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Genome-wide association studies have revealed that the regulation of gene
expression bridges genetic variants and complex phenotypes. Profiling of the
bulk transcriptome coupled with linkage analysis (expression quantitative trait
locus (eQTL) mapping) has advanced our understanding of the relationship
between genetic variants and gene regulation in the context of complex
phenotypes. However, bulk transcriptomics has inherited limitations as the
regulation of gene expression tends to be cell-type-specific. The advent of
single-cell RNA-seq technology now enables the identification of the cell-
type-specific regulation of gene expression through a single-cell eQTL (sc-
eQTL). In this review, we first provide an overview of sc-eQTL studies,
including data processing and the mapping procedure of the sc-eQTL. We
then discuss the benefits and limitations of sc-eQTL analyses. Finally, we
present an overview of the current and future applications of sc-eQTL discoveries.
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1 Introduction

Over the past decades, genome-wide association studies (GWAS) have successfully
identified thousands of genetic variants associated with over 100 common diseases (Visscher
et al., 2017). However, the vast majority of these variants are in non-coding regions (Brodie
et al., 2016) and exert their effect function by regulating gene expression. Expression
quantitative trait locus (eQTL) mapping, which links genetic variants to the variation in
gene expression, has largely been performed in bulk transcriptomic data generated by RNA-
seq and microarray technologies. However, a significant proportion of GWAS loci cannot be
explained by eQTL signals in bulk transcriptomic data, in which expression levels are
averaged across all cells in a sample.

One solution to this problem is to study the regulation of gene expression at the cell-type-
specific level (Knowles et al., 2017; Favé et al., 2018). Several previous studies in purified
blood cell populations (Fairfax et al., 2012; Ishigaki et al., 2017; Donovan et al., 2020; Kim-
Hellmuth et al., 2020; Yao et al., 2021) have already identified cell-type-specific regulation.
The recent advent of scRNA-seq technology has revolutionized our ability to understand
cell-type-specific gene expression by resolving complex cellular heterogeneity.

The single-cell expression quantitative trait locus (sc-eQTL) is emerging as a powerful
tool to identify cell-type-specific regulation of gene expression. For example, a recent study
performed eQTL mapping using single nuclei RNA-seq from 196 individuals in eight CNS
cell types and identified 6,108 eGenes, 43% of which have cell-type-specific effects. The study
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provided new insights into the disease etiology and genetic
mechanisms influencing neurological disorders (Bryois et al.,
2022), demonstrating that sc-eQTL mapping provides a powerful
approach to link genetic variants to complex diseases.

In this review, we aim to provide a comprehensive overview of
sc-eQTL studies. We begin with an introduction to data processing
and mapping procedures used in sc-eQTL analyses and provide
details of the methods used in the analysis of the cell-type-specific
regulation of gene expression. We then discuss the benefits of sc-
eQTL studies compared to traditional eQTL analyses using bulk
transcriptomic data. The limitations and challenges of sc-eQTL
analyses are also discussed. Finally, we present a comprehensive
overview of the current and future applications of sc-eQTL
discoveries.

2 Evolution of sc-eQTL analyses: from
an early approach to recent
developments

The concept of cell-type-specific eQTLs was first introduced in
2013 in a study that measured 92 genes in 1,440 single cells from
15 individuals (Wills et al., 2013) to explore whether studying
individual cells could provide greater mechanistic insights into
how genetic variants quantitatively affect gene expression.
However, the first large-scale genome-wide sc-eQTL study was
performed in 2018 in eight major immune cell populations from
78,000 peripheral blood mononuclear cells (PBMCs) from
23 donors (Kang et al., 2018; Ma et al., 2022). This study was
further expanded by identifying unfound cell-type-specific and co-
expression eQTLs (van derWijst et al., 2018) in 25,000 PBMCs from
45 donors. Similar sc-QTL studies using different single-cell
transcriptomic technologies were also reported (Sarkar et al.,
2019; Cuomo et al., 2020a; Mandric et al., 2020; Van Der Wijst
et al., 2020; Figure 1). Single-cell transcriptomic technologies
primarily fall into two categories: one that captures the full
length of transcripts (e.g., Smart-seq2, MATQ-seq2, and SUPeR-
seq) and another that captures the 3′/5′ends of transcripts. Full-
length transcript sequencing allows for the detection of the complete
transcriptome and the analysis of alternative splicing; its high cost
and limited scalability makes it impractical for large-scale studies. In
contrast, 3′/5′-end transcript sequencing, while less sensitive in
detecting gene expression and alternative splicing, is more cost-
effective and scalable and can, thus, accommodate more cells
(Svensson et al., 2017; Chen et al., 2019). Recently, long-read
sequencing technologies, such as PacBio and Oxford Nanopore,
have emerged as powerful tools in the field, enabling the detection of
full-length transcripts at high throughput and with high accuracy.
These technologies are still in their infancy, but they hold great
potential for expanding the capabilities of single-cell transcriptomic
studies and can be expected to impact the sc-eQTL study.

Similar to eQTL analyses at the bulk level, gene regulation can be
classified into two types: cis-regulation (local) and trans-regulation
(distant). Most sc-eQTL studies have focused on cis-regulation due
to the statistical power. In theory, cis-eQTLs can be mapped for all
the genes measured in each cell. However, owing to the coverage of
scRNA-seq, the identification of cis-eQTLs is currently only limited
to cell-type levels. As a result, current sc-eQTL studies mainly

attempt to identify cell-type-specific cis-eQTLs using single-cell
transcriptomics (van der Wijst et al., 2018). To overcome the
coverage issue of single-cell transcriptomic data and utilize
expression levels measured by bulk transcriptomics, many
computational deconvolution methods were developed to
integrate single-cell and bulk transcriptomic data to identify cell-
type-specific cis-eQTLs. However, a limitation of the deconvolution
methods is that the analyzed cis-eQTLs were assigned to known cell
types. Several studies also pointed out that the analysis of cis-eQTLs
directly detected by single-cell transcriptomics outperforms
deconvolution methods (Perez et al., 2022; Yazar et al., 2022).

3Data processing for sc-eQTLmapping

While significant efforts have been made in the development of
statistical methods for bulk transcriptomic data, most of these
methods cannot be directly applied to sc-eQTL studies. This is
because single-cell transcriptomic data have unique characteristics,
such as zero-inflated gene expression. As a result, several crucial
processing steps are needed to be performed before utilizing statistic
methods developed for bulk RNA-seq studies on single-cell
transcriptomic data.

3.1 Preprocessing single-cell transcriptomic
data for eQTL mapping

The main processes involved in preparing single-cell
transcriptomic data for eQTL mapping involve several key steps,
including cell-level gene expression counting, quality control (QC),
mean aggregation, covariate correlation procedures, and multiple
testing corrections in the context of sc-eQTL mapping (Figure 2). A
study by has provided optimized eQTL mapping workflows for
single-cell studies (Cuomo et al., 2021).

The process starts with counting the cell-level gene expression,
which can be obtained using a variety of different methods (Teng
et al., 2016; Vieth et al., 2019; Chen et al., 2021). As for digital
transcript quantification, transcripts from tag-based sequencing can
be combined with UMI tags. UMI tags are a series of short sequences
with specifically ordered bases; they are added to the ends of cDNAs
during reverse transcription, and PCR products from the same
cDNA would carry the same UMI molecule. Therefore, UMI tags
can distinguish cDNA repeats from biology repeats. However,
transcripts from full-length scRNA-seq cannot be combined with
UMI molecules, which results in a lower quality of transcript
counting based on full-length sequencing than that based on tag-
based sequencing. However, MATQ-seq can produce full-length
transcripts that can be combined with UMI molecules (Macosko
et al., 2015).

QC steps should be performed at the cell level to remove low-
quality cells and normalize data to remove technical variations in the
sequencing depth per cell. Batch corrections should also be used to
remove poor-quality batches. A study by (Luecken and Theis, 2019)
provides an overview of their best practices. Moreover, Xue et al.
(2023) proposed a new guideline to optimize the number of latent
variables for bulk data batch-effect correction tools, such as
probabilistic estimation of expression residuals (PEER) and
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principal component analysis (PCA), thereby improving the power
of sc-eQTL discovery. A list of methods/tools on data
transformation, scaling/normalization, and batch effect correction
are provided in Table 1 and Supplementary Table S1. Among batch
effect correction methods in Table 1, some are linear methods (e.g.,
limma and ComBat) and some belong to NN-based methods (e.g.,
fastMNN, Scanorama, and Seurat). The four methods (WaVE,
scMerge, scVI, and LIGER) in Table 1 can handle normalization
and batch correction together (Chu et al., 2022). (Tran et al., 2020)
compared 14 batch effect correction methods in five scenarios. In
general, the tools Harmony, LIGER, and Seurat 3 perform well in
batch processing. When correcting batch effects for unknown cell
types, LIGER is preferred. However, the runtime of LIGER is
comparatively long. Seurat 3 enables the handling of large
datasets, but requires a longer runtime. To perform downstream
DEG analysis well, the scMerge tool is recommended.

After quality control, it is necessary to perform clustering and cell-
type assignment for scRNA-seq data (Cuomo et al., 2021). Major
clustering tools for scRNA-seq data are based on the combination of
basic clustering methods, which contain feature selection and

dimensionality reduction, k-means, hierarchical clustering, and so
on. Feature selection can identify genes with the highest variance.
Dimensionality reduction projects data into a low-dimensional
space, trying to preserve the original pairwise distances between
points in the data as much as possible. Principal component analysis
is one of the classical dimensionality reduction methods. Many
methods, including Euclidean distance, cosine similarity, Pearson’s
correlation, Spearman’s correlation, and so on, can be used to
calculate the distance between points in a lower-dimensional space.
K-means iteratively identifies k-cluster centers (centroids), and each cell
in scRNA-seq data is assigned to the closest centroid. K-means can deal
with large datasets but is not guaranteed to find the global minimum,
and additionally, it is biased toward identifying equal-sized clusters,
while omitting rare cell types. Another widely used clustering algorithm
is hierarchical clustering, which combines individual cells into larger
clusters or divides clusters into smaller groups. A visible disadvantage of
hierarchical clustering is the high cost of time and memory for a large
dataset. Community detection is a variant of clustering and is especially
applied to graphs. This method identifies groups of nodes that are
densely connected. An advantage of graph-based methods is that they
do not need to specify the number of clusters.

As a single clustering method has notable disadvantages, many tools,
including clustering modules, are based on a combination of several basic
clusteringmethods. For example, clusteringmodules in Scanpy (Wolf et al.,
2018), Seurat (Hao et al., 2021), PhenoGraph (Levine et al., 2015), SC3
(Kiselev et al., 2017; Kiselev et al., 2019), CIDR (Lin et al., 2017), pcaReduce
(Žurauskienė and Yau, 2016), and TSCAN (Ji and Ji, 2016) are based on a
combination of PCA and other basic clustering methods. SIMLR (Wang
et al., 2018) is based on data-driven dimensionality reduction and k-means.
GiniClust (Jiang et al., 2016) is based on DBSCAN; mpath and SINCERA
(Guo et al., 2015) are based on hierarchical clustering; BackSPIN (Zeisel
et al., 2015) is based on biclustering; RaceID3 (Grün et al., 2015) is based on
k-means; and SNN-Cliq is graph-based. So, there are several user-friendly
clustering tools available today. However, they have been developed for
solving certain problems and it is impossible for them to be suitable for all
situations.

FIGURE 1
History of single-cell RNA sequencing.

FIGURE 2
Processes for mapping cell-type-specific eQTLs.
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Choosing suitable clustering and cell-type assignment algorithms
for scRNA-seq data is vital (Luecken and Theis, 2019). The
identification or classification of a cell into the right type or state is
especially important (Van Der Wijst et al., 2020). For example,
developed a clustering method based on sorting points into
neighborhoods (SPIN) (Tsafrir et al., 2005). Some methods identify
cell types through unsupervised clustering, such as pcaReduce and SC3.
A major challenge in cell-type profiling is to identify rare cell types. A
developed algorithm named rare cell-type identification (RaceID) infers
abundant cell types by k-means clustering followed by systematic outlier
screening (Grün et al., 2015). GiniClust detects rare cell types from
single-cell gene expression data with the Gini index (Jiang et al., 2016),
and GiniClust2, the upgraded version of GiniClust, is a cluster-aware
weighted ensemble clustering method for cell-type detection (Tsoucas
and Yuan, 2018). A newly developed tool, CellSIUS, can provide the
sensitive and specific detection of rare cell populations from complex
scRNA-seq data (Wegmann et al., 2019). Mean aggregation of gene
expression across cells for each cell type is typically conducted by
averaging gene profiles across cell types. Cell or cell-type-specific eQTLs
can be mapped using eQTLmapping methods, developed especially for
scRNA-seq data (Figure 2).

3.2 Methods used for sc-eQTL mapping

After preprocessing single-cell transcriptomic data, eQTL
mapping is applied to identify genetic variants regulating gene
expression at the single-cell-type level. Mapping can be carried
out through various methods, including some sc-eQTL-specific
tools (Table 2) and bulk eQTL mapping methods
(Supplementary Table S2). These methods can be classified into
two categories: parametric and non-parametric methods.
Parametric methods, such as linear regression and ANOVA,
assume that gene expression follows the normal distribution,
Poisson distribution, or negative binomial distribution and use
gene expression as the dependent variable, and genotypes as
independent variables (Gatti et al., 2009; Shabalin, 2012). In
contrast, non-parametric methods, such as the Krux method, are
considered more robust and do not rely on any distribution
assumption (Qi et al., 2014). Each tool presented in Table 2 has
specific advantages. For example, SCeQTL (R package) utilizes zero-
inflated negative binomial regression for eQTL mapping in
scRNA-seq data (Hu et al., 2020). eQTLsingle can discover
eQTLs solely through scRNA-seq data, without the use of

TABLE 1 Methods/tools used for data processing in sc-eQTL mapping.

Name Tools/
package

Model/method Reference Site

Batch effect correction

limma limma Quantitative weighting (linear-based) Ritchie et al., 2015 http://mirrors.nju.edu.cn/bioconductor/2.11/bioc/html/
limma.html

ComBat sva Empirical Bayesian frameworks (linear-based) Johnson et al., 2007 http://www.bioconductor.org/packages/release/bioc/
html/sva.html

MNN scran Mutual nearest neighbor methods (NN-based) Haghverdi et al.,
2018

https://bioconductor.org/packages/scran

BBKNN bbknn Fast graph-based data integration algorithm Polański et al., 2020 https://github.com/Teichlab/bbknn

fastMNN batchelor (Fast version of) mutual nearest neighbor methods
(NN-based)

Haghverdi et al.,
2018

https://bioconductor.org/packages/release/bioc/html/
scran.html

Scanorama scanorama NN-based Hie et al., 2019 https://github.com/brianhie/scanorama

Seurat Seurat NN-based Hao et al. (2021) https://satijalab.org/seurat/

Harmony harmony Unsupervised joint embedding (linear-based) Korsunsky et al.,
2019

https://github.com/immunogenomics/harmony

scater scater normaliseExprs function; svaseq; RUVSeq McCarthy et al.,
2017

http://bioconductor.org/packages/scater

DCA DCA Negative-binomial noise model Eraslan et al., 2019 http://github.com/theislab/dca

scGen scGen Variational autoencoders; latent space-vector
arithmetics

Lotfollahi et al., 2019 https://github.com/theislab/scgen

Normalization and batch effect corrections together

ZINB-
WaVE

zinbwave Extension of the RUV model Risso et al., 2018 https://bioconductor.org/packages/zinbwave

scMerge scMerge MNN search and linear modeling (NN-based) Lin et al. (2017) https://sydneybiox.github.io/scMerge

scVI scVI Stochastic optimization and deep neural networks Lopez et al., 2018 https://github.com/YosefLab/scVI

LIGER LIGER Integrative non-negative matrix factorization Liu et al., 2020 https://github.com/MacoskoLab/liger
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genomic data (Ma et al., 2022). FastGxC is an efficient and powerful
tool for mapping context-specific eQTLs in scRNA-seq data (Lu
et al., 2021). Lastly, scTBLDA considers information across cell
types, which is often ignored by methods that use summary statistics
within cell types (Gewirtz et al., 2022).

Similar to traditional bulk eQTL mapping, the effects of
covariates are typically removed from a sc-eQTL analysis to
improve the sensitivity and interpretability of genetic
associations in population-scale expression data. For
example, a recent cell-type-specific eQTL in fibroblasts and
fibroblast-derived iPSC types used different covariates and
probabilistic estimation of expression residual factors
(Shabalin, 2012; Neavin et al., 2021). Additionally, Xue et al.

(2023) highlighted three key differences between bulk data and
scRNA-seq pseudo-bulk data and provided a new guideline for
selecting the optimal number of latent variables for bulk data
batch-effect correction tools. This guideline has the potential to
significantly improve sc-eQTL discovery and is an important
contribution to the field.

The method specifically developed for sc-eQTL mapping can
efficiently identify context-specific genetic variants regulating gene
expression at the cell-type-specific level. For example, a method
called FastGxC enables the construction of context-specific eQTL
maps and has the potential to increase precision in identifying
GWAS variants by three-fold compared to conventional eQTL
mapping methods (Lu et al., 2021).

FIGURE 3
Advantages of scRNA-seq data, including (A) Identifying cell-type-specific eQTLs; (B) identifying low-expressed genes; (C) identifying cell-type-
specific co-expression networks; and (D) identifying cell-type-specific eQTLs in different spatiotemporal states.

TABLE 2 eQTL mapping methods/tools specifically for scRNA-seq data.

Tool/method Reference Traits Site

SCeQTL Hu et al. (2020) Zero-inflated generalized linear model https://github.com/XuegongLab/
SCeQTL/

eQTLsingle Ma et al. (2022) Discover eQTLs only with scRNA-seq data https://github.com/horsedayday/
eQTLsingle

FastGxC Andrew et al., 2021 Map context-specific eQTLs by leveraging the correlation structure of multi-context
studies

https://github.com/BrunildaBalliu/
FastGxC

scTBLDA Gewirtz et al. (2022) Uses MatrixEQTL v2.3 with modelLINEAR to run eQTL testing https://github.com/gewirtz/scTBLDA
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Compared to conventional eQTL mapping methods, sc-eQTL
mapping strategies face the challenge of excessive zeros in single-cell
transcriptomic data (Delmans and Hemberg, 2016; Miao et al., 2018;
Hu et al., 2020). To address this challenge, the R package SCeQTL
uses zero-inflated negative binomial regression for the sc-eQTL
analysis to detect the gene expression variation and distinguish
between “status difference” and “expression level difference” (Hu
et al., 2020). Some recent approaches also take into account the
dynamic pseudotime-defined cell types for the sc-eQTL analysis
(Cuomo et al., 2020b), which have been shown to uncover new
eQTL variants. In addition, the eQTLsingle tool was developed to
discover eQTLs solely with single-cell transcriptomic data and detect
mutations from single-cell transcriptomic data as genotypic data
(Ma et al., 2022).

4 Advantages and limitations of sc-
eQTL mapping

4.1 Advantages of sc-eQTL mapping
compared to bulk eQTL methods

Single-cell transcriptomic data provide several advantages in
exploring the genetic architecture of gene regulation. The ability of
detecting cell types and cell states in an unbiased manner using
single-cell transcriptomic data makes sc-eQTL mapping a powerful
tool for studying the genetic architecture of gene regulation (Grün
et al., 2015; Villani et al., 2017; Hernández et al., 2018; Karamitros
et al., 2018; Guerrero-Juarez et al., 2019; Umans et al., 2020).The
advantages of sc-eQTL mapping include the following: 1) discovery
of cell-type-specific eQTLs, 2) identification of eQTLs regulating
lowly expressed genes, and 3) detection cell-type-specific eQTLs in
different spatiotemporal states.We discuss these advantages in detail
in the following sections (Figure 3).

4.1.1 Discovery of cell-type-specific eQTLs that are
diluted in bulk RNA-seq

Single-cell transcriptomic data offer a powerful tool to uncover
cell-type-specific eQTLs that are diluted in bulk transcriptomic data.
Cell-type-specific cis-eQTLs identified by bulk RNA-seq data are
biased to known cell types, while the ones identified by scRNA-seq
data can be assigned to novel cell types. Multiple studies have
demonstrated this advantage. For example, a study discovered
379 cis-eQTLs (287 genes), of which 48 cis-eQTLs (38 genes)
were only detected in specific cell types, not in any eQTLs from
bulk RNA-seq data (van der Wijst et al., 2018). Another study on
human skin fibroblasts showed that a majority of discovered eGenes
were predominantly cell-type-specific and could only be identified
in one fibroblast type or one iPSC type (Neavin et al., 2021). These
findings suggest a high degree of cell-type-specific gene regulations
detected in the sc-eQTL analysis that cannot be captured by bulk
QTL mapping. Hence, sc-eQTL can be used to improve the eQTL
detection when compared to bulk RNA-seq.

4.1.2 Identification of eQTLs regulating lowly
expressed genes that are omitted by bulk data

Compared with bulk RNA-seq data, scRNA-seq data allow the
estimation of the variability in gene expression across individual

cells (Brennecke et al., 2013) and provide a new angle on how
genetics may impact disease pathogenesis. For example, owing to the
low expression of TSPAN13 in abundant CD4+ T cells, cis-eQTL
rs2272245 was not identified in the bulk RNA-seq dataset
(Zhernakova et al., 2017), but it significantly affected the low
expressed gene TSPAN13 in cis (p = 2.21 × 10−6) in the scRNA-
seq data analysis. This shows that the bulk RNA-seq-based cis-eQTL
analysis loses power in the identification of cell-type-specific loci
affecting lowly expressed genes (van der Wijst et al., 2018).

4.1.3 Detection of cell-state-specific eQTLs while
bulk data lose this power

scRNA-seq data enable the simultaneous estimation of the
composition and expression profiles of discrete cell populations,
such as their activation states (van der Wijst et al., 2018). scRNA-seq
data provide a flexible unbiased approach that has increased their
resolution to define cell states along continuous dynamic processes,
in which the eQTL effects manifest themselves (Cuomo et al.,
2020a). In an elegant study by, the authors derived 126 iPSC cell
lines from 125 donors in the HipSci project (Kilpinen et al., 2017)
and harvested the cells immediately before differentiation (iPSCs)
and at the mesendoderm and definitive endoderm stage of
differentiation (Cuomo et al., 2020b). They found that over 30%
of the identified eQTLs were specific to a single stage. Moreover,
349 eQTL variants identified during differentiation stages were
novel and not previously identified in bulk RNA-Seq from iPSCs
or GTEx tissues, and they also illustrated that eQTLs can modulate
the timing of expression changes in response to differentiation
(Cuomo et al., 2020a). Altogether the study demonstrated that
the identification of eQTLs at distinct time points in the
development allows the discovery of novel regulatory relationships.

In a study by the mapped eQTLs in memory T cells from
259 Peruvian individuals revealed more than 2,000 eQTLs, whose
presence and function varied according to the transcriptomic state
of T cells. So, they demonstrated that DNA sequence variation at a
particular location in the genome may influence the expression of a
given gene in some T-cell states but not in others (Nathan et al.,
2022).

Another study by Yazar et al. (2022) identified cell-state-
dependent eQTLs in B cells transitioning from naïve to memory
states. In an example with rs9927852 and MAF, the expression of
MAF increased with a high cytotoxic cell-state score and remained
relatively constant with low cell-state scores. So, they demonstrated
that two independent eQTLs have opposite effects on the expression
of the same gene in different cell states. The above two studies
emphasize the complexity of genome regulation in immune cells,
and scRNA-seq increases the resolution of the identified eQTLs
(Yazar and Powell, 2022).

4.2 Limitations of scRNA-seq in eQTL
mapping

Despite the many benefits of sc-eQTL mapping, as shown
previously, several limitations have also been noted in recent
studies. These limitations include the following: 1) less power in
identifying eQTLs, 2) high cost of scRNA sequencing, and 3)
technical noises in scRNA-seq data.
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TABLE 3 Computational deconvolution methods.

Name Deconvolution model Site

Methods without scRNA-seq data as a reference

OLS Least squares https://link.springer.com/chapter/10.1007/978-3-642–50096-1_48

nnls Least squares https://cran.r-project.org/web/packages/nnls/index.html

FARDEEP Robust regression https://CRAN.R-project.org/package = FARDEEP

RLR Robust regression https://CRAN.R-project.org/package = MASS

LASSO Penalized regression http://xai-tools.drwhy.ai/glmnet.html

Ridge Penalized regression http://xai-tools.drwhy.ai/glmnet.html

Elastic net Penalized regression http://xai-tools.drwhy.ai/glmnet.html

DCQ Penalized regression http://dcq.tau.ac.il/

EPIC Weighted least squares http://epic.gfellerlab.org/

CIBERSORT Support-vector regression http://cibersort.stanford.edu/

dtangle Model in the logarithmic scale dtangle.github.io

DSA Digital sorting algorithm http://web.cbio.uct.ac.za/~renaud/CRAN/web/CellMix

ssKL Semi-supervised non-negative matrix factorization http://web.cbio.uct.ac.za/~renaud/CRAN/web/CellMix

ssFrobenius Semi-supervised non-negative matrix factorization http://web.cbio.uct.ac.za/~renaud/CRAN/web/CellMix

DeconRNASeq Quadratic programming https://bioconductor.org/packages/DeconRNASeq/

TIMER Monte Carlo simulation; pathological approach http://cistrome.org/TIMER

Methods with scRNA-seq data as reference

Bisque Regression-based approach https://github.com/cozygene/bisque

deconvSeq Generalized linear model https://github.com/rosedu1/deconvSeq

DWLS Weighted least squares https://github.com/sistia01/DWLS

MuSiC Weighted non-negative least squares regression (W-NNLS) https://github.com/xuranw/MuSiC

SCDC ENSEMBLE method http://meichendong.github.io/SCDC

BSEQ-sc csSAM methodology http://github.com/shenorrlab/bseq-sc

CIBERSORTx Support vector https://cibersortx.stanford.edu/

Detailed information for convolution methods in Table 3: OLS (ordinary least squares (Chambers et al., 1990)), NNLS (non-negative least squares (Mullen and Stokkum, 2012)), FARDEEP

(Fast And Robust DEconvolution of Expression Profiles (Hao et al., 2019)), RLR (robust linear regression, MASS (Ripley et al., 2022)), LASSO (in glmnet (Friedman et al., 2010)), Ridge (in

glmnet (Friedman et al., 2010)), Elastic net (in glmnet (Friedman et al., 2010)), DCQ (digital cell quantifier (Altboum et al., 2014)), DSA (digital sorting algorithm, in CellMix (Gaujoux and

Seoighe, 2013)), ssKL (in CellMix (Gaujoux and Seoighe, 2013)), ssFrobenius (in CellMix (Gaujoux and Seoighe, 2013)), EPIC (estimating the proportion of immune and cancer cells (Racle

et al., 2017)), CIBERSORT (cell-type identification by estimating relative subsets of RNA transcripts (Newman et al., 2015)), dtangle ((Hunt et al., 2019)), DeconRNASeq ((Gaujoux and Seoighe,

2013)), TIMER (Tumor IMmune Estimation Resource (Li et al., 2016)), Bisque ((Jew et al., 2020)), deconvSeq ((Du et al., 2019)), DWLS (dampened weighted-least squares (Tsoucas et al.,

2019)), MuSiC (multi-subject single cell (Wang et al., 2019)), SCDC ((Dong et al., 2021)), BSEQ-sc (bulk sequence single-cell (Baron et al., 2016)), CIBERSORTx ((Newman et al., 2019)).

TABLE 4 Advantages and pitfalls of typical methods for batch effect correction and normalization.

Method Advantages Pitfalls

ComBat Corrects for known and unknown batch effects May not work well with highly variable genes

fastMNN Handles analysis between two datasets and better accuracy Lacks explainability

Seurat 3 Integrated with clustering and downstream analyses May introduce unwanted sources of variation

Harmony Corrects for batch effects while preserving biological signal Requires careful selection of parameters

scMerge Handles batch effects and integrates data from multiple batches Performance may depend on the number of clusters in each batch

LIGER Handles batch effects and normalization for unknown cell types Requires a comparatively long runtime
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4.2.1 Less power in identifying eQTLs
sc-eQTL mapping provides a detailed annotation of the eQTL

effects across diverse cell types and cell states, enabling a better
interpretation of the context-specific role of individual genetic
variants (Cuomo et al., 2020b). However, owing to increased
experimental noise, sc-eQTL mapping has lower power to
discover eQTLs compared to bulk RNA-seq data. Thus, scRNA-
seq data require larger sample sizes to identify the same number of
eQTLs as bulk data (Sarkar et al., 2019). For instance, scRNA-seq
studies by and Perez et al., 2022 identified less than 15 cell types,
whereas Ota et al., 2021 identified 28 cell types in bulk RNA-seq data
(Ota et al., 2021; Perez et al., 2022; Yazar et al., 2022). As a result, if
the same sample size is used for scRNA-seq, a lower number of cis-
eQTLs will be detected in scRNA-seq data compared to bulk data.

4.2.2 High cost of scRNA sequencing
The second limitation of the sc-eQTL study is the high cost

associated with scRNA-seq, which is a relatively expensive
method for gene expression analysis. While a typical bulk
RNA-sequencing experiment requires up to 20 million
sequencing reads per sample, scRNA-seq needs a much higher
coverage, typically 50,000 to 150,000 reads per cell. A simple
scRNA-seq experiment would include thousands of cells, with
hundreds of thousands of reads. For example, to detect one
thousand reads per cell, it needs to detect 50–150 million
reads per sample, where the number of reads captured in
scRNA-seq is 2.5–7.5 times larger than that in bulk RNA-seq.
Therefore, scRNA-seq needs much more memory and storage
space than bulk RNA-seq experiments.

4.2.3 Noise in the scRNA-seq dataset
scRNA-seq data are high dimensional and complex. When

compared to traditional bulk RNA-seq, scRNA-seq needs to
amplify genetic material in each cell to meet the requirements
of sequencing platforms. The amplification processes bring many
technical problems, such as a notable amplification bias and low
genome coverage in DNA amplification, so the clustering and
homogenization analysis strategies used in bulk RNA-seq cannot
be used directly in scRNA-seq data analyses. As a result, there are
many differences in various cells and platforms, and library sizes
vary greatly between each other. So, there is much more noises in
scRNA-seq data, which demand a series of pretreatment steps
before the scRNA-seq data analysis.

4.3 Strategies to overcome the limitations of
scRNA-seq in mapping eQTLs

4.3.1 Decreasing the cost of scRNA-seq
One of the main limitations of scRNA-seq is its high cost.

However, with the development of cost-effective multiplexed
workflows, that limitation has been significantly mitigated,
enabling a broader adoption of population-scale scRNA-seq
and cell-type-specific eQTL studies (van der Wijst et al., 2018;
Zhang et al., 2018; Cuomo et al., 2020a). Through a series of
simulations, Igor M. et al. demonstrated that by increasing the
sample size and number of cells per individual while decreasing
coverage, it was possible to reduce the cost of the scRNA-seq

experiment by half (or even more), while maintaining the same
statistical power. Furthermore, they provided a practical
guideline for designing cell-type-specific eQTLs (Mandric
et al., 2020).

4.3.2 Developing methods for deconvoluting bulk
RNA-seq signals into different cell types

The high cost of single-cell transcriptomic sequencing has led
to the development of several deconvolution methods to estimate
the cell-type level gene expression from the bulk mRNA
expression. These deconvolution methods, such as
DeconRNAseq (Gong and Szustakowski, 2013), CIBERSORT
(Newman et al., 2015), CIBERSORTx (Newman et al., 2019),
BSEQ-sc (Baron et al., 2016), TIMER (Li et al., 2016), MuSiC
(Qin et al., 2021), DSA (Zhong et al., 2013), and MMAD (Liebner
et al., 2014), have been compared and discussed in recent
literature (Avila Cobos et al., 2020; Jin and Liu, 2020). For
instance, CIBERSORTx extends CIBERSORT to infer cell-
type-specific gene expression profiles without physical cell
isolation. Detailed information on the deconvolution methods
is listed in Table 3. These tools are highly useful in re-analyzing
both existing and new bulk RNA-seq datasets to identify and
interpret the role of cell-type-specific eQTLs in complex diseases.
The most widely used bulk deconvolution methods (i.e., OLS,
nnls, RLR, FARDEEP, and CIBERSORT) and the three methods
that use the scRNA-seq data as a reference (i.e., DWLS, MuSiC,
and SCDC) achieved median RMSE values lower than 0.05 (Avila
Cobos et al., 2020).

4.3.3 Batch effect correction and normalization to
reduce high technical noise in scRNA-seq

Reducing high technical noise in scRNA-seq data remains a
challenge. The noise can arise from differences in the sequencing
platform, sequencing depth, amplification bias, RNA capture
efficiency, and dropout events. Current noise reduction
methods for scRNA-seq data include correcting the batch
effect and normalization of the sequencing data. Recently, a
comprehensive study evaluated 28 noise reduction methods
and tools using 55 real and simulated datasets (Chu et al.,
2022). However, it was noted that no single method can be
used for all scRNA-seq experiments. The advantages and
pitfalls of typical methods for batch effect correction and
normalization are listed in Table 4. Therefore, the selection of
an appropriate method needs caution and depends on the study
design. Additionally, increasing the sample size is a feasible
strategy for reducing experimental noise in scRNA-seq.

5 Conclusion and future directions

In conclusion, this review provided an overview of the recent
advances in the study of the genetic regulation of gene expression
through single-cell eQTL mapping. We also discussed how to
perform sc-eQTL mapping and the advantages of scRNA-seq for
sc-eQTLmapping and its challenges and limitations.While sc-eQTL
analysis is still in its infancy stage, it offers great potential for
advancing our understanding of the genetic regulation of gene
expression.
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In future, the advent of single-cell transcriptomics will lead to
significant advancements in the understanding of the genetic
regulation of gene expression. sc-eQTL studies have revealed
many previously undetected cell-type-specific eQTLs that provide
new insights into disease biology. With the decrease in single-cell
transcriptomic sequencing costs, sc-eQTL studies will identify new
genetic variants that regulate gene expression. Furthermore, the
integration of QTL signals from multi-omics at the single-cell level
and spatial data can improve the resolution of gene regulation at
different omics levels.
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