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During the last century, fluorescence microscopy has played a pivotal role in a

range of scientific discoveries. The success of fluorescence microscopy has

prevailed despite several shortcomings like measurement time, photobleaching,

temporal resolution, and specific sample preparation. To bypass these obstacles,

label-free interferometric methods have been developed. Interferometry

exploits the full wavefront information of laser light after interaction with

biological material to yield interference patterns that contain information

about structure and activity. Here, we review recent studies in interferometric

imaging of plant cells and tissues, using techniques such as biospeckle imaging,

optical coherence tomography, and digital holography. These methods enable

quantification of cell morphology and dynamic intracellular measurements over

extended periods of time. Recent investigations have showcased the potential of

interferometric techniques for precise identification of seed viability and

germination, plant diseases, plant growth and cell texture, intracellular activity

and cytoplasmic transport. We envision that further developments of these label-

free approaches, will allow for high-resolution, dynamic imaging of plants and

their organelles, ranging in scales from sub-cellular to tissue and from

milliseconds to hours.

KEYWORDS

digital holographic cell imaging, optical coherence tomography, label-free microscopy,
material transport, intereferometric imaging, plant cells and tissues, speckle imaging,
plant morphodynamics
1 Introduction

Advancement of imaging technology is essential to gain a deeper understanding of

structural and molecular organization in plants. A variety of different marker-based

imaging approaches, i.e. fluorescence microscopy, have been developed to image the

dynamical structures of living plant cells, relying on dyes and different contrast agents
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(Ovečka et al., 2018; Pain et al., 2019; Bayle et al., 2021; DeVree

et al., 2021; Ovečka et al., 2021). The unique strength of fluorescence

techniques lies in the specific markers, allowing identification of

sub-cellular structures and molecular transport of organelles

between different cellular compartments (Aniento et al., 2021).

Long-term imaging of plant tissues or individual cells is of

particular interest, enabling analyses of intra-cellular dynamics of

free vesicular diffusion or active transport by molecular motors’

interaction with the cytoskeleton (Kang et al., 2021). Additionally,

fluorescence imaging enables detection of chemical events like pH

changes (Resentini et al., 2021) and calcium signaling (Gjetting et

al., 2013) which is hard to achieve by other imaging modalities.

Thus, a precise understanding of plant activity may assist in

optimizing plant growth with consequences for e.g. sustainable

agriculture and food production.

Although many efforts have been made to elucidate plant cell

dynamics, we still lack suitable methods for long-term quantitative

visualizations of cell-growth, functionality, and how these relate to

sub-cellular transport. For this purpose, fluorescence microscopy is

essentially limited by the lack of photostable fluorescent marker

proteins, phototoxicity and the high complexity of membrane

compartments and their trafficking pathways.

By contrast, label-free optical interferometry is a non-contact

method to measure the structural dynamics of the cells in its native

environment without the requirement of markers (Zernike, 1955;

Gutiérrez-Medina, 2022). Thus, it does not require any specific

sample preparation, so there is no balancing of phototoxicity from

contrast agents with specificity (Curl et al., 2004). Instead, this

imaging method is based on contrast enhancements, due to the

phase changes of the light as a result of the relative refractive index

(RI) difference between the structure of interest and the

environment (Dyson and Allibone, 1950).

Here, we review some recent optical coherent interferometric

methods with potential application in plant research, such as

biospeckle imaging and interferometry (Zdunek et al., 2014; De la

Torre et al., 2016; Pandiselvam et al., 2020), optical coherence

tomography (Schmitt, 1999), and digital holographic microscopy

(Kim, 2010; Ebrahimi et al., 2018). Given the high sensitivity of

interferometric methods and high acquisition rates of hundreds to

thousands of frames per second, these methods are particularly

suitable to monitor fast processes in plants from macroscopic tissue

imaging to sub-microscopic scales of cells and organelles over long

time-scales.
2 Biospeckle laser imaging

Speckles arise when a coherent light source transmits through a

medium with heterogeneous internal structure or is back-scattered

from a rough surface. Due to the interference of light, a pattern of

bright and dark voxels appears at the observation plane (Goodman,

2020). When imaging biological tissues, biospeckles, will be moving

in space and time. Specifically, any chemical, physical and

physiological processes, like organelle movement, cytoplasmic
Frontiers in Plant Science 02
streaming and cell division will cause redistributions of the

biospeckle pattern and intensity distribution. Thus, this method

can be accurately used for reporting dynamics using temporal

correlation of irradiance changes. The conventional biospeckle

imaging configuration requires illumination of the sample using

divergent light from a coherent laser source and the resulting

scattered light is collected by a high speed CCD or CMOS sensor

(Figure 1A). Multiple numerical and analytical methods can be

applied for analysis of the recorded biospeckle patterns. A

numerical method for bioactivity measurement is based on

computation of the co-occurrence matrix (COM) of the time

history speckle patterns (THSP) for a region of interest (ROI)

within the sample (Oulamara et al., 1989). The COM provides

information on the temporal intensity differences. The elements in

the COM represent how many times pixels exhibit a certain

intensity difference in successive images, see Arizaga et al. (1999)

for a mathematical description of the matrix. The elements are

arranged in a square matrix with diagonal elements, representing

constant intensity values whereas non-diagonal elements represent

sample locations with changed intensity. Elements further away

from the diagonal represent increasing temporal variability of the

intensity. Hence the interpretation of the COM can be used to

estimate the sample activity changes by quantifying the spread of

non-zero elements around the principal diagonal of the matrix (see

example of a COM in Figure 1B. Computation of the inertia

moment (IM) of COM provides a quantification of activity

changes in the image. Mathematically, IM is calculated from the

sum of the multiplication of COM values by their squared distances

from the principal diagonal (Arizaga et al., 1999),

IM =o
i,j
COMi,jji − jj2 : (1)

according to this equation, a COM with only non-zero diagonal

elements has IM = 0, corresponding to zero activity. Temporal

variations in intensity lead to non-zero values away from the

diagonal, leading to larger values of IM.

To measure spatial biospeckle activity, Fuji et al. proposed to

calculate the sum of the differences between consecutive pixels from

a series of N biospeckle distributions (Fujii et al., 1985):

BA(x, y) = o
N

n=1

Pn(x, y) − Pn+1(x, y)j j
Pn(x, y) + Pn+1(x, y)

, (2)

where n is the image index for the sequence of n = 1, 2,…,N

images and Pn is the intensity value for each pixel with x and y

coordinates. This equation highlights any temporal intensity

variations in the biospeckle field. Figure 1B shows the speckle

analysis including an example of THSP, COM and bioactivity

map. In addition to the Fuji method, other algorithms have also

been used for bioactivity assessment such as speckle contrast,

generalized difference method (Arizaga et al., 2002), and temporal

laser speckle contrast analysis (Cheng and Duong, 2007).

Recently, the biospeckle imaging method has been applied in

neuroscience, dermatology and ophthalmology, e.g., monitoring
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blood flow in retina, skin and brain (Cheng and Duong, 2007; Boas

and Dunn, 2010; Abd El-Ghaffar and Khalil, 2021). In plant and

agricultural studies, biospeckle imaging has been used not only to

monitor development, but also for detection of defects and diseases,

for instance, to measure the quality of crops (Ribeiro et al., 2013;

Sujayasree et al., 2022) and changes in maturation and ripening of

vegetables and fruits (Romero et al., 2009; Arefi et al., 2016). It was

observed that biospeckle activity was changed during the maturation

process. Furthermore, biospeckle activity can provide a unique

signature of leaves, which has been employed to assess the healthy

and infected regions of a plant tissue, so that any local infection can

be distinguished from the healthy regions by different (lower)

bioactivity levels (Ansari and Nirala, 2015; Ansari et al., 2018) (see

bright-field image and activity map in Figure 1B). In a recent study,

the potential of biospeckle imaging has been shown in detection of

endophytic colonization in leaves (D’Jonsiles et al., 2020). The
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method has also been used to image bioactivity in the root and

apical hairy root tissues (Braga et al., 2009; Ribeiro et al., 2013; Schott

et al., 2020; Schott et al., 2022). Figure 1C shows the biospeckle

activity in heterogeneous hairy root culture in a cultivation assay over

time. The root apex has the highest biospeckle intensity, because of

fast cell division. However, when exposed to mechanical stress (e.g.,

thigmo-stimulation), biospeckle intensity decreases which may reflect

depolymerization of actin. But more research is needed by correlating

these interferometry data with microscopy of fluorescent actin.

Another application of biospeckle imaging in plants is the seed

germination test prior to seed selection. Early diagnosis and

treatment of seeds against pathogens minimizes the requirement

for chemical treatments in mature plants. It is, thus, important for

the quality of agricultural products (Vivas et al., 2017). Figure 1D

shows, from left to the right, the bright-field image of a seed and the

bioactivity map at 0 hrs and after 24 hrs of germination (Sutton and
D
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FIGURE 1

(A) Schematic setup of biospeckle imaging. (B) Construction of THSP matrix, an example of COM and bioactivity map [adapted from Ansari et al.
(2018)]. (C) Biospeckle activity of hairy roots after different cultivation times (Schott et al., 2020). (D) Germination of a wheat seed. Left image: Bright-
field image, right images: Bioactivity maps at 0 hrs and 24 hrs after germination (Sutton and Punja, 2017). (E) Left plot: Schematic setup of statistical
interferometry technique based on Michelson interferometer. PBS, Polarization beam-splitter; PZT, Piezoelectric transducer [adapted from Kadono
and Kobayashi (2009)], (F) Optical path changes as a result of leaf elongation. IL: Illumination light and SL: Scattered light from the leaf (Silva et al.,
2016) (G) Elongation of a Chinese chive leaf (Kadono and Kobayashi, 2009). (H) Cross-section image of an Arabidopsis leaf, acquired by OCT
technique reprinted with permission from (de Wit et al., 2020 © The Optical Society). e: Epidermal cell, m: Mesophyll cell, vb: Vascular bundle, mr:
Midrib, ad: Adaxial side, ab: Abaxial side. (I) OCT histological images of onion for normal onion tissue (top plot) and onion with bruise defects
(highlighted by white arrow in bottom plot) (Meglinski et al., 2010). (J) 3D view of OCT images of root growth in a switchgrass seed a few minutes
after emergence of roots (left) and after 21 hrs (right) (reprinted with permission from Larimer et al., 2020 © The Optical Society).
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Punja, 2017). Recently, biospeckle techniques were used to monitor:

the germination of maize seeds, contaminated with fungi and after

treatment with a bioprotector (Silva et al., 2018), the effect of

different priming treatments on seed germination (Singh et al.,

2020), the effect of temperature and initial moisture content during

soybean seed germination (Thakur et al., 2022) and sprouting

damage in wheat seeds (Sutton and Punja, 2017). A strong

correlation between the biospeckle activity and germination

percentage was seen and the results were in a good agreement

with standard germination tests. As a further application of

biospeckle imaging, (O’Callaghan et al., 2018) automatically

selected living nematodes in soil using biospeckle selective plane

illumination microscopy for studying the plant-nematode

interactions in the rhizosphere.
3 Statistical speckle
interferometric techniques

Statistical interferometric methods have emerged for mapping

of rough surface optical properties such as deformation as the

primary applications (Kadono and Toyooka, 1991; Kadono et al.,

2001). The principle behind statistical interferomentry is based on

the interference of two fully developed speckle fields instead of the

traditional approach of superimposing a reference beam reflected

from an accurate flat mirror, with a beam modulated by the sample.

In fully developed speckle fields, the phase of speckles is randomly

distributed between − p and p , resulting in a probability density

function (PDF), that is uniformly distributed. This feature is used to

measure the object’s phase. The stability of the speckle field statistics

is important for a reliable measurement which is satisfied in most

biological samples.

This method has provided continuous measurements of

elongation of roots and entire seedlings (Rathnayake et al., 2007).

The conventional optical setup for this investigation is an amplitude

division interferometer, e.g., a Michelson-type interferometer

(Figure 1E) (Wang L. et al., 2021), or a common-path

interferometer (Muthumali DeSilva et al., 2017). The latter is

based on division of light wavefront into two beams, illuminating

the sample, and collecting the two superimposed biospeckle fields.

Since any nano-scale changes in elongation causes a phase

difference in the interference pattern, the elongation rate is given

as the phase change through PDF of the biospeckle phase. To this

end, the plant is fixed using a holder (see Figure 1F) and the in-

plane displacement relative to the fixed point is measured: DL =
lDj

4psin   q , where l is the wavelength of the laser, q is the angle between

the illumination beam and the normal to the detection plane, and

Dj, represents the phase difference between the two interfering

biospeckle fields. This method has been used for multiple

applications in plants: instantaneous tracking of nano-scale

growth fluctuations of leaves under stress (see Figure 1G)

(Muthumali DeSilva et al., 2017), monitoring both the quality of

pine seedlings through root elongation rate (Wang L. et al., 2021)

and the short-term effects of exogenous plant hormones on rice
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(Kabir et al., 2020), studying the nano-scale growth behavior of

fungi-infected (Rathnayake et al., 2008) and uninfected seedlings

under ozone exposure at different concentrations (Rathnayake et al.,

2007). The authors observed that fungal infection results in higher

root growth.
4 Optical coherence tomography

Optical coherence tomography (OCT) provides cross-sectional

images of the internal structure of biological tissues with axial

resolution of 5 − 7 mm (Kirby et al., 2022). For OCT, a light beam

from a broadband light source is divided into a reference and a

sample beam. The back-scattered light from the sample, interferes

with the reference and the resulting pattern is used to calculate the

reflectivity versus depth profile of the tissue samples in vivo

(Podoleanu, 2012). The OCT technique enables digital

quantitative phenotyping with high sensitivity in plant anatomy,

plant disease identification, and qualification of the agricultural

products (Li et al., 2022a, Li et al., 2022b). The method has a high

potential for identification of seed viability during an early stage of

germination and thereby facilitates seed selection (Lim et al., 2019;

De Silva et al., 2022). Biospeckle OCT has been used to screen for

internal structural changes of pea seeds during germination process

(Li X. et al., 2022), the effect of Zn concentration on lentil seed

germination and seedling growth (De Silva et al., 2021), detection of

microstructural changes in leaves during senescence (Anna et al.,

2019) and measurements of the RI and thickness of leaves (de Wit

et al., 2020). Figure 1H shows the central cross-section of an

infiltrated Arabidopsis leaf wherein cell layers, epidermal cells,

mesophyll cells, as well as vascular bundles can be seen. OCT has

additionally been utilized for non-invasive in vivo detection of

internal defects and structures of onions. Figures 1I demonstrates

the cross-sections of healthy onion sample (top image) and onion

with bruise defects (bottom image) (Meglinski et al., 2010).

Moreover, OCT can be used to study root growth in soil and

understand the relationship between roots, nutrients, and

pathogens (Larimer et al., 2020). The emergence of roots in

switchgrass seed and the root growth after 21 hrs are presented

in Figure 1J.
5 Digital holographic microscopy

Digital holographic microscopy (DHM) is a another label-free

quantitative phase imaging approach, which builds on the use of the

interference between a reference light beam and an object beam,

employing an interferometer such as Mach-Zehnder configuration

(Anand et al., 2010) (see Figure 2A). The technique can be used for

quantitative phase imaging of micron-sized specimens through

reconstruction of both the optical path length and intensity

distributions (Kim, 2010; Ebrahimi and Dashtdar, 2021).

Consequently, DHM has been used to measure biochemical,

morphological, and mechanical properties of bio-samples (Dubois
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et al., 2006; Quan et al., 2018). Some recently proposed

configurations of DHM are easily adaptable with other modalities,

such as optical tweezers (Ebrahimi et al., 2014) and fluorescence

microscopy (Kumar et al., 2020). The reconstruction process is

based on numerically solving the diffraction integral, which allows

for high precision numerical auto-focusing of moving samples for

real-time 3D tracking, without any requirement for mechanical

focus adjustments (Langehanenberg et al., 2011). Another

application of DHM is holographic tomography by multiple-angle

illumination, which yields the sample’s 3D RI distribution

(Balasubramani et al., 2021). Given the orientation between

reference and object beams, DHM can be achieved based on

either on-axis geometry, where both object and reference beams

propagate along the same path (Yamaguchi, 2006), or off-axis

geometry, where a tilt is introduced between the two interfering

beams, which enables single-shot imaging (Sánchez-Ortiga et al.,

2014). Angular spectrum propagation (ASP) approach can be

utilized for the numerical analysis of these off-axis holograms.

ASP is based on the Fourier transform analysis and propagation

of the object wavefront in Fourier space and quantitatively yields

the sample’s thickness and RI. See Anand et al. (2010) for further

mathematical description of ASP method.

DHM has proven to be a versatile technique for studying the

dynamical processes and morphologies of various biological

specimens, including red blood cells (O’Connor et al., 2021; Kumar

M. et al., 2022), yeast cells cells (Rappaz et al., 2009), microorganisms
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(Lee et al., 2011), neurons (Marquet et al., 2013), sperm (Dubey et al.,

2019), and cardiomyocytes (Jaferzadeh et al., 2020). Although the use

of DHM in plant studies has been limited, Vora and Anand utilized

the technique to observe changes in volume and texture of onion

epidermal cells (Vora and Anand, 2014), demonstrating that the cells

decrease in volume and become rougher over time, likely due to water

loss. Jiang et al. also leveraged dual wavelength DHM to analyze

intracellular activities, nucleus dynamics, cell transport, cell wall, and

cytoskeleton compartments in onion’s epidermal cells (Huang et al.,

2021). Ferraro et al. used DHM to study the dehydration process of

plants and enhance the imaging of intracellular structures in living

epidermal cells (Wang et al., 2019). The phase maps of the cells’

contraction (plasmolysis) over 20 hours, with plasma membranes

(green, cyan, and yellow) separated from cell walls (red), are shown in

Figure 2B. The nucleus tomograms and refractive index histograms

for the nucleus and nucleolus are displayed in Figures 2C, D

respectively. Furthermore, decreasing the water content of the

plants leads to significant nucleus rotation as a result of turgor

pressure reduction (Wang Z. et al., 2021). After acquiring the

nuclei DHM tomograms, 3D refractive index, dry mass, 3D

dynamics and biological volume were measured. Kumar V. et al.

(2022) also used DHM to evaluate the viability of unstained pollen

grains, a critical aspect of plant reproduction. Their results indicate

that non-viable pollen samples have a significantly smaller phase than

viable samples due to a reduction in cytoplasmic material. As a

further application of DHM in plants, it is employed to follow the
D
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C

FIGURE 2

(A) Digital holographic microscopy setup based on Mach-Zehnder interferometry. BS: Beam splitter, MO: Microscope objective. (B) Contrast
enhancement of phase maps through dehydration process over time. The cell walls are shown in red and the cell membranes are marked in green,
cyan, and yellow. (C) 3D refractive index tomogram slices of a cell’s nucleus, (D) the histogram of the refractive index distribution of the nucleus and
its nucleolus, depicted in the inset 3D model (Wang Z. et al., 2021). The 3D trajectories of zoospores of U. linza macroalga in the vicinity of glass
coated by (E) polyethylene glycol, (F) acid, and (G) tridecafluoroctyl-triethoxysilane. Reprinted with permission from (Heydt et al., 2012).
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interactions between solid and liquid particles in the air (e.g., metals,

acids, aerosols, and dust) and leaves (Go et al., 2021). The 3D

detection of particles and distinction between freely diffusing and

adhered particles was performed using an autofocusing algorithm,

image segmentation and velocity analysis. In a similar study, DHM

was utilized to track the 3D swimming zoospores of a green alga

(Ulva linza) near a surface and understand the mechanism of surface

exploration (Heydt et al., 2007; Heydt et al., 2012). The spores’ 3D

trajectories over 10 min, for three different surface coatings, are

shown in Figures 2E–G. Finally, DHM phase reconstruction was

applied in amarine environment to identify and classify various

micro-plastic fragments, which can pose a health risk to humans

through the food chain (Merola et al., 2018).
6 Discussions and perspectives

Interferometric imaging contains a number of advantages for

imaging plant cells. First, long-term imaging is readily performed

without loss of signal and without the drawbacks associated with

molecular labeling (Gjetting et al., 2013). Fluorescent imaging of

plant tissue and organs containing chlorophyll, which causes

autofluroescence and limits transparency, is very challenging.

Secondly, interferometric methods provide an alternative imaging

platform, which is still largely unexploited. In this review, a few

state-of-the-art techniques for label-free interferometric imaging of

living plants in their native environment have been presented,

including biospeckle imaging and interferometry, optical

coherence tomography and digital holographic microscopy.

These interferometric techniques have the potential to provide

us with morphological analysis, measurements of nanoscopic

displacements and imaging of intracellular dynamics in plant and

agricultural products. Examples of some of the pioneering studies

include imaging of seed germination, defects and diseases,

bioactivity, cytoplasmic streaming, cytoskeletal organization,

environmental interactions and high-resolution imaging of plant

growth. However, since interferometric imaging techniques suffer

from lack of specificity, frequency decomposition approach may

help to distinguish between different dynamical processes within

the cells and tissues.

Integration of fluorescent channels with the compatible

interferometric modalities may offer new ways to perform live

imaging of plants with high specificity. We envision this

nondestructive and label-free approach to be used for investigation

of vesicle traffic, cell growth, cytoskeleton organization, membrane

features, cell wall cellulose synthesis and pathogen-plant interactions

in combination with quantitative multi-channel imaging approaches.

Combining these two imaging methods additionally allows one to

perform fluorescent based chemical imaging like calcium signaling

Resentini et al. (2021), and pH detection Littlejohn et al. (2014) in

conjunction with interferometric imaging thus allowing structural

changes in the cytoplasm to be correlated with molecular and ionic
Frontiers in Plant Science 06
concentrations. One novel example in which fluorescent imaging

and interferometry are combined is Rotating Optical Coherent

Scattering (ROCS) microscopy developed by the Rohrbach group

(Jünger et al., 2016; Jünger et al., 2022). ROCS allows high speed

imaging at sub diffraction lateral resolution ( ∼ 150 nm) and is

suitable for imaging surface structures of plant tissues in

combination with fluorescent imaging like total internal reflection

fluorescent microscopy.

Finally, we emphasize the importance of using numerical

approaches for accurate interpretation of the interferometric

signals. Various methods already exist, which transform raw data

into meaningful readout like distance, morphology or activity.

Well-established algorithms based on particle tracking, like

particle imaging velocimetry (Wereley and Meinhart, 2010; Baiyin

et al., 2021), could also be adapted to quantify flow patterns in plant

cells by isolating the translational component of interferometric

signals. The list of applications of interferometry hereby seems

endless and its potential in plant science should be realized in the

near future.
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