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Background: Colorectal cancer (CRC) is linked to distinct gut microbiome 
patterns. The efficacy of gut bacteria as diagnostic biomarkers for CRC has 
been confirmed. Despite the potential to influence microbiome physiology and 
evolution, the set of plasmids in the gut microbiome remains understudied.

Methods: We investigated the essential features of gut plasmid using metagenomic 
data of 1,242 samples from eight distinct geographic cohorts. We identified 198 
plasmid-related sequences that differed in abundance between CRC patients and 
controls and screened 21 markers for the CRC diagnosis model. We utilize these 
plasmid markers combined with bacteria to construct a random forest classifier 
model to diagnose CRC.

Results: The plasmid markers were able to distinguish between the CRC patients and 
controls [mean area under the receiver operating characteristic curve (AUC = 0.70)] 
and maintained accuracy in two independent cohorts. In comparison to the bacteria-
only model, the performance of the composite panel created by combining plasmid 
and bacteria features was significantly improved in all training cohorts (mean 
AUCcomposite = 0.804 and mean AUCbacteria = 0.787) and maintained high accuracy in 
all independent cohorts (mean AUCcomposite = 0.839 and mean AUCbacteria = 0.821). In 
comparison to controls, we found that the bacteria-plasmid correlation strength was 
weaker in CRC patients. Additionally, the KEGG orthology (KO) genes in plasmids that 
are independent of bacteria or plasmids significantly correlated with CRC.

Conclusion: We  identified plasmid features associated with CRC and showed 
how plasmid and bacterial markers could be combined to further enhance CRC 
diagnosis accuracy.
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1. Introduction

Colorectal cancer (CRC) is the most common clinical malignant tumor of the digestive 
system and poses a huge threat to human health and society (Bray et al., 2018). Most CRC 
patients are diagnosed at an advanced stage and lose the opportunity for radical surgery (Di 
Nicolantonio et al., 2021). Prompt diagnosis of CRC is essential for effective treatment and 
favorable prognosis (Tomizawa et al., 2017). Colonoscopy and biopsy are currently considered 
the gold standard for the screening of CRC (Rex et al., 2006). Fecal occult blood test (FOBT) is 
non-invasive and the most commonly used method for colorectal cancer screening currently 
(Faivre et al., 2004; Lee et al., 2020). The specificity of FOBT for CRC detection was 92.4%, but 
the sensitivity was only 30.8% (Allison et al., 1996). Due to its dependence on tumor tissue 
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bleeding, FOBT has limited sensitivity and accuracy for CRC 
(Hardcastle et al., 1996). Therefore, there is an urgent need for reliable 
and efficient biomarkers for the diagnosis of colorectal cancer.

With the development of metagenomic technology, an increasing 
number of recent studies have highlighted the vital role of the gut 
microbiome in regulating human health and disease (Ghaisas et al., 
2016; Schmidt et al., 2018; Gurung et al., 2020). The gut microbiome 
may have an impact on the onset and development of CRC (Zamani 
et al., 2019), while some intestinal bacteria may slow the disease’s 
progression (Chan et  al., 2019). The efficacy of gut bacteria as 
diagnostic biomarkers for CRC has been confirmed (Dai et al., 2018; 
Liu et al., 2022).

Plasmids play important roles in the evolutionary events of 
microbial communities, and many plasmid genes are involved in 
bacterial survival and adaptation to environmental changes (Fondi 
et al., 2010; Dib et al., 2015). Many bacteria can exchange genetic 
material through horizontal gene transfer, which is facilitated by 
plasmids and transposable elements carried by plasmids (Smalla and 
Sobecky, 2002). It indicates that plasmids should not be disregarded 
in research. Plasmidomics refers to the whole plasmid DNA of the 
samples (Brown Kav et  al., 2012; Bleicher et  al., 2013). With the 
advancement of next-generation sequencing technology and the 
development of bioinformatics tools, numerous methods were 
developed for identifying plasmid sequences in metagenomic data, 
such as Plasflow (Krawczyk et al., 2018), Plasmidseeker (Roosaare 
et al., 2018), PlasmidFinder (Carattoli et al., 2014), SCAPP (Pellow 
et  al., 2021), and cBar (Zhou and Xu, 2010). For short-reads 
metagenomic sequencing, PlasFlow software based on deep neural 
networks is the way of maximizing plasmid coverage and minimizing 
false positives currently (Hilpert et al., 2021). With the help of these 
techniques, we can examine how intestinal plasmids and plasmid 
genes change during diseases.

Many human diseases are closely associated with plasmids, 
particularly those involving antibiotic resistance genes and virulence 
genes (Cheung et  al., 2004; Dolejska and Papagiannitsis, 2018). 
Enterotoxigenic Escherichia coli (ETEC) causes numerous cases of 
diarrheal disease worldwide, which is linked to the virulence plasmid 
pEntYN10 within ETEC (Ban et al., 2015). Emerging research points to 
the significance of other microbial kingdoms in gastrointestinal disease 
in addition to gut bacteria (Liu et al., 2022), but no studies on intestinal 
plasmids in CRC patients have been explored. The primary goal of this 
study is to examine the key characteristics of the plasmids in the gut 
microbiomes of CRC patients from eight cohorts worldwide. We seek 
to expand existing CRC diagnosis biomarkers and develop a more 
precise diagnosis model using newly discovered plasmid biomarkers.

2. Methods

2.1. Public data collection

We used the terms “Colorectal cancer” and “Human gut 
metagenomics” to search the NCBI database,1 and we found a total 
of nine CRC gut metagenomic cohorts. We  excluded the Italian 

1 https://www.ncbi.nlm.nih.gov/

cohort (PRJNA447983) since we were unable to determine the case–
control status that matched the sequencing data in that dataset. 
We selected an Asian cohort from China and a European cohort from 
Germany as independent validation datasets, and the other six 
cohorts as training datasets, to ensure the reliability and 
generalizability of the prediction model. We  downloaded fecal 
metagenomic sequencing data of the eight cohorts in NCBI on CRC 
patients and healthy controls (Supplementary Table 1). For discovery 
cohorts (n = 1,123), Accession of China Cohort1 (CHN1) is 
PRJNA763023 (Yang et al., 2021), CRC, n = 100; and Control, n = 100. 
Accession of China Cohort2 (CHN2) is PRJNA731589 (Liu et al., 
2022), CRC, n = 80; and Control, n = 86. Accession of Japan (JPN) is 
PRJDB4176 (Yachida et al., 2019), CRC, n = 218; and Control, n = 212. 
Accession of Austria (AUS) is PRJEB7774 (Feng et al., 2015), CRC, 
n = 46; and Control, n = 63. Accession of France (FRA) is PRJEB6070 
(Zeller et al., 2014), CRC, n = 53; and Control, n = 61. Accession of the 
United States of America (USA) is PRJEB12449 (Vogtmann et al., 
2016), CRC, n = 52; and Control, n = 52. For validation cohorts 
(n = 119), Accession of China Cohort3 (CHN3) is PRJNA514108 
(Gao et al., 2022), CRC, n = 32; and Control, n = 44. Accession of 
Germany (GER) is PRJEB6070 (Zeller et al., 2014), CRC, n = 38; and 
Control, n = 5. The cohorts’ characteristics are listed in 
Supplementary Table 1.

2.2. Sequencing data processing

KneadData2 v0.7.4 was used to obtain high-quality microbial 
reads. The metagenomic shotgun sequencing data were trimmed 
using Trimmomatic (Bolger et al., 2014; v0.39) with the following 
parameters: SLIDINGWINDOW:4:20 MINLEN:50. Then, human 
reads were mapped to hg37 human reference genome and discarded 
by bowtie2 (v.2.4.3; −-very-sensitive --dovetail; Langmead and 
Salzberg, 2012). High-quality reads were used to conduct species-level 
community profiling with relative abundance by MetaPhlAn2 (v2.8.1) 
using the setting “-a” to determine all taxonomic level (Truong et al., 
2015). Quality-controlled reads were assembled into contigs with 
Megahit (v.1.2.9) using the default parameters: “--min-contig-len 200, 
−-disconnect-ratio 0.1” (Li et al., 2015). PlasFlow was run with a 
minimum posterior probability of 0.7 to filter plasmid contigs longer 
than 1,000 bp (Hilpert et al., 2021). We compared the plasmid contigs 
to the NCBI plasmid reference sequence database (accessed on 2021-
06-28) by using BLAST (Altschul et al., 1990; v 2.11) with an E-value 
of 10−5 and coverage of 50% as the cut-off. The plasmid genes were 
predicted by Prodigal (Hyatt et al., 2010) via the metagenome mode. 
CD-HIT (Fu et al., 2012; v4.8.1) was used to create a non-redundant 
plasmid gene catalog, with an identity cut-off of 0.95 and a coverage 
cut-off of 90%. The plasmid gene catalog was annotated with EggNOG 
mapper (Cantalapiedra et al., 2021; v.2.1.5) based on EggNOG DB 
(Huerta-Cepas et al., 2019; v5.02). The carbohydrate-active enzymes 
(CAZy) genes were identified using run_dbcan (v2.0.11; Zhang et al., 
2018). Moreover, the relative abundance of plasmid and plasmid genes 
was determined using salmon (Patro et al., 2017; v.1.5.2) with settings 
“--meta.”

2 http://huttenhower.sph.harvard.edu/kneaddata
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2.3. Annotation of plasmid

Host taxa information for plasmids was obtained from the 
NCBI plasmid reference. Antibiotic resistance genes were 
annotated through the ResFinder database (Bortolaia et al., 2020; 
https://cge.cbs.dtu.dk/services/ResFinder/) by BLAST (E value, 
<10−5; identity, >80%). The oriT regions and relaxase genes were 
identified based on the oriTDB database (Li et al., 2018; https://
bioinfo-mml.sjtu.edu.cn/oriTDB/) by BLAST (E value, <10−5; 
identity, >80%). It was determined that plasmids containing both 
the oriT region and relaxase gene are conjugative plasmids (Smillie 
et al., 2010).

2.4. Microbial ecological analysis

For each sample, Shannon metrics of plasmids were used to 
calculate alpha diversity. The Bray-Curtis distance was used to 
calculate the beta diversity. Using the “Vegan” R package (v 2.6–2) in 
R software (Jari Oksanen et al., 2022), Shannon’s index for each sample 
and the Bray-Curtis distance between samples was both evaluated. 
Using principal coordinates analysis (PCoA), the Bray–Curtis 
dissimilarity index was used to visualize the microbial community 
structures. Permutational multivariate ANOVA (PERMANOVA) was 
performed to reveal the plasmid community differences between 
groups or cohorts with 999 permutations (Anderson, 2001).

2.5. Feature selection

Plasmid community batch effects among cohorts were corrected 
using the “adjust_batch” function of the MMUPHin R package (v 
2.6-2; Ma et al., 2022). We identified differential plasmids as candidate 
features for the CRC diagnosis models with the “lm_meta” function 
of MMUPHin. Subsequently, feature selection was performed using 
the package Boruta (Miron and Kursa, 2010; v7.0.0) with default 
settings (pValue = 0.01, mcAdj = T, maxRuns = 100). Differential 
EggNOG gene KOs, CAZY, and bacteria species were selected with 
the same pipeline.

2.6. Prediction model construction and 
validation

Random forest prediction model was constructed using “random 
forest” R package with 500 trees (Breiman, 2001). Based on differential 
plasmids and bacteria signatures, the random forest prediction model 
for CRC was trained with 10-fold cross-validation on the discovery 
cohorts. Model evaluation was performed with cohort-to-cohort 
transfer validation, leave-one-cohort-out (LOCO) evaluation, and 
independent validation. In cohort-to-cohort validation, the models 
were trained on a single cohort and their performances were evaluated 
in the other cohorts. In LOCO evaluation, the models were trained on 
five of the six cohorts in the discovery dataset and their performances 
were evaluated on the sixth cohort. Furthermore, an independent 
validation analysis was conducted in order to assess the reliability of 
microbial features as CRC diagnostic markers, and two additional 
datasets from CHN3 and GER were used in the process.

2.7. Associations between species and 
function

Associations between bacteria, plasmids, and their KO genes were 
performed by Spearman correlation using the “corAndPvalue” 
function of the “WGCNA” R package (Langfelder and Horvath, 2008).

2.8. Statistical analysis

All statistical analyses were conducted by R software (v 4.1.2, the 
R Project for Statistical Computing). In order to compare the two 
groups, Wilcoxon rank-sum test was used. Correlations were 
calculated using Spearman’s rank correlation. The Benjamini-
Hochberg method was used to adjust p values for multiple testing to 
account for the false discovery rate (FDR). p value <0.05 is considered 
statistically significant.

3. Results

3.1. Characterization of CRC cohorts

We gathered metagenomic data from 1,242 samples across eight 
publicly available CRC cohorts worldwide (Supplementary Table 2). 
We included six of these cohorts as discovery cohorts to identify gut 
plasmids as biomarkers for CRC diagnosis, consisting of 549 CRC 
patients and 574 tumor-free controls from five countries (China, 
CHN1 and CHN2; Japan, JPN; Austria, AUS; France, FRA; and the 
United States, USA). As a result, the independent validation dataset, 
which comprised 70 CRC patients and 49 tumor-free controls from 
two countries, was created (China, CHN3 and Germany, GER). The 
bioinformatics analysis of all raw shotgun sequencing data was 
conducted consistently to reduce technical bias.

3.2. Alteration of the intestinal plasmids in 
CRC patients

In the discovery cohorts, we identified a total of 12,515 plasmids 
using metagenomic approaches. Only 628 plasmids were present in all 
six cohorts, with more cohort-specific plasmids being found in CHN1, 
CHN2, and JPN cohorts (Figure 1A). We found that Proteobacteria 
and Firmicutes phylas made up the majority of the host taxa for each 
cohort of plasmids, and that there were no differences in these 
proportions between CRC patients and healthy controls. However, 
compared to other cohorts, a greater percentage of plasmids in the US 
cohort had Bacteroidetes phyla as their host (Figure 1B). We found no 
discernible differences in the proportion of plasmids between CRC 
patients and controls, although a smaller portion of the identified 
plasmids were conjugative or carried antibiotic-resistance genes 
(Supplementary Figure 1).

We then assessed differences in intestinal plasmid alpha diversity 
between CRC patients and controls. According to the Shannon index 
in the discovery cohorts, we  observed increased plasmid alpha 
diversity in CRC patients (p = 0.015; Figure  1C). Meanwhile, 
geographic differences are visible in intestinal plasmid alpha diversity 
(Supplementary Figure 2). The difference in intestinal plasmid alpha 
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diversity between CRC patients and healthy controls was only found 
in the CHN1 cohort (p = 0.03). In other cohorts, the intestinal plasmid 
alpha diversity between CRC patients and healthy controls was not 
significantly different (Supplementary Figure 2). Based on the analysis 
of beta diversity, the beta diversity of intestinal plasmids was not 
associated with CRC (p = 0.129, Figure 1D), nor was there a significant 
difference between cohorts (p = 0.697; Figure 1D).

3.3. Plasmid biomarkers for CRC diagnosis

We conducted a meta-analysis of six datasets from the discovery 
cohort in order to find plasmids that could be used as diagnostic 
markers for CRC. After that, we discovered 198 plasmids that had 
different abundances in patients with CRC and controls 
(Supplementary Table 3), 108 of which were highly abundant in the 
guts of CRC patients (p < 0.05), and 90 of which were decreased in the 
guts of CRC patients (p < 0.05). To screen out plasmid signatures for 
diagnosing CRC, we performed further signature selection on these 
198 plasmids using Boruta. We screened 21 plasmids, of which 13 
(including NZ_CP036554.1) were more prevalent in CRC patients and 

eight (including NZ_AP023416.1) were less prevalent in CRC patients 
(Figure 2A). We first trained the random forest classifier with the 21 
plasmid features in each dataset used 20 times repeated 10-fold cross-
validation to assess the diagnostic accuracy of the plasmid features for 
diagnosing CRC. Depending on the region, the plasmid random forest 
classifier performed differently. The plasmid random forest classifier 
demonstrated strong predictive power in the CHN1, CHN2, and FRA 
cohorts, with mean AUC ranging from 0.75 to 0.80 across cohorts that 
were 20 times repeated using 10-fold cross-validation. In contrast, the 
plasmid random forest classifier performs worse in JPN (AUC, 0.58), 
AUS (AUC, 0.67), and USA (AUC, 0.62) datasets (Figure 2B).

We conducted cohort-to-cohort validation and leave-one-
cohort-out (LOCO) validation on the training cohorts to evaluate the 
geographical robustness of plasmid signatures as a universal 
biomarker. In cohort-to-cohort validation, the mean AUC of the 
plasmid random forest model ranged from 0.51 to 0.75 (Figure 2C). 
The LOCO performance of the plasmid model ranged from 0.59 to 
0.71 (Figure 2D). To further test predictive performance, the plasmid 
classifiers trained within study cross-validation were applied to two 
independent validation sets. In the CHN3 and GER cohorts, the 
model’s average AUC was 0.79 and 0.66, respectively (Figure 2E).

FIGURE 1

The gut plasmid comparison of patients with colorectal cancer (CRC) and controls. (A) Upset plot for host taxa of plasmids per cohort. There are a total 
of 12,515 plasmids observed across six discovery cohorts. (B) Stacked column chart showing the proportion of host taxa of plasmids per cohort. 
(C) Alpha diversity measured by the Shannon index of the gut plasmid of patients with CRC (red, n = 549) and control individuals (blue, n = 574; Wilcoxon 
rank-sum test, p = 0.015). Boxplots indicate medians (horizontal line in the box), interquartile (boxes), and ranges (whiskers). (D) Principal coordinate 
analysis (PCoA) of samples from all six cohorts based on Bray–Curtis distance, which shows that microbial composition was not different between 
groups (p = 0.697) and cohorts (p = 0.129). p values of beta diversity based on Bray–Curtis distance corresponds to Adonis PERMANOVA tests by 999 
permutations (two-sided test). The cohort is shape-coded while the group is color-coded.
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3.4. Improved predictability based on a 
combination of plasmid and bacterial 
features

Using the same pipeline as plasmids, 91 differential bacteria species 
were identified (p < 0.05), and 39 of them were extracted as biomarkers 
for the diagnosis of CRC (Supplementary Figure  3A; 
Supplementary Table 4). Previous studies have demonstrated a strong 
link between gut bacteria and the occurrence and progression of CRC 
(Sang et al., 2020; Yinhang et al., 2022). Bacterial classifiers are effective 

at detecting CRC (Wirbel et al., 2019). The bacterial random forest 
classifier performed admirably in diagnosing CRC in our study. The 
bacteria random forest classifier showed strong predictive power within 
cohorts, with a mean AUC ranging from 0.81 to 0.93 except for the JPN 
(0.68) and USA (0.63) cohorts due to the distinct food culture of 
Japanese and the prolonged cryopreservation of fecal specimens in USA 
cohort, respectively (Supplementary Figure 3B). The cohort-to-cohort 
validation (Supplementary Figure  3C) and LOCO validation had 
similar outcomes (Supplementary Figure  3D). In independent 
validation, the average AUC of the model obtained in the CHN3 and 

FIGURE 2

Plasmid metagenomic classification models generalize across different cohorts. (A) Bar plot of the 21 plasmid features’ effect sizes for the prediction of 
CRC diagnosis, as determined by MMUPHin and Boruta. The significance of the difference between patients with CRC and controls was determined via 
Wilcoxon rank-sum test: *p < 0.05. (B) CRC classification performances (AUC) calculated through the cohort-to-cohort model transfer for the random 
forest classifier trained on relative abundance profiles of plasmids. The values refer to an average value of 20 times repeated 10-fold cross-validation. 
(C) CRC classification performances (AUC) calculated through 20 times repeated 10-fold cross-validation within each study for the random forest 
classifier trained on relative abundance profiles of plasmids. (D) CRC classification performances (AUC) calculated through leave-one-cohort-out 
validation (LOCO, Model was trained using five of six cohorts and validated by the other one) for random forest classifier trained on relative abundance 
profiles of plasmids. (E) Validation of the plasmid random forest classifier in two independent cohorts (CHN3 and GER). The CRC classification 
performances (AUC) of the plasmid random forest classifier trained with all the training cohorts were obtained in the CHN3 and GER cohorts.
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FIGURE 3

Bacterial metagenomic classification models generalize across different cohorts. (A) Bar plot of the 50 plasmid and bacterial features’ importance for 
the prediction of CRC diagnosis, as determined by MMUPHin and Boruta. The significance of the difference between patients with CRC and controls 
was determined via Wilcoxon rank-sum test: *p < 0.05. (B) CRC classification performances (AUC) calculated through the cohort-to-cohort model 
transfer for the random forest classifier trained on relative abundance profiles of plasmid and bacterial species. The values refer to an average value of 
20 times repeated 10-fold cross-validation. (C) CRC classification performances (AUC) calculated through 20 times repeated 10-fold cross-validation 
within each study for the random forest classifier trained on relative abundance profiles of plasmid and bacterial species. (D) CRC classification 
performances (AUC) calculated through leave-one-cohort-out validation (LOCO, Model was trained using two of three cohorts and validated by the 
other one) for random forest classifier trained on relative abundance profiles of plasmid and bacterial species. (E) Validation of the plasmid and 
bacterial random forest classifier in two independent cohorts (CHN3 and GER). The CRC classification performances (AUC) of the plasmid and 
bacterial random forest classifier trained with all the training cohorts were obtained in the CHN3 and GER cohorts.

GER cohorts were 0.84 and 0.86, respectively (Supplementary Figure 3E). 
We investigated whether creating a diagnostic panel with plasmids and 
bacterial species would result in better performance. 13 plasmids and 
37 bacteria made up the panel after feature screening (Figure 3A). 10 of 
the 37 bacteria have also been linked to CRC in previous studies, 
including Parvimonas micra, Peptostreptococcus stomatis, Prevotella 
intermedia, Porphyromonas asaccharolytica, Porphyromonas somerae, 
Porphyromonas uenonis, Gemella morbillorum, Fusobacterium 
nucleatum, Roseburia hominis, and Roseburia intestinalis (Wirbel et al., 

2019; Liu et al., 2022). The 10-fold cross-validation AUC scores for the 
various cohorts were 0.84 for CHN1, 0.94 for CHN2, 0.68 for JPN, 0.86 
for AUS, 0.86 for FRA, and 0.63 for USA (Figure  3B). The model 
showed valuable prediction performance in cohort-to-cohort validation 
(Figure 3C) and LOCO validation (Figure 3D). The average AUC of the 
model obtained in the CHN3 and GER cohorts during independent 
validation was 0.87 and 0.81, respectively (Figure 3E). In all training 
cohorts (Composite model, AUC = 0.804; Bacterial model, AUC = 0.787) 
and all independent cohorts (Composite model, AUC = 0.839; Bacterial 
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model, AUC = 0.821), the prediction performance of the composite 
panel by combining the plasmid and bacterial features was significantly 

better than the bacteria-only model was significantly improved 
(Figure  4). In comparison to the bacteria-only model, the average 
AUROC of the cross-validation models with the combined panel for all 
independent cohorts was 0.88 (Supplementary Figure 4).

3.5. Correlations between gut bacterial 
features and plasmids

We further investigated the correlations between the bacteria and 
plasmids based on the Spearman correlation analysis in the controls 
and patients with CRC, respectively, to gain insights into the bacteria-
plasmid interactions from an ecological perspective. In comparison to 
CRC cases, we found that the bacteria-plasmid correlation strength 
was stronger in controls. NZ_CP041417.1 (Escherichia coli strain 
STEC711 plasmid pSTEC711_1) in the gut of CRC patients served as 
the hub of the correlation network. And the relevant network in the 
control group’s NZ_CP059935.1 (Escherichia coli strain 28.1 plasmid 
p4) was at its hub. Escherichia coli and plasmids were strongly 
associated in both CRC patients and controls. In addition, we found 
other bacteria that were closely related to the plasmids only in 
controls, particularly Enterobacter cloacae and Atopobium parvulum 
(Figure 5).

3.6. Plasmid functional alterations in CRC

We looked at the plasmid functional alterations at the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) orthology (KO) genes 
and carbohydrate-active enzymes (CAZy) genes in order to 
investigate the plasmid metagenomic functions of pathogenesis in 
CRC. From 9,514 plasmids KO genes, we  first identified 613 
differential KO genes (p < 0.05), including 333 KO genes with 
increased abundance and 280 KO genes with decreased abundance 
in CRC patients compared to controls (Supplementary Table  5). 

FIGURE 5

Coabundance correlations between plasmids and bacterial species in patients with CRC and controls. Coabundance networks involving plasmids and 
bacterial species in the CRC and control samples, with absolute correlations above 0.7 and with a significance cut-off of FDR < 0.05. The colors of 
nodes indicate plasmids (green) and bacterial species (deep pink).

FIGURE 4

Average ROC curve obtained through 20 times repeated 10-fold 
cross-validation. (A) Average ROC curve obtained through 20 times 
repeated 10-fold cross-validation on all the training cohorts. 
(B) Average ROC curve obtained through independent validation on 
all the independent cohorts using the random forest classifier trained 
with 20 times repeated 10-fold cross-validation of all the training 
cohorts. AUC data are shown as (average of AUC) ± SD.
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FIGURE 6

Plasmid functional classification models generalize across different cohorts. (A) Bar plot of the 34 plasmid gene KO features’ importance for the 
prediction of CRC diagnosis, as determined by MMUPHin and Boruta. The significance of the difference between patients with CRC and controls was 
determined via Wilcoxon rank-sum test: *p < 0.05. (B) CRC classification performances (AUC) calculated through the cohort-to-cohort model transfer 
for the random forest classifier trained on relative abundance profiles of plasmid KO genes. The values refer to an average value of 20 times repeated 
10-fold cross-validation. (C) CRC classification performances (AUC) calculated through 20 times repeated 10-fold cross-validation within each study 
for the random forest classifier trained on relative abundance profiles of plasmid KO genes. (D) CRC classification performances (AUC) calculated 
through leave-one-cohort-out validation (LOCO, Model was trained using two of three cohorts and validated by the other one) for random forest 
classifier trained on relative abundance profiles of plasmid KO genes. (E) Validation of the plasmid KO gene random forest classifier in two independent 
cohorts (CHN3 and GER). The CRC classification performances (AUC) of the plasmid KO gene random forest classifier were obtained by using 20× 
repeated 10-fold cross-validation in the CHN3 and GER cohort.

Following feature screening, 35 KO genes (including K03561, 
K05595, and K06250), mainly related to metabolism, were found to 
be potential biomarkers for CRC prediction (Figure 6A). The plasmid 
KO random forest classifier showed strong predictive power within 
cohorts 20 times repeated 10-fold cross-validation, with mean AUC 
ranging from 0.63 to 0.84 (Figure 6B). The mean AUC of the plasmid 
KO random forest model ranged from 0.63 to 0.81  in cohort-to-
cohort validation (Figure 6C). The LOCO performance of the plasmid 
KO model ranged from 0.68 and 0.84 (Figure 6D). In independent 

validation sets, the average AUC was 0.72 and 0.69, respectively, in 
the CHN3 and GER cohorts (Figure  6E). We  carried out the 
Spearman correlation analysis of differential plasmid KO genes with 
differential plasmids or bacteria to comprehend the relationship 
between differential KO and differential bacteria or plasmids, 
Differential plasmid KO genes had no significant correlation with 
differential plasmids or bacteria (Supplementary Figure 5). Plasmid 
KO genes might serve as biomarkers for diagnosing CRC, which is 
independent of bacteria and plasmids. From 414 plasmids CAZy 
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genes, we  first identified 43 differential CAZy genes (p < 0.05), 
including 16 CAZy genes with increased abundance and 27 CAZy 
genes with decreased abundance in CRC patients compared to 
controls (Supplementary Figure 6A; Supplementary Table 6). The 
plasmid CAZy random forest classifier showed strong predictive 
power with mean AUC ranging from 0.61 to 0.71 in cross-validation 
(Supplementary Figure 6B). The mean AUC of the plasmid CAZy 
random forest model ranged from 0.63 to 0.61 in cohort-to-cohort 
validation (Supplementary Figure 6C). The plasmid CAZy model’s 
LOCO performance ranged from 0.62 and 0.72 
(Supplementary Figure 6D). In independent validation sets, while the 
average AUC of the model obtained in the GER cohort was 0.51, it 
was 0.76 on average for the CHN3 (Supplementary Figure  6E). 
Plasmid CAZy genes were less effective as diagnostic indicators for 
CRC than plasmid KO genes.

4. Discussion

Plasmid-mediated horizontal gene transfer is regarded as a major 
driver of bacterial adaptation and diversification, as demonstrated by 
several studies (Smalla et  al., 2015; Wein et  al., 2020; Rodríguez-
Beltrán et al., 2021). Plasmids can provide ecological benefits to their 
host bacteria (Di Venanzio et al., 2019). These plasmids may change 
the biological characteristics of their bacterial hosts, which may have 
an impact on human health (Rozwandowicz et al., 2018). However, 
little is known about the function of gut plasmids, which are carried 
by bacteria that cause disease. We  thoroughly analyzed the 
plasmidome in this study across eight different CRC cohorts. This 
study provides the most comprehensive metagenomic sequencing-
based gut plasmidomic study to date in the largest sample of CRC 
patients. The bioinformatics pipeline allowed us to locate 12,515 
intestinal plasmids in total. We observed that compared to healthy 
controls, intestinal plasmid diversity was higher in CRC patients. It 
might imply that CRC patients’ intestinal environments were more 
stressful than those of controls, where bacteria required more plasmids 
to adjust to changes. To the best of our knowledge, our study is the first 
to pinpoint differential intestinal plasmids in patients with colorectal 
cancer. Some of the 198 differential plasmids, including NC_012780.1 
(Eubacterium eligens ATCC 27750 plasmid unnamed, complete), 
corresponding bacteria that were equally abundant in CRC patients 
and controls. Such bacteria may increase the abundance of their 
associated plasmids to increase their tolerance rather than changing 
their own abundance in order to adapt to changes in the gut 
environment of colorectal cancer patients. The bacteria corresponding 
to other differential plasmids, like NZ_CP036554.1 (Bacteroides 
fragilis strain DCMOUH0067B plasmid pBFO67_1, complete), are 
also differential in abundance between CRC patients and controls. 
Although these bacteria also affected the plasmids they were 
associated with, changes in the colorectal cancer patients’ intestinal 
environment could also affect the abundance of these bacteria. In 
contrast to controls, the abundance of intestinal plasmids in CRC 
patients was more independent of their gut microbiota’s abundance. 
According to this, the relationships between bacteria and plasmids 
may be  relevant in the microbiome-mediated tumorigenesis of 
CRC. An additional layer of information about the contribution of 
plasmid genes to host health independent of changes in bacterial 
abundance was revealed by the intriguing fact that the differential 

plasmid genes in our study were not associated with differential gut 
bacteria or differential gut plasmids.

The prognosis of CRC is closely related to the stage of the patient 
at the time of diagnosis (Bruni et  al., 2020). Host gene variation 
(Schmit et al., 2019), RNAs (Wu et al., 2021), proteins (Li et al., 2020), 
metabolites (Chen et al., 2022), and gut microbes (Liu et al., 2022) are 
some of the currently validated colorectal cancer markers; however, 
more work needs to be done to increase their predictive power. A 
non-invasive, effective, and efficient diagnostic method is urgently 
needed for colorectal cancer patients who are asymptomatic in order 
to lower CRC morbidity and mortality, and thereby lower the 
economic costs of CRC. We screened 21 plasmids, including NZ_
CP036554.1 and NZ_AP023416.1, and created a colorectal cancer 
prediction model based on these intestinal plasmids for the first time, 
applying various validation techniques to demonstrate the robustness 
and accuracy of the model. Additionally, we  observed that the 
combination of plasmids and bacteria markers could further improve 
the predictive power of CRC. In the external validation, the mean 
specificity and sensitivity of the plasmid and bacterial marker combo 
for CRC detection were 65.2 and 88.5%, respectively. Our plasmid and 
bacterial marker combo predict CRC with high accuracy and is as 
non-invasive as FOBT. Our model has a relatively low predictive effect 
for the Japan cohort. We  suspect that this may be  related to the 
regional heterogeneity of the gut microbiome. It has been shown that 
glycoceramides contained in the Japanese diet increase the abundance 
of Blautia coccoides in the intestine, which affects the composition of 
the intestinal flora (Hamajima et al., 2016). Meanwhile, glycoceramides 
inhibited the development of colorectal cancer in multiple intestinal 
neoplasia (min) mice (Symolon et  al., 2004). The regional 
heterogeneity of intestinal bacteria in the Japanese cohort is likely due 
to Japanese diet. Further experimental verification of the specific 
mechanism is needed.

Several limitations of this study are noted. Identification of 
plasmids from short-read metagenomic sequencing data remains 
challenging. It can be difficult to detect and extract a complete plasmid 
since plasmids can vary greatly in size, have high homology with other 
plasmids or with the host genome, often contain repetitive regions, or 
may be  incomplete or missing key regions. We have used filtering 
techniques to exclude less accurate plasmid contigs in light of these 
difficulties, but we cannot completely rule out the possibility of false 
positives. As a result, long-read sequencing technology (Pacific 
Biosciences and Oxford Nanopore Technology) and future tool 
development may enable us to fully understand the structure of human 
gut plasmids (Suzuki et al., 2019). The staging of tumors, gender, age, 
and other factors affecting the incidence of CRC were not taken into 
consideration. The controls in the majority of cohorts were determined 
by colonoscopy without detecting CRC, yet the controls in the CHN2 
cohort were selected from Taizhou Imaging Study who did not undergo 
colonoscopy, which could potentially introduce detection bias. A 
fourth limitation is the cohort effect due to variations in the distribution 
of gut flora across regions and the use of different sequencing platforms, 
even though we  eliminated the batch effect through MMUPHin. 
We were unable to determine the actual host of the plasmids because 
of the phenomenon of the horizontal transfer of plasmids. A high-
throughput technique called Microbe-seq was created by Zheng et al. 
to examine individual bacterial cells in the microbiota. This approach 
enables further exploration of plasmid horizontal transfer and the host 
profile of plasmids (Zheng et al., 2022). Future prospective studies with 
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large patient cohorts are needed to validate the results. We cannot 
establish a causal relationship between CRC and plasmids in the 
current data collection. We anticipate that long-read metagenomic 
sequencing and upcoming experimental research will clarify the causal 
relationship between CRC and plasmids.

In conclusion, we used plasmid-related sequences to identify the 
corresponding plasmids and found that they were able to distinguish 
between CRC patients and controls. We  constructed a combined 
plasmid and bacteria panel, which performed superior at predicting 
CRC than bacteria alone. Our study expands the knowledge of the 
function of plasmids in CRC patients may lead to further research into 
potential CRC diagnosis applications. Plasmids should be taken into 
account when studying the gut microbiota.
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