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Stroke is a leading cause of mortality and disability worldwide, with most

survivors reporting dysfunctions of motor, sensation, deglutition, cognition,

emotion, and speech, etc. Repetitive transcranial magnetic stimulation (rTMS),

one of noninvasive brain stimulation (NIBS) techniques, is able to modulate

neural excitability of brain regions and has been utilized in neurological and

psychiatric diseases. Moreover, a large number of studies have shown that the

rTMS presents positive effects on function recovery of stroke patients. In this

review, we would like to summarized the clinical benefits of rTMS for stroke

rehabilitation, including improvements of motor impairment, dysphagia,

depression, cognitive function, and central post-stroke pain. In addition, this

review will also discuss the molecular and cellular mechanisms underlying rTMS-

mediated stroke rehabilitation, especially immune regulatory mechanisms, such

as regulation of immune cells and inflammatory cytokines. Moreover, the

neuroimaging technique as an important tool in rTMS-mediated stroke

rehabilitation has been discussed, to better understanding the mechanisms

underlying the effects of rTMS. Finally, the current challenges and future

prospects of rTMS-mediated stroke rehabilitation are also elucidated with the

intention to accelerate its widespread clinical application.

KEYWORDS

transcranial magnetic stimulation, stroke, rehabilitation, neuroinflammation, microglia,
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1 Introduction

Stroke is one of the leading causes of mortality and disability

worldwide, with most survivors reporting a decrease in quality of

life, placing heavy financial burden on patients’ families and society

(1, 2). The stroke can lead to an imbalance in blood supply and

thereby induce severe brain damages, result in various dysfunctions,

such as motor impairment, dysphagia, cognition impairment, post-

stroke pain, depression, etc (3). Current best stroke treatment is to

minimize initial brain damage and prevent subsequent

complications, and then improve function through rehabilitation

training (4). Moreover, most stroke miss the best therapeutic

window for emergency treatment, such as thrombolysis or

thrombectomy, therefore, the rehabilitation is quite important for

stroke patients to improve motor, swallowing, and cognitive

functions (5, 6). Currently, lots of rehabilitation programs have

been applied by rehabilitation specialist to recovery the impaired

functions and improve the quality of life. Commonly used

rehabilitation programs in clinical practice include: physical

therapy, occupational therapy, speech therapy, hyperbaric

oxygenation, acupuncture, etc (7), which can improve post-stroke

dysfunction by stimulating central nervous system (CNS) input

through sensorimotor system or by promoting CNS remodeling

through intensive training of motor patterns. At present, these

traditional rehabilitation programs remain the main methods for

post-stroke recovery, which can promote the recovery of various

dysfunctions after stroke to a certain extent. However, there are also

some shortcomings for these rehabilitation programs, such as slow

onset, time-consuming, and poor patient compliance (8). Due to the

certain shortcomings of traditional rehabilitation programs, various

novel techniques have been utilized for stroke rehabilitation, such as

repetitive transcranial magnetic stimulation (rTMS), transcranial

direct current stimulation (tDCS), virtual reality, augmented reality,

brain-computer interface, and rehabilitation robot, which have

shown great stroke rehabilitation effects (9–12).

rTMS, as a noninvasive brain stimulation (NIBS), is a

neurostimulation technique that uses a pulsed magnetic field to

regulate the membrane potential of neurons, thereby selectively

modulating the neural excitability of brain regions (13). rTMS

has been applied in neurological and psychiatric diseases,

including cognitive impairment, depression, mental disease, and

Alzheimer’s disease (AD) (14–17). It is painless and easy to operate,

making it a valuable tool for providing more precise brain area

regulation and prognostic assessment in stroke rehabilitation. The

interhemispheric inhibition (IHI) model is the primary theoretical

basis for the application of rTMS in stroke rehabilitation (18). This

model suggests that the two brain hemispheres are connected by the

corpus callosum, which not only transmits information between the

hemispheres but also regulates their interactions. Under healthy

condition, the excitatory or inhibitory activity between the two

hemispheres is balanced through the corpus callosum. However,

stroke disrupts the balance of mutual inhibition between the

hemispheres, resulting in weakened inhibition of the affected

hemisphere on the unaffected hemisphere, and increased

inhibition of the unaffected hemisphere on the affected
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hemisphere (4). Another model is called compensation, which

suggests that the neural conduction in the damaged area is

disrupted after stroke (19). The neurons and astrocytes in the

unaffected hemisphere can form new circuits to compensate for

the damaged area, allowing for the recovery of motor function in

stroke patients. However, the compensation model cannot be

applied when a patient experiences a bilateral stroke (20). A lager

number of clinical trials have been conducted to evaluate the

potential of rTMS to promote rehabilitation of limb, swallowing,

and cognitive functions post-stroke, which showed satisfactory

recovery outcomes (21–24).

In this review, the clinical benefits of rTMS for stroke

rehabilitation are summarized, including improvements of

motor impairment, dysphagia, depression, cognitive function,

and central post-stroke pain. Besides, this review will also focus

on the molecular and cellular mechanisms underlying rTMS-

mediated stroke rehabilitation, especially those related to

immune regulation.
2 Clinical benefits of rTMS for
stroke rehabilitation

rTMS have been shown to promote effectively rehabilitation of

neurological sequelae post-stroke, including motor impairment,

dysphagia, cognitive impairment, mental diseases, and neuropathic

pain, which will be summarized and discussed in this section (Table 1).
2.1 Motor impairment

Most stroke patients experience upper limb motor impairment,

with only 5%-20% of them being able to fully recover their upper

limb function (35). Upper limb impairment can significantly affect

stoke patients’ abilities, leading to a negative impact on their quality

of life (36). For example, The loss of upper limb function can

severely affect tasks such as eating, dressing, and personal hygiene

care, and result in a loss of independence (37). Stroke disrupts the

balance between the brain hemispheres, which is an important

cause of upper limb motor impairment after stroke (38, 39).

Repetitive transcranial magnetic stimulation (rTMS) can

modulate cortical excitability and thus recovery the balance post-

stroke (40, 41). According to IHI model, there are two main options

to using rTMS to promote functional recovery post-stroke: one is to

use low-frequency (≤1Hz) rTMS (LF-rTMS) to stimulate the

unaffected hemisphere and reduce its excitability, thus decreasing

its inhibitory effect on the affected hemisphere; the other is to use

high-frequency (≥3Hz) rTMS (HF-rTMS) to stimulate the affected

hemisphere and increase its excitability, thereby restoring balance

between the hemispheres (42–44). Numerous studies have revealed

that rTMS over primary motor cortex (M1) can improve upper limb

motor function post-stroke (25, 26, 28, 43, 45, 46). A meta-analysis

of Hsu et al. included 392 stroke patients from 18 studies, which

suggest that rTMS could promote upper limb motor recovery in

stroke patients, especially those with subcortical stroke (47). And
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they found that applying LF-rTMS on the unaffected hemisphere

might be safer and more effective than HF-rTMS on the affected

hemisphere in improving upper limb motor function after stroke.

The evidence-based guidelines on the therapeutic use of rTMS,

updated by International Federation of Clinical Neurophysiology in

2019, recommended that LF-rTMS over M1 of unaffected

hemisphere at the subacute stage of stroke as level A evidence

(definite efficacy) could recover hand motor effectively (48). HF-

rTMS over the M1 of affected hemisphere at the subacute stage as

well as LF-rTMS over M1 of unaffected hemisphere at the chronic

stage of stroke were recommended as level B (probable efficacy) and

C (possible efficacy) evidences. Consistent with the guideline, a

meta-analysis of Mu group including 904 stroke patients from 34

studies indicated that the effectiveness of rTMS on stroke patient

present timing-dependent manner: the acute phase > the subacute

phase > the chronic phase (49). In addition, rTMS can be combined

with other therapies to improve upper limb function after stroke,
Frontiers in Immunology 03
including occupational therapy (22), virtual reality training (50),

action observation (51), and upper-limb training (52), etc.

Motor impairment increases the risk of falling due to gait

impairments, resulting in limitations in activities of daily living

and a lower quality of life (46, 53). Clinicians prioritize the

improvement of lower limb motor function and walking ability

when treating stroke patients (54, 55). Therefore, the study of rTMS

on lower limb motor function also has significant clinical

implications. Tung et al. performed a meta-analysis based on 169

stroke patients and found that rTMS could remarkably improve

walking speed, lower limb activity, and Fugl-Meyer Assessment

lower limb scores (56). Another meta-analysis from Li group

indicated that rTMS, especially HF-rTMS over unaffected

hemisphere, could significantly improve walking speed of stroke

patients (57). In addition, the meta-analysis conducted by Vaz et al.

revealed that either HF-rTMS or LF-rTMS combined with other

rehabilitation therapies could significantly improve gait speed in
TABLE 1 Main clinical outcomes after rTMS with various characteristics.

Study Stroke
stage

rTMS site rTMS
frequency

(Hz)

Intensity
(%)

Combined
treatment

Clinical outcomes Outcome
measures

References

As ̧kın et al.
(2017)

Chronic
(n=40)

Contra-M1 1 90 RMT Physical
therapy

Improvement of upper
limb motor function

FMA, BBT,
FIM, FAS

(25)

Lüdemann-
Podubecká
et al. (2016)

Subacute
(n=10)

Contra-PMd 1 110 MT / Improvement of motor
function of affected hand

JTT, BBT,
MEP, CSP,
ISP

(26)

Tosun et al.
(2017)

Acute/
subacute
(n=25)

Contra-M1 1 90 RMT Physical
therapy/
NMES

Improvement of upper
limb motor function

BRS, FMA,
fMRI, UE-
MI, BI, MAS

(27)

Hosomi
et al. (2016)

Subacute
(n=41)

Ipsi-M1 5 90 RMT / Improvement of motor
function of paralytic hand

BS, NIHSS,
FMA, FIM

(28)

Sasaki et al.
(2017)

Acute
(n=21)

bilateral leg motor
areas

10 90 RMT / Improvement of lower
limb motor function

BRS, ABMS
II

(29)

Choi et al.
(2016)

Chronic
(n=30)

motor cortical area of
the 9th thoracic
erector spinae
muscles

10 90 RMT / Improvement of balance
function

BBS, CDP (30)

Cheng et al.
(2014)

Chronic
(n=4)

Ipsi-tongue motor
cortex

5 90 RMT / Improvement of
swallowing functions and
swallowing related quality
of life

SAPP, VFSS,
TPA

(24)

Khedr et al.
(2009)

Acute
(n=26)

Ipsi-oesophageal
cortical area

3 100 RMT / Improvement in dysphagia BI, MEP,
Grip
strength

(31)

Sasaki et al.
(2017)

Chronic
(n=13)

Region spanning
from the dACC to
mPFC

10 80 RMT / Improvement of apathy QIDS, AS (32)

Sharma
et al. (2020)

Subacute
(n=96)

Contra-M1 1 110 RMT Physical
therapy

Improvement of motor
function

HAMD,
mBI, mRS,
FMA,
NIHSS

(33)

Kim et al.
(2010)

Chronic
(n=18)

Left DLPFC 1, 10 80 MT / Improvement of mood BDI, CPT,
mBI

(23)

Yin et al.
(2020)

Chronic
(n=34)

Left DLPFC 10 80 RMT / Improvement of cognitive
function and quality of life

ALFF, FC,
mBI

(34)
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both acute/subacute and chronic stages of stroke (58). In addition to

improving walking speed, Choi et al. found that HF-rTMS [10 Hz,

90% resting motor threshold (RMT)] over the trunk motor cortex

could remarkably improve the balance function of chronic stroke

patients without any side effects (30).

Post-stroke lower limb spasticity impairs gait and balance to

reduce speed of walking, thereby increasing the need of wheelchair

and caregiver (59). A meta-analysis of Liu et al., including 554

stroke patients from 9 studies, aimed to evaluate the efficacy of

rTMS in improving post-stroke lower limb spasticity (60). They

revealed that rTMS could decrease Modified Ashworth Scale (MAS)

score and elevate Modified Barthel Index (MBI) score, compared

with the control group. Further subgroup analysis concluded that

LF-rTMS showed a positive effect on lower limb spasticity after

stroke, while the HF-rTMS showed no significant effect on the lower

limb motor function. Due to the limited studies included in this

meta-analysis, the recovery effect of HF-rTMS on lower limb

spasticity remains to be studied. Besides, the mechanism by

which rTMS improves lower limb spasticity is still unclear and

needs to be further explored in future studies.
2.2 Dysphagia

Dysphagia is a common complication in stroke patients, with a

prevalence of ~53%, which can result in aspiration pneumonia,

malnutrition, electrolyte imbalances, and even death (61).

Dysphagia is associated with prolonged hospital stay, poor life

quality, elevated mortality, make it imperative to prioritize early

intervention for improving swallowing function (62, 63). Current

treatments include postural interventions, surgery, botulinum toxin

injections and exercise, but these are less effective (64–66). Recently,

noninvasive neurostimulation therapies have been found to

improve the dysphagia in stroke patients (67). Among the

noninvasive neurostimulation therapies, rTMS might be the most

effective treatment for dysphagia after stroke, compared to tDCS,

pharyngeal electrical stimulation (PES), and surface neuromuscular

electrical stimulation (sNMES) (67). For instance, Khedr et al.

evaluated the recovery effect of rTMS on the swallowing

performance in 26 patients with dysphagia at the acute stage of

stroke (31). In rTMS-treated group, the esophageal cortex of the

affected hemisphere was received HF-rTMS daily (3 Hz and 120%

of RMT) for 5-10 days. The results showed that the rTMS

significantly improved the dysphagia of stroke patients for several

months. In another study, Verin et al. applied LF-rTMS (1 Hz) on

the mylohyoid cortical area of the unaffected hemisphere in patients

with dysphagia at the chronic stage of stroke, resulting in a greater

improvement in swallowing function and a remarkable decrease in

the aspiration score for liquids (68). Besides, HF-rTMS (5 Hz)

applied over the tongue region of the motor cortex of the unaffected

hemisphere has been shown to improve swallowing performance of

stroke patients with chronic dysphagia (24). Although the rTMS has

been shown to improve swallowing function in a large number of

studies, there is no unified treatment standard for its stimulation

site, intensity and treatment duration (69–71). Therefore, it is

necessary to conduct large-scale multi-center clinical studies on
Frontiers in Immunology 04
rTMS for dysphagia, and further develop standardized treatment

guideline in the future.
2.3 Depression

Post-stroke depression (PSD) is the most common

neuropsychological complication of stroke with an incidence rate

of ~33% (72). PSD has been shown to reduce quality of life, affect

rehabilitation outcome, and increase mortality rate (32, 73, 74).

Current therapies for PSD include pharmacotherapy,

psychotherapy and physical therapy, however, some patients do

not benefit from these first-line treatments (75–77). Fortunately,

several studies indicated that rTMS was expected to improve the

neuropsychological disorder (78, 79). And the U.S. Food and Drug

Administration (FDA) approved rTMS over left dorsolateral

prefrontal cortex for treatment of the major depressive disorder

(MDD) in 2008 (80). Thus, a large number of clinical trials have

explored the therapeutic efficacy of rTMS on the PSD (81, 82).

However, the results from these clinical trials were inconsistent.

Thus, a meta-analysis of Shen et al. included 1764 PSD patients

from 22 randomized controlled trials (RCTs) studies to explore the

therapeutic efficacy of rTMS for PSD (83). The results showed that

rTMS could remarkably improve the PSD measured by Hamilton

Depression Rating Scale (HAMD). Further safety evaluation

showed no statistical difference in withdrawals owing to adverse

events. However, most of these results are from single studies with

varying degrees of limitations. Therefore, definitive conclusions

about the treatment of PSD with rTMS need to be further

confirmed by multicenter RCTs. The traditional rTMS protocol

requires treatment 5 days per week for more than 4 weeks. Frey

et al. proposed an accelerated rTMS strategy to reduce the number

of days needed to complete treatment, which can bring convenience

to the patients and increase compliancy. They applied HF-rTMS (20

Hz) at 110% RMT over the left dorsolateral prefrontal cortex of the

PSD patients 5 sessions per day for 4 days. The results revealed that

HAMD of PSD patients remarkably reduced after the accelerated

rTMS, which maintained for 3 months. Besides, no significant

adverse events associated with rTMS treatment were observed in

the study. This study suggested that the accelerated rTMS protocol

could be a more convenient adjuvant treatment option for

PSD patients.
2.4 Cognitive function

Post-stroke cognitive impairment (PSCI) occurred in nearly

75% of stroke patients (84). Only half of them are able to recovery

the cognitive function, whereas the others might develop vascular

dementia (85). Since stroke patients with PSCI may experience

impaired judgment and memory problems, PSCI can hinder

physical recovery (86). Furthermore, prolonged cognitive

impairment can significantly affect activities of daily living (ADL),

quality of life, and reintegration into the community (87–89).

Thus, effective intervention to improve PSCI is a very important

part of stroke rehabilitation. The therapies of PSCI included
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pharmacological therapy (e.g., acetylcholinesterase inhibitor,

memantine, traditional Chinese medicines, etc.), cognitive

training, risk factor prevention and intervention (90, 91). In

recent years, rTMS has been applied to treat cognitive

impairment induced by several CNS diseases, including

Alzheimer’s disease, depression, Parkinson’s disease, and bipolar

disorder (14, 15, 92, 93). Notably, several studies have found that

rTMS also showed positive therapeutic effects on PSCI (23, 34, 94–

96). For example, Yin et al. applied 20 sessions of rTMS (10 Hz, 80%

RMT) over the left dorsal lateral prefrontal cortex of PSCI patients,

which revealed that rTMS could improve cognitive function and

ADLs of PSCI patients (34). Moreover, the functional MRI (fMRI)

of rTMS-treated patients indicated that the rTMS might activate left

medial prefrontal cortex and augmented the functional connectivity

to right medial prefrontal cortex and ventral anterior cingulate

cortex, resulting in the improvements of cognitive function. These

studies suggested that the rTMS can be an important and effective

treatment to rescue the cognitive function in PSCI patients, and that

functional connectivity (FC) and neural activity in cognition-related

brain regions could be crucial indicators to clarify the effect of rTMS

on PSCI. In addition, rTMS has exhibited a superior modulating

effect in cognitive function compared to other non-invasive

stimulation techniques (96). Intermittent theta-burst stimulation

(iTBS) as a type of TMS has also been applied to improve the PSCI.

Tsai et al. evaluated the therapeutic effect of rTMS (5 Hz, 80% RMT)

and iTBS on the PSCI patients, suggesting that both rTMS and iTBS

could effectively improve cognitive impairment, including global

cognitive function, memory function, and attention (96). Compared

with the iTBS group, the rTMS group showed better improvement

in attention.
2.5 Central post-stroke pain

Central post-stroke pain (CPSP) is a neuropathic pain syndrome

that can occur after a cerebrovascular accident, with an incidence rate

of 1~12% (97, 98). The main treatment for CPSP is pharmacology

(99). However, the pharmacology has limited pain control and

unpleasant side effects. Recently, several studies found that HF-

rTMS could relieve CPSP to some extent (100–102). Leung et al.

found that rTMS showed great analgesic effect on CPSP (16.7% of

visual analog scale score reduction), and rTMS exhibited better

improvement in CPSP than peripheral neuropathic pain (101),

suggesting that rTMS might be a promising therapeutic tool

for CPSP.

FMA, Fugl–Meyer Assessment; BBT, Box and Blocks Test; FIM,

Functional Independence Measurement; FAS, Functional

Ambulation Scale; rTMS, repetitive transcranial magnetic

stimulation; PMd, dorsal premotor cortex; RMT, resting motor

threshold; MT, motor threshold; JTT, Jebsen–Taylor Hand

Function Test; MEP, motor evoked potential; CSP, cortical silent

period; ISP, ipsilateral silent period; NMES, neuromuscular

electrical stimulation; fMRI, Functional magnetic resonance

imaging; BRS, brunnstrom recovery stage; UE-MI, Upper

extremity motricity index; BI, barthel index; MAS, Modified

ashworth scale; BS, Brunnstrom stages; NIHSS, National
Frontiers in Immunology 05
Institutes of Health Stroke Scale; ABMS II, Ability for Basic

Movement Scale Revised; ipsi, ipsilateral; contra, contralateral;

BBS, Berg Balance Scale; CDP, Computerized dynamic

posturogphy; SAPP, Swallowing Activity and Participation Profile;

TPA, tongue pressure assessment; VFSS, Videofluoroscopic

swallowing study; QIDS, Quick Inventory of Depressive

Symptomatology; AS, Apathy Scale; dACC, dorsal anterior

cingulate cortex; mPFC, medial PFC; mBI, modified Barthel

Index; HAMD, Hamilton Depression Scale; mRS, modified

Rankin Scale; DLPFC, dorsolateral prefrontal cortex; BDI,

Beck Depression Inventory; CPT, Continuous Performance

Test; ALFF, amplitude of low-frequency fluctuation; FC,

functional connectivity.
3 The molecular and cellular
mechanisms of neuroinflammation
underlying rTMS-mediated
stroke rehabilitation

Despite the confirmed value, the regulatory mechanism via

which TMS shows the beneficial effects on stroke rehabilitation

remain unclear. Recent studies have shown that the basic

mechanisms might be involved in regulation of neurotransmitters

release, immune cells, and cytokines (Figure 1) (102–105).
3.1 Neurotransmitters

Neurotransmitters as chemical messengers are released from a

neuron to excite or inhibit other neurons (106). Neurotransmitters,

including glutamate, gamma-aminobutyric acid (GABA), glycine

(Gly), and acetylcholine (ACh), play an important role in chemical

synapses of the CNS. Thus, the abnormal metabolism or release of the

neurotransmitters can result in synaptic dysfunction, impaired

neurogenesis, impairment of cognitive function, depression, memory

deficits and CPSP, etc (107–109). Numerous studies have shown that

stroke could induce abnormal release of neurotransmitters (107, 110).

Therefore, modulation the neurotransmitters might be a rational

approach to promote the stroke rehabilitation.

A number of studies have shown that rTMS could alter the release

and expression of neurotransmitters in the CNS, which might be the

underlying mechanisms of rTMS-based stroke rehabilitation (102,

105, 111–114). As an excitatory neurotransmitter, glutamate-mediated

excitotoxicity is a crucial mechanism resulting in post-stroke injury

(115). GABA and glycine are major inhibitory neurotransmitters in

the brain (116). Ikeda et al. revealed that application of rTMS (20 Hz)

were able to regulate the mRNA expression levels of several

neurotransmitter-related genes, including GABAergic, glutamatergic,

and glycinergic neurotransmission systems in mouse cerebellum and

brain stem, suggesting that rTMS canmodulate the activity of neurons

and synaptic plasticity via regulating the levels of neurotransmitters

(111, 114). Zangen et al. revealed that TMS over the frontal or caudal

cortex of the healthy rat brain elevated the extracellular dopamine and

glutamate levels in the nucleus accumbens (117). However, LF-rTMS
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(1 Hz) on the primary motor cortex of healthy human could not

influence the excitatory (glutamate) neurotransmitter but decrease the

inhibitory (GABA) neurotransmitter in both ipsilateral and

contralateral motor cortices (112). Moreover, Chen et al. reported

that rTMS (10 Hz) at the affected M1 and rTMS (1 Hz) at the

unaffected M1 could reduce the GABA content in M1 of ischemic

stroke patients, which was associated with the improvement of motor

function (105). Several studies have shown that decreased GABAergic

neurotransmission in the CNS might be a main cause of chronic

neuropathic pain, such as CPSP (118). Decrease of inhibitory

GABAergic tone was found at the level of dorsal spinal cord,

somatosensory cortex, and thalamus sensory nuclei, which led to

neuronal hyperactivity in the sensorimotor cortex (119). Besides, the

neuronal hyperactivity related to deafferentation pain was caused by

abnormal recruitment of N-methyl-D-aspartate (NMDA) receptors

(120). Lefaucheur et al. found that HF-rTMS (10 Hz) on CPSP

patients could significantly increase intracortical inhibition (ICI)

which could reflect GABAergic neurotransmission function (113).

Overall, the CPSP was associated with the imbalance between

GABAergic and glutamatergic transmission in the CNS, which

could be restored through rTMS-mediated GABAergic

neurotransmission regulation.
Frontiers in Immunology 06
Cholinergic neurons can synthesize and release the Ach when

they are excited. Ach is an excitatory neurotransmitter and plays a

key role in learning and memory processes (121). Li group treated

the vascular dementia (VD) rats with rTMS (0.5 Hz, 1.33T) for 30

days and found that the rTMS treatment could remarkably enhance

the acetylcholinesterase (AChE) and choline acetyltransferase

(ChAT) activities, and increase the density of cholinergic neurons

(122). The learning and memory deficits of VD rats was also

significantly improved, the underlying mechanism of which might

be associated with recovery of cholinergic nervous system activity in

CA1 region of the hippocampus. Furthermore, brain-derived

neurotrophic factor (BDNF), a neurotransmitter modulator, can

promote the migration and proliferation of neural stem cells, and

further enhance stroke recovery. Luo et al. revealed that HF-rTMS

could activate BDNF/tropomyosin-related kinase B (TrkB)

signaling pathway and antiapoptotic pathways to increase number

of BrdU+ NESTIN+ cells, decrease Bcl-2 expression and elevate Bax

expression, leading to the improvement of the cognitive impairment

of rats with ischemic stroke (123). In addition, Cambiaghi et al.

found that HF-rTMS was able to enhance dendritic complexity and

spine number of neurons through BDNF and calcium-dependent

signaling pathways (124).
FIGURE 1

Scheme of neuroinflammation mechanisms of rTMS-mediated stroke rehabilitation.
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3.2 Immune cells

Previous researches on the mechanism of rTMS were mainly

concentrated on the effects on neurons. The HF-rTMS enhances

neuronal excitatory at the affected hemisphere, while LF-rTMS

decreases neuronal excitatory at the unaffected hemisphere (125).

Nevertheless, little is known about the influence of rTMS on the

other neural cells, such as astrocyte and microglia.

Astrocytes are the most abundant glial cells and play an

important role in the maintenance of the blood-brain barrier

(BBB) and CNS homeostasis (126). The astrocytes are activated

after stroke and further polarized into two distinct phenotypes:

neurotoxic (pro-inflammatory) type A1 and neuroprotective (anti-

inflammatory) type A2. A1 astrocytes can secrete inflammatory

cytokines and neurotoxic mediators to induce neuroinflammation

and further aggravate brain damage, while A2 astrocytes mainly

secrete anti-inflammatory cytokines and nerve growth factor to

promote neuroregeneration and exert neuroprotective functions. In

addition, astrocytes have neurotransmitter receptors and ion

channels, which play a crucial role in synaptic neurotransmission

(127). Therefore, rTMS might be able to alter cell membrane

potential and further regulate the function of astrocytes (128, 129).

rTMS with different frequencies has been shown to regulate the

expression of GFAP (a cytoskeletal marker of astrocytic reactivity)

and the density of GFAP-positive astrocytes in various in vivo brain

injury or disease model, such as cortical stab injury, Parkinson’s

disease, etc (130–132). Moreover, Clarke et al. found that rTMS (1

or 10 Hz) over the culture mouse cortical astrocytes could alter the

expression of genes and proteins related to calcium signaling and

inflammation, such as intercellular adhesion molecule 1 (Icam1),

stromal interaction molecule 1 (Stim1), and ORAI calcium release-

activated calcium modulator 3 (Orai3), etc (133).

Astrocyte modulation has also been indicated as one

mechanism for rTMS-mediated stroke rehabilitation. Hong et al.

evaluated the effects of rTMS on astrocyte polarization in in vitro

and in vivo cerebral ischemic/reperfusion injury model (134). They

revealed that the rTMS (10 Hz) could decrease the concentration of

pro-inflammatory cytokine TNF-a, increase anti-inflammatory

cytokine IL-10, and regulate astrocytic polarization (from A1 to

A2 astrocytes) after ischemic/reperfusion injury. Besides, the

astrocyte culture medium collected from rTMS-treated astrocytes

could remarkably reduce ischemic/reperfusion injury-induced

neuronal apoptosis. In addition, the rTMS could suppress the

excessive astrocyte-vessel interactions and promote the

vasculature-associated A1 to A2 astrocyte switch in the peri-

infarct cortex after stroke, which was beneficial to vessel and BBB

protection post-stroke (103). Further mechanistic studies displayed

that rTMS significantly upregulated the expression level of platelet-

derived grow factor receptor beta (PDGFRb) which mediated the

interactions of A2 astrocytes and their adjacent vessels, and that the

angiogenesis-associated factors (TGFb and VEGF) in A2 astrocytes

were remarkably increased. Overall, these results suggested that

rTMS could reduce neuroinflammation, inhibit neuronal apoptosis,
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and protect the vasculature by regulating astrocyte polarization,

thus promoting stroke rehabilitation.

Microglia are the resident immune cells of the CNS, which are

distributed in the gray matter and white matter, accounting for

~10% of the number of cells in the brain (135). Microglia maintain a

resting state with certain migration and swallowing ability when not

activated. They are able to monitor the CNS microenvironment and

remove the necrotic neurons timely, thereby maintaining the CNS

homeostasis (136). Once activated, microglia can polarize into two

distinct phenotypes: the pro-inflammatory M1 and the anti-

inflammatory M2 (137). In addition, microglia are early

participants in post-stroke neuroinflammation and play an

important role in the post-stroke recovery stage (138, 139).

Shifting the balance of microglial polarization towards the anti-

inflammatory M2 phenotype has been shown to exhibit

neuroprotective effects in cerebral stroke (140–142). However, the

influence of rTMS on the microglia has been largely unexplored.

The number or state of microglia in motor cortex of healthy rats was

not changed following application of chronic LF-rTMS (1 Hz)

(143). Nevertheless, application of HF-rTMS on the Mongolian

gerbils with cerebral ischemia has been shown to significantly

increase the number of activated microglia and the expression of

Iba1 in the hippocampus (144). Zong et al. applied HF-rTMS (50

Hz) over the affected hemisphere of rat photothrombotic (PT)

stroke model, which significantly improved behavioral functions

and infarct volume post-stroke (104). Microglial over-activation has

been shown to affect neuroinflammation, leading to neuronal death.

The immunofluorescence resul ts disp layed that Iba1

immunoactivity was obviously increased in the peri-infarct region

of PT stroke rat, which could be remarkably rescued by rTMS

treatment. Besides, they found that rTMS could effectively induce a

M1 to M2 switch in microglial phenotypes, as evidenced by

downregulation and upregulation of proteins related to M1

activation (CD74, CD32, and CD86) and the M2 phenotype

(CD206, IL-10, and IL-4), respectively. Furthermore, the reactive

microglia can release signals to promote astrocytic activation and

polarization (145). The A1 to A2 switch in astrocytic phenotypes

was also found in rTMS-treated PT stroke rat (103). Luo et al.

revealed that rTMS could induce the anti-inflammatory M2

phenotype of microglia and facilitate the generation of anti-

inflammatory cytokines (146). Moreover, they found that neural

stem cells cultured with medium from rTMS-treated microglia

presented decreased apoptosis and increased neuronal

differentiation. In addition, Chen et al. revealed that HF-rTMS

could regulate the Janus kinase 2 (JAK2)-signal transducer and

transcription 3 (STAT3) pathways, and further inhibit microglial

activation as well as promote the switch of microglia toward the

neuroprotective M2 phenotype, resulting in alleviation of ischemic

white matter damage and improvement of cognitive impairment

(147). Taken together, rTMS may regulate the microglial

polar izat ion and further modulate the inflammatory

microenvironment, thereby promoting neurogenesis and

improving stroke rehabilitation.
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3.3 Inflammatory cytokines

Previous studies have shown that the expression levels of

inflammatory cytokine, including interleukin (IL)-1b, IL-2, IL-6,
IL-10, IL-17a, interferon (IFN)-g, transforming growth factor beta

(TGF-b), and tumor necrosis factor alpha (TNF-a), in brain tissues

and peripheral blood were significantly changed after stroke (148,

149). Among these cytokines, IL-1b, IL-2, IL-6, TNF-a, and IFN-g
are pro-inflammatory, while the IL-10 and TGF-b belong to anti-

inflammatory cytokines. IL-10 were reported to be secreted by several

cell types after stroke, including M2 microglia, macrophages,

regulatory T cells, and B lymphocytes. TGF-b, a factor secreted by

A2 astrocytes which regulates cell growth and differentiation, can

inhibit the activation of inflammatory/immune cells and the release

of various inflammatory mediators, thereby promoting tissue repair

after injury (150). Inflammatory cells, including microglia, astrocytes,

and infiltrating peripheral immune cells (neutrophils, monocytes and

macrophages, etc.), in the ischemic lesions after acute ischemic stroke

can release a large number of pro-inflammatory cytokines, including

TNF-a, IL-1b, and IL-6, etc, which can cause neuronal damage and

upregulate the levels of selectin and ICAM-1 to increase the

permeability of cerebral vascular endothelium (151, 152).

Moreover, these pro-inflammatory cytokines can also recruit

peripheral neutrophils, macrophages, and lymphocytes, which

further amplifies the neuroinflammation, eventually causing a

vicious cycle of pro-inflammatory. Additionally, the occurrence of

PSD is closely related to the imbalance of serum levels of

inflammatory cytokines, such as IL-2, IL-10, IL-17a and IFN-g
(153). Among various mechanisms of rTMS-mediated stroke

rehabilitation, regulation of inflammatory cytokine may be one of

the important mechanisms. Cha et al. revealed that HF-rTMS on the

affected dorsolateral prefrontal cortex (DLPFC) of stroke patients

could significantly reduce the mRNA level of pro-inflammatory

cytokines (IL-1b, IL-6, TGF-b, TNF-a) in blood samples,

indicating the anti-inflammatory effect of rTMS (154). Besides, the

reduction of IL-6 was strongly correlated with increase of auditory

verbal learning test (AVLT, r=-0.928) and complex figure copy test

(CFT, r=-0.886). Another study on the ischemic stroke also found

that the rTMS were able to decrease the serum levels of IL-6, IL-8, and

TNF-a (155). Furthermore, the rTMS treatment could suppress the

M1 microglia polarization via let-7b-5p/HMGA2/NF-kB pathway,

and further decrease the TNF-a level but elevate the IL-10

concentration, promoting the anti-inflammatory effect (155). iTBS

treatment could remarkably reduce the high concentrations of IL-1b,
IFN-g, TNF-a, and IL-17A as well as increase the IL-10 level in brain

tissues of cerebral ischemic mice (156). In addition, the pro-

inflammatory cytokines could affect the synaptic plasticity, which

might further influence cognitive function and behavior (157–159).

For example, the TNF-a, produced by microglia and peripheral

immune cells, could affect long-term potentiation (LTP) of

excitatory neurotransmission at higher concentration (160, 161).

Therefore, the regulation of cytokine concentrations in serum and

brain tissues is an important mechanism of rTMS-mediated

rehabilitation, which could also be used as indicators to evaluate

the effect of stroke rehabilitation.
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4 The roles of imaging techniques in
rTMS-mediated stroke rehabilitation

Imaging techniques play an important role in understanding

the mechanisms underlying the effects of rTMS and in guiding the

optimization of rTMS protocols. First, these imaging techniques

could be applied to identify the optimal target. Specifically, imaging

techniques such as fMRI and TMS mapping can help identify the

regions of the brain that are affected by the stroke and the regions

that need to be targeted by rTMS for optimal recovery (162).

Secondly, the imaging techniques can be used to assess the

treatment effects of rTMS on brain function and connectivity of

stroke patients. For example, fMRI can be utilized to measure

changes in brain activity, while diffusion tensor imaging (DTI)

can be used to detect changes in white matter integrity (163, 164).Li

et al. utilized resting-state fMRI (rs-fMRI) to explore the effect and

mechanism of rTMS on PSCI patients (95). They revealed that the

rTMS (5 Hz, 100% RMT) could significantly improve cognitive

functions measured by Minimum Mental State Examination

(MMSE) and Montreal cognitive assessment (MoCA). They also

found that FC and neural activity in several cognition-related brain

regions were significantly regulated by rTMS therapy. These

imaging results indicated that the rTMS showed effective impact

on the PSCI patients to improve their cognitive function. Besides,

the imaging techniques can be applied to personalize rTMS

treatment for individual patients. For instance, fMRI can be used

to identify regions of the brain that are still functionally active after

stroke, and then rTMS can be targeted to these regions to enhance

recovery (165). In addition, the imaging techniques can be also

utilized to predict the outcomes of rTMS-mediated stroke

rehabilitation. The diffusion MRI can be used to predict motor

function recovery after stroke, which could also guide rTMS

treatment (166). Overall, imaging techniques are an important

tool in rTMS-mediated stroke rehabilitation, providing valuable

information on the underlying mechanisms of stroke recovery and

helping to optimize rTMS protocols for individual patients.
5 Prospects and challenges

rTMS is a novel technique that can regulate neurotransmitters,

activation/polarization of immune cells (astrocytes and microglia),

and inflammatory cytokines in the brain, thereby affecting brain

function and improving post-stroke dysfunctions. Moreover, rTMS

combined with other traditional rehabilitation programs can

present a synergistic effect and further enhance the rehabilitation

effect of stroke patients.

According to previous safety evaluation, although the incidence

rate is low, rTMS could induce several side effects, including

epilepsy, syncope, short-term hearing loss, headache pain,

dizziness, toothache, and paresthesia, etc (167–172). Thus, the

rTMS should be applied within the range of treatment parameters

according to the guideline. There are many stimulation parameters

of rTMS, including coil type, coil position, stimulation frequency,
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stimulation time, stimulation interval, and total stimulation volume,

etc, which might be the main reason for the heterogeneity of clinical

treatment effects and basic research results. Due to the obvious

differences in different rTMS stimulations and clinical outcome

evaluation indicators, it has brought great difficulties to the study of

optimal stimulation parameters. In some clinical studies, patients in

control group did not receive reliable sham stimulation, therefore, it

is difficult to determine the relative efficacy of placebo in rTMS.

Generally, the sample size of current clinical studies of rTMS-

mediated stroke rehabilitation is still insufficient. Therefore,

randomized, double-blind, large sample size, and placebo-

controlled clinical studies should be performed in the future to

further clarify the clinical value of TMS. In addition, LF-rTMS and

HF-rTMS are more clinically applied at present. TBS has fewer

clinical applications, but it requires lower stimulation intensity,

fewer pulses, and produces longer-lasting cortical excitability

compared to the formers. Thus, TBS might be a promising

approach for stroke rehabilitation, which needs to further

explored in the future study.

Recent study has shown that LF-rTMS on the frontal cortex

could reduce the local inhibition and disrupt feedforward and

feedback connections, whereas, the LF-rTMS on the occipital

cortex could enhance the local inhibition and increase forward

signaling. A more thorough understanding of the mechanism

underlying the rTMS-mediated CNS regulation allow us to better

apply rTMS to clinical treatment. However, the current mechanism

research is still in the preliminary stage, thus, future studies need to
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further explore the regulatory mechanism of rTMS on the CNS,

especially the regulation of immune inflammation.
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