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Intraoperative
electrophysiological monitoring
determines the final electrode
position for pallidal stimulation in
dystonia patients
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Background: Bilateral deep brain stimulation (DBS) of the globus pallidus internus
(GPi) is an effective treatment for refractory dystonia. Neuroradiological target and
stimulation electrode trajectory planning with intraoperative microelectrode
recordings (MER) and stimulation are used. With improving neuroradiological
techniques, the need for MER is in dispute mainly because of the suspected risk
of hemorrhage and the impact on clinical post DBS outcome.
Objective: The aim of the study is to compare the preplanned GPi electrode
trajectories with final trajectories selected for electrode implantation after
electrophysiological monitoring and to discuss the factors potentially
responsible for differences between preplanned and final trajectories. Finally, the
potential association between the final trajectory selected for electrode
implantation and clinical outcome will be analyzed.
Methods: Forty patients underwent bilateral GPi DBS (right-sided implants first) for
refractory dystonia. The relationship between preplanned and final trajectories
(MicroDrive system) was correlated with patient (gender, age, dystonia type and
duration) and surgery characteristics (anesthesia type, postoperative
pneumocephalus) and clinical outcome measured using CGI (Clinical Global
Impression parameter). The correlation between the preplanned and final
trajectories together with CGI was compared between patients 1–20 and 21–40
for the learning curve effect.
Results: The trajectory selected for definitive electrode implantation matched the
preplanned trajectory in 72.5% and 70% on the right and left side respectively; 55%
had bilateral definitive electrodes implanted along the preplanned trajectories.
Statistical analysis did not confirm any of the studied factors as predictor of the
difference between the preplanned and final trajectories. Also no association
between CGI and final trajectory selected for electrode implantation in the
right/left hemisphere has been proven. The percentages of final electrodes
implanted along the preplanned trajectory (the correlation between anatomical
Abbreviations

AC-PC, anterior commissure-posterior commissure (intercommissural line); AS, analgosedation; CI,
confidence interval; CGI, clinical global impression; CT, computer tomography; DBS, deep brain
stimulation; GA, general anesthesia; GABA, gamma-aminobutyric acid; GPi, globus pallidus internus; GPe,
globus pallidus externus; GDPR, general data protection regulation; IR FSE MRI, inversion recovery fast
spin echo magnetic resonance imaging; MER, microelectrode recordings; MRI, magnetic resonance imaging;
NLA, neuroleptanalgesia; OR, odds ratio; TIVA, total intravenous anesthesia; 3D GE MPR, three-
dimensional gradient echo multiplanar reconstruction.
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planning and intraoperative electrophysiology results) did not differ between patients 1–20
and 21–40. Similarly, there were no statistically significant differences in CGI (clinical
outcome) between patients 1–20 and 21–40.
Conclusion: The final trajectory selected after electrophysiological study differed from the
preplanned trajectory in a significant percentage of patients. No predictor of this difference
was identified. The anatomo-electrophysiological difference was not predictive of the
clinical outcome (as measured using CGI parameter).
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Introduction

Dystonia is a movement disorder characterized by sustained or

intermittent muscle contractions causing abnormal and often

repetitive movements or postures or both. Dystonia is often

initiated or worsened by voluntary action and associated with

overflow muscle activation (1). The pathophysiology includes a

loss of inhibition within the sensorimotor circuitry, disrupted

sensorimotor integration, and maladaptive homeostatic plasticity

of several brain areas (2).

For some cases of dystonia, effective medical treatment is not

available. Bilateral pallidal (globus pallidus internus—GPi) deep

brain stimulation (DBS) has become a mainstay of therapy for

refractory dystonia. Bilateral GPi DBS is an effective treatment

for generalized, segmental, and focal isolated (non-

neurodegenerative) dystonia (3–5). Tardive dystonia may also

respond to GPi DBS (6). In contrast to Parkinson’s disease or

tremor, therapeutic responses in dystonia are delayed by weeks

or months, making it difficult to set the stimulation parameters.

The surgical success and clinical benefits of stimulation depend

on several factors, including proper patient selection, absence of

fixed contractures, and dystonia type. Correct lead placement is

the neurosurgical key point for treatment success (7). For the

precise implantation of the stimulation electrode, a combination

of neuroradiological target and stereotactic trajectory planning

with intraoperative electrophysiology—microelectrode recordings

(MER) using parallel simultaneously or sequentially implanted

electrodes and intraoperative stimulation is traditionally used (8).

However, with the progress in imaging techniques, the need for

electrophysiological monitoring for target confirmation is under

discussion, mainly because of the prolonged surgical times and

potentially increased bleeding risk (9). The first aim of the paper

is to analyze the correlation between the preplanned trajectory

for GPi stimulation based on a presurgical neuroradiological

study and the final trajectory for definitive electrode implantation

intraoperatively selected after electrophysiological monitoring.

The second aim is to study the factors potentially responsible for

the difference between preplanned and final trajectories for

definitive electrode implantation: patient (gender, age), disease

(dystonia duration and type) (10), and surgical procedure

characteristics. The next study aim was to analyze the

relationship between increased experience and the correlation

between the preplanned and final trajectory for definitive

electrode implantation. It has been assumed that as the number
02
of patients operated on by a stable surgical team increases, the

correlation between anatomical and electrophysiological targets

would improve because of the gained experience (“learning curve

effect”).

Finally, an attempt will be made to correlate the selected

trajectory for electrode implantation with clinical outcome as

(measured using Clinical Global Impression parameter).
Materials and methods

A group of 40 consecutive patients who underwent bilateral

implantation of GPi DBS electrodes using frame-based stereotaxy

with intraoperative MER and stimulation for different types of

dystonia between 2009 (initiation of GPi DBS program for

dystonia patients) and 2020 was studied. All of the patients

signed a GPDR consent form according to the European Union

regulations pertaining the retention and use of data for clinical

research databases. Because the study was a retrospective analysis

of prospectively collected clinical data with explicit approval from

each included patient not influencing the treatment mode, the

approval of the ethics committee was not necessary. No

interventions or study-specific procedures were performed. The

data were retrospectively collected from a prospectively

constructed database of a specialized movement disorder center

in a university hospital providing referrals for surgery and

postoperative follow-up care. All the surgeries were performed

using frame-based techniques (MRI-compatible ceramic frame

Leibinger, Zamorano Dujovny stereotactic system Inomed,

MicroDrive system Medtronic). Depending on the dystonia

severity, the implantations were performed either under general

anesthesia (GA) or using neuroleptanalgesia with local anesthesia

(NLA).

The imaging protocol included T2 fat-sat in the axial and

coronal planes, IR FSE MRI, and postcontrast 3D GE MPR T1

WI. The image sets were merged using stereotactic planning

software Praezis Plus, Tatramed Slovakia. The initial coordinates

for GPi were defined in reference to the intercommissural (AC-

PC) line (19–21 mm laterally from the midline, 2.5 mm in front

of the AC-PC midpoint, and 5 mm below the AC-PC line). The

coordinates were then modified to the visible contours of GPi on

the IR FSE MRI medial to the lamina medullaris interna when

visible and in relation to the dorsolateral optic tract, with the

lateral and vertical target coordinates matching the dorsolateral
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border of the optic tract. This point was approximately 2–3 mm

anterior to the pallidocapsular border. Attention was also paid to

the direction of the trajectory (approximately 60 degrees from

the AC-PC line in the sagittal plane and ideally in parallel to the

midsagittal plane) avoiding passing the electrodes through the

ventricles and blood vessels.

The MicroDrive system (Medtronic, USA) enabled the

simultaneous implantation of five parallel microelectrodes. The

trajectory defined by the central port of the system is identical to

the trajectory based on neuroradiological planning. The

remaining 4 ports were marked anterior (2.5 mm anterior to

central), lateral (2.5 mm lateral), medial (2.5 mm medial), and

posterior (2.5 mm posterior). For microelectrode monitoring

during GPi, 4 ports (central, anterior, lateral, and medial) were

routinely used. The posterior trajectory was not used because of

the expected target proximity to the internal capsule with

potential side effect during both intraoperative and chronic

stimulation. MER started 10 mm above the anatomical target.

Microelectrodes were advanced in 1 mm steps until 5 mm above

the anatomical target, and then in 0.5 mm steps. The globus

pallidus externus (GPe) could be delineated from the dorsal

putamen by an increase in multi-unit firing activity. During

further microelectrode advancement, the medial medullary

lamina separating the GPe from the GPi with a decrease in

electrical activity (thickness 1–2 mm) was reached. The GPi was

usually more densely packed with neurons, reflected by more

intense multi-unit activity than in GPe. In dystonic patients,

bursting and pausing activities were frequently observed in the

GPi. The bottom of the GPi was recognized by a sudden

decrease in background noise. In GPe and GPi, short and long

pauses can occur during MER, with fewer pauses occurring in

the GPi, which possesses a more tonic pattern. The GPe cells can

also manifest intermittent bursting patterns. Border cells are

commonly encountered between the GPe and GPi, inside the

GPi (laminae), or on the posterior or ventral border of the GPi.

Spontaneous discharge rates of GPi neurons in dystonia were

similar to those of GPe neurons; the two nuclei must be

distinguished by neuronal discharge patterns rather than rates (8,

11, 12). After MER, stimulation is performed using the electrodes

with the best records with the longest and most robust GPi

activity recorded (more intense multi-unit activity with bursting

and pausing activities) as decided by the electrophysiology

monitoring expert in consensus with the operating surgeon. The

main aim of intraoperative stimulation was to determine the

thresholds for stimulation-induced adverse events (visual,

capsular). The type of anesthesia was determined before surgery,

following consensus between the anesthesia team, the movement

disorder specialist responsible for the intraoperative monitoring,

and the neurosurgeon. The use of anesthesia drugs and dosage

were tailored individually to the patient’s clinical status. In

general, the use of benzodiazepines was avoided. Principally,

there were two options: total intravenous anesthesia (TIVA—

general anesthesia) and analgosedation (AS)—neuroleptanalgesia

(NLA). Premedication at night before surgery consists of

alprazolam (0.25–0.5 mg tbl.) and on the day of the procedure

alprazolam (0.25–0.5 mg tbl.) and paracetamol 1,000 mg tbl, For
Frontiers in Surgery 03
TIVA, intravenous induction with a combination propofol (1–

2 mg/kg; 1% MCT/LCT; Fresenius Kabi GmbH; Germany),

sufentanil (10–20 mcg; Sufentanil Torrex; Chiesi Pharmaceuticals

GmbH; Austria) and atracurium (0.5 mg/kg; Atracurium; AS

Kalcex, Latvia) was followed by anesthesia maintenance with

propofol 2% (6–12 mg/kg/h) and additional sufentanil as needed.

For periprocedural AS midazolam and sufentanil (as needed)

were used.

The right-sided electrode was implanted first in all patients.

After the implantation of both electrodes and wound closure,

stereotactic CT was performed to verify electrode positions and

exclude complications. The pulse generator and connecting cable

implantations were performed after postoperative CT study

completion and analysis. The MicroDrive ports selected for

definitive electrode implantation on both right and left side were

recorded in the surgical report.

The factors characterizing the patient (gender and age),

dystonia (type and duration) and surgical aspects (thickness of

intracranial air on postoperative CT potentially indicating the

degree of brain shift and any history of previous lesional

intracranial surgery) were extracted from hospital and movement

center databases. To evaluate the impact of the team experience

on the correlation between the planned and finally selected

trajectory for the definitive electrode implantation, the studied

group of 40 patients was divided into two subgroups: Group 1

(Patients 1–20) and Group 2 (Patients 21–40). The percentages

of final electrodes implanted as related to the MicroDrive ports

was compared between both groups for both the right and left

sides separately.

The final clinical outcome was (due to the fact, that the studied

group included four dystonia types) defined using the modified

Clinical Global Impression scale. Compared to the clinical status

before surgery, this patient’s condition was: 1 = very much

improved since the initiation of treatment; 2 = much improved;

3 = minimally improved; 4 = no change from baseline (the

initiation of treatment); 5 = minimally worse; 6 = much worse;

7 = very much worse since the initiation of treatment (13).

For the descriptive statistics, continuous variables were

represented by median, 25th percentile, 75th percentile, and

minimum and maximum values, or by median, minimum/

maximum values, mean and standard deviation (SD) for the

learning curve study. Binary (qualitative) variables were

represented by absolute numbers and percentages. McNemar’s

test was used to determine whether there was a statistically

significant difference in the MicroDrive ports used for definitive

electrode implantation between the right and left hemispheres.

Wilcoxon paired test was used to test the difference in the

thickness of postoperative air between the right and left

hemispheres. The study of the potential predictors of the final

electrode position was performed for the right-brain and left-

brain hemispheres separately. All predictors carrying electrode

position information were descriptively summarized and

compared using Fisher’s exact test. A binary logistic regression

model was used to model the final electrode position for the

right or left hemisphere. In addition to the odds ratio (OR), the

tables for one-dimensional models also show a 95% confidence
frontiersin.org
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interval (CI) and the corresponding p values. The software R 3.6.0

and software IBM SPSS Statistics 26 were used. All tests were

performed at a significance level of p = .05.
Results

The clinical characteristics of the included patients are

summarized in Table 1.

The distribution of the MicroDrive ports selected for final

electrode implantation for both right and left brain hemispheres

is presented in Table 2.

No hemorrhagic complication requiring surgical treatment was

observed. In one patient, two small asymptomatic

intraparenchymal hematomas (less than 8 mm) along the right

GPi electrode in the white matter were found on postoperative

CT. In another two patients, subarachnoid hemorrhage was

found in the vicinity of electrode entry into the brain (also not

requiring surgery). The incidence of symptomatic hemorrhagic

complications was 0%, and the incidence of asymptomatic

bleedings detectable on postoperative CT was 3.75% per electrode.

The majority of the electrodes were implanted in the anatomic

trajectory—the central port of the MicroDrive system—72.5% on

the right side and 70.0% on the left side, followed by medial and

anterior positions. In 22 patients (55%), central electrodes were

bilaterally implanted. A trajectory other than the anatomical

(central port of the MicroDrive system) in both hemispheres was

used in 5 (12.5%) patients. In all patients the selected trajectory

for definitive electrode implantation reflected the longest and the
TABLE 1 Patient characteristics.

Gender n (%)
Male 26 (65.0%)

Female 14 (35.0%)

Dystonia type n (%)
Focal dystonia 13 (32.5%)

Generalised dystonia 17 (42.5%)

Multifocal dystonia 2 (5.0%)

Segmental dystonia 8 (20.0%)

Age at surgery [years]
Median (25th percentile–75th percentile) 43.0 (31.8–51.3)

Minimum–maximum 10.0–69.0

Duration of dystonia [years]
Median (25th percentile–75th percentile) 11.5 (5.0–26.0)

Minimum–maximum 1.0–38.0

TABLE 2 Final electrode position for right- and left-brain hemisphere as rela

Definitive electrode position Right hemisp

n
Central 29

Anterior 5

Lateral 1

Medial 5

Frontiers in Surgery 04
most robust MER even after intraoperative stimulation. In other

words no adverse stimulation induced effects requiring trajectory

change from that with the best MER were observed. There was no

statistically significant difference among the frequencies of trajectories

between the right and left hemispheres (McNemar’s test p = .998).

In 40% of patients, GA (TIVA) was required; local anesthesia

with sedation was sufficient in 60% of patients. The position of

the definitive electrodes in the right and left hemispheres for GA

and AS (NLA) is summarized in Table 3. There were no adverse

events associated with the type of anesthesia selected, with one

exception of poorly controllable restlessness with fixation screw

breakage immediately after implantation of the left (second

implanted) final GPi electrode requiring quick surgery completion,

stereotactic frame removal, and a CT scan that excluded surgical

complications and proved the correct position of the final electrode.

The maximum thickness of frontal pneumocephalus in mm

was measured on the postoperative CT scans (Table 4).

No difference in the thickness of frontal pneumocephalus

between the right and left side was found (p = .258). Table 5

summarizes the potential predictors of the difference between the

preplanned and final electrode trajectories for the right and left

hemispheres. No statistically significant difference (contingency

tables) was demonstrated between patients with the final

electrode implanted along the preplanned trajectory (central port

of the MicroDrive system) and patients with the final electrode

in other positions for any factors. Similarly, there is no

association between CGI (clinical outcome) and final trajectory

selected for electrode implantation (MicroDrive system) in the

right/left hemisphere. From the point of anatomo-

electrophysiological correlation there was no statistically

significant difference in the frequency of CGI categories between

the central (anatomical) trajectories or trajectories modified after

MER and intraoperative stimulation.

A one-dimensional binary logistic regression model confirmed

the data from the contingency tables. All p values were greater than

the significance level of p = .05. No statistically significant effect was

proven for any of the studied variables on the final electrode

position as defined by the MicroDrive system ports for each

hemisphere (Table 6).

For the CGI variable, we have selected category 4 as the

reference category. There was no statistically significant difference

between the reference category and the other categories in the

final electrode placement on the left or right hemisphere.

Table 7 shows the distribution of right-sided GPi electrodes as

related to the MicroDrive system ports for Group 1 (Patients 1–20)

and Group 2 (Patients 21–40).
ted to MicroDrive ports.

here Left hemisphere

% n %
72.5% 28 70.0%

12.5% 4 10.0%

2.5% 1 2.5%

12.5% 7 17.5%
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TABLE 3 Final electrode position for right- and left-brain hemisphere in general anaesthesia (GA) and neuroleptanalgesia (NLA).

Electrode position MicroDrive ports GA (n = 16) NLA (n = 24)

R hemisphere L hemisphere R hemisphere L hemisphere

n (%) n (%) n (%) n (%)
Central 12 (75.0%) 11 (68.8%) 17 (70.8%) 17 (70.8%)

Anterior 3 (18.8%) 2 (12.5%) 2 (8.3%) 2 (8.3%)

Lateral 0 (0.0%) 0 (0.0%) 1 (4.2%) 1 (4.2%)

Medial 1 (6.3%) 3 (18.8%) 4 (16.7%) 4 (16.7%)

TABLE 4 Intracranial pneumocephalus thickness.

Intracranial air on the right hemisphere [mm]
Median (25th percentile–75th percentile) 5.0 (1.0–7.0)

Minimum–maximum 0.0–20.0

Intracranial air on the left hemisphere [mm]
Median (25th percentile–75th percentile) 5.0 (1.0–7.0)

Minimum–maximum 0.0–17.0

Baláž et al. 10.3389/fsurg.2023.1206721
The percentage of central electrodes is slightly higher in Group 2

(70% Group 1, 75% Group 2). However, the p value of Fisher’s exact

test is >.999, therefore the statistically significant difference in the

distribution of electrodes between both groups has not been confirmed.

Table 8 shows the distribution of left-sided GPi electrodes

(second implanted) as related to the MicroDrive system ports for

Group 1 and 2.

Although the percentage of central electrodes is higher in

Group 2 (65% Group 1, 75% Group 2), the p value of Fisher’s

exact test is.682. Therefore, the statistically significant difference

in the distribution of electrodes between both groups has not

been confirmed for the left hemisphere.

The summary and comparison of demographic, clinical, and

surgical characteristics of both groups are summarized in Table 9

(categorical variables) and Table 10 (continuous variables). For

categorical variables, Fisher’s test did not prove a statistically

significant difference between Groups 1 and 2 for any of the studied

parameters. It is also important to note that there were no statistically

significant differences in CGI between patients 1–20 and 21–40.

For continuous variables according to the results of the Mann-

Whitney test, the patients in Group 2 were significantly younger

than in Group 1 (p = .041).
Discussion

General remarks

Bilateral GPi stimulation is currently the preferred treatmentmode

in themajorityof patientswith refractory dystonia indicated forDBS.A

multicentric randomized study of bilateral GPi stimulation for

primarily generalized or segmental dystonia confirmed a significantly

better improvement at the 3-month follow-up visit in the surgical

group (39.4%) than in controls (4.3%) (3). The target and electrode

trajectory is traditionally determined using a combination of

neuroradiological planning, intraoperative electrophysiological
Frontiers in Surgery 05
monitoring (MER), and response to the test stimulation. The main

points in the discussion about the role of intraoperative

electrophysiological monitoring are the potentially higher risk of

hemorrhagic complications, the difference between the preplanned

and final trajectory for definitive electrode implantation and the

responsible factors, and the association between clinical outcome and

the use of intraoperative electrophysiology.
Hemorrhagic complications

The problems with the potential association between MER and

hemorrhagic complications have been extensively studied. Sansur

et al. reported a higher incidence of hemorrhage in patients with

MER (3.40%) than in patients without MER (0.75%), but the

reported difference was not statistically significant. The risk of

symptomatic hemorrhage was 1.2% and the risk of permanent

neurological deficit was 0.7%. Parkinson’s disease was reported as

one of the risk factors of postoperative hemorrhage (14). When

considering the topic of the paper it is important to note that

according to Binder et al., the incidence of hemorrhagic

complications is higher in pallidal stimulation (6.7% from all

electrodes) than in subthalamic stimulation (2.5%) (15). In an

extensive metanalysis combined with their own series of 214

patients, Zrinzo et al. reported that the incidence of symptomatic

hemorrhage and hemorrhage leading to permanent deficit in

studies adopting an image-guided and image-verified approach

without MER was significantly lower than that reported with other

techniques. In the series of 214 patients operated on by the authors,

the incidence of hemorrhages in dystonic patients was 0%. DBS for

dystonia was associated with lower surgical risks than DBS for

Parkinson’s disease (9). On the other side Bezchlibnyk et al. report

the rate of serious complications at 6.9% for MER-guided DBS lead

placement and 9.4% for intraoperative MRI-guided DBS lead

placement (16). In our study, the incidence of asymptomatic small

hemorrhages not affecting deep brain structures was 3.75% (per

electrode), and the incidence of symptomatic hemorrhages was 0%,

which matches the preceding data.
The difference between the preplanned and
final target for electrode implantation

The main fact supporting the use of MER is the difference

between the preplanned (anatomical) trajectory and final
frontiersin.org
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TABLE 5 Location of final electrodes on the right and left hemisphere.

Variable Central final electrode position
(MicroDrive system) right hemisphere

Central final electrode position (MicroDrive
system) left hemisphere

Yes No Yes No

29 (72.5%) 11 (27.5%) 28 (70.0%) 12 (30.0%)

Gender
Female 10 (34.5%) 4 (36.4%) 9 (32.1%) 5 (41.7%)

Male 19 (65.5%) 7 (63.6%) 19 (67.9%) 7 (58.3%)

p value > .999 p value = .720

Age category [years]
≤20 3 (10.3%) 0 (0.0%) 3 (10.7%) 0 (0.0%)

21–40 8 (27.6%) 6 (54.5%) 9 (32.1%) 5 (41.7%)

41–60 14 (48.3%) 4 (36.4%) 14 (50.0%) 4 (33.3%)

>60 4 (13.8%) 1 (9.1%) 2 (7.1%) 3 (25.0%)

p value = .476 p value = .290

Duration of dystonia [years]
≤10 12 (41.4%) 5 (45.5%) 12 (42.9%) 5 (41.7%)

11–20 8 (27.6%) 3 (27.3%) 9 (32.1%) 2 (16.7%)

21–30 5 (17.2%) 3 (27.3%) 5 (17.9%) 3 (25.0%)

>30 4 (13.8%) 0 (0.0%) 2 (7.1%) 2 (16.7%)

p value = .723 p value = .674

Previous surgery
Yes 2 (6.9%) 1 (9.1%) 2 (7.1%) 1 (8.3%)

No 27 (93.1%) 10 (90.9%) 26 (92.9%) 11 (91.7%)

p value > .999 p value > .999

Dystonia type
Focal 10 (34.5%) 3 (27.3%) 9 (32.1%) 4 (33.3%)

Generalised 14 (48.3%) 3 (27.3%) 12 (42.9%) 5 (41.7%)

Multifocal 1 (3.4%) 1 (9.1%) 1 (3.6%) 1 (8.3%)

Segmental 4 (13.8%) 4 (36.4%) 6 (21.4%) 2 (16.7%)

p value = .279 p value > .999

Intracranial air in the right hemisphere
0 5 (17.2%) 2 (18.2%) 5 (17.9%) 2 (16.7%)

1–5 10 (34.5%) 5 (45.5%) 11 (39.3%) 4 (33.3%)

6–10 9 (31.0%) 4 (36.4%) 8 (28.6%) 5 (41.7%)

>10 5 (17.2%) 0 (0.0%) 4 (14.3%) 1 (8.3%)

p value = .594 p value = .923

Intracranial air in the left hemisphere
0 6 (20.7%) 2 (18.2%) 5 (17.9%) 3 (25.0%)

1–5 11 (37.9%) 3 (27.3%) 10 (35.7%) 4 (33.3%)

6–10 9 (31.0%) 6 (54.5%) 11 (39.3%) 4 (33.3%)

>10 3 (10.3%) 0 (0.0%) 2 (7.1%) 1 (8.3%)

p value = .620 p value = .955

Anaesthesia
General anaesthesia 12 (41.4%) 4 (36.4%) 11 (39.3%) 5 (41.7%)

Neuroleptanalgesia 17 (58.6%) 7 (63.6%) 17 (60.7%) 7 (58.3%)

p value > .999 p value > .999

CGI
1 3 (10.3%) 3 (27.3%) 2 (7.1%) 4 (33.3%)

2 16 (55.2%) 4 (36.4%) 16 (57.1%) 4 (33.3%)

3 6 (20.7%) 2 (18.2%) 6 (21.4%) 2 (16.7%)

4 3 (10.3%) 2 (18.2%) 3 (10.7%) 2 (16.7%)

5 1 (3.4%) 0 (0.0%) 1 (3.6%) 0 (0.0%)

p value = .612 p value = .230
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TABLE 6 One-dimensional binary logistic regression study for analysing factors with potential importance for the final electrode position and CGI
categories.

Predictor Other than central electrode position (R) Other than central electrode position (L)

OR 95% CI p value OR 95% CI p value
Gender (M/F) 0.921 (0.217; 3.917) .911 0.663 (0.164; 2.676) .564

Age 0.986 (0.939; 1.034) .560 1.026 (0.977; 1.078) .301

Duration of dystonia 0.996 (0.936; 1.060) .897 1.030 (0.970; 1.093) .332

Previous surgery (Y/N) 1.350 (0.110; 16.574) .815 1.182 (0.097; 14.425) .896

Dystonia type
Generalized/focal 0.714 (0.119; 4.297) .713 0.938 (0.194; 4.522) .936

Multifocal/focal 3.333 (0.157; 70.910) .440 2.250 (0.111; 45.725) .598

Segmental/focal 3.333 (0.502; 22.143) .213 0.750 (0.103; 5.470) .777

Intracranial air (R) 0.876 (0.730; 1.051) .154 0.999 (0.867; 1.153) .994

Intracranial air (L) 1.012 (0.885; 1.193) .725 0.998 (0.860; 1.157) .976

Anaesthesia (NLA/GA) 1.235 (0.295; 5.181) .773 0.906 (0.229; 3.585) .888

CGI
1/4 1.500 (0.136; 16.543) .741 3.000 (0.255; 35.336) .383

2/4 0.375 (0.046; 3.056) .360 0.375 (0.046; 3.056) .360

3/4 0.500 (0.045; 5.514) .571 0.500 (0.045; 5.514) .571

5/4 0.000 (0.000 ; Inf) .995 0.000 (0.000 ; Inf) .995

TABLE 7 Distribution of electrodes in the right hemisphere in group 1 and
group 2.

Patients 1–20 Patients 21–40

N (%) N (%)

Definitive electrode trajectory in the right hemisphere
Anterior 2 (10.0%) 3 (15.0%)

Central 14 (70.0%) 15 (75.0%)

Lateral 1 (5.0%) 0 (0.0%)

Medial 3 (15.0%) 2 (10.0%)

TABLE 8 Distribution of electrodes in the left hemisphere in group 1 and
group 2.

Patients 1–20 Patients 21–40

N (%) N (%)

Definitive electrode trajectory in the left hemisphere
Anterior 3 (15.0%) 1 (5.0%)

Central 13 (65.0%) 15 (75.0%)

Lateral 1 (5.0%) 0 (0.0%)

Medial 3 (15.0%) 4 (20.0%)

TABLE 9 Statistical analysis of categorical variables in group 1 and
group 2.

Patients 1–
20

Patients 21–
40

Fisher’s exact
test

Gender
Female 8 (40.0%) 6 (30.0%) .741

Male 12 (60.0%) 14 (70.0%)

Anesthesia
Central anesthesia 5 (25.0%) 11 (55.0%) .105

Neuroleptanesthesia
15 (75.0%) 9 (45.0%)

Previous surgery
Yes 3 (15.0%) 0 (0.0%) .231

No 17 (85.0%) 20 (100.0%)

Dystonia type
Focal 6 (30.0%) 7 (35.0%) .987

Generalized 9 (45.0%) 8 (40.0%)

Multifocal 1 (5.0%) 1 (5.0%)

Segmental 4 (20.0%) 4 (20.0%)

CGI
1 3 (15.0%) 3 (15.0%) .571

2 10 (50.0%) 10 (50.0%)

3 3 (15.0%) 5 (25.0%)

4 4 (20.0%) 1 (5.0%)

5 0 (0.0%) 1 (5.0%)
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trajectory for the definitive electrode implantation (MicroDrive

system port) selected after intraoperative monitoring. In our

study, the final electrode was implanted along the preplanned

(anatomical—central MicroDrive port) trajectory in 72.5% of

patients on the first implanted right side and in 70.0% of

patients on the left side, with medial (right 12.5%, left 17.5%)

and anterior (right 12.5%, left 10%) trajectories being less

frequently used. In only 55% of the patients both electrodes were

implanted along the central trajectory, and in 12.5% of patients

none of the final electrodes matched the anatomical trajectory. In

a paper by Bour et al., the percentage of central trajectories of

GPi electrodes was 64% on the first implanted left side and 50%
Frontiers in Surgery 07
on the right side, followed by lateral (right side 34%, left side

9%) and medial trajectories (right side 8%, left side 18%).

Posterior and anterior trajectories were used rarely. The trend

towards a less frequent choice for the central channel on the

right side (second implantation) was not significant (12).

In a paper by Pinsker et al., definitive electrodes were

implanted along the central trajectory in 64% of the hemispheres.

The medial trajectory was the second most frequent (20%),

followed by the anterior trajectory (9%). Posterior trajectories
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TABLE 10 Statistical analysis of continuous variables in group 1 and
group 2.

Patients 1–20 Patients 21–40 Mann-Whitney
test

Age at the time of implantation
Mean (SD) 48 (13) 37 (14) .041

Median 47 38

Min–max 30–69 10–58

Duration of dystonia [years]
Mean (SD) 17 (11) 13 (11) .151

Median 15 11

Min–max 3–36 1–38

Intracranial air in the right hemisphere
Mean (SD) 5 (6) 6 (3) .165

Median 2 6

Min–max 0–20 0–13

Intracranial air in the left hemisphere
Mean (SD) 5 (6) 5 (3) .235

Median 1 6

Min–max 0–17 0–10
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were used rarely (3.5% each). The percentage of patients with both

electrodes implanted in the central trajectory (47.6%) and the

percentage of patients with both trajectories changed after MER

and stimulation (14.3%) is comparable with our results.

Unfortunately, the authors did not present the results for each

hemisphere separately (17).

In our group, the posterior electrode trajectory was not used

because of the relationship of the electrode trajectory to the

internal capsule. Although the potential proximity of the medial

MicroDrive port trajectory to the internal capsule should be also

considered, in none of our patients with definitive electrode

implanted in the medial trajectory based on the most robust

MER data, no stimulation related capsular adverse events were

observed. The avoidance of the posterior electrode was supported

by a study by Bour et al. Although MER activity was highest at

the posterior electrode in 20% of the cases, this channel was

selected only for permanent stimulation only in two patients due

to capsular side effects (12).

The potential causes of the reported anatomo-electrophysiological

discrepancy may be intraoperative brain shift, the non-correlating

results of different targeting techniques, spatial distortion of

magnetic resonance images, anatomical variability of the target

structures, interpretations of radiological and electrophysiological

data, and possible technical inaccuracies during surgery (18–20).
The role of brain shift

According to Miyagi et al., intracranial air entry after dural

opening for the implantation of the first electrode results in

contralateral and dorsal (posterior) brain shift. After durotomy for

the second electrode implantation, equilibrium is established in a

mediolateral direction, but dorsal shift persists (21). The less

marked correlation between MRI planning and MER on the second

operative side was attributed to intraoperative cerebrospinal fluid
Frontiers in Surgery 08
loss, and subsequent subdural air influx potentially causing

posterior brain displacement more pronounced on the second side

operated on (12, 22). However, a study by Ivan et al. investigating

brain shift in various regions of the brain during DBS electrode

implantation throughout the procedure with high-field

interventional MRI did not confirm this simplifying assumption.

According to the authors, the degree of brain shift and its direction

were unpredictable. Although shifts in the pallidum and

subthalamic region ipsilateral to the burr hole averaged 0.6 mm,

which is not significant considering the fact that the diameter of the

DBS electrode is 1.2 mm, 9% of patients had over 2 mm of shift in

deep brain structures (23). The data from our study do not confirm

a significantly lower percentage of central electrodes on the left side

(second operated on). Moreover, if the cause of the difference

between anatomical and final trajectory is a posterior brain shift,

then a lower percentage of anterior electrodes could be expected on

the left side. The percentage of anterior electrodes in our group was

nearly identical for right and left hemispheres (right 12.5%, left 10%).
Other factors

Our results did not confirm the significance of age, disease

duration, dystonia type, or previous surgeries for the difference

between anatomical and final trajectory. Theoretically, in older

patients with longer disease duration, structural changes of the

target structures can be expected that could require trajectory

modification. Similarly, cerebral atrophy with larger subarachnoid

spaces create the potential for more intraoperative cerebrospinal

fluid loss with greater potential for brain shift affecting target

structures. However, the statistical analysis did not confirm this

assumption. In older patients, smaller GPi volume due to brain

atrophy was considered as one of the factors potentially

influencing both the neuroradiological target planning and

intraoperative microrecordings. This hypothesis is partially

supported by a paper by Vasques et al. The authors analyzed the

impact of GPi volume on the results of deep brain stimulation

(DBS) by comparing highly and less improved patients with

primary dystonodyskinetic syndromes. The authors showed that

the mean volume of the right and left GPi in patients showing

less response to DBS was significantly smaller than the GPi

volume of patients who responded well (24).

When implanting GPi electrodes after lesional surgery

(thalamotomies in all our patients), the anatomy may be

distorted by the surgical lesion, and less accurate anatomo-

electrophysiological correlations therefore can be expected.

However only three patients underwent bilateral GPi

implantation after unilateral thalamotomy. Although anatomical

(central MicroDrive) trajectories were used in two of them, this

small number precludes any definitive considerations.
Local versus general anesthesia

Heavy sedation or general anesthesia is sometimes needed for

patients who are unable to tolerate the procedure awake because
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of severe dystonic symptoms, but also due to psychological distress,

other forms of discomfort, or mental disability. The effect of

anesthetic drugs on MER is controversial but likely depends on

the type and dose of a particular anesthetic agent, underlying

disease severity, and surgical target. Several studies have shown

that anesthetic drugs decrease neuronal firing in patients with

dystonia (25, 26).

The depressant influence of sedative agents on neuronal

activity can partly be explained by the large amount of gamma-

aminobutyric acid (GABA) input to the target nuclei. It has been

shown that enhancement of GABAergic input alters the level and

pattern of firing activity of pallidal neurons in normal and

pathological conditions (27). General anesthesia may not only

influence the quality of MER, but also preclude the identification

of some adverse events during stimulation (e.g., flashing when

stimulating in the proximity of the optic tract). Anesthetic agents

such as benzodiazepines and propofol potentiate the inhibitory

actions of GABA with a major effect on single-cell activity. The

effect is dose dependent; however, the general consensus is to

avoid the use of benzodiazepines in DBS surgery, which was also

respected in our study group (28). Generally speaking, in DBS

surgery, remifentanil is often combined with propofol or

dexmedetomidine. Although a retrospective review by

Venkatraghavan et al. suggests a difference in spontaneous and

evoked neuronal discharges with MER performed under general

anesthesia compared with no sedation (29), it was possible to

obtain valid recordings in all included patients enabling safe

implantation of the definitive electrode. In our study the

percentage of central trajectories for each hemisphere did not

differ between the patients operated on under general anesthesia

and those with local/neuroleptanalgesia.
Learning curve

The impact of the factors responsible for the anatomo-

electrophysiological disturbance—unrecognized anatomical

variability of the target structures, interpretations of radiological

and electrophysiological data, possible technical inaccuracies

during surgery, and shortcomings of stereotactic atlases used for

indirect target planning (30) can be influenced to some degree

by the experience of the surgical team; therefore, the learning

curve must also be considered, not only in terms of surgical

complications and adverse events. Pallavaram et al. studied the

intersurgeon variability in the principal task of stereotactic

planning—the manual selection of the anterior and posterior

commissures together with the impact of this variability on the

localization of targets like the subthalamic nucleus, ventralis

intermedius nucleus, and GPi. These data also show that even

for experienced neurosurgeons, variations in selecting the AC

and the PC point result in substantial variations at the target

points. These variations are larger when residents/fellows are

included in the data set (31). Hrabovsky et al. studied the

learning curve effect in subthalamic electrode implantation

implanted by a stable surgical team. They compared the

percentage of electrodes implanted in the preplanned (central
Frontiers in Surgery 09
MicroDrive port) trajectory in patients 1–50 and 51–100 for the

right (first implanted) and left hemispheres. The results

confirmed a higher percentage of central electrodes on the first

side implanted in patients 1–50 (right 52%, left 38%). The

percentages of central electrodes in patients 51–100

substantially increased on the right (76%) and left sides (78%),

thereby confirming the learning curve effect (32). However, this

learning curve effect in GPi patients has not been confirmed.

One potential explanation is the smaller sample size. Another

explanation may be the larger volume of the target structure.

The GPi is larger (400–500 mm3) than the subthalamic nucleus

(110–150 mm3). However, the best target to treat dystonic

symptoms is the lateral posteroventral GPi (sensorimotor

territory) with the effective volume of tissue activated being

153 mm3 (24, 33).

Atlases using multimodal MRI, histology, and structural

connectivity have defined the primary motor, sensory, and

sensorimotor regions of the GPi with somatotopic organization

(upper extremities located ventral and lateral to the lower limb

area; orofacial movements located further ventral to the upper

extremities movements). The possibility of intraoperative

identification of the GPi somatotopy in individual patients

using MER and stimulation techniques has the potential to

enhance the efficacy of GPi DBS, especially in focal and

segmental dystonias, through the more precise targeting of the

stimulation electrode and directing of the stimulating current

(12, 29, 34).
Further considerations

The study did not prove the correlation between the selected

trajectory for definitive electrode implantation (central—

anatomical versus not central—modified after intraoperative

microrecording). This problem is an interesting topic for

further study with a larger pool of patients, mainly because of

the need to differentiate between the various dystonia types

with differing prognoses of GPi stimulation. The impact of

MER on clinical outcomes is not clear even in the widely

studied subthalamic stimulation for Parkinson’s disease (35–

38). The published groups of patients with GPi DBS implanted

for dystonia are much less extensive than the published studies

of Parkinson’s disease patients, with some exceptions, such as

the study by Maldonado et al. with 478 electrodes implanted,

426 for dystonic-dyskinetic syndromes and 52 for Parkinson’s

disease (39). To our knowledge, the only paper dealing with

the relation of clinical outcomes to MER results in dystonic

patients was published by Pinsker et al. The median

improvement in dystonic patients after bilateral GPi

stimulation did not differ significantly between the patients

with final electrode implanted along the central trajectory and

patients with the final trajectory modified after intraoperative

electrophysiological study (17). Although Pinsker et al. used

different criteria for outcome evaluation our results (no

significant difference in CGI between patients with final

electrode implanted along central—anatomical trajectory and
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final electrode implanted along non central trajectory selected

after electrophysiological monitoring) match their data. Two

maybe simplifying conclusions can be drawn from this result.

Should the clinical outcomes be better in patients with

electrodes implanted along non central trajectory, this

situation indicates problem with the anatomical planning.

Similarly, if the clinical outcomes are better in patients with

electrodes implanted along the central trajectory, this situation

suggests a problem with intraoperative electrophysiology (not

only because of interpretation). However, the question about

the role of intraoperative electrophysiological monitoring

including MER not only in dystonic patients can be answered

only by a well-designed study with a large numbers of

matched patients operated on by image-guided technique and

MER experts, as proposed by Bakay et al. (40).
Conclusion

The study of the intraoperative correlation between the

anatomy-based preplanned trajectory and final trajectory defined

by the MicroDrive port selected for final electrode implantation

study addresses one of the most important aspects of the

complex problem of DBS treatment in dystonia patients. Despite

meticulous presurgical planning, the final trajectory of the

MicroDrive system selected for GPi electrode implantation

differed from the preplanned (central MicroDrive port) trajectory

based on neuroradiological data in at least one brain hemisphere

in 45% of patients. The percentage of electrodes implanted along

the anatomical trajectory did not differ between the first

implanted right-brain and left-brain hemispheres. A detailed

statistical study did not confirm any of the investigated factors

(gender, age, disease duration, dystonia type, need for general

anesthesia, amount of intracranial air, electrode displacement in

the opposite hemisphere, and previous surgery) as a possible

predictor of the difference between neuroradiological and final

trajectory for each hemisphere separately. Regarding the impact

of the final trajectory selected for definitive electrode

implantation no significant difference in clinical outcome (CGI)

between patients with final electrode implanted along central—

anatomical trajectory and final electrode implanted along non

central trajectory selected after electrophysiological monitoring.

The effect of learning curve both on the anatomo-

electrophysiological correlation and the clinical outcome (CGI)

has not been shown. Despite the advances in neuroradiological

techniques and the absence of a study directly comparing clinical

outcomes of intraoperative electrophysiology and non-

intraoperative electrophysiology patients the difference between

the preplanned and final electrode positions supports the

continued use of intraoperative monitoring in GPi DBS electrode

implantation.
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