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Abstract: Diabetes mellitus is a severe, chronic disease that occurs when blood glucose levels rise 

above certain limits. Many complications arise if diabetes remains untreated and unidentified. Early 

prediction of diabetes is the most high-quality way to forestall and manipulate diabetes and its 

complications. With the rising incidence of diabetes, machine learning and deep learning algorithms 

have been increasingly used to predict diabetes and its complications due to their capacity to care for 

massive and complicated facts sets. This research aims to develop an intelligent computational model 

that can accurately predict the probability of diabetes in patients at an early stage. The proposed 

predictor employs hybrid pseudo-K-tuple nucleotide composition (PseKNC) for sequence formulation, 

an unsupervised principal component analysis (PCA) algorithm for discriminant feature selection, and 

a deep neural network (DNN) as a classifier. The experimental results show that the proposed technique 

can perform better on benchmark datasets. Furthermore, overall assessment performance compared to 

existing predictors indicated that our predictor outperformed the cutting-edge predictors using 10-fold 

cross validation. It is anticipated that the proposed model could be a beneficial tool for diabetes 

diagnosis and precision medicine. 
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1. Introduction 

Diabetes is a metabolic illness characterized by inadequate insulin production and secretion 
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abnormalities [1], with hyperglycemia as the primary symptom. The physiological system will be 

harmed by long-term exposure of organs to hyperglycemia. Damage to tissues and organs, such as the 

eyes, kidneys, nerves, heart, and blood vessels, can result in organ and tissue failure. Diabetes mellitus 

is currently split into two types: diabetes mellitus type 1 and diabetes mellitus type 2. Type 2 diabetes 

is the most prevalent type of diabetes, accounting for approximately 95% of diabetic people [2,3]. The 

major causes of diabetes are environmental factors and poor lifestyle choices. Furthermore, diabetes 

is triggered by aging, poor diet, and inadequate activity [4]. 

The normal transition from health to diabetes mellitus occurs in three stages: health, pre-diabetes, 

and type 2 diabetes [5]. After being diagnosed with diabetes, patients’ blood glucose levels will 

continue to rise, and pharmaceutical therapy is difficult to discontinue [6,7]. On the other hand, can 

maintain blood glucose control and even restore health with artificial intervention. Many studies have 

demonstrated that the most effective technique for avoiding and controlling diabetes is to detect and 

treat it as soon as possible. As a result, early detection and lifestyle adjustments are crucial in diabetes 

care and the avoidance of complications, including diabetic retinopathy [8–11]. 

Early diagnosis reduces the relative and absolute risk of heart attacks and mortality, as per the 

ADDITION-Europe analytical model analysis [12]. Diabetes mellitus is a global public health concern, 

with the International Diabetes Federation estimating that 463 million people worldwide have diabetes, 

with a 51% increase projected by 2045. Furthermore, it is predicted that for every diagnosed person 

with diabetes, there is one undiagnosed individual [13,14]. Understanding the evolving pattern of 

diabetes at all stages and extracting useful diabetes information from physical examination data is 

crucial to diabetes prevention and treatment. As a result, several scholars have tried to develop diabetes 

prediction models. Traditional statistical learning procedures, such as linear regression, were used to 

create the first models. Traditional statistical learning systems, on the other hand, provide predictions, 

but predictive accuracy is not one of their strong suits. 

The toolbox was recently enhanced to cover a variety of machine-learning approaches. These 

approaches anticipate future occurrences based on patterns discovered in training data from previous 

examples. Furthermore, different techniques are sometimes combined to construct ensemble models 

that outperform single models in terms of prediction. For example, Kalsch et al. [14] established a 

relationship between liver damage markers and diabetes and used random forests to predict diabetes 

using serum data. Zou et al. [15] utilized principal component analysis (PCA) and minimal redundant 

maximum (mRMR) correlation to screen risk factors, and decision tree (DT) and Random forest (RF) 

to predict diabetes. However, they are based on traditional learning models, which need much human 

expertise and the ability to extract crucial parts automatically. 

Furthermore, in the presence of nonlinearity in the dataset, the predictive power of the models 

mentioned above is reduced. As a result, a more sophisticated and robust computer model in 

bioinformatics is necessary to detect diabetic mellitus. Using an improved deep learning algorithm and 

fast feature extraction methods, this research provides a solid and trustworthy computational prediction 

for reliably recognizing diabetic mellitus. In this paper, we proposed a computational model using a 

multilayer DNN technique. The proposed model performance is thoroughly examined using the 10-

fold cross-validation approach, which is based on several performance assessment indicators. The 

suggested predictor uses several modes of PseKNC as a feature formulation approach to construct the 

provided samples into a features set, including Single/Di/tri nucleotide composition. Second, an 

unsupervised PCA technique is used to eliminate unnecessary and noisy features, resulting in the 

selection of efficient features. The suggested predictor attained an average prediction accuracy of 88.65% 
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based on the testing findings. Furthermore, the performance of the proposed predictor is compared to 

that of recently published predictors. The suggested model beat the current predictors in accuracy and 

other performance measures, according to the comparative findings. The major contributions of the 

paper are summarized as follow: 

• Propose a deep generative model for classification of the probability of diabetes in patients at an 

early stage. 

• The proposed model considered non-linearity in dataset using multi-stack processing layers and 

non-linear activation function. 

• The performance of the proposed model is extensively evaluated using different performance 

measurement metrics such as Accuracy (ACC), Area under the Curve (AUC), Sensitivity (SN), 

Specificity (SP) and Mathew’s Correlation Coefficient (MCC). 

2. The proposed model’s design 

The section outlines the suggested model’s prototype and architecture. Figure 1 depicts the 

suggested model’s design, which includes various elements that are addressed in-depth below. 

 

Figure 1. Proposed model architecture. 

2.1. Benchmark dataset 

A valid and trustworthy benchmark dataset is required to design a robust and resilient 

computational model. Therefore, we select a useful benchmark dataset available in [16–19] for training 

and validating the outcomes of the proposed model. Following Eq (1) represented the mathematical 

form of the chosen benchmark dataset. 

Positive NegativeD D D=                                      (1) 

The benchmark data were collected from medical and physical examinations and separated into 
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healthy persons and diabetics. We used one of the physical examination data that contains 64,000 

instances as the validation set. In the other dataset, 10,000 samples were randomly selected as an 

independent test set. We consider 14 different variables, i.e., age, pulse rate, breathe, left systolic 

pressure (LSP), proper systolic pressure (RSP), left diastolic pressure (LDP), right diastolic pressure 

(RDP), height, weight, physique index, fasting glucose, waistline, low-density lipoprotein (LDL), and 

high-density lipoprotein (HDL). 

It is to be noted that the benchmark dataset is imbalanced (i.e., the positive samples are in the minority 

class, and the negative samples are in the majority class). The classification is biased toward the majority 

class in the imbalanced dataset, referred to as a classification problem, as shown in Figure 2. Various 

approaches, i.e., data-level approach and algorithm-level approach, have been considered in the literature 

for the class imbalance issue; however, the data-level system, including over-sampling and under-sampling 

methods, is widely employed the issue of the imbalanced dataset. The over-sample method could increase 

the risk of model over-fitting due to data sample replication. The under-sampling method can offer a modest 

solution in most cases. Hence, in this study, we applied the under-sampling method with the Near Miss 

procedure implemented in Python to balance the benchmark dataset. 

 

Figure 2. Benchmark dataset density versus value bins. 

2.2. Feature formulation technique 

The data is mainly analyzed in discrete form by quantitative machine learning techniques [20]. 

Formulating biological sequences into discrete forms is difficult in computational biology [21]. Various 

approaches [22,23] for transforming biological sequences into discrete feature vectors have been 

proposed in the literature. Chou’s suggested approach has been widely adopted in current application 

development and is now used in all sectors of computational biology [24–26]. Chou’s Pseudo K-tuple 

Nucleotide Composition (PseKNC) approach for representing RNA/DNA sequences into a discrete 

feature vector is widely used in computational biology [27,28]. We used the PseKNC approach to 
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encode diabetes samples into a discrete feature set in this research. 

To encode the following sequence D into a discrete feature vector, consider the following: 

li dddddD .......321=
        (2) 

Here d1 represents the very first nucleotide in D, d2 represents the next nucleotide in D, and dL 

represents the last nucleotide in D. Equation (3) may be stated in the PseKNC’s basic form utilizing 

Eq (4). 

T

zuD ]......[ 21 =         (3) 

Where, T is the transpose, z is the integer number and u  is feature vector. The selected vector can be 

calculated by Eq (5). 
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Finally, PseKNC technique to calculate the samples by using K=1, 2, 3 in Eq (6). 
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2.3. Feature selection 

The feature vector may contain noisy, redundant, and irrelevant features significantly impacting a 

classifier’s performance. Hence, in this paper, we perform feature selection using Principal Component 

Analysis (PCA) algorithm. The PCA algorithm [29–34] is a multivariate data processing method that 

computes covariance matrices and eigenvectors to reduce feature vector dimensionality to low-

dimensional vectors. The PCA algorithm’s primary goal is to decrease a feature vector’s dimension while 

retaining as many discriminative features as possible. For instance consider i × j dimension as feature 

vector, “i” represent extracted features and “j” represent total samples. Using Eq (10) consider the input 

feature vector D: 

 nDDDD ,...,,, 321             (10) 

Using the PCA algorithm, we took the following procedures to reduce the feature vector 

dimensionality. 

Step 1: Using Eq (11), we first calculate the feature vector mean value 


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Step 2: Using Eq (12), from nD  we subtract the mean value i.e., 
_
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Step 3: Using Eq (13), covariance matrix Cn is computed 

TT

nnn BBDDC ).( ''=           (13) 

Where, )*(...,,, ''

2

'

1 jiDDDB p









=  and T= transpose of a matrix. 

Step 4: Eigenvalues are computed in this step. In other words, the first Eigen must have a value larger 

than that of the second Eigen, and so on. 

 n ...321   

Step 5: Eigenvector is compute in this step as: 

 nnc  ,...,,,: 321                  (14) 

Last step: We choose k values with the highest Eigenvalues. Eigen vector with the highest Eigen values 

was chosen to reconstruct the new set of feature vector to accomplish a better prediction performance. 
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2.4. Fully connected deep neural network 

DNN is a branch of AI algorithms provoked by the functioning mechanism and activities of the 

human brain [35–37], as shown in Figure 3. Hidden layers are significant components of the DNN 

model and are actively involved in the learning process [38–40]. Using more hidden layers in the 

training phase can improve the performance of a model; however, it may cause significant issues such 

as model complexity, computation cost, and over-fitting [41–43]. The DNN model can extract relevant 

features automatically from the given unlabeled or unstructured dataset without the involvement of 

human engineering and expertise using standard learning procedures [37,44–46]. It has been reported 

by several investigators that the DNN model performed better than the conventional learning methods 

applied for various complex classification problems [47–49]. Moreover, deep learning algorithms are 

successfully applied in several domains, such as speech recognition [50,51], image recognition [52,53], 

bio-engineering [54,55], and natural language processing [56,57]. Inspired by the tremendous 

performance of deep learning in various domains for a complex classification problem, this paper has 

applied the DNN algorithm as a prediction engine. 

 

Figure 3. Deep neural network configuration. 

Inspired by the effective employment of deep learning models in numerous domains for 

composite classification problems, this paper considered the DNN model to predict diabetes mellitus 

using a benchmark dataset. As shown in Figure 3, the proposed deep neural network method has six 

hidden layers, an input and output layer. Each layer in the DNN topology is configured with numerous 

nodes i.e., take input features set and produce output using the following equation. 

)(
1

a

b

m

b

baa wxBfy 
=

+=                 (15) 

Where, ay  represent output at a layer a , B  represent bias value, a

bw  mean weight used at a layer 
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a  by a neuron b , a

bx  represent input feature and f  represent a non-linear activation Tanh function 

and it can be calculated using Eq (16). 
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3. Performance evaluation metrics 

Any statistical machine learning-based model’s performance can be evaluated using some 

measurement metrics before the model deploy in a natural production environment [58]. Several 

performance measurements have been proposed in the literature to assess a learning model. Accuracy 

is the primary criterion for evaluating the algorithm’s effectiveness in every one of these measures. 

More than the accuracy metrics for a model performance evaluation is required. Hence, different 

performance metrics set is considered in the literature to evaluate a model [59–61]. These performance 

metrics, along with accuracy, are included: Area under the Curve (AUC), Sensitivity (SN), Specificity 

(SP), and Mathew’s Correlation Coefficient (MCC). We considered all the performance as mentioned 

earlier measurement metrics to assess the proposed Deep-Sumo performance as these metrics were 

widely adopted in a series of publications [25,46,62–66]. The performance measurement metrics can 

be calculated using the following equations. 
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Where, 
+D  represent the total number of diabetes mellitus samples, −D  represent total non- diabetes 

mellitus samples. Similarly, +

−D  represents total mellitus that is wrongly recognized as non- diabetes 

mellitus, −

+D  represent total non- diabetes mellitus that wrongly recognized as diabetes mellitus. 
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4. Experimental results 

4.1. Feature analysis 

We first performed an analysis of the feature on the selected benchmark dataset. The success 

rates of Pseudo-DNC, Pseudo-TNC, and Pseudo-Tetra NC and fusion feature space on classification 

methods are listed in Table 1. Among all hypothesis learners, deep neural network using fusion 

features in the case of k-folds cross-validation test obtained the highest accuracy of 84.11%, 

specificity of 82.72%, the sensitivity of 89.11%, and MCC of 0.645. Similarly, using individual 

feature space of Pseudo-DNC accomplished the performance ratio of 82.03%, with an MCC of 0.641, 

a sensitivity of 85.66%, and a specificity of 78.89%, respectively. 

Table 1. Performance analysis by different extraction approaches. 

Techniques Acc (%) Sn (%) Sp (%) MCC 

Before Feature Selection 
    

Pseudo-SNC 80.63 82.71 78.61 0.584 

Pseudo-DNC 82.03 85.66 78.89 0.641 

Pseudo-TNC 80.38 86.97 78.41 0.677 

Fusion feature 84.11 89.11 82.72 0.645 

After Feature Selection 
    

Pseudo-SNC 81.31 83.21 78.99 0.594 

Pseudo-DNC 84.11 86.34 80.88 0.681 

Pseudo-TNC 83.56 87.71 79.12 0.687 

Fusion Features  88.65 81.50 89.41 0.766 

The dimensions of the fusion features vector were lowered utilizing the feature selection approach 

to increase the performance of the suggested model even further (i.e., PCA). Consequently, the 

suggested deep neural network model’s success rate increased dramatically, with an average accuracy 

of 88.65%, specificity of 89.41%, sensitivity of 81.50%, and MCC of 0.766. Integrating all selected 

traits we highlight, contributes to enhancing MCC value. 

4.2. Performance analysis 

In addition, we examined the performance of the deep neural network model in terms of AUC. 

The AUC is a frequently used metric for evaluating the effectiveness of a classification algorithm, 

and it is calculated in the range of 0 to 1. In comparison to a predictor that computes a lower value, 

a classifier that computes a more significant rate is deemed the best predictor  [66]. Figure 4 depicts 

the DNN’s effectiveness in AUC utilizing various sequence formation strategies. Figure 4 shows that, 

compared to alternative sequence formulation approaches, the DNN method produced the most 

outstanding results when applying fusion characteristics. The proposed method, for example, 

generates the maximum AUC values utilizing fusion features 0.946 compared to the second 

maximum value of 0.891, using Pseudo-DNC. These findings revealed that the deep neural network 

model performs the most remarkable prediction by employing fusion features. 
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Figure 4. AUROC of proposed deep neural network model. 

Furthermore, the suggested model highlights the issues of under fitting and overfitting, as well as 

how linear regression using polynomial features may approximate nonlinear functions. The graphic 

depicts the function we wish to approximate, a cosine function component, as shown in Figure 5. 

 

Figure 5. Proposed model under fitting and over fitting analysis. 

As shown in Figure 5, a linear function (polynomial of degree 1) is insufficient to match the 

training data. This is known as under fitting. A polynomial of degree 4 nearly exactly approximates the 

underlying function. For higher degrees, however, the model will over fit the training data, i.e., it will 

learn the noise in the training data. The mean squared error (MSE) on the validation set is calculated; 

the more significant the MSE, the less probable the model generalizes successfully from the training 

data. 

4.3. Performance comparison with machine learning techniques 

To authenticate the efficiency of our suggested framework, we accompanied comparative 
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experimentations with several well-known methods. Table 2 shows the performance measure value for 

each categorization algorithm. Table 2 shows that the overall performance accuracy of all 

categorization techniques is greater than 70%. The DNN model, for example, had an average accuracy 

of 88.65% compared with other ML methods. Similarly, MCC, which shows the model stability, the 

DNN model had the highest score of 0.815. Moreover, Gradient Boosting and Extra Trees Classifier 

both show better accuracy for both testing methods, while the SVM-Linear Kernel model came in 

second last with a score of 72.49%. Furthermore, the Naive Bayes model performed the worst 

regarding gauging performance. 

Table 2. The suggested Deep Neural Network method comparison with machine learning 

techniques. 

Classifier ACC (%) MCC SP (%) SN (%) 

Deep Neural Network 88.65 0.815 89.41 76.58 

Gradient Boosting Classifier 75.56 0.613 79.69 72.4 

Extra Trees Classifier 74.79 0.697 78.75 81.32 

SVM-Linear Kernel 72.49 0.653 75.22 69.17 

Naive Bayes 71.12 0.634 73.98 75.84 

Based on the data, the primary reason of DNN model outperformed traditional learning 

approaches is the multi-stack processing. Whereas traditional learning methods employ single-layer 

processing, which is inadequate for commerce with a complex nature dataset with high nonlinearity. 

4.4. Performance comparison with the existing predictors 

The performance of the proposed model was compared with the existing predictors, as mentioned 

in [16–19]. The mentioned latest methods build prediction models based on machine learning 

algorithms. The performance of our proposed model and the existing benchmark models are evaluated 

on benchmark datasets by using 10-fold cross-validation. For facilitating comparison, Table 3 shows 

the corresponding results obtained by the existing state of the art methods. 

Table 3. The DNN model comparison with the existing learning techniques. 

Classifier ACC (%) 

Deep Neural Network 88.65 

LSTM [16] 87.26 

Artificial neural network [19] 85.09 

Naive Bayes [18] 76.3 

RB-Bayes [17] 72.9 

The results demonstrated that the proposed model outperformed the recently published predictors. 

For example, the proposed model achieved the highest accuracy, i.e., 88.65%, compared with the 

existing predictor achieving the second highest success rate, i.e., 87.26%. These results confirm that 

the proposed model performed superior to the existing models, with an average success rate 

improvement of 5.61%. 
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5. Conclusions 

The medical issues present during diagnosis determine how an individual with metabolic disease 

is classified, and people may not always neatly fall into a specific category. Some people, for instance, 

cannot differentiate between type 1 and 2 diabetes. Diabetes has a broad spectrum of clinical symptoms 

and disease progression. Considering the importance of PseKNC, PCA, and deep learning algorithms, 

this paper proposed a robust and accurate predictor to improve the performance of diabetes prediction. 

A hybrid feature vector with significant undertaking dimensional feature space was created by 

combining the feature vectors created using the various PseKNC techniques. PCA algorithm was 

applied to select only prominent features by eliminating noisy and irrelevant parts. Several machine 

learning algorithms have been applied for piRNA prediction; however, the DNN model produced the 

best performance using a 10-fold cross-validation test. In addition, the proposed optimized DNN 

classifier algorithm outperformed existing state-of-the-art models with an accuracy improvement of 

5.61%. Furthermore, the proposed model might be utilized for a wide range of commonly used 

medications that raise insulin resistance and impair beta cell activity, potentially leading to diabetes 

mellitus in vulnerable persons. 
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