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Triple-negative breast cancer (TNBC) is one of the most aggressive breast cancer

subtypes and is characterized by abundant infiltrating immune cells within the

microenvironment. As standard care, chemotherapy remains the fundamental

neoadjuvant treatment in TNBC, and there is increasing evidence that

supplementation with immune checkpoint inhibitors may potentiate the

therapeutic efficiency of neoadjuvant chemotherapy (NAC). However, 20-60%

of TNBC patients still have residual tumor burden after NAC and require

additional chemotherapy; therefore, it is critical to understand the dynamic

change in the tumor microenvironment (TME) during treatment to help

improve the rate of complete pathological response and long-term prognosis.

Traditional methods, including immunohistochemistry, bulk tumor sequencing,

and flow cytometry, have been applied to elucidate the TME of breast cancer, but

the low resolution and throughput may overlook key information. With the

development of diverse high-throughput technologies, recent reports have

provided new insights into TME alterations during NAC in four fields, including

tissue imaging, cytometry, next-generation sequencing, and spatial omics. In this

review, we discuss the traditional methods and the latest advances in high-

throughput techniques to decipher the TME of TNBC and the prospect of

translating these techniques to clinical practice.
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Introduction

Triple-negative breast cancer (TNBC), defined by the absence of

estrogen receptor (ER), progesterone receptor (PR), and human

epidermal growth factor receptor 2 (HER2), accounts for

approximately 25-30% of all breast cancers and exhibits poor

prognosis and strong invasiveness (1) As the standard treatment

strategy for early-stage TNBC, neoadjuvant chemotherapy (NAC)

not only provides opportunities for breast conservation and sparing

axillary lymph node dissection but also identifies patients with

residual disease at high risk of relapse (2). Although approximately

30% of TNBC patients who receive NAC achieve a complete

pathological response (pCR) (3), the remaining patients with

residual disease require supplemental adjuvant chemotherapy or

targeted regimens. Given that tumor-infiltrating lymphocytes (TILs)

have been found to be more extensive in TNBC than in other breast

cancer subtypes, randomized clinical trials have been conducted to

investigate the strategy of combining immune checkpoint inhibitors

(such as anti-PD-1 and anti-PD-L1) with traditional chemotherapy

in NAC. However, the discrepancy in the results among relevant

clinical studies suggests that the dynamic changes in the tumor

immune microenvironment (TME) need to be elucidated under

different treatments (4–7). Traditional methods, including

immunohistochemistry, bulk tumor sequencing, and flow

cytometry, may not comprehensively elucidate the TME of breast

cancer, and the function of some subsets of cells present in relatively

low proportions may also be underestimated (8–10). In addition, the

dynamic TME landscape of pre- and post-NAC breast cancer is still

poorly studied with these methods (11–13).With the development of

diverse high-throughput technologies and bioinformatics analysis

methods, recent reports have opened a new horizon of NAC-induced

alterations in tissue imaging, cytometry, next-generation sequencing,

and spatial omics at the single-cell level in breast cancer (Figure 1). In

this review, we discuss the latest updates on immune infiltrate

alterations in the multiomics layer and present a structured review
Abbreviations: TNBC, triple-negative breast cancer; NAC, neoadjuvant

chemotherapy TME, tumor microenvironment; ER, estrogen receptors PR,

progesterone receptors; HER2, human epidermal growth factor receptor 2;

pCR, pathological response; TILs, tumor-infiltrating lymphocytes; H&E,

hematoxylin and eosin; ICC, intraclass correlation coefficient; IHC,

immunohistochemistry; mIHC/IF, multiplex immunohistochemistry/

immunofluorescence; FFEP, formalin-fixed paraffin-embedded; QIF,

quantitative immunofluorescence; ROIs, regions of interest; FCM, flow

cytometry; MDSCs, myeloid-derived suppressor cells; eMDSC, early MDSC; G-

MDSCs, granulocytic MDSCs; CyTOF, cytometry by time-of-flight; ICPMS,

inductively coupled plasma−mass spectrometry; EMT, epithelial-mesenchymal

transition; IBC, inflammatory breast cancer; FEC, 5-fluorouracil+epirubicin

+cyclophosphamide; T, Taxol (docetaxel) H, Herceptin (Trastuzumab); RD,

residual disease; TRM T cells, tissue resident memory T cells; LncRNA, long

noncoding RNAs; TCR, T cell receptor; scRNAseq, single-cell RNA sequencing;

ATAC, assay for transposase accessible chromatin; DSP, digital spatial profiler;

MS, mass spectrometry; IMS, imaging mass spectrometry MIBI, multiplex ion-

beam imaging; ROS, reactive oxygen species; QCCs, quiescent cancer cells; ISH,

in situ hybridization; ISS, in situ sequencing; TMAO, trimethylamine N-oxide.
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of traditional pathological and emerging bioinformatics approaches

in terms of the TME in TNBC patients receiving neoadjuvant

treatments, which may help to improve the understanding of how

NAC remodels the TME in TNBC.
Tissue imaging

Hematoxylin and eosin staining

To date, morphological identification of TILs in breast cancer

with hematoxylin and eosin (H&E) staining remains the most

traditional and widely applied method. In 1990, Crescitelli et al. first

reported that lymphocyte infiltrates were an independent critical

predictor of breast cancer, particularly in rapidly proliferating,

axillary lymph node-negative tumors, compared to slowly

proliferating or axillary lymph node-positive tumors (14, 15). In a

retrospective study that collected 1058 samples from two NAC clinical

trials with H&E-stained sections, the presence of tumor-associated

lymphocytes in breast cancer was first reported as an independent

predictor of response to anthracycline/taxane-based neoadjuvant

chemotherapy (15). In addition, intraepithelial lymphocytes inside

tumor cell nests or in direct contact with tumor cells were defined as

intratumoral TILs, whereas lymphocytes in the tumor stroma without

direct contact with tumor cells were defined as stromal TILs; both

types were confirmed to have predictive value for pCR.With evidence

accumulating for a strong correlation between TILs and NAC

response in breast cancer, the specialist consensus on the

standardized method to evaluate TILs based on H&E-stained tissue

sections was published by the International TILs Working Group in

2014 (16). In this consensus, the area selected for TIL evaluation and

assessment methodology was described in detail; however, the

interobserver variability remains substantial in the assessment of

stromal TILs (17) or intratumoral TILs (18). To overcome the

heterogeneity among pathologists and among guidelines, TIL

evaluation assisted by machine-learning technology for TIL scoring

is under development (19–21), mainly aiming to improve analytical

standardization and reproducibility. In two interlaboratory

comparison trials using identical samples, the intraclass correlation

coefficient (ICC) for TIL evaluation among 32 pathologists in Ring

Study 1 was 0.7, whereas in Ring Study 2, a software-guided image

evaluation system enhanced the ICC to 0.89 (22). Computer-assisted

TIL assessment holds promise for complementarity to the present

pathological examination of breast tumors. Manual TIL counting fails

to count all cells and measure the precise stromal area in the entire

sample. Recently, Eva et al. presented a fully automated digital image

analysis pipeline and demonstrated that their H&E-based pipeline

provides a quantitative and interpretable score comparable with

manually derived TIL status (19).

Although computational assistance technology has greatly

improved the efficiency and reproducibility of TIL counting, the

analyses are still based on the gross morphology of the lymphocyte

entirety on H&E slides. Quantitative assessment of polymorphonuclear

leukocytes, granulocytes, and other mononuclear cells, such as

dendritic cells and macrophages, is typically not mentioned (16). In

addition, increasing evidence suggests that the changes in the
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proportion and phenotype of various immune subpopulations are

inconsistent during NAC (23, 24). Therefore, a more thorough

assessment is required to decipher the relative proportion of specific

immune subpopulations and spatial structural features, including

tertiary lymphoid structures (25).
Conventional immunohistochemistry

Conventional immunohistochemistry (IHC) is one of the most

commonmethods for investigating the immune content of a tissue by
Frontiers in Oncology 03
detecting characteristic markers using specific antibodies. Compared

to H&E staining, IHC allows labeling of different immune cell

compositions to determine their association with treatment

response or tumor prognosis, including TNBC. In a retrospective

study based on double-staining immunohistochemistry, Miyashita

et al. first reported that high CD8+ TILs and a high CD8/FOXP3 ratio

in residual tumors following NAC exhibit strong prognostic

significance in TNBC patients (26). IHC for PD-L1 has been

performed on paraffin-embedded tumor samples from core needle

biopsies from 94 breast cancer patients before NAC, identifying PD-

L1 expression as a predictor of pCR and a prognostic factor of
FIGURE 1

Schematic overview of multiomics approaches in TNBC studies under neoadjuvant chemotherapy. Elucidation of the TME by multiomics tumor
profiling may enhance the development of novel biomarkers and therapeutic targets for NAC treatment. Created with BioRender.com.
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disease-free survival (DFS) in breast cancer patients (27). In addition,

Gomez-Macias et al. assessed the TIL profile in TNBC before NAC by

IHC on core needle biopsies, and they identified a more accurate

association of the high expression levels of the CD3, CD4, CD8,

CD45, and CD20 genes with partial and complete pathological

responses to NAC in patients with TNBC (28).

With the advantages of rapid and feasible processing and low

cost, IHC is still widely used in studies despite a variety of emerging

technologies that have been developed. However, traditional IHC is a

semiquantitative and observer-dependent technique. In terms of the

IHC assessment of PD-L1 expression, the definition of a PD-L1+

sample has not been completely established to date. Some researchers

solely detect PD-L1 on tumor cells or immune cells, whereas others

evaluate PD-L1 expression regardless of cell type (29), which may

affect the consistency of PD-L1 evaluation among different research

platforms. In addition, similar to TIL counting based on H&E

staining, the inevitably high interobserver variability of biomarker

assessment by IHC is another impediment. In a study assessing

interobserver variation of PD-L1 IHC (SP142 antibody) in breast

cancer, 38% of cases did not reach total agreement among all eight

pathologists (30). PD-L1 expression in immune cells (0.172-0.229)

evaluated by pathologists has also shown poor consistency (ICC,

0.832-0.882) (31). In addition, it has been reported that multiple

variables, such as tissue processing, antibodies, staining design, and

scoring systems, may also affect IHC results (32, 33). For the analysis

of small and precious tumor samples, such as core needle biopsy or

unconventional proteins, the application of IHC may be restricted

due to the uncertainty of antibody concentration. However, a major

limitation of conventional IHC is that it only identifies a single or at

most two markers per tissue section, while some cell subsets require

multiple markers to be defined. Therefore, conventional IHC fails to

meet the needs of researchers, and the multiplex fluorescent IHC

approach has been utilized as a solution.
Multiplex immunohistochemistry/
immunofluorescence

Multiplex immunohistochemistry/immunofluorescence

(mIHC/IF) offers an upgraded strategy over standard

chromogenic IHC due to multiplex staining and standardized

quantitative analysis (34). Using a multispectral IF (mIF)

platform, the quantification of six to eight markers in a single

FFEP tissue section can be achieved (35). The mIF image analyzed

by inForm image software correlates the spectral signals to

biomarkers and histomorphology information, achieving cell type

identification and standardization of quantitative analysis. A

quantitative immunofluorescence (QIF) assay was first developed

by Brown et al. in 2014 for measuring CD3, CD8, and CD20

expression on a single slide, which confirmed the predictive value of

different lymphocyte subsets in breast cancer following NAC (36).

Of note, mIHC/IF depicts the spatial biology of the TME and

achieves both quantification and localization of immune marker

expression. Mani et al. used PerkinElmer Vectra multiplexed QIF to

analyze the location and heterogeneity of TILs by quantifying
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cytokeratin, CD3, CD8, and CD20 expression in tissue sections

from different breast cancer subtypes (37). Furthermore, mIF is

available to assess treatment-related effects on specific cell lineages

in both the stromal and tumor compartments. Applying Akoya

Bioscience OPAL 7-plex mIHC to the first cycle of NACT in the

WSG-ADAPT-TN trial (n=66 TNBC patients), the increase in PD-

1-+ CD4 and PD-1+ CD8 infiltration in both the tumor and in the

stroma were significantly correlated with higher pCR (38). In

another neoadjuvant PAMELA phase II trial, 231 regions of

interest (ROIs) from 129 HER2+ breast cancer patients were

stained with six markers, including cytokeratin, Ki67, and four

immune-related T-cell lineage markers (CD3, CD4, CD8, and

Foxp3). Using the Discovery Ultra Autostainer (Ventana Medical

Systems, Tucson AZ), the researchers found that the distance

between CD3+/CD8+ T cells and cancer cells was shortened

under anti-HER2-based neoadjuvant treatment, indicating the

strong predictive value of the spatial relationships of specific

immune cell subsets and tumor cells (39).

The main advantage of mIHC/IF is the simultaneous detection

of multiple markers on a single tissue section. Detecting various

markers on a single section is crucial due to the low availability of

NAC tissue samples. In addition, the objectivity, accuracy, and

sensitivity of QIF have been confirmed in comparison with IHC

(40). Previous research has suggested that PD-L1 expression

assessed by IHC is not sufficiently sensitive to predict the

response to anti-PD-1/PD-L1 treatment (41, 42). By reviewing

tumor specimens from 8135 patients with over 10 solid tumor

types, Taube et al. found that mIHC/IF showed a higher accuracy in

predicting the clinical response to anti-PD-1/PD-L1 therapy than

PD-L1 IHC, and the former involved the analysis of PD-1 to PD-L1

proximity and intratumoral/peritumoral CD8+ cell density (43).

Additionally, mIF combined with hierarchical linear modeling

allows for a more precise estimation of TILs and PD-L1

expression increases by lessening the impact of intratumoral

heterogeneity on cell counting (44).

Although mIHC/IF has achieved great advances, applying the

technology in routine clinical practices still faces obstacles due to

the complex staining procedure, longer turnaround time than

traditional IHC, and requirements of antibody optimization,

panel optimization, experienced pathologists, and sophisticated

software. Therefore, several commercial kits, such as TSA-Opal

automation IHC kits and commercial multispectral mIF platforms

from Akoya Biosciences, have been developed to evaluate immuno-

oncology targets in FFPE tumor tissue, making the process more

feasible, efficient, and reproducible. Moreover, a reported mIHC/IF

staining protocol applied to the commonly used clinical diagnostic

autostainer, namely, the Leica Bond Max, enhances the translation

to clinical routine (45). A previous study using an Opal 7-color

automated IHC detection kit on a Leica Bond Rx autostainer has

reported that it requires approximately 12-13 h to complete a six-

plex assay on 30 slides concurrently, and high reproducibility in

measuring immune cell density and PD-L1 coexpression has been

demonstrated among six laboratories (46). Similarly, a commercial

mIF assay, known as InSituPlex, can be performed on an existing

fluorescence microscope, simplifying the staining procedure (47).
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For example, Rimm et al. retrospectively analyzed pretreatment

core needle biopsies obtained from 69 TNBC patients with an

Ultivue DNA-based Ultimapper kit. The authors suggested that, in

patients who achieved pCR under NAC, PD-L1 expression was

significantly higher in tumor cells, CD68+ cells, and stroma than in

nonpCR patients. In contrast, the number of total CD68+ cells in

the tumor or stromal compartments was similar between pCR and

nonpCR cases (48).
Spatial proteomics

Traditional imaging technology fails to depict the TME in detail

due to low plex. For an in-depth understanding of the TME, it is

crucial to capture the spatial proteome, including subcellular

protein localization and the dynamic relationship between

subcellular protein localization and protein function.

Accumulating spatial proteomics technologies, including GeoMx

Digital Spatial Profiler (DSP) and cyclic immunofluorescence-based

CODEX and Multi-Omy as well as mass spectrometry (MS)-based

imaging mass spectrometry (IMS) and multiplex ion-beam imaging

(MIBI), are available for deconvoluting the spatial constitution of

the TME at the single-cell level or close to the single-cell level, and

the distinctive features of these technologies have been

comprehensively discussed previously (49). Here, we mainly

review these novel findings in breast cancer, particularly in

TNBC, based on these high-throughput multiplex staining

methods. A representative spatial proteomics technology based on

fluorescence imaging is the codetection by indexing (CODEX)

single-cell proteomics analysis platform developed by Akoya (50).

With the application of CODEX to quantify immune infiltration

inside quiescent cancer cells (QCCs) in a TNBC mouse model,

Baldominos et al. confirmed markedly reduced immune infiltration

within the QCC niche, and they also identified DCs with lower

MHCII and exhausted T cells within the QCC niche (51). Imaging

mass cytometry (IMC) and multiplexed ion beam imaging (MIBI)

are typical mass spectrometry-based spatial proteomics techniques.

IMC allows simultaneous multiplexed imaging of up to 40 proteins

with subcellular spatial resolution (52, 53). Simultaneous

multiplexed detection of mRNA, proteins, and protein

phosphorylation through imaging mass cytometry has been

achieved in a cohort of 70 breast cancer samples, revealing the

significant spatial interactions among CXCL10high cells

(macrophages, fibroblasts, T cells, and epithelial cells) with each

other (54). Another mass cytometry imaging approach is MIBI (55),

which uses the secondary ionization mass spectrometry principle,

whereas IMC utilizes laser ablation. Keren et al. performed the first

study capturing features and the spatial orientation of immune cells

within the TME viaMIBI from 41 TNBC patients (56); they divided

tumors into cold, mixed, and compartmentalized subtypes by

assessing the spatial proximity of cell types, and highly ordered

structures with PD-L1 and IDO along the tumor-immune border

served as a dominant feature of tumor compartmentalization and

were associated with favorable survival.
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Cytometry

Flow cytometry

Compared to H&E staining or IHC, flow cytometry (FCM) is a

relatively high-throughput technology extensively used in studies

on cancer immunity that enables the rapid quantification of

multiple parameters of immune cell populations or particles.

Based on single-cell suspensions, including dissociated solid tissue

and various body fluids, FCM can measure cell size, granularity, and

the expression level of cell surface and intracellular molecules (57,

58). Compared to IHC, the advantage of FCM is that it incorporates

quantitative and functional evaluation of tissues and circulating

immune cell repertoires, whereas IHC is limited to the tissue level.

However, tissue biopsy during NAC is challenging, and circulating

immune cells have been extensively evaluated during NAC.

Previous studies have indicated that these circulating cells may

also be informative and capable of serving as promising biomarkers

to predict treatment response (59–61). A study quantifying

myeloid-derived suppressor cells (MDSCs) and Tregs by flow

cytometry in blood samples from 34 pre-NAC TNBC patients has

revealed a negative correlation between early MDSC (eMDSC)

levels and NAC response (61). In contrast, the peripheral blood

level of granulocytic MDSCs (G-MDSCs) is also increased during

chemotherapy with doxorubicin and cyclophosphamide but has no

relation to pCR (10). By detecting the expression of surface

receptors on CD8+ T cells before and four months after NAC, it

has been found that an increase in P2X7 expression and a decrease

in A2A receptor expression indicate a better response (62). In

addition, FCM is also capable of detecting the expression of

intracellular proteins, which allows researchers to determine the

functional state of immune cells (57). For example, granzyme B/

perforin levels in circulating NK cells have been reported to be

reduced during NAC, which is the most significant decrease that

appears in advanced breast cancer patients with poor response (63).

In another study that collected a series of blood samples from 56

TNBC patients under NAC and extensively evaluated circulating

immune cells, B cells, NK cells, and CD4+ T lymphocytes were

greatly decreased, whereas the frequency of CD8+ T cells was less

affected (64). In addition, functional property analysis has revealed

that the expression of the Tim3 exhaustion marker is markedly

upregulated in CD8+ T cells, whereas cytotoxic molecules,

including perforin and CD3z, are lost in NK cells (64).

FCM is a powerful technique for analyzing a single cell; the latest

FCM system allows the detection of up to 40 fluorescent parameters.

However, the accuracy of the results may be easily affected by the

spectral overlap of the fluorescent dyes, especially for cell subsets

with low proportions (65, 66). Moreover, the lack of fluorescently

labeled antibodies used for certain proteins also limits the application

of this method. By analysis of the phenotype or function of cell

subpopulations in tissues using flow cytometry, the morphological

parameters of the cells are altered when the tissue is enzymatically

treated or mechanically dissociated, and the information regarding

the spatial location of cells within the whole tissue is lost (67)
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Therefore, a variety of techniques need to be combined to study the

characteristics of the TME at the cellular and spatial levels.
Automated FCM analysis and CyTOF

With significant developments in both lasers and fluorophore

reagents, the number of parameters of FCM has been extended

from 17 (65) to 40 (68). However, the analysis of traditional FCM

data is still dependent on manual gating strategies, which may

create interpersonal bias, particularly for multicolor labeling

strategies (69). Thus, the improved multiparameter capabilities of

FCM require computational flow cytometry to visualize high-

dimensional cytometry data to improve accuracy and

reproducibility (70). A computational pipeline known as

FlowGM, with automated identification of 24 cell types, has been

demonstrated to better discriminate monocyte and dendritic cell

subpopulations than the traditional gating strategy (71). Other

automated cell identification tools, including PhenoGraph (72),

SPADE3 (73), FlowSOM (74), SWIFT (75), t-SNE (76), and

UMAP (77), distinguish cell populations from cytometry data in

both unsupervised and supervised manners (78, 79).

An emerging fusion technology known as mass cytometry or

cytometry by time-of-flight (CyTOF) avoids spectral overlap by

replacing the fluorophores of probes with isotopically purified

metals, which are then detected and quantified by inductively

coupled plasma time-of-flight mass spectrometry (ICP-TOF-MS)

(80, 81). With the capacity to monitor 34 parameters

simultaneously in individual cells, CyTOF enhances the sensitivity

of identifying rare cell subpopulations (81, 82).

However, the throughput of mass spectrometry is required to

collect millions of cells from an individual sample (80), which is not

practical for small tumor and needle biopsy specimens. Thus, to

bypass the scarcity of some immune cells, using mass cytometry in

the field of peripheral blood samples from breast cancer patients is a

promising strategy (83). In a phase 1/2 clinical trial of the nitric oxide

synthase inhibitor, L-NMMA, and taxane in TNBC, by analyzing

PBMCs using CyTOF (Fluidigm) from two responders and two

nonresponders, CD8 effector memory T cells and CD4+ T cells have

been found to be increased in responders, whereas nonresponders

show a more classical monocyte immunotype (84). Because CyTOF

is applied only to cell suspensions, spatial information and cell−cell

interactions are lost (85, 86). Preservation of spatial information

requires the combination of IHC and CyTOF. With the application

of immunohistochemistry, immunocytochemistry, and CyTOF

(Fluidigm) in breast cancer FFPE, Giesen et al. achieved higher

multiplexed applications at subcellular resolution to depict

substantial tumor microenvironment heterogeneity (53).
Next generation sequencing

Bulk tumor RNA sequencing

Deep insight into NAC-induced alterations at the

transcriptomic level has been provided through unbiased RNA-
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seq of paired biopsy specimens collected at a series of time points

(Table 1). Bulk tumor RNA sequencing is one of the most valuable

and widely used methods for analyzing differential gene expression

among various samples (80). Potential cancer biomarkers are

continuously being discovered with RNA sequencing (96). For

example, by analyzing the expression of 750 immune-related

genes from 60 paired pre- and posttreatment breast cancer

samples, a set of immune parameters adversely correlated with

pCR has been identified, suggesting that regimens targeting mast

cell metagenes as well as VEGFB, IL-6 antagonists, and anti-VEGF

antibodies may enhance the sensitivity of the tumor to NAC (88).

The strongly negative prognostic gene, CDH1, and the positively

prognostic gene, CD70, have been identified in the TNBC cohort by

analysis of immune gene expression during NAC with the Pan-

Cancer Immunology 770 genes panel(NanoString) (89). In post-

NAT residual tumors from 62 patients treated with immune gene

expression during NAC and anti-EGFR antibodies, 784 genes have

been processed( NanoString nCounter), identifying SOX2 and

CXCR4 as potential recurrence predictors (91). In addition, by

evaluating Affymetrix microarray transcriptomic data from more

than 2000 TNBC patients, immune signatures, including IDO1,

CXCL9, CXCL10, HLA-DRA, HLA-E, STAT1, and GZMB, have

been found to be associated with a favorable prognosis in TNBC

patients (97). However, a prospective study with sufficient cohorts is

required to validate and confirm the utility of biomarkers.

By utilizing approaches based on marker gene expression values

(including MCP-counter and xCell) or deconvolution algorithms

(including TIMER, CIBERSORT, quanTIseq, and EPIC), it is

practicable to reflect the content and subpopulations of tumor-

infiltrating immune cells (98–100). Among these methods, EPIC

and quanTIseq are the only methods providing an absolute score;

MCP-counter and CIBERSORT are recommended in some cases

requiring relative scores, and xCell is suggested when focused on a

specific cell type (101, 102). For example, regulatory CD4+ T cell

(Treg) abundance has been calculated by the xCell algorithm from

bulk tumor gene expression data of 5177 breast cancer patients

from five independent cohorts, showing the potential of Treg

abundance as a biomarker for predicting the response to NAC in

TNBC (103). Another RNA-seq profiling analysis that included 110

pairs of serial tumor biopsies collected before NAC, after the first

treatment cycle, and at the time of surgery used CIBERSORT to

reveal the relative fractions of ten immune cell types among tumor-

infiltrating leukocytes, showing an increased abundance of CD4+

and CD8+ T cells induced by the first cycle of NAC (23).

In addition to bulk tumor sequencing, T cell receptor (TCR)

sequencing has also been applied to assess the changes in T cell

diversity and function induced by NAC in TNBC. TCR is a vital T

cell response mediator that acts through antigen recognition (104).

TCR sequencing identifies T cell clone TCRs and assesses their

response to tumor antigens, offering an accurate perspective of T

cells (105). In a cohort of eight formalin-fixed paraffin-embedded

(FFPE) samples from TNBC, T cell receptor (TCR) b chain

sequencing and clonality quantification have demonstrated a

downward trend in T cell clonality but recruitment of novel

clones during the NAC period (89). Another TCR sequencing

study of peripheral blood samples from 94 breast cancer patients
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TABLE 1 NAC studies with transcriptome analysis (characteristics, prognosis, and prediction).

Year Treatment BC
type

Sampling
time

Sampling
type

Patient
number

Assay Main findings Clinical
cohort

2018
(87)

Epirubicin
docetaxel

TNBC Pretreatment and
during
treatment

Tumor
tissue

20 scRNAseq Chemoresistance-related gene
signatures: EMT, CDH1 targets,
AKT1 signaling, hypoxia,
angiogenesis, and ECM
degradation

NCT00957125

2019
(88)

Bevacizumab nab-
paclitaxel
doxorubicin
cyclophosphamide

HER2-
negative,
locally
advanced,
or ICB

Pre-and
posttreatment

Tumor
tissue

60 NanoString
PanCancer

IO360™

Positive
prognostic
biomarkers:
CCL21,
CCL19, and
cytotoxic T
cell

Negative
prognostic
biomarkers:
CXCL1,
CXCL3,
CXCL2,
CCL20, and
IL6

NCT00856492

2020
(23)

AC, T, H BC Pretreatment,
during, and post-
treatment

Tumor
tissue

146 Illumina
HiSeq2500

Immune stimulatory response on
treatment rather than baseline is
more predictive.

NCT02591966

2020
(89)

Neoadjuvant
therapy

BC RD Tumor
tissue and
peripheral
blood

83 NanoString
PanCancer
Immunology
panel
Isoplexis
TCR
sequencing
ScRNAseq

Positive
prognostic
biomarkers:
cytotoxic
effector genes

Negative
prognostic
biomarkers:
eight-gene
signature
(PDCD1 +
NKG7 + LAG3
+ GZMH +
GZMB +
GNLY +
FGFBP2 –

HLA-G) model
in peripheral
blood

DART EA1311
PERU

2021
(90)

nab-paclitaxel
pembrolizumab

TNBC Pretreatment and
during
treatment

Tumor
tissue

2 ScRNAseq Positive
predictors:
IFN+ and
GZMB+ CD8+
T cells as well
as TRM cells

Negative
predictors:
myeloid cells
and lack of
PD-1high T
cells

NCT02752685

2021
(91)

panitumumab
trial:
panitumumab,
FEC, T
cetuximab trial:
cetuximab, and T

TNBC Pre-and
posttreatment

Tumor
tissue

62 NanoString Positive
predictor:
HLA class I or
II

Negative
predictors
related to
metastasis:
cell cycle-related
genes as well as
SOX2 and
CXCR4

NCT00933517
NCT00600249

2021
(92)

Half paclitaxel
monotherapy
Half atezolizumab
plus paclitaxel

TNBC Pretreatment and
during treatment

Tumor
tissue and
peripheral
blood

22 scRNAseq
scATACseq

Positive
predictors:
CD8-CXCL13
T cells
CD4-CXCL13

NA

2021
(93)

NAC TNBC Pre- and
posttreatment

Tumor
tissue

8 scRNAseq Positive predictors:
CD19, CD8A, CD4,
CD52, CD2, CD53, CD59,
CD47, CD74, and CXCL9

NA

2021
(94)

NAC TNBC Pretreatment and
during treatment

Tumor
tissue

6 Single-cell
lncRNA
transcriptome

Negative
predictors:
MALAT1,
USP3-AS1, and
LINC-PINT

NA

(Continued)
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has shown that the diversity of the circulating TCRb repertoire

gradually decreases during NAC and is positively correlated with a

better response (95). This effect is consistent with several findings

that newly recruited tumor-specific T cells from outside the tumor

play a crucial role in robust antitumor responses induced by PD-1

blockade (60, 106, 107).

With the advancement of systems biology methods, data

derived from high-quality RNA-seq are much more convenient

and cost-effective than multiplex immunohistochemistry/

immunofluorescence (mIHC/IF) for interrogating a tumor

transcriptome and its microenvironment. However, limitations

still exist: (i) the quality of RNA extraction is easily affected by

the sample storage time and temperature, resulting in high

degradation, particularly when stored as FFPE tissue (108, 109);

(ii) the average gene expression profile from bulk RNA-Seq may

conceal the accurate signals induced by rare cell populations or cell

types; and (iii) bulk RNA-seq is unable to provide spatial

information regarding the TME (110).
Single-cell RNA sequencing

Due to the complexity and heterogeneity of the TME,

bioinformatics analysis based on bulk tumor gene expression

profiles still cannot wholly fulfill the need for understanding the

diversity of both stromal and tumor cells in the TME, particularly

for undefined cell subpopulations, which prompts the emergence of

single-cell technology. Single-cell RNA sequencing (scRNAseq) was

first described and performed in studies by Tang et al. in 2009, in

which scRNAseq on a single blastomere detected 5270 more genes

than microarrays employing hundreds of blastomeres (111). In

recent years, several scRNAseq methods with increasing sensitivity

have been rapidly developed and intensively applied in various

research fields (112, 113). Several studies have investigated the cell

subclonal constitution in tumor specimens or circulation using

single-cell analysis. For example, a clustering analysis of more than

5000 single cells from four responders and four nonresponders pre-

and post-NAC treatment has identified CD45+EPCAM- clusters,

which signify immune cell activation before NAC, as a hallmark of

tumor extinction (93). Deng et al. (90) evaluated the difference in

tumor-infiltrating immune cells at baseline and during treatment at

the single-cell level (10x Genomics) in two metastatic TNBC

patients treated with the combination of nab-paclitaxel and

pembrolizumab; the enrichment of IFN+ and GZMB+ CD8+ T

cells was well as TRMs was found in responders at baseline, whereas
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significant myeloid infiltrates accompanied by the absence of PD-1-

high T cells at baseline were features of nonresponders, thereby

indicating the potential prognostic value of these cell subsets as

predictors for immunochemotherapy. Zhang et al. performed 10x

Genomics single-cell RNA sequencing and transposase-accessible

chromatin (ATAC) sequencing of tissue samples from 22 patients

with advanced TNBC who had received paclitaxel chemotherapy

alone or in conjunction with the anti-PD-L1 antibody atezolizumab

(92); they focused on the orchestrated immune response between B

cells and CXCL13-CD4 T cells, and their research results suggested

a strategy of dampening antitumor CXCL13+ T cells and recruiting

immunosuppressive macrophages induced by nab-paclitaxel to

overcome immunochemotherapy resistance. In addition to

looking for predictive cell subsets within the TME, the

transcriptional changes in peripheral immune cells during NAC

have also been evaluated in breast cancer patients. By performing

scRNAseq (10x Genomics) on PBMCs collected during NAC, the

downregulation of IFNa and IFNg signaling pathways and the

occurrence of immune exhaustion on immune cells induced by

NAC have been observed (114). scRNAseq (10x Genomics) of

peripheral CD8+ PD-1hi T cells from TNBC patients post-NAC

has identified an eight-gene score significantly associated with

ongoing disease (89).

In addition to the increasing reports on how NAC remodels the

TME, the evolution of malignant cells during NAC in TNBC has

also been assessed utilizing scRNAseq. Using Nanogrid Single-

Nucleus RNA Sequencing (WaferGen BioSystems) to analyze

longitudinal samples from eight TNBC patients, Kim et al.

reported that the resistant genotypes are preexisting and enriched

by NAC, whereas resistance transcriptional profiles are mainly

acquired during chemotherapy in TNBC patients (87). In

addition, the effects of NAC on noncoding RNAs have also been

explored in TNBC at the single-cell level. Shaath et al. identified the

lncRNA transcriptional landscape by employing 1758 single cells

from TNBC patients, and they found that the long lncRNA

MALAT1 is upregulated during NAC and contributes to

chemoresistance (94). With an exponential increase in the

number of cells and genes, the fine resolution of single-cell

transcriptomes has facilitated a deeper understanding of distinct

immune subpopulation changes and cancer cell evolution under

selective pressure from chemotherapy.

While scRNAseq has significantly advanced the understanding

of the variability and diversity of cell subpopulations, there are still

some challenges to applying scRNAseq in immuno-oncology. The

accuracy is hindered by technological noise and batch effects (115).
TABLE 1 Continued

Year Treatment BC
type

Sampling
time

Sampling
type

Patient
number

Assay Main findings Clinical
cohort

2022
(95)

NAC BC Pretreatment and
during
treatment

Peripheral
blood

94 TCRb
sequencing

Positive predictors:
Vb20.1 and Vb30

NA
EMT, epithelial-mesenchymal transition; IBC, inflammatory breast cancer; FEC, 5-fluorouracil+epirubicin+cyclophosphamide; T, Taxol (docetaxel); H, Herceptin (trastuzumab); RD, residual
disease; TRM T cells, tissue resident memory T cells; lncRNA, long noncoding RNA; NA, not available.
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Because reanalyses of raw sequencing data in different studies are

inaccessible, uploading data in public repositories should be

promoted. Furthermore, due to a lack of information on

posttranscriptional and posttranslational modifications, scRNAseq

analysis does not always accurately reflect protein expression levels,

causing conflicting evidence for the same event (116).
Spatial transcriptomics

In addition to the transcriptional level and the constitution of

cells within the TME, increasing evidence has revealed that the

spatial location of cells also determines the efficacy of NAC and that

NAC remodels the spatial relationship between stromal cells (117).

In addition, understanding intricate spatial arrangements helps to

understand how tumor cells interact, evade immune surveillance,

and evolve drug resistance. The platform from 10x Genomics and

the DSP from NanoString Technologies are the two commercially

available spatial RNAseq technologies. A recent study has analyzed

the spatial expression of 286 pharmacogenetics in 6 breast cancer

tissues using the Visium spatial transcriptomics platform, which

demonstrated that the expression of genes associated with reactive

oxygen species (ROS) handling and detoxification mechanisms is

highly heterogeneous within tumors relative to surrounding

nontumor regions, particularly GPX4, GSTP1, MGST3, SOD1,

CYP4Z1, CYB5R3, GSTK1, and NAT1 (118). To reveal a more

comprehensive characterization of molecular diversity in mediating

the chemotherapeutic response of TNBC, Kulasinghe et al. applied

DSP in 24 TNBC tissue samples to quantify and analyze the

differential expression of 68 targets in the tumor and TME

compartments between responsive and nonresponsive tumors;

elevated ER-alpha expression as well as reduced 4-1BB and

MART1 expression within the stromal compartment are

implicated in the adjuvant chemotherapy response, whereas

increased GZMA, STING, and fibronectin levels as well as

decreased CD80 levels are associated with the response within the

tumor compartment (119). Similarly, DSP with a panel of 39

markers has also been applied to evaluate the expression of

immune-related proteins, including MHCII, in the tumor

epithelium of TNBC compared to their expression levels in the

stromal compartment; higher HLA-DR levels are present in the

tumor epithelial cells of patients with long-term disease-free

survival and are also associated with high CD4 and ICOS levels in

the stromal compartment (120).

Compared to sequencing-based techniques, such as 10x

Visium and DSP, microscopic imaging-based techniques offer

higher resolution but capture fewer genes. In addition, the

microscopy-based approach not only achieves spatial transcript

analysis of hundreds to thousands of target genes but is also

compatible with immunofluorescence or DNA-coupled antibody

protein reads for FFPE and fresh frozen tissues. The representative

commercialization of microscopic imaging-based techniques

include 10x Genomics Xenium, NanoString CosMx spatial

molecular imager, and Vizgen Merscope (121, 122). Although the
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principles of the three technologies are based on the same in situ

hybridization (ISH) method, each has different characteristics. The

initial commercial Xenium kits achieve up to 400 gene plex, while

CosMx SMI supports high plex imaging of more than 1000 RNAs

(123). The Vizgen MERSCOPE Platform is the first commercial

solution for MERFISH technology with imaging resolutions

down to 100 nm. With the strategy of expansion-assisted iterative

fluorescence ISH (EASI-FISH), the specialty of NanoString CosMX

is the ability to offer a 3D resolution of gene expression in tissue and

enable 50 nm subcellular resolution in the XY plane (123). These

spatially resolved single-cell multiomics provide high-resolution

maps of cellular subpopulations in tissue, promoting greater

understanding of cell−cell interactions, cellular processes, and

biomarker discovery.

The available spatial omics provide a new perspective into the

spatial landscape of the tumor TME. However, the major stumbling

blocks of spatial transcriptomics and proteomics technologies

involve high costs, limitations due to the vast landscape of TME,

and time-consuming processes (49). In addition, spatial

heterogeneity, such as three types of cell distributions with

heterogeneous HER2 status, cannot be disregarded (124). Thus, it

is necessary to scan diverse areas, including the invasive front, core,

and perimeter, which consumes more precious tissue samples.

Furthermore, integrating spatial and other omics data requires

developing advanced approaches with higher analytical

capabilities (125). With efforts to overcome these issues, spatial

omics technologies will become a vital research tool for uncovering

spatially heterogeneous features that explain the resistance

mechanism of NAC and the scenario of immunotherapy in

breast cancer.
Discussion

Collectively, emerging high-throughput technologies and

optimized bioinformatics algorithms promise the discovery of

novel and more accurate biomarkers to predict the neoadjuvant

therapy response and prognosis in breast cancer. In addition, series

samples during NAC of TNBC also provide deep insights into how

chemotherapy orchestrates immune populations in the TME and

peripheral circulation, enabling the search for the dominant cell

subsets or factors causing chemoresistance. However, the various

techniques have advantages and disadvantages (Figure 2). The cost-

effectiveness and practicality of these high-throughput technologies

remain a major concern; additionally, analyzing large quantities of

data is still time-consuming. Therefore, traditional methods,

including IHC, FCM, and bulk-tumor RNA sequencing, are still

predominant in clinical practice and the cancer research field.

Recently, Shao et al. developed a novel IHC-based TNBC

classification corresponding to the classification of TNBC based on

RNA-seq (126). Multiomics analysis has also indicated that TNBC

patients with higher plasma trimethylamine N-oxide (TMAO) levels

achieve better responses to immunotherapy (127). These results

demonstrate the robust potential of transferring multiomics
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research into clinical practice. Therefore, it is hopeful that

prospective clinical trials will verify the key information extracted

frommassive high-throughput multiomics data to distinguish TNBC

patients who benefit from certain treatment strategies.
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