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Advanced age, accompanied by impaired glymphatic function, is a key risk

factor for many neurodegenerative diseases. To study age-related differences

in the human glymphatic system, we measured the influx and efflux activities

of the glymphatic system via two non-invasive diffusion magnetic resonance

imaging (MRI) methods, ultra-long echo time and low-b diffusion tensor imaging

(DTIlow−b) measuring the subarachnoid space (SAS) flow along the middle

cerebral artery and DTI analysis along the perivascular space (DTI-ALPS) along

medullary veins in 22 healthy volunteers (aged 21–75 years). We first evaluated

the circadian rhythm dependence of the glymphatic activity by repeating the

MRI measurements at five time points from 8:00 to 23:00 and found no time-

of-day dependence in the awake state under the current sensitivity of MRI

measurements. Further test–retest analysis demonstrated high repeatability of

both diffusion MRI measurements, suggesting their reliability. Additionally, the

influx rate of the glymphatic system was significantly higher in participants aged

>45 years than in participants aged 21–38, while the efflux rate was significantly

lower in those aged >45 years. The mismatched influx and efflux activities in the

glymphatic system might be due to age-related changes in arterial pulsation and

aquaporin-4 polarization.
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Introduction

Advanced age is a key risk factor for many neurodegenerative diseases such as
Alzheimer’s disease (Association, 2018; Hou et al., 2019), Parkinson’s disease (PD) (Poewe
et al., 2017), and Huntington’s disease (Diguet et al., 2009). A common feature of these
diseases is age-associated accumulation of protein aggregates, such as hyperphosphorylated
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tau and amyloid-β in Alzheimer’s disease (Therneau et al.,
2021). The glymphatic system is a newly discovered and
defined perivascular pathway that facilitates recirculation of
cerebrospinal fluid (CSF) through the brain parenchyma and
supports clearance of interstitial solutes, including tau and
amyloid-β (Boespflug and Iliff, 2018). Impaired glymphatic
function has been reported in many neurodegenerative diseases,
including Alzheimer’s disease (Harrison et al., 2020) and PD (Shen
et al., 2022). Thus, characterizing the glymphatic function in aging
and neurodegenerative diseases may provide new biomarkers for
early diagnosis of these diseases and may enable more efficient
treatment (Buccellato et al., 2022).

In rodents, the glymphatic system is impaired during aging
(Benveniste et al., 2019). The glymphatic system includes
three essential physiological activities: (1) CSF influx from
the subarachnoid space into the periarterial space (called
“influx”), (2) aquaporin-4 (AQP4)-dependent exchange between
periarterial CSF and the parenchymal interstitial fluid (ISF) (called
“exchange”), and (3) perivenous efflux of brain interstitial waste
products (called “efflux” or “clearance”) (Iliff et al., 2013b). The
perivenous conduits are connected to the lymphatic circulation
outside the brain via lymphatic vessels in the dura or cranial nerves
(Zhou et al., 2020). Using fluorescent CSF tracers and optical
imaging methods, researchers have demonstrated a dramatic
decrease in glymphatic influx activity in older mice/rats compared
with that of younger mice/rats (Kress et al., 2014; Giannetto et al.,
2020). An immunofluorescence study revealed a loss of perivascular
AQP4 polarization and reduced CSF-ISF exchange activity in aging
mice (Kress et al., 2014); thus, the glymphatic efflux activity slowed
with age. This was demonstrated by injecting intraparenchymal
radiotracers in mice (Kress et al., 2014) and intracisternally
administering MRI contrast agent along with dynamic contrast-
enhanced (DCE) MRI acquisition and kinetic analysis in rats (Li
et al., 2022). Because lymphatic vessels are the major outflow
pathways of the glymphatic system, the significant decreases in CSF
outflow in lymphatic vessels with age further supports glymphatic
function impairment (Ma et al., 2017; Da Mesquita et al., 2018).

Despite advances in animal research, evidence of the
glymphatic system in aging human brains remains scarce, and
non-invasive imaging methods for visualizing and quantifying the
human glymphatic system are limited. Previously, we administered
intrathecal MRI contrast agent as a CSF tracer and performed
T1-weighted MRI before and at multiple time points after tracer
administration and observed decreased clearance of both the
glymphatic pathway and putative meningeal lymphatic vessels
during aging in human brains (Iliff et al., 2013b; Zhou et al.,
2020). However, the patient composition in this observational
cohort study was complex and included patients with encephalitis,
peripheral neuropathy, and possible cerebral amyloid angiopathy
(Iliff et al., 2013b). Studying patients without neurodegenerative
pathologies is still needed, along with non-invasive imaging
methods. Additionally, other physiological activities of glymphatic
function, including influx and exchange activity, have not been
described in aging human brains.

Taoka et al. (2017) proposed an index for diffusion tensor
imaging (DTI) analysis along the perivascular (specifically
perivenous) space (DTI-ALPS) to indicate the glymphatic efflux
function. DTI-ALPS measures the flow-induced pseudo-diffusivity
of perivascular space water along the medullary veins, which

run perpendicular to the wall of the lateral ventricle body. This
was further normalized by the apparent diffusivities measured
perpendicular to both the medullary veins and the fibers in the
region of the projection fibers and association fibers (superior
longitudinal fascicles) to eliminate potential changes due to water
self-diffusivity (Taoka et al., 2017). This method has revealed
decreased glymphatic function in many brain disorders, including
Alzheimer’s disease (Kamagata et al., 2022), PD (Shen et al., 2022),
and multiple sclerosis (Carotenuto et al., 2022). We compared DTI-
ALPS with DCE-MRI results after intrathecal administration of
MRI contrast agent and found a good correlation between these
two glymphatic efflux indexes (Zhang et al., 2021). We also found
that the DTI-ALPS-index was weakly correlated with age in patients
aged 64 ± 9 years with cerebral small vessel diseases (r = −0.163)
(Zhang et al., 2021), indicating that glymphatic efflux activity might
be impaired with aging in human brains.

Regarding glymphatic influx activity, Harrison et al. (2018)
proposed a novel diffusion-weighted MRI method with ultra-long
echo time (TE), a low b-value, and multiple directions (DTIlow−b)
to measure CSF influx movements in the subarachnoid space
surrounding the middle cerebral artery (MCA) in rats. The ultra-
long TE was used to suppress non-CSF MRI signals because CSF
has a much longer T2 than do vascular water and other tissue
components. The low b-value and multiple directions in DWI
enable detecting pseudo-diffusivity (i.e., higher apparent diffusion
coefficients) induced by pseudorandom flows of the CSF in the
MCA SAS (Bito et al., 2021). The SAS surrounding the MCA
is one of the primary periarterial influx routes of the CSF into
the parenchyma (i.e., glymphatic influx pathway), which is well
characterized in several rodent studies using fluorescence CSF
tracers or MRI contrast agent (Iliff et al., 2013b; Kress et al.,
2014; Bedussi et al., 2017; Pizzo et al., 2018). Additionally, Iliff
et al. (2013a) demonstrated that the CSF flow inside the MCA
SAS measured by DTIlow−b is driven by cerebral arterial pulsation,
which is consistent with previous studies using fluorescence
imaging or DCE-MRI (Iliff et al., 2013a; Kress et al., 2014) and
demonstrates the method’s reliability. However, implementation of
DTIlow−b in human studies is limited (Bito et al., 2021), and no
application has been found in human aging studies.

Several rodent studies have reported that glymphatic activity
is strictly controlled by circadian rhythms (Hablitz et al., 2020).
In humans, studies have reported that the total CSF volume
(Trefler et al., 2016) and perivascular space (PVS) volume in white
matter showed time-of-day (TOD) dependence (Barisano et al.,
2021). However, whether the perivascular fluid flow shows TOD
dependence in humans remains unknown. Such information is
important to properly implement and interpret diffusion MRI
measurements of glymphatic activity in human brains, as most
studies have not reported the TOD of the acquisition.

Here, we (1) explored the age-dependence glymphatic influx
and efflux activity in human brains on the same participants
over a large age range using non-invasive diffusion MRI methods
and (2) determined whether these glymphatic metrics showed
TOD dependence. We recruited 22 healthy participants aged 21–
75 years. DTIlow−b was implemented to measure the CSF flow
along the SAS surrounding the MCA in human brains, which is
proposed to reflect the flow properties in one of the primary CSF
influx routes into the brain parenchyma. Additionally, the DTI-
ALPS was implemented to measure the global glymphatic efflux
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activity. Finally, ten participants (aged 24± 4 years) underwent five
DTIlow−b, DTI-ALPS, and other MRI scans in a single day (from
8:00 to 23:00) to study TOD dependence (Figure 1A).

Materials and methods

Participants

We consecutively recruited healthy volunteers from our local
community. All participants provided written informed consent
before study commencement and after receiving approval from
the Ethics Committee of the Second Affiliated Hospital, School of
Medicine, Zhejiang University. The exclusion criteria were (1) any
MRI contraindications; (2) serious head injury (resulting in loss
of consciousness) or receipt of intracranial surgery; (3) cancer; (4)
abnormal brain MRI findings such as head trauma, hemorrhaging,
non-lacunar infarction and other space-occupying lesions; (5)
definitive peripheral neuropathy or spinal cord disease; and (6)
dementia or stroke. Twenty-two participants were finally enrolled.

MRI scanning

Each participant was examined with a 3.0 T MRI clinical
scanner (MAGNETOM Prisma, Siemens Healthcare, Erlangen,
Germany), using a Nova 64-channel head radio frequency (RF)
coil. MRI scans included three-dimensional (3D) magnetization
prepared with two rapid gradient echoes (MP2RAGE) T1-
weighted images, DTI-ALPS and DTIlow−b. Total scan time
was approximately 20 min per participant. The MP2RAGE
images were acquired with 1.0 mm × 1.0 mm × 1.2 mm
resolution, echo time (TE)/repetition time (TR): 2.9/5000 ms,
flip angles: 4 and 5◦, inversion times: 700 and 2500 ms,
and generalized autocalibrating partially parallel acquisitions
(GRAPPA): 3. Glymphatic influx activity was measured via
DTIlow−b, which was acquired with b = 130 s/mm2 in 30 directions
(single repetition at each direction) and b = 0 s/mm2 with a
single repetition, 1.0 mm × 1.0 mm × 3.0 mm resolution,
20 slices, no slice gap, GRAPPA: 2, TE/TR: 133/4000 ms, and
1/δ = 64.9/34 ms. Glymphatic efflux activity was measured via
DTI-ALPS with b = 1000 s/mm2 in 30 directions (single repetition
at each direction) and b = 0 s/mm2 with a single repetition,
2.0 mm × 2.0 mm × 2.0 mm resolution, 20 slices, no slice gap,
GRAPPA: 2, TE/TR: 61/4000 ms, and 1/δ = 29.9/14.9 ms.

For the TOD experiments (Figure 1A), 10 participates (aged
24 ± 4 years, five men, five women) underwent MRI scans at five
time points (8:00, 12:00, 16:00, 20:00 and 23:00) in 1 day. During
scanning, volunteers were asked to remain awake and could react
to a calling system equipped on the MRI scanner.

MRI data pre-processing

Artifacts due to eddy currents and motion were corrected
with the DIFFPREP (Irfanoglu et al., 2015) and EPI geometric
distortion corrections along with the DWIs of the opposite phase
encoding direction using DR_BUDDI (Irfanoglu et al., 2015) in

TORTOISE (Pierpaoli et al., 2010). The preprocessed DWIs from
each participant were then fitted to the DTI model (Basser et al.,
1994) to generate DTI metrics. For voxel-wise analysis, the DTI
metrics, including axial diffusivity (AD), fractional anisotropy (FA),
mean diffusivity (MD), and direction-encoded color (DEC) maps
were generated using TORTOISE. For the regions of interest
(ROI)-wise analysis, the DTI metrics, including AD and FA, were
generated using in-house programs developed in MATLAB (The
Math-Works, Natick, MA, USA).

DTIlow−b on the SAS of the MCA

The glymphatic system influx was measured as the AD of the
MCA SAS through DTIlow−b (Figures 1B, C). In the DTIlow−b
analysis, the ROIs in the SAS at the M1 stage of the left and right
MCA (MCA SAS) were carefully drawn by one neuroradiologist
with 5-years of experience (JH) and further checked by a senior
neuroradiologist with 9-years of experience (YZ), both of whom
were blind to the group information, on the distortion-corrected
DTIlow−b b0 image using in-house programs. The DTIlow−b voxels
in each ROI in each hemisphere were averaged to construct the
3 × 3 diffusion tensor < D3 × 3 > for this ROI. Subsequently,
eigenvalues and eigenvectors were calculated after diagonalizing the
diffusion tensor matrix < D3 × 3 >. Given the three eigenvalues
(λ1, λ2, and λ3, sorted from maximum to minimum) and
corresponding eigenvector, the ellipsoid was displayed in the
3D coordinate system, where the maximum eigenvalue, λ1, was
defined as the ADlow−b (Figure 1C). The fractional anisotropy
of DTIlow−b (FAlow−b), which reflects the flow anisotropy rather
than diffusion anisotropy (FA), was derived by calculating the
three eigenvalues of DTIlow−b, similar to FA in conventional
DTI (Basser et al., 1994). Finally, the ADlow−b values of the
bilateral MCA SAS ROIs were averaged and the mean ADlow−b
was further taken for TOD-dependence, test–retest, and age-
dependence analysis.

ALPS-index calculation

The glymphatic system efflux was measured as the ALPS-
index through DTI-ALPS (Figures 1D, E). To calculate the DTI-
ALPS index, we used a previous described protocol in the (Zhang
et al., 2021), in which the DTI-ALPS index was calculated without
SWI and was significantly correlation to the glymphatic efflux
activity measured with DCE-MRI with intrathecal administration
of MRI contrast agent. The medullary veins run perpendicular
to the wall of the lateral ventricle body at the uppermost layer
of the lateral ventricle body (Okudera et al., 1999), allowing
measurement of the diffusivity without visualizing the veins. In
the DTI-ALPS analysis, the ROIs of the projection fibers and
association fiber placement were processed through registration
then carefully checked and manually adjusted by the investigators.
Each ROI was defined as a 4 mm × 4 mm rectangular area as
per the Montreal Neurological Institute (MNI) template. MNI
coordinates of the centers of the left and right ROIs were (24,
−12, 24) and (−28, −12, 24) in the projection fibers and (36,
−12, 24) and (−40, −12, 24) in the association fibers. For more
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FIGURE 1

Diffusion MRI for measuring glymphatic influx and efflux activity. (A) Illustration of the experimental design, where 22 participates aged 21–75 years
underwent MRI scanning to investigate age dependence of the glymphatic system and 10 of the 22 participates (aged 24 ± 4 years) underwent five
MRI examinations at five time points to measure the circadian rhythm of the human glymphatic system. (B) Glymphatic influx activity was measured
via DTIlow−b with ultra-long TE and a low b-value on the subarachnoid space (SAS) of the middle cerebral artery (MCA) M1 segment. Representative
DTIlow−b b0 and axial diffusivity (ADlow−b) maps are shown. The MCA SAS is enlarged in the dashed square. (C) MCA SASfluid flow, with the flow
speed evaluated with the axial diffusivity (AD) of the diffusion tensor aligning parallel to the physiological structure of the MCA SAS. (D,E) Glymphatic
efflux activity was evaluated via DTI-ALPS on the PVS of the medullary veins. Representative DTI-ALPS b0 map and direction-encoded color (DEC) of
the uppermost layer of the lateral ventricle body are shown, with the projection area (blue) and association fibers (green). The unilateral ALPS-index
was defined as [(Dxproj + Dxassoc)/(Dyproj + Dzassoc)], The average value of the bilateral ALPS-index was calculated as the glymphatic efflux activity
index, where Dxproj, Dxassoc, Dyproj, and Dzassoc are the diffusivities in the x direction of the projection fiber area, x direction of the association fiber
area, y direction of the projection fiber area, and z direction of the association fiber area.

precise registration, an MNI FA template (JHU-ICBM-FA-2 mm)1

was used for each participant’s FA images. Registration from
the MNI space to the individual space was achieved via rigid
registration followed by non-linear registration using Advanced
Normalization Tools (ANTs).2 All ROIs for each individual were
visually inspected and two experienced neurologists (JH and YZ)
who were blinded to the experimental data, made minor manual
corrections if necessary to confirm the accuracy of the location
by ensuring that only blue voxels were included in the ROIs on
the projected fibers and only green voxels were included in the
ROIs on the associated fibers. The ALPS-index is calculated as
the ratio of two sets of diffusivity values perpendicular to the
dominant fibers in the tissue (Figure 1E), i.e., the ratio of the
average x-axis diffusivity in the area of the projection fibers (Dxproj)
and the x-axis diffusivity in the area of association fibers (Dxassoc)
to the average y-axis diffusivity in the area of projection fibers
(Dyproj) and the z-axis diffusivity in the area of association fibers
(Dzaccoc) as [(Dxproj + Dxassoc) / (Dyproj + Dzassoc)]. Finally, the

1 https://neurovault.org/images/1406/

2 https://stnava.github.io/ANTs/

ALPS-indexes of each hemisphere were averaged and used for
further analysis.

Circadian rhythm analysis

Circadian rhythms were evaluated via one-factor (TOD)
analysis of variance (ANOVA) and cosinor analysis (Nelson et al.,
1979; Minors and Waterhouse, 1988). The ANOVA enabled
determining whether the variance between time points was
significantly greater than the random variation within them. The
cosinor analysis enabled determining whether the data are better
described by a cosine curve than by a straight line. A "significant"
fit (p < 0.05) is a fit where the chance that the data are as well
fitted by a horizontal line as by a cosine curve is <5% (Minors and
Waterhouse, 1988).

Test–retest measurement reliability

The test–retest repeatability of the scanning at different
time points was evaluated using intraclass correlation coefficients
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(ICCs) and Bland-Altman analysis to determine the coefficients of
variation (CVs), mean differences, and repeatability coefficients.
The ICC ranges considered to have excellent, good, moderate, and
poor repeatability were ≥0.90, 0.75–0.89, 0.50-0.74, and <0.50,
respectively (Koo and Li, 2016). CVs for interscan (test–retest)
reproducibility were calculated based on the variances, using the
variance due to within-participant variance between scan 1 and
2 (σw2) and variances due to random noise (σe2) along the
concentration mean µ (Gasparovic et al., 2011).

CV =
√

σ2
w+σ2

e
µ

Statistical analyses

Before performing the statistical analyses, we screened for
outliers using the Grubbs’ test (i.e., the Extreme Studentized
Deviate method) with a significance level of α = 0.01.3 For the
group-level analysis, the younger group included 11 participants
aged 21–38 years (mean: 25.1 years), and the older group
included 11 participants aged 48–75 years (mean: 62.6 years). The
ADlow−b and ALPS-index across the younger and older groups
are shown as the mean ± standard deviation and compared using
unpaired Student’s t-tests. The difference between the MCA SAS
and quadrigeminal cistern was calculated using paired Student’s
t-tests. The widths of the left and right MCA SAS across the
younger and older groups are shown as the mean ± standard
deviation in the Supplementary Information and compared via
ANOVA. Spearman’s correlation tests were used to analyze the
age dependence of and the correlation between the ADlow−b and
ALPS-index. The circadian rhythm was evaluated using ANOVA
and cosinor analysis. Except for the cosinor analysis, all statistical
analyses were performed in GraphPad Prism 8. The cosinor analysis
was performed using in-house programs developed in MATLAB.
P < 0.05 was considered statistically significant.

Results

Participant demographics

We recruited 22 participants in total and divided them into two
groups: the younger group (aged <45 years) and the older group
(aged >45 years; Table 1).

SAS fluid of the MCA M1 showed
anisotropic diffusion in DTIlow−b

Figures 2A–C shows representative b0 images of DTIlow−b,
the ROI of the SAS in MCA stage M1 and the quadrigeminal
cistern and the reconstructed ellipsoid-shaped diffusion tensors.
The quadrigeminal cistern was selected as a control region with no
flow or much slower flow than those of the MCA SAS. Expectedly,

3 https://www.graphpad.com/quickcalcs/grubbs1/

TABLE 1 Participants’ demographic information.

Group Young Old

Number of participants 11 11

Women 54.5% 27.3%

Age range (years), (average) 21–38 (25.1) 47–75 (62.6)

the diffusion tensor of the quadrigeminal cistern water showed
relatively low FAlow−b and no clear direction preference. The
diffusion tensor of the SAS fluid in MCA stage M1 showed a
clear anisotropic property with larger apparent diffusivity which
is consistent with the findings of Sepehrband et al. (2019), who
also found the diffusion of the non-parenchymal fluid within SAS
was anisotropic. Both the FA and ADlow−b of DTIlow−b were
significantly higher in the MCA SAS than in the quadrigeminal
cistern (p < 0.001; Figures 2D, E), demonstrating the pseudo-
diffusivity induced by the SAS fluid reflected anisotropic diffusivity.

Glymphatic influx and efflux activity
detected by diffusion MRI showed no
TOD dependence

Figures 3A, B show the time course of the glymphatic
system influx and efflux measured by DTIlow−b and DTI-ALPS,
respectively. The acquired data did not significantly differ among
the five time points in either the ADlow−b or ALPS-index by
ANOVA (p > 0.05). Cosinor analysis also confirmed that neither
the ADlow−b nor the ALPS-index differed significantly from the
straight lines (p > 0.05). Thus, neither the ADlow−b nor the ALPS-
index had TOD dependence from 8:00 to 23:00 for the participants
while awake.

Test–retest repeatability of the ADlow−b
and ALPS-index

To test the repeatability of the influx and efflux measured via
diffusion MRI, we selected two datasets (acquired at 8:00 and 12:00)
for scan-rescan analysis. Bland-Altman plots showed the test–retest
repeatability of the average measurements of ADlow−b in the MCA
SAS (Figure 3C) and ALPS-index (Figure 3D). ADlow−b showed
good repeatability (ICC = 0.77), and the ALPS-index showed good
repeatability (ICC = 0.78), demonstrating the high repeatability and
reliability of both the ADlow−b and ALPS-index.

Glymphatic influx activity measured via
DTIlow−b increased with aging

Group analysis was used to verify differences between the
older and younger participants. The ADlow−b values of the MCA
SAS fluid were significantly higher in the older group than in
the younger group (p = 0.0054; Figure 4A). The ADlow−b of
the quadrigeminal cistern did not significantly differ between the
groups (p = 0.58, Figure 4C). Linear regression analysis showed a
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FIGURE 2

DTIlow−b detected larger apparent diffusivity in the SAS of the MCA. (A) Representative ROIs of the SAS at the MCA M1 stage (red) and quadrigeminal
cistern (blue) in one participant, overlaid on the b0 images of DTIlow−b. (B,C) Ellipsoid-shaped tensor reconstructed from the two ROIs in panel (A) is
displayed on the x-y-z axis. (D,E) Boxplot of FA and ADlow−b values of the MCA SAS and quadrigeminal cistern for all participates (n = 22). Statistical
analysis was performed using paired Student’s t-tests, with ∗∗∗∗p < 0.0001.

significant positive correlation between ADlow−b values and age in
the MCA SAS region (p = 0.012, r = 0.52; Figure 4B) but not in
the quadrigeminal cistern (p = 0.64, r = 0.11; Figure 4D). These

results demonstrate that the ADlow−b of the SAS fluid along the
MCA increased with age, suggesting that the fluid flow along the
MCA SAS became faster with age.
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FIGURE 3

Time-of-day (TOD) test and test–retest repeatability of the glymphatic system measurements. (A,B) Neither ADlow−b of the MCA SAS fluid nor the
ALPS-index differed significantly in the data acquired at the five time points. Each participant’s data are shown as gray dots, and group-averaged
results are shown as dashed lines. (C,D) Bland-Altman plots of the test–retest results (8:00 and 12:00) of ADlow−b of the MCA SAS and ALPS-index.
Each participant’s data are shown as gray boxes. The ICC, CV, MD (solid dark line), and MD ± repeatability coefficient (dashed black lines) are shown.
CV, coefficient of variation; ICC, intraclass correlation coefficient; MD, mean diffusivity. n = 10, aged 24 ± 4 years. ns, non-significant by ANOVA.

Glymphatic efflux activity measured by
DTI-ALPS decreased with age

Along the perivascular space-index values were significantly
smaller in the older group than in the younger group (p < 0.001;
Figure 5A). Linear correlation analysis revealed a significant
negative correlation between ALPS-index and age (p = 0.0003,
r = −0.78; Figure 5B). These results suggest that glymphatic
efflux activity measured by the ALPS-index decreased with age.
Comparing the ALPS-index and ADlow−b of the MCA SAS revealed
a weak negative, but not significant, correlation (r =−0.35, p = 0.11;
Figure 5C).

Discussion

Knowledge of age-dependent glymphatic activity in the human
brain is important for understanding aging. Here, we implemented
and evaluated two diffusion MRI methods (DTIlow−b and DTI-
ALPS) to measure glymphatic influx and efflux activity in the
same participants over a large age range. DTIlow−b enabled
successfully detecting a larger apparent diffusion coefficient (ADC)

and diffusion anisotropy induced by the CSF flow in the MCA SAS.
Glymphatic function derived from both DTIlow−b and DTI-ALPS
showed no TOD dependence from 8:00 to 23:00, suggesting that
these metrics are not TOD-dependent, and further implementation
of these measurements will not account for TOD. Finally, the
ADlow−b increased, and the ALPS-index decreased with age.

The lack of TOD dependence for both DTIlow−b and DTI-
ALPS in awake participants between 8:00 and 23:00 and the low
variance of the ADlow−b and ALPS-index throughout the day
suggests that both diffusion methods can provide reproducible
results and that the TOD effect can be ignored in the studied
time range as long as patients remain awake. In anesthetized mice,
the glymphatic influx activity, clearance efficiency and perivascular
AQP4 polarization all show circadian rhythms, and their changes
can be well described by a 24-h cosine function (Hablitz et al.,
2020). Our results were unsurprising, as previous studies also
demonstrated that glymphatic activity occurs mainly during sleep,
whereas the awake brain has limited glymphatic activity (Xie et al.,
2013; Hablitz et al., 2020). Hablitz et al. (2020) conducted the
same study on awake mice and also found no circadian control of
glymphatic influx. The limited sensitivity of the MRI measurements
used in this study might also have induced this lack of TOD
dependence.
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FIGURE 4

ADlow−b of the MCA SAS increased significantly with age. (A,B) ADlow−b values of the MCA SAS were significantly higher in the older group (n = 11)
than in the younger group [n = 11, (A)] in the group analysis and were significantly positively correlated with age in the linear regression analysis (B).
(C,D) For the control region (i.e., the quadrigeminal cistern), the ADlow−b did not differ significantly in the group analysis (C) or with age (D).
Statistical analysis was performed using Student’s t-tests, with ns as non-significant (p ≥ 0.05), ∗∗p < 0.01.

FIGURE 5

The ALPS-index was negatively correlated with age. (A,B) ALPS-index values were significantly lower in the older group (n = 11) than in the younger
group [n = 11, (A)] in the group analysis and significantly negatively correlated with age in the linear regression analysis (B). (C) The ALPS-index was
negatively correlated (near significance) with the ADlow−b of the MCA SAS. Group analysis was performed using Student’s t-test. ns: non-significant
(p ≥ 0.05), ∗∗∗∗p < 0.0001.
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We found that glymphatic efflux activity assessed via DTI-ALPS
decreased with age over in a large age range of 21–75 years, which is
consistent with our previous study on cerebral small vessel disease
(CSVD) patients with a narrower age range (>60 years) using the
same DTI-ALPS method. Decreased glymphatic efflux activity was
also observed in patients undergoing lumbar puncture, who were
administered intrathecal MRI contrast agent as a CSF tracer for
T1-weighted MRI before and at multiple time points after tracer
administration (Zhou et al., 2020). This is consistent with the CSF
production rate, which decreases with age in both humans (May
et al., 1990) and rodents (Chiu et al., 2012; Liu et al., 2020).

As the CSF runs along the SAS, evaluation of the ADlow−b of
the SAS fluid around the straight portion of the MCA segment
could reflect the CSF influx activity of the glymphatic pathway.
This was demonstrated in a study on rats, which revealed a 300%
increase in apparent diffusivity of the SAS CSF along the vessel
direction as the vessels pulsated with each heartbeat (Harrison
et al., 2018). No such cardiac-cycle dependence was observed
on the apparent diffusivity measured perpendicular to the vessel
directions, suggesting the advantages of ADlow−b in measuring
CSF flow along vessel directions. This is also consistent with
other glymphatic influx studies using fluorescence tracers or MRI
contrast agents (Iliff et al., 2013a; Mestre et al., 2018). A recent
particle-tracking velocimetry study on live mice revealed the CSF
flow in the periarterial space following pipe Poiseuille flow with
zero velocity at the PVS walls (Mestre et al., 2018). The effect of the
velocity shear induced pseudo-diffusion with larger ADC along the
flow direction. The analytical formula for the relationship between
ADC (i.e., ADlow−b) and flow velocity in the case of SAS pipe
Poiseuille flow (Thomas, 2019) is as follows:

ADlow−b = DCSF + a2u2
max/192DCSF,

where DCSF is the self-diffusion coefficient of CSF, “a” is the inner
radius of the pipe, and umax is the maximum flow velocity of the
pipe (i.e., flow velocity in the pipe center). Using a = 1.5 mm
(Supplementary Figure 1), DCSF = 4 mm × 10−3 mm/s as the
mean diffusivity in the quadrigeminal cistern, and ADlow−b for
the younger group defined as 10 mm × 10−3 mm/s, the expected
umax is 45.3 µm/s, which is in the same order of the CSF flow
velocity measured in the PVS of mice (10–40 µm/s) (Kelley, 2021).
Because the DCSF (Figures 4C, D) and MCA SAS width showed no
age dependence (Supplementary Figure 1), the increased ADlow−b
suggests that the CSF influx flow velocity inside the MCA SAS
increased with age.

Several factors involved with aging can induce increased
flow velocity along the periarterial SAS, possibly because the
cerebral artery pulsatility and stiffness increase with age owing to
arteriosclerosis and other vessel degeneration (Iliff et al., 2013c;
Tarumi et al., 2014; Mitchell and Powell, 2020; Fico et al., 2022).
Iliff et al. found that perivascular CSF influx was mainly driven by
cerebral arterial pulsation, and increased arterial pulsatility after
administering the adrenergic agonist, dobutamine, significantly
increased the perivascular CSF influx. Additionally, decreased
arterial pulsatility after unilateral ligation of the internal carotid
artery significantly decreased the perivascular CSF influx (Iliff
et al., 2013c). Decreased blood flow velocities and concomitantly
increased pulsatility occur in the middle, anterior and posterior
cerebral arteries with advanced age, especially in those aged
>40 years (Ackerstaff et al., 1990; Krejza et al., 1999; Xu et al., 2017).

Further, a rodent study showed that glymphatic system influx
increased with the pulsatility of vascular increase (Mestre et al.,
2018; Cao et al., 2022), possibly owing to decreased intracranial
pressure. Another study reported that the decrease in intracranial
pressure after acute ischemic stroke could directly lead to rapid
CSF influx (Xu et al., 2017). Studies have found decreased cerebral
blood flow and brain atrophy in aging brains (Krejza et al., 1999;
Cao et al., 2022). Both the decreased cerebral blood flow and brain
atrophy can lead to decreased intracranial pressure (Krejza et al.,
1999; Omileke et al., 2021), which has also been shown to decrease
with age (Gur et al., 1991).

In our dataset, we observed a negative correlation between DTI-
ALPS and ADlow−b (Figure 5C), although this association was not
statistically significant. This mismatch between glymphatic influx
and efflux activity with age is interesting. Such a mismatch was
also observed in AQP4-knockout mice, in which the glymphatic
efflux or clearance activity was largely suppressed, but movement
of the perivascular tracer along the periarterial spaces was not
significantly altered (Iliff et al., 2013b). The influx of CSF along
the periarterial space (e.g., MCA SAS) is considered to be the
initial driving force behind the glymphatic clearance system
(Jessen et al., 2015; Wostyn et al., 2021). But, the perivascular
AQP4 is the key membrane channel gating the exchange between
periarterial CSF and the interstitial ISF (Iliff et al., 2013b).
With perivascular AQP4 dysfunction, the unaltered or increased
periarterial CSF flow can still result in decreased glymphatic
clearance, as periarterial CSF cannot flow efficiently into the
interstitial space. The association between AQP4 downregulation
and the glymphatic efflux/clearance activity suppression has been
demonstrated in many studies (Pedersen et al., 2018). Thus,
the altered perivascular AQP4 function/expression along aging
could be a potential factor contributing to this mismatch between
periarterial and perivenular CSF motion observed in this study.
Indeed, Kress et al. (2014) reported that AQP4 polarization on the
astroglial end-feet processes surrounding the cortical penetrating
arterioles (but not the capillaries) was significantly reduced in 18-
month-old mice compared with that of 2-to 3-month-old mice.
However, these data were not corroborated in a recent study
reporting that AQP4 expression in membranes next to the capillary
endothelial cells and arterioles was independent of age in human
frontal cortex (Zeppenfeld et al., 2017). Clearly, more studies are
still needed to further explore the perivascular AQP4 expression
in aging in more brian regions as both AQP4 expression and
glymphatic activity show spatial heterogeneity across brain regions
(Iliff et al., 2013a; Li et al., 2022). In addition, the permeability of
AQP4 channel should also be investigated in future as it has been
reported to be gated/regulated by metal ions, intracellular signaling
pathways, antiepileptic drug, etc. (Yukutake and Yasui, 2010).

Several limitations and future works of this study should
be clarified. The first limitation is the small sample size,
though careful statistics were performed. It is highly desired
to perform such study in a large sample. Second, DTIlow−b
and DTI-ALPS are presumed to measure glymphatic influx and
efflux activities, respectively, mainly because of the anatomical
locations of the two measurements (PVS or SAS surrounding
arteries and veins, respectively). However, the flow direction
of CSF in PVS was still under debate (Bakker et al., 2019),
moreover, neither DTIlow−b nor DTI-ALPS can show the CSF
flow directions because they both measure the pseudo diffusivity
induced by slow flow motion, which can be unidirectional or
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bidirectional or change direction over time. Third, both DTIlow−b
and DTI-ALPS were acquired without cardiac gating and presumed
to be the average of the entire cardiac cycle. Glymphatic activity has
been demonstrated to be largely driven by arterial pulsation (Mestre
et al., 2018). For DTIlow−b, Harrison et al. (2018) demonstrated that
the ADlow−b of the MCA SAS has strong cardiac-cycle dependence.
Wen et al. (2022) found the cardiac-cycle dependence of whole-
brain PVS ADC, although their DTIlow−b protocol differed from
that used in our study (their protocol included shorter TE and lower
spatial resolution). However, the non-gated diffusivity measured via
DTIlow−b still showed sensitivity to manipulation of the glymphatic
activity (injection of adrenoceptor agonist, dobutamine) (Harrison
et al., 2018) or to aging (Wen et al., 2022), although further
physiological validation is needed to test whether the CSF in SAS
MCA was caused by the arterial pulse. Fourth, in this study,
though a long-TE setup was implemented in DTIlow−b to suppress
non-CSF signal, there might still be non-CSF signal left. Another
approach is to acquire DTIlow−b at multiple b-values and fit the
data with a bi-tensor model, in which one tensor is to describe
CSF component considering perfusion effect and another tensor
is to describe non-CSF tissue MR signal. Fifth, both DTIlow−b and
DTI-ALPS could can reflect only the glymphatic function on fixed
and specific brain regions. Non-invasive MRI methods that can
characterize the glymphatic function in the whole brain are needed.
Finally, although we proposed that the altered perivascular AQP4
polarization along aging could be the potential factor contributing
the mismatch between the glymphatic influx and efflux functions
observed in this study, the direct evidence to demonstrate this
hypothesis is still lacking and the development of non-invasive MRI
method to measure the glymphatic exchange process in vivo is an
important future research direction.
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