

1P  

From Table 2, we can find that the classification result obtained by the formula (4) is different 

from the classification results obtained by others including the formula (7). The formulas (3), (7), (9), 

(10), (11) and (12) can accurately classify the unknown pattern R to 1P . By observing the data in 

Example 4.2 and the classification results in Table 2, it is easy to find that the formula (4) has erroneous 

judgement. The formula (7) of the proposed statistical correlation coefficient not only can calculate 

the negative correlation value of two patterns, but also obtain more robust classification result. 

4.2. Application of the statistical correlation coefficient in medical diagnosis 

Medical diagnosis is a process of finding the diseased part, judging the degree of the disease and 

then determining the disease according to the symptoms of the patient when their body is in an 

abnormal state. 

This section attempts to validate the rationality and the feasibility of the proposed statistical 

correlation coefficient during the diagnosis process of patients with COVID-19 by Chinese medicine. 

We have collected diagnosis and treatment data of suspected patients with COVID-19 from the relevant 

medical departments. In the following part, we first give the problem background. Next, we will use 

various information measures to diagnose the suspected cases, and also compare these information 

measures to show the effectiveness and practicability of the proposed statistical correlation coefficient. 
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4.2.1. Problem background 

As we know, the root of Tradition Chinese Medicine (also referred to as TCM) dates back more 

than 2000 years. Tradition Chinese Medicine (TCM) is a complete medical system that has been used 

to diagnose, treat and prevent illnesses for more than 2000 years. Nowadays, TCM is an indispensable 

part of Chinese culture which has made great contributions to the prosperity of China. Both TCM and 

western medicine are being used to cure people all around the world. The TCM, comparing with 

western medicine, with its unique diagnostic methods, long history and remarkable effects, have been 

used to treat cancer and other serious diseases. Unlike the western medicine, the TCM has many 

advantages. One of the most significant is that it has fewer side effects. According to the survey data, 

TCM is used by 75% of the areas in China and has been very effective in the treatment of diseases 

such as diabetes, liver cancer, tumors and bone fracture and so on. Great successes have been made in 

many areas through TCM cure. As to acute abdomen, there is no need to have an operation. All you 

need to do is drink a cup of Chinese herbs, while the western way takes more time and money. You 

may even take the risk of being infected after operation. 

In particular, TCM has achieved gratifying results in the diagnosis and treatment of COVID-19. 

This also makes more and more people pay more attention to TCM. From ancient times to the present, 

there have been theories of yin yang philosophy in China. TCM is based on a belief in yin and yang, 

which is defined as opposing energies, such as earth and heaven, winter and summer and happiness 

and sadness. It can just be described by truth membership and falsehood non-membership in the fuzzy 

set. In terms of diagnosing, TCM diagnostics is to grasp the human system as a whole emerged as the 

goal established, the information obtained through the four clinics of the look and smell are the 

characteristics of information emerged about the body as a whole. It fully shows that in the diagnosis 

process of TCM, uncertain and vague information will be produced. For this part of the information, 

we use the indeterminacy-membership to describe it. Thus, we can completely introduce the related 

concepts of single-value neutrosophic sets in TCM diagnosis and treatment. 

As the symptoms of patients with COVID-19 are similar to those of traditional pneumonia and 

viral influenza, a large number of suspected cases will make the diagnosis of doctors extremely 

difficult. Once the doctor makes a misjudgment, it will delay the opportunity for treatment and even 

endanger the patients’ life. The notion of similarity measure, divergence measure, correlation measure 

and distance measure under the single-value neutrosophic set environment has played a key role in the 

medical diagnosis problems. Here we use our proposed statistical correlation coefficient to deal with 

the medical diagnosis problem. The symptom values of the diseases are assigned by one specialist 

doctor or by the aggregated opinion of several specialist doctors. The symptom values to a patient are 

assigned by the doctor dealing with the patient based on his/her expertise. Then the correlation between 

the symptoms of patients and the standardized symptoms of diseases is computed. The patient will be 

diagnosed with the disease, which has the highest value of correlation. 

Now, we use our proposed statistical correlation coefficient in the medical diagnosis problem with 

the help of the following example. 

4.2.2. Illustrative example 

This application illustrates how the proposed statistical correlation coefficient can be used to 

address a problem of misdiagnosis in the medical diagnosis of COVID-19. The flowchart of proposed 

statistical correlation coefficient is shown in Figure 1. 
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Figure 1. The flowchart of proposed statistical correlation coefficients. 

Let us assume that there are four different patients  1 2 3 4, , ,P P P P P=   and also five kinds of 

diseases    1 2 3 4 5, , , , , , , 19,Malaria SARS ViD D D D ral influenza COD VID TyphoD id= = − −   along with 

their symptoms    1, 2 3 4 5, , , , , , ,S S S S S S Fever Pharyngalgia Dizziness Rhinorrhea Dry Cough= = − . 

Example 4.3. We have collected the patients’ diagnosis and treatment data from the relevant 

departments and organized them into the following tables. Table 3 is the dataset of symptoms of various 

diseases and Table 4 is the dataset of symptoms of different patients. We assume that patient 1P  is 

suffering from Typhoid, 2P  and 3P  are suffering from COVID-19 and 4P  is suffering from Viral 

Influenza. Thus, the symptoms of the patients ( )1,2,3,4jP j =  are deduced accordingly and shown 

in Table 4. We use the information measures for better diagnosis. 

Table 3. Symptoms of the diseases modelled as SVNSs. 

 Fever Pharyngalgia Dizziness Rhinorrhea Dry Cough 

Malaria (0.8,0.1,0) (0.2,0.4,0.35) (0.2,0.5,0.3) (0,0.35,0.5) (0.1,0.5,0.3) 

SARS (0,0.1,0.8) (0.35,0.4,0.2) (0.3,0.5,0.2) (0.5,0.35,0) (0.3,0.5,0.1) 

Viral influenza (0.1,0.6,0.2) (0.2,0.3,0.35) (0.2,0.4,0.3) (0.6,0.1,0.2) (0.3,0.3,0.4) 

COVID-19 (0.2,0.6,0.2) (0.35,0.3,0.2) (0.3,0.4,0.2) (0.2,0.1,0.6) (0.4,0.3,0.3) 

Typhoid (0.2,0.2,0.2) (0.8,0.2,0.1) (0.5,0.3,0.5) (0.6,0.3,0.5) (0.8,0.2,0.1) 
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Table 4. Symptoms of the patients modelled as SVNSs. 

 Fever Pharyngalgia Dizziness Rhinorrhea Dry Cough 

1P  (0.2,0.3,0.5) (0.6,0.2,0.1) (0.1,0.2,0.4) (0.4,0.2,0.3) (0.8,0.1,0) 

2P  (0.2,0.3,0.4) (0.4,0.3,0.2) (0.3,0.4,0.2) (0.2,0.5,0.3) (0.5,0.3,0.1) 

3P  (0.4,0.5,0.1) (0.3,0.3,0.2) (0.3,0.3,0) (0.3,0,0.8) (0.8,0.1,0.1) 

4P  (0.5,0.7,0.2) (0.3,0.4,0.2) (0.3,0.5,0.1) (0.5,0.2,0.1) (0.4,0.3,0.2) 

By using the formula (3), we calculate the correlation coefficient between the patient’s symptoms 

and disease symptoms. The result values are given in Table 5. 

Table 5. Correlation coefficients between the patients’ symptoms and disease symptoms 

using (3). 

 Malaria SARS Viral Influenza COVID-19 Typhoid 

1P  0.5059 0.7526 0.7291 0.7800 0.9241 

2P  0.7327 0.8589 0.7937 0.8709 0.8709 

3P  0.6491 0.5067 0.7269 0.9020 0.8094 

4P  0.7198 0.7369 0.9082 0.8708 0.7517 

As shown in Table 5, it can be found that the correlation coefficient value between the symptoms 

of 1P  and the symptoms of Typhoid is highest. Thus, we can know that the patient 1P  is suffering 

from Typhoid. Similarly, it is easy to know that 3P  is suffering from COVID-19 and 4P  is suffering 

from Viral Influenza. However, the correlation coefficient value between the symptoms of the patient 

2P   and the symptoms of COVID-19 is equal to the correlation coefficient value between the 

symptoms of the patient 2P  and the symptoms of Typhoid. Thus, it is difficult to diagnose the disease 

condition of the patient 2P . 

By using the formula (4), we calculate the correlation coefficient between the patient’s symptoms 

and disease symptoms. The result values are given in Table 6. 

Table 6. Correlation coefficients between the patients’ symptoms and disease symptoms 

using (4). 

 Malaria SARS Viral influenza COVID-19 Typhoid 

1P  0.6337 0.7352 0.7446 0.7503 0.8371 

2P  0.7491 0.8225 0.8027 0.8689 0.7809 

3P  0.6851 0.6626 0.7446 0.8324 0.7473 

4P  0.7418 0.7942 0.8508 0.8520 0.7164 

As shown in Table 6, it is not difficult to notice that 1P  is suffering from Typhoid, while 2P , 3P  
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and 4P  are suffering from COVID-19. This is not in line with the true state of affairs, which is 4P  

suffering from Viral influenza. 

By using the formula (7), we calculate the correlation coefficient between the patient’s symptoms 

and disease symptoms. The result values are given in Table 7. 

Table 7. Correlation coefficients between the patients’ symptoms and disease symptoms 

using (7). 

 Malaria SARS Viral influenza COVID-19 Typhoid 

1P  −0.5621 0.4184 0.1803 0.6639 0.9198 

2P  −0.3217 0.0384 −0.3823 0.8747 0.8490 

3P  −0.1009 −0.1845 −0.5223 0.7018 0.5857 

4P  −0.7114 0.8498 0.9228 0.0332 0.2011 

As shown in Table 7, it is not hard to notice that 1P  is suffering from Typhoid, both 2P  and 3P  

are suffering from COVID-19 and 4P   is suffering from Viral influenza. All the calculated results 

conform with the actual status. 

By using the formula (9), we calculate the distance values between the patient’s symptoms and 

disease symptoms. The result values are given in Table 8. 

Table 8. Distance values between the patients’ symptoms and disease symptoms using (9). 

 Malaria SARS Viral influenza COVID-19 Typhoid 

1P  0.3200 0.2333 0.2233 0.2100 0.1267 

2P  0.2200 0.1467 0.1700 0.1033 0.1800 

3P  0.2733 0.2867 0.2167 0.1300 0.2000 

4P  0.2200 0.1667 0.1233 0.1167 0.2400 

As shown in Table 8, it is not difficult to notice that 1P  is suffering from Typhoid, while 2P , 3P  

and 4P  are suffering from COVID-19. This is not in line with the true state of affairs, which is 4P  

suffering from Viral influenza. 

Similarly, the formula (10) is used to calculate the distance values between the patient’s symptoms 

and disease symptoms. The result values are given in Table 9. 

Table 9. Distance values between the patients’ symptoms and disease symptoms using (10). 

 Malaria SARS Viral influenza COVID-19 Typhoid 

1P  1.9850 0.9950 0.9925 0.8125 0.4300 

2P  1.0050 0.5450 0.6825 0.4325 0.7100 

3P  1.5050 2.1150 1.0925 0.4125 0.9800 

4P  1.1450 1.0750 0.3525 0.4925 1.2400 
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As shown in Table 9, it is easy to notice that the patient 1P  is suffering from Typhoid, both 2P  

and 3P   are suffering from COVID-19 and 4P   is suffering from Viral influenza. All these results 

conform with the actual status. 

By using the similarity formula (11), we calculate the similarity values between the patient’s 

symptoms and disease symptoms. The result values are given in Table 10. 

Table 10. Similarity values between the patients’ symptoms and disease symptoms using (11). 

 Malaria SARS Viral influenza COVID-19 Typhoid 

1P  0.5497 0.7577 0.7497 0.7846 0.8865 

2P  0.7524 0.8652 0.8088 0.8857 0.8434 

3P  0.6811 0.5887 0.7562 0.9052 0.7742 

4P  0.7348 0.8324 0.9127 0.8710 0.7394 

As shown in Table 10, it is easy to find that the patient 1P  is suffering from Typhoid, both 2P  

and 3P   are suffering from COVID-19 and 4P   is suffering from Viral influenza. All these results 

conform with the actual status. 

Similarly, the formula (12) is used to compute the similarity values between the patient’s 

symptoms and disease symptoms. The result values are given in Table 11. 

Table 11. Similarity values between the patients’ symptoms and disease symptoms using (12). 

 Malaria SARS Viral influenza COVID-19 Typhoid 

1P  0.1012 0.1505 0.1458 0.1560 0.1848 

2P  0.1465 0.1718 0.1587 0.1742 0.1742 

3P  0.1298 0.1013 0.1454 0.1804 0.1619 

4P  0.1440 0.1474 0.1816 0.1742 0.1503 

As shown in Table 11, it is not difficult to know that the patient 1P  is suffering from Typhoid. 

3P  is suffering from COVID-19 and 4P  is suffering from Viral Influenza. However, it is difficult to 

diagnose the disease condition of the patient 2P  since the similarity value between the symptoms of 

the patient 2P  and the symptoms of COVID-19 is equal to the similarity value between the symptoms 

of the patient 2P  and the symptoms of Typhoid. 

In order to compare and analyze the diagnosis results of different methods more clearly, all 

considered calculation results are summarized into Table 12. 
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Table 12. All considered results. 

 
1P  

2P  
3P  

4P  

Using the formula (3) Typhoid Unable to classify COVID-19 Viral Influenza 

Using the formula (4) Typhoid COVID-19 COVID-19 COVID-19 

Using the formula (7) 

(Our proposed) 

Typhoid COVID-19 COVID-19 Viral Influenza 

Using the formula (9) Typhoid COVID-19 COVID-19 COVID-19 

Using the formula (10) Typhoid COVID-19 COVID-19 Viral Influenza 

Using the formula (11) Typhoid COVID-19 COVID-19 Viral Influenza 

Using the formula (12) Typhoid Unable to classify COVID-19 Viral Influenza 

Compared the diagnosis results of various methods with the actual situation, it is not difficult to 

find that the results of the formulas (4) and (9) produce misdiagnosis. Meanwhile, based on the results 

of formulas (3) and (12), it is unable to determine the disease condition of the patient 2P . Using our 

proposed formula (7), the distance formula (10) and similarity formula (11), we can correctly diagnose 

the patient’s disease condition. 

5. Conclusions 

In this paper, we propose a novel statistical correlation coefficient formula to measure the 

correlation values between SVNSs and also develop a weighted form of this statistical correlation 

coefficient formula. The value of the statistical correlation coefficients falls into the interval [−1,1] 

which is in accordance with the range of statistical correlation coefficient between two variables or 

sets. Conversely, most of the existing correlation coefficient formulas of SVNSs only obtained the 

values in interval [0,1] . Some examples are given to demonstrate that the statistical correlation 

coefficient formula is more effective than the existing methods. In the practical application problems 

of pattern recognition and TCM medical diagnosis, we clearly found the superiority of the statistical 

correlation coefficient formula we proposed. In addition, compared the proposed statistical correlation 

coefficient formula with the existing correlation coefficients, distance measures and similarity 

measures, the statistical correlation coefficient formula we proposed can properly determine the 

patient’s disease and reduce misjudgments. The advantages of our studies are summarized as: 

(1) The value of our statistical correlation coefficients falls into the interval [−1,1] . The 

correlation coefficient formula can be used to calculate both the positive and negative correlation 

between single-value neutrosophic sets. 

(2) In the application example of pattern recognition, our formula for calculating the correlation 

coefficient has been found to effectively classify the unknown pattern as the known pattern. 

(3) In the application example of medical diagnosis, comparing with the distance measure 

methods and similarity measure methods, we can find that the correlation coefficient formula we 

proposed can accurately judge the patient’s disease condition. 

In the future research, we plan to extend our study to the interval single-value neutrosophic sets 
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and do more dimensions practical applications. 
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