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Introduction: The application of intelligent learning methods to the mining of
characteristics and rules of time-series data has gained increasing attention with
the rapid development of deep learning. One critical application of such methods
is the intelligent assistant driving of tunnel boring machines (TBMs), for which the
optimization of driving parameters is essential to improve construction efficiency.
However, existing prediction models for TBM parameters are “static” and cannot
dynamically capture parameter evolution during real-time driving cycles.

Methods: In this study, we propose a novel dynamic learning model for TBM
parameters by introducing the Gaussian process to address this problem. The
model can learn decision-making experiences from historical driving cycles,
dynamically update the model based on small sample data from current
driving cycles, and simultaneously achieve driving parameter prediction. We
focused on real-time prediction of TBM parameters in a tunnel project in
western China.

Results: The results show that the average relative errors of predicted total thrust
and torque values were 1.9% and 2.7%, respectively, and the prediction accuracy
was higher than that of conventional models such as random forest and long
short-term memory. The model fully exploited updating of small samples of
parameters, reducing the average time cost of the model to 29.7 s, which
satisfies the requirements of efficient application.

Discussion: The dynamic learning strategy of time-series data adopted in this
study provides a reference for other similar engineering applications. The
proposed model can improve the prediction accuracy of TBM parameters, thus
facilitating the optimization of driving parameters and enhancing the construction
efficiency of tunnels.

Conclusion: In summary, this study establishes a dynamic learning model of TBM
parameters that can dynamically capture parameter evolution and achieve
accurate real-time driving parameter prediction. The proposed model can
contribute to the development of intelligent assistant driving of TBMs and
similar engineering applications.
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1 Introduction

Compared with the conventional drill and blast methods, the shield
tunnelling method exhibits obvious advantages in construction safety,
efficiency, and intelligence. Therefore, tunnel boring machines (TBMs)
are increasingly being used in the western mountainous area of China.
Because of the large size of TBM equipment and inflexible construction,
TBM is sensitive to geological problems such as squeezing large
deformation and water inrush typical in western mountainous areas.
Furthermore, TBM performance depends considerably on the
experience of the operators and the geological conditions ahead of
the tunnel (Jing et al., 2021). An experienced operator can determine the
working condition of the TBM based on tunnelling parameters that
contain rock mass information and manually select tunnelling
parameters. However, inexperienced operators can result in severe
disk wear, low construction efficiency, and other engineering
problems. Furthermore, TBM produces massive machine data
during tunnelling, which contains non-linear coupled mapping
relationships, rendering manual decisions increasingly difficult
(Zhang et al., 2020; Chen et al., 2021). Therefore, helping the driver
to select appropriate tunnelling parameters in accordance with the
various geological conditions of the tunnel is necessary for improving
boring efficiency and ensuring construction safety.

Methods for effective TBM design can be classified into two
categories (Liu et al., 2020; Keshtegar et al., 2021; Liu et al., 2021):
methods based on geological parameters and tunnelling parameters
(Liu et al., 2019; Zhou et al., 2021a; Feng et al., 2021; Zeng et al., 2021). In
the geological parameter-based method, the mapping relationship
between geological parameters and tunnelling parameters and
regression or artificial intelligence are used to establish the
prediction model of tunnelling parameters (Gao et al., 2021). Minh
et al. (2017) proposed a fuzzy logic prediction model to predict TBM
tunnelling performance based on uniaxial compressive strength and
brittleness index of rock mass. Koopialipoor et al. (2020) proposed a
hybrid artificial neural network based on five rock properties and
introduced the firefly algorithm. Yang et al. (2020) introduced a
support vector machine method to predict tunnelling parameters
and confirmed that the uniaxial compressive strength and rock
quality indexes considerably affect model performance. Salimi et al.
(2016) and Salimi et al. (2018) proposed a classification regression tree
model to predict TBM performance. Ghasemi et al. (2014) developed a
model to predict the TBM tunnelling rate based on fuzzy logic by using
rock mass characteristics. Gholami et al. (2012) and Mohammadi et al.
(2015) speculated that the artificial neural network could outperform
the regression model on TBM performance in terms of prediction
results and described complex non-linear integral effects. Although
these methods based on geological parameters have achieved excellent
results in predicting TBM tunnelling parameters, severe limitations exist
in acquiring geological data in unexcavated sections and extending
tunnel analogy under various geological conditions (Yang et al., 2019;
Yao et al., 2019).

In the method based on tunnelling parameters, typically, the
historical TBM tunnelling parameters are excavated and analyzed to
infer future tunnelling parameters (Liu et al., 2020). Zhao et al. (2007)
constructed a four-parameter ensemble neural network based on site
data, and predicted the performance of TBM by considering the
uncertainties embedded in the site data and using the re-sampling
technique. The ENN-based prediction model outperformed the non-

linear regression model. Sun et al. (2018) predicted dynamic loads by
adopting the random forest method based on tunnelling parameters.
Hajihassani et al. (2019) proposed a gene expression programming
(GEP) model for predicting tunnel convergence, which is an important
parameter for TBM performance. The model was developed based on
data from a real tunneling project and showed good accuracy in
predicting convergence values. Xu et al. (2019) developed a
supervised machine learning model for predicting TBM penetration
rate using a dataset of 75 tunneling projects. The model was trained
using three different algorithms: artificial neural networks (ANN),
support vector machines (SVM), and decision trees (DT). The
results showed that the ANN model outperformed the other two
models, with a mean absolute percentage error of 8.49%. Zhang
et al. (2019) examined the responses of TBM parameters and
predicted the rock mass grade using the clustering method. Zhu
et al. (2020) categorized the driving cycle into three stages and
predicted the parameters of subsequent stages in real time by
mining the data of the first 30 s of the ascending stage. Guo et al.
(2020) determined the appropriate tunnelling parameters of TBM by
introducing the long short-term memory (LSTM) model. Jin et al.
(2020) used the residual blocks of the LSTM network to extract the
beneficial features of driving parameters and achieved an accurate
prediction of the cutterhead torque. Harandizadeh et al. (2021)
proposed a hybrid model that combined adaptive neuro-fuzzy
inference system (ANFIS) and probabilistic neural network (PNN)
for TBM performance prediction. The model was optimized using
imperialist competitive algorithm (ICA) and evaluated using data from
three tunneling projects. The results showed that the hybrid model
outperformed the individual ANFIS and PNN models, with a mean
absolute error of 0.0163. Yu et al. (2021) proposed a novel semi-
supervised method to establish a rock mass type prediction model by
utilizing a large amount of unlabeled data and limited labeled data.
Zimu et al. (2021) developed a hybrid GEP and whale optimization
algorithm (WOA) model for estimating the optimal TBM penetration
rate in granitic rock mass. The model was trained using data from two
tunneling projects and showed good accuracy in predicting the optimal
penetration rate. Zhou et al. (2021b) introduced metaheuristics to
optimize and improve the support vector machine method and used
tunnelling data to predict the TBM propulsion speed. Yang et al. (2023)
combined a Bayesian boosting probabilistic model with convolutional
neural network (CNN) and random forest (RF) to predict unstable rock
masses susceptible to tunnel collapse. These studies revealed that
parameter prediction can be achieved by learning considerable
tunnelling data. However, complex construction conditions require a
large amount of data to be processed in a short period. Existing models
are typically based on “static” learning strategies, which cannot perform
dynamic learning and prediction of real-time tunnelling data.

The existing parameter prediction methods require, firstly, a
large amount of data for training, which is costly in terms of time;
secondly, new data obtained from excavations cannot be used in a
timely manner, which is not very responsive to tunnels with sudden
changes in conditions; finally, the training data cannot be
generalized leading to results that do not fully fit the ongoing
construction activities, so research is needed to address the above
issues. A novel dynamic learning and prediction model of TBM
tunnelling parameters was established for solving the problems. The
model can be used in each construction cycle to obtain parameter
evolution through dynamic learning and subsequently perform
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prediction. This paper is organized as follows. Chapter 2 introduces
the double-shield TBM construction process and the data
characteristics of each tunnelling parameter. Chapter 3 establishes
a dynamic learning model of tunnelling parameters based on the
Gaussian process model and a novel training strategy. Chapter
4 verifies the accuracy and time cost of the model and discussed
the feasibility of the model in engineering practice. This model is fast
even under small samples and can be applied in real-time tunnelling
to ensure efficient and safe construction.

2 TBM principles and data
characteristics

This study focused on the prediction of tunnelling parameters
under double-shield TBM. The shield forms and tunelling
parameters of double-shield, single-shield, and open TBM differ
considerably. However, the primary tunnelling parameters, such as
torque and total thrust, are similar.

The double-shield TBM structure is displayed in Figure 1A.
During excavation, the cutter drive of the front shield rotates to cut
through the rock. The telescopic shield connects the front and rear
shields, with the main push cylinder inside providing power for the
cutter to advance. The support shoe inside the shield compresses the
rock wall during excavation and provides lateral support to the
cutter to advance. The auxiliary push cylinder ensures that
excavation and pipe sheet support are performed simultaneously.
The tail shield protects the installation of the pipe sheet, which
ensures that the personnel are not exposed to the surrounding rock.

Each part of the shield body of double-shield TBM generates
corresponding parameters during tunnelling (Figure 1B). For
example, the front shield generates torque and cutter head
speed during excavation, the support shield generates support
shoe pressure and shoe pitch angle, and the telescopic shield
generates total thrust and propulsion speed. Among all TBM
parameters, torque and total thrust are the two most crucial
tunnelling parameters controlled by the driver and are
considerably influenced

FIGURE 1
(A) Double-shield TBM, (B) Structure of each TBM shield and corresponding tunnelling parameters.
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The everyday driving of the machine. Torque refers to the total
torque (M) required for the machine to rotate when the cutter head
rotates to break the rock. Total thrust is the sum of the thrust and
friction of each cutter during driving and provides power for the
cutter head to break the stone.

In a complete driving cycle generated by the TBM, the driver
adjusts the values of torque and thrust to increase from 0 until they
remain stable after the machine is tunnelling normally. Therefore, a
complete driving cycle consists of an ascending period and a stable
period when the parameters fluctuate within a certain range as
displayed in Figure 2. The ascending period is the critical time to
observe the tunnelling state of double-shield TBM and considerably
affects the selection of tunnelling parameters during the stable period.
To assist the driver in making an intelligent decision, in this study, the
two core parameters of torque and total thrust in each driving cycle were
analysed, and dynamic learning was performed on the parameters of
ascending stage to predict the value of its stable stage.

3 GP-based dynamic learning model

Existing prediction models for time-series analysis are based on
a “static” learning strategy, which is applied in a new scenario after
learning and fitting considerable essential data. However,
constructing TBM requires the dynamic learning of tunnelling
parameters to predict its subsequent evolution in a scenario
(driving cycle).

The Gaussian process can effectively handle the different data
distributions and data noise collected during the construction
process, update the model in a timely manner, and avoid
overfitting with its robustness. For the prediction results of
excavation parameters, it can provide confidence intervals and
uncertainty measures, and the prediction results are more
suitable for assisting operators in decision making. Finally,
Gaussian process has simple parameter setting and calculation
method, which is easy to understand and implement.

Therefore, a novel dynamic learning model was developed for
predicting tunnelling parameters based on the Gaussian process
(GP), which is a collection of random variables that can be fitted
to generate the probability prediction of function values of
random variables (Liu et al., 2019). The principle of the GP
satisfies our requirements. Therefore, this chapter focuses on
using the GP to learn tunnelling parameters and realizing
dynamic prediction.

3.1 GP principle

This section briefly introduces the basic principles of the GP.
Consider a sample of tunnelling parameters
D � (xi, yi) | i � 1, 2 . . . n1{ }, where xi denotes the time variable,
and yi denotes the tunnelling parameter. Furthermore, X � xi{ }n1i�1
denotes the n1 × 1 dimensional input matrix, and Y � yi{ }n1i�1
denotes the corresponding output matrix. The distribution of the
GP is jointly defined by the mean functionm(x) and the covariance
function k (x, x′) (Williams and Rasmussen, 2006; Schulz et al.,
2018), and the GP is expressed as follows:

f x( ) ~ GP m x( ), k x, x′( )( ) (1)
where

m x( ) � E f x( )[ ] (2)
k x, x′( ) � E f x( ) −m x( )( ) f x′( ) −m x′( )( )[ ] (3)

Mean function m(x) represents the expectation value of
function f (x) at input point x. Covariance function k(x, x′)
represents the correlation between two independent variables.
The mean function is generally set to zero to simplify the
calculation. In practice, the mean and covariance functions
should be developed in accordance with the data characteristics
to obtain a specific GP.

A specific GP regression model is established for tunnelling
parameters. The GP is defined by a kernel function (covariance
function), and a posterior distribution is updated given some
observed data. This posterior distribution can be used to predict
the expectation value and probability of output variable Y* given the
input variable X* (Deng et al., 2020; Zeng et al., 2020).

Next, n2 new samples (X*, Y*) are predicted based on the prior
distribution of the GP and n1 previously given tunnelling parameter
data (X,Y), where Y and Y* obey the joint Gaussian distribution.
The expression is as follows:

p Y, Ŷ p[ ] | X, X̂ p, θ( ) � N 0,Σ( ) (4)
In this expression, [Y,Y*̂] is a vector that contains all the observed
and predicted data, Xand X̂* are their corresponding input variables,
θ is the hyperparameter of the Gaussian process, and Σ is the
covariance matrix.

The posterior prediction for Y* can be derived as follows:

Y* | X,Y,X* ~ N �Y*, cov Y*( )( ) (5)
where

�Y* � E Y* | X,Y, Y*[ ]
� m X*( ) + k X*, X( ) k X,X( ) + σ2

nI[ ]−1 Y −m X( )( ) (6)

FIGURE 2
Torque and total thrust in a driving cycle.
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cov Y*( ) � k X*, X*( ) − k X*, X( ) k X,X( ) + σ2nI[ ]−1k X,X*( )
(7)

New tunnelling data Y* can be predicted using the posterior
distribution of the GPmodel. The GP provides the predicted value of
the model and its confidence interval. For example, a 95%
confidence interval (CI) can be calculated from [�Y* −
2 ×

�������
cov (Y*)

√
, �Y* + 2 ×

�������
cov (Y*)

√ ].
The dynamic advantage of Gaussian processes lies in the fact that

they are Bayesian methods that can perform Bayesian inference based
on prior distributions and data, enabling online updates and iterations.
This feature enables Gaussian processes to adapt to real-time changing
environments and data, and dynamically adjust the model to improve
its predictive accuracy. In addition to providing prediction results,
Gaussian processes can also provide uncertainty estimates related to the
prediction results. This feature makes Gaussian processes highly
advantageous in decision-making and risk assessment.

3.2 GP-based dynamic learning model

According to the Gaussian process principle and the
requirement for the dynamic learning and prediction of TBM
tunnelling parameters, the GP-based dynamic learning model
(GDLM) was established as follows:

Step a. The most critical task in the GP is to establish a Gaussian
kernel function (covariance function) according to data characteristics.
Because actual data typically have multiple features, we can learn
various data features by building a composite kernel function.
Figure 2 displays that the time-series evolution of tunnelling
parameters in each TBM driving cycle can be categorized into two
distinct stages, namely, the ascending and stable stages. A periodic
kernel was selected to learn the periodic evolution law of the tunnelling
parameters. Furthermore, the overall trend of the driving cycle reveals a
smooth change. Therefore, a smooth kernel (exponential quadratic
kernel) can be used to learn the smooth evolution characteristics of the
tunnelling parameters. Moreover, the evolution characteristics of the
driving cycle in the stable period exhibit upward and downward
fluctuations around the mean value so that we can select an
irregular kernel (rational quadratic) to learn the characteristics of the
parameters. Finally, the three kernel functions are added to form a
composite kernel function that learns these three features:

kernel � smooth kernel + irregular kernel + periodic kernel

(8)
Combining kernel functions can capture different features in the

data by combining different kernel functions to improve the
prediction ability of machine learning models.

Step b. Before using the kernel function for prediction, the
hyperparameters in the Gaussian kernel function should be
optimized. Appropriate hyperparameters can fit the
characteristics of the data and generate an accurate prior
distribution. The first N driving cycles are considered to be the
training data, and the hyperparameters of the kernel function are
tuned based on the training data. The process can be achieved by
maximizing the marginal likelihood of GP distribution.

Step c. After tuning the hyperparameters based on the training
data, the optimized model learns the data features of the first N

driving cycles so that a priori prediction that conforms to the data
features can be generated. The model is used to predict the N+1st
driving cycle and generates a priori prediction of the N+1st driving
cycle. The prior distribution curve has the evolution law of
ascending and stable periods. As indicated in the Introduction
section, the evolution of the ascending period in the driving cycle
typically determines the selection of the stable period parameters.
With ascending period data as the prior data, the kernel function is
updated (i.e., Dynamic learning) based on the ascending period data
to generate the posterior prediction of the stable period (the update
and prediction process is performed simultaneously during the
ascending period of the N+1st driving cycle). In the schematic of
the kernel function update, the opacity of the gradient reveals the
influence of a function value on its neighbors. The prediction result
is the real-time expectation value and 95% CI of the parameter, in
which the expectation value represents the most likely value of the
parameter. The driver selects driving parameters according to the
prediction results.

Step d. The parameters of N+1st driving cycle parameters are
obtained after the drivers make decisions based on prediction
results. Consider that the decision experience of the previous
driving cycle affects the parameters of the current driving cycle.
When predicting the N + 2 driving cycle, the kernel function is
first used to fit the actual parameter of the N+1 driving cycle.
After a priori prediction of the previous driving cycle, the kernel
function is updated based on the data of the ascending period of
the N + 2nd driving cycle, and a posterior prediction of the stable
period is generated. After a priori prediction of the previous
driving cycle, the kernel function is updated based on the data of
the ascending period of the N+2nd driving cycle, and posterior
prediction of the stable period is generated. Similarly, the
prediction result is the expectation value and 95% CI at each
moment of the stable period.

When predicting the N+3 driving cycle, the updating process of
the model is similar to that of the N+2 driving cycle. This dynamic
learning model is repeated to complete the parameter prediction of
the entire tunnelling section. Figure 3 displays the flow of the GDLM
for tunnelling parameter prediction.

4 Application and discussion

4.1 Engineering background

The GDLM was applied to a tunnel in western China, and its
performance and the feasibility of engineering application were
evaluated. A double-shield TBM was used to excavate the tunnel.
The entrance and exit elevation of the tunnel were 3,500 m above
the sea level, and the maximum buried depth was 820 m. The
lithology of surrounding rock was primarily gneiss with mosaic or
the sub-block structure. The surrounding rock is typically grade
III, including sub-grades of III plus and III minus. IV-Grade
surrounding rocks are presented in local deep-buried sections.
Different driving parameters should be adopted when tunnelling
in various grades of the surrounding rock. Figure 4A displays the
cross-sectional view of the tunnel. The rock slag produced during
excavation is in the form of flakes and blocks, and the shape of the
rock slag is displayed in Figure 4B. In double-shield construction,
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the exposed space of surrounding rock is limited (Figure 4C), and
the acquisition of conventional geological parameters is limited.
Table 1 presents the tunnelling parameters and corresponding

tunnelling conditions of tunnel section K10 + 050–K10 + 330,
which indicates that the selection of tunnelling parameters plays a
decisive role in normal tunnelling.

FIGURE 3
Schematic of the GP-based dynamic learning model.
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FIGURE 4
(A) Geological cross section along the tunnel, (B) Rock slag characteristics of section K10 + 080, (C) Tunnel condition of section K13+391.

TABLE 1 Tunnelling parameters and condition of the K10 + 050–330 tunnel section.

Serial
number

Mileage Seg-ment
lengt—h

Tunnelling parameters Excavation state

Start End Total
thrust
/KN

Penetration Torque/
1000 KN·m

Machine
malfuncti—on

Slag
characteri-stic

1 50 76 26 7,000–10,000 8–12 0.5–1.5 Safe Flaky (1)

2 76 96 20 4,000–5,000 15–24 0.3–1.4 Chunky (2–4)

3 96 104 8 4,000–7,000 8–12 0.3–1.6

4 104 118 14 4,000–6,000 12–18 0.2–1.5

5 118 130 12 8,000–15,000 8–12 0.6–2.5 Crumbly (5–8)

6 130 150 20 15,000–30,000 8–12 0.5–3.0 130,134,146 machine stuck

7 150 170 20 13,000–18000 8–10 0.6–3.5 Safe

8 170 192 22 10,000–13,000 8–12 0.8–2.7

9 192 209 17 >20,000 12–18 0.5–2.8 209 machine stuck Chunky (9)

10 209 220 11 >20,000 6–8 0.4–3.3 Safe Crumbly (10–11)

11 220 225 5 10,000–18.000 6–10 0.4–2.8

12 225 245 20 >30,000 >15 0.8–3.5 242 machine stuck Chunky (12–14)

13 245 278 33 10,000–25,000 >15 0.2–2.7 253 machine stuck

14 278 290 12 >20,000 6–20 0.6–2.6 Safe

15 290 330 40 10,000–13000 8–12 0.2–2.5 Safe Flaky (15)
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4.2 Data processing

A total of 1,614 TBM driving cycles are recorded for the tunnel
project, and the machine records the tunnelling parameters every
10 s during boring. The machine cannot excavate normally because
of the incorrect parameter selection or improper driving, which
results in machine jams and other accidents. Therefore, the recorded
driving cycles do not comprehensively reflect the actual situation of
the rock mass in Table 1. The existing driving conditions were
screened, and the driving conditions of abnormal accident sections
were eliminated. A total of 1,120 driving cycles corresponding to the
normal working state of the machine were obtained. The outliers
caused by equipment problems or human errors in the 1,120 driving
cycles were eliminated in accordance with P(|x − μ|> 3δ)#0.003.

The use of the GDLM to learn and predict complete driving
cycle data requires a high time cost and cannot achieve real-time
prediction. Therefore, the same duration of ascending and stable
periods for each driving cycle were selected. The data of the first 50 s
of the ascending period of each driving cycle were selected to obtain
higher prediction accuracy at a lower time cost (Zhou et al., 2020). In
the stable period, tunnelling parameters fluctuate slightly within a
specific range, and the driver can usually make decisions according
to the first 200 s of the tunnelling data. Therefore, the data for the
first 50 s of the ascending period and the first 200 s of the stable
period of each driving cycle were selected to construct the database.
The data selection of ascending and stable period can be adjusted
according to specific engineering scenarios.

Tunnelling parameters and conditions of the K10 +
050–330 tunnel section.

Table 2 presents the composition of the database and details the
number of driving cycles at various rock grades and the value range
of tunnelling parameters in the stable period. Data training is
performed in a hardware environment equipped with an i5-
7300HQ CPU, NVDIA GeForce GTX1050 GPU, and 8G of
RAM and using Python-3.9.4 and TensorFlow-2.5.0 to construct
a dynamic Gaussian process prediction model.

Number of driving cycles, range values of torque, and total
thrust corresponding to each grade of surrounding rock.

4.3 Model evaluation metrics

The average absolute error (MAE) and root mean square error
(RMSE) were introduced to evaluate the validity of the model. The
average time cost for model prediction was recorded to assess the
feasibility of the real-time prediction of the model in engineering

applications. The calculation formulas for each evaluation indicator
are as follows:

MAE � 1
l
∑l

i�1 f xi( ) − yi

∣∣∣∣ ∣∣∣∣ (9)

RMSE �
�����������������
1
l
∑l

i�1 f xi( ) − yi( )2√
(10)

where yi is the true value of the data, f (xi) is the posterior
prediction value, and l is the number of predicted data. The
more petite MAE and RMSE are, the closer the model prediction
is to the actual value of the sample (i.e., the better the model
predicts).

TABLE 2 Number of driving cycles, range values of torque, and total thrust corresponding to each grade of surrounding rock.

Surrounding rock grade Torque(T)/10,00 KN·m Thrust(F)/KN Driving cycle (number)

III+ 2.47–3.5 12,000–20,000 166

III 2.6–3.7 8,000–24,000 610

III- 3.21–4.1 13,000–20,000 124

IV 0.4–4.3 8,000–30,000 220

TABLE 3 Values of parameter.

Hyperparameters Value

Smooth amplitude 104.79

Smooth length scale 89.78

Periodic amplitude 2.97

Periodic length scale 1.62

Periodic period 0.99

Periodic local length scale 104.61

Irregular amplitude 0.99

Irregular length scale 1.36

Irregular scale mixture 0.12

Observation noise variance 0.05

TABLE 4 Python package versions.

Python implementation CPython

Python version 3.9.4

IPython version 7.23.1

Numpy 1.19.5

Bokeh 2.3.2

Pandas 1.2.4

Tensorflow probability 0.12.2

Tensorflow 2.5.0
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4.4 Model applications

We build the prediction model based on the following compiled
environment with the specific hyperparameters taken as shown in
Table 3 and the python environment as shown in Table 4.

According to the data processing in Section 4.2, the data of the
first 50 s of the ascending period and the data of the first 200 s of the

FIGURE 5
(A) Prior and posterior distributions for the 509th driving cycle,
(B) Comparison of predicted and actual values for the 509th driving
cycle, (C) Prior and posterior distributions for the 510th driving cycle,
(D) Comparison of predicted and actual values for the 510th
driving cycle.

FIGURE 6
(A) Predicted results for torque, (B) Predicted results for the total
thrust, (C) Predicted values of torque and total thrust for the first 200 s
of a driving cycle.
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stable period were analysed for all the driving cycles, and
1,120 processed driving cycles were categorized into training and
prediction data at a ratio of 5:1. Considering the torque prediction of
grade III surrounding rock as an example, 508 driving cycles were
selected as training data, and the remaining 102 driving cycles were
dynamically learned and predicted.

First, the GDLM was trained based on 508 driving cycles to
obtain the optimal kernel hyperparameters. The blue curve
represents the expected value of the prior distribution
(Figure 5A), which represents a trained prediction model. Next,
the model was used to predict the tunnelling parameters of the 509th
driving cycle and updated based on the first 50 s of actual ascending
data to generate the posterior distribution. The red curve in
Figure 5A displays the prediction value of torque in the stale
period. The evolution trend of tunnelling parameters changed
considerably after learning the ascending period parameter of the
latest driving cycle dynamically. Figure 5B presents a comparison of
the prior distribution, posterior distribution, and actual observed
data of the 509th driving cycle. The results revealed that the
posterior prediction of the model is accurate, and the driver can
make decisions on the driving parameters of the stable period
according to posterior prediction.

To implement the model, the model was used to fit the actual
parameters of the first 200 s of the 509th driving cycle, update the
hyperparameter values, and generate the prior distribution of the 510th
driving cycle in Figure 5C. The final model is updated based on the data
of the first 50 s of the ascending period of the 510th driving cycle to
generate a posterior distribution. Figure 5D displays a comparison
between the prior and posterior distributions of the 510th driving cycle

and the actual observed values. The figure also reveals that the posterior
predicted value after dynamic learning and updating is closer to the
actual value, which is beneficial to driver decision-making.

Figures 6A, B reveal the predicted results of the GDLM for torque
and total thrust in the test. The predicted and actual values are the
averages of the data. The predicted values are close to the actual values
with minor absolute errors and relative errors of 2.7% and 1.9%,
respectively. The prediction performance and average time cost of
the model are presented in Table 5. Figure 6C displays the measured

TABLE 5 Comparison of the three models.

Model Predicted results RMSE MAE R2 Predicted results Time taken (seconds)

LSTM(T) mean value 0.460 KN·m 0.397 KN·m 0.963 0.89 53.3

RF(T) mean value 0.543 KN·m 0.484 KN·m 0.958 0.87 42.1

GDLM(T) prediction interval 0.244 KN·m 0.199 KN·m 0.957 0.98 29.7

GDLM(F) prediction
interval

586.509 KN 464.005 KN 0.949 0.98 36.4

FIGURE 7
Long short-term memory (LSTM) model.

FIGURE 8
(A) Prediction results of torque by using the LSTM model, (B)
Prediction results of torque by using the RF model.
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and predicted values of thrust and torque in a driving cycle of the test set
in the chronological order. The predicted values of the total thrust force
and cutter torque are consistent with the trend of the original curve,
which indicates an excellent prediction capability.

4.5 Discussion

The performance of the GDLM is compared with those of
random forest (RF) and LSTM models to discuss the feasibility
of the GDLM in engineering applications. LSTM and RF models
were established, and the torque prediction results were compared.

The LSTM model is displayed in Figure 7 (Li et al., 2020). Several
tunnelling parameters were eliminated to avoid the influence of
redundant features on the prediction accuracy of the model. The
remaining parameters include total thrust, torque, excavation speed,
cutter head rotation speed and penetration, cutter head power,
propelling pump pressure, and support shoe pressure. LSTM is used
to capture the relationship between the tunnelling parameters in the first
50 s of the ascending period. The tanh function is used as the activation
function. The function is connected to the fully connected layer, which
consists of two layers. The output dimension of the first layer is 1,000,
and the output dimension of the final layer is 2, which corresponds to the
predicted value of the total thrust and torque in the stable period. The
average training and prediction time of the model is 53.3 s. Figure 8A
reveals the prediction results of torque by using the LSTM model.

The average values of the total thrust, cutter head speed,
propelling pump pressure, propelling speed, and support shoe
pressure in the ascending period were used for predicting the
cutter head torque in the stable period during TBM tunnelling by
using the feature importance calculation method based on the RF
algorithm (Hou et al., 2022). The data of the first 50 s of the
ascending period were used to predict the torque value of stable
driving period, and the average training and prediction time of the
model was 42.1 s. The parameters of the RF model are set as follows:
Number of CARTs k = 50, characteristic variable m = 2 and max_
depth = 4. Figure 8B displays the prediction results of the RF model.

In terms of prediction results, the GDLM can obtain the real-time
prediction (expectation value and 95% CI) in a stable driving period.
The prediction accuracy and model evaluation index value of GDLM
were superior to those of the two other models, and the GDLM is more
reliable when applied to engineering. IN the GDLM, the time cost of
model prediction is reduced by updating a small amount of data in the
ascending period and fitting a large amount of data in the stable period.
The average time cost of prediction in the stable period is 29.7 s. The
two other models are trained on multidimensional data, and their
average time is longer than that of the GDLM.

5 Conclusion

To ensure efficient and safe construction of TBM tunnel
engineering, an advanced dynamic learning model of tunnelling
parameters based on the GP principle was proposed. Based on
learning the decision-making experience of the historical driving
cycles, the model can dynamically update by learning the evolution
characteristics of the ascending period’s data of the current driving cycle
and obtain the prediction interval of the subsequent stable period.

The model and the existing RF and LSTM models were applied
to a tunnel project in western China. The results revealed that of the
GDLM exhibited the highest prediction accuracy, and the relative
errors of total thrust and torque were 1.9% and 2.7%, respectively.
The fitting and update processes of GDLM were performed in the
stable and ascending periods, and the time cost of model prediction
was reduced. The posterior prediction of the stable period can be
generated in an average of only 29.7 s. The prediction result is the
real-time prediction means and 95%CI. Compared with the existing
model, which can only provide a single average value in one driving
cycle, the prediction result of the GDLM is consistent with the
operating habits of the driver.

Comparedwith other traditionalmodels, thismodel cannot only deal
with problems such as sudden changes in geological environment but also
provide real-time prediction values to guide inexperienced field personnel
in selecting appropriate excavation parameters. At the same time, in the
face of the problem of insufficient on-site data, themodel can update with
less data and generate posterior predictions during the prediction process,
making it very suitable for construction sites with high data costs.

The GDLM can dynamically update model features based on
small sample data in an application scenario and obtain the
predicted results of time-series parameters. This phenomenon is
incomparable to the conventional learning strategy model, which
can only be applied in a new scenario based on historical learning
experiences. Furthermore, the dynamic learning strategy of the
GDLM model can provide a reference for time-series data
processing in similar engineering scenarios. For example, the
model has considerable potential in decomposing signals of non-
stationary time series, failure prediction through time-series analysis
and dynamic fitting of non-linear multi-factor data.
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