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Background: Aging-related cognitive decline is associated with brain structural

changes and synaptic loss. However, the molecular mechanisms of cognitive

decline during normal aging remain elusive.

Results: Using the GTEx transcriptomic data from 13 brain regions, we

identified aging-associated molecular alterations and cell-type compositions

in males and females. We further constructed gene co-expression networks

and identified aging-associated modules and key regulators shared by both

sexes or specific to males or females. A few brain regions such as the

hippocampus and the hypothalamus show specific vulnerability in males,

while the cerebellar hemisphere and the anterior cingulate cortex regions

manifest greater vulnerability in females than in males. Immune response genes

are positively correlated with age, whereas those involved in neurogenesis

are negatively correlated with age. Aging-associated genes identified in the

hippocampus and the frontal cortex are significantly enriched for gene signatures

implicated in Alzheimer’s disease (AD) pathogenesis. In the hippocampus, a male-

specific co-expression module is driven by key synaptic signaling regulators

including VSNL1, INA, CHN1 and KCNH1; while in the cortex, a female-specific

module is associated with neuron projection morphogenesis, which is driven by

key regulators including SRPK2, REPS2 and FXYD1. In the cerebellar hemisphere,

a myelination-associated module shared by males and females is driven by key

regulators such as MOG, ENPP2, MYRF, ANLN, MAG and PLP1, which have been

implicated in the development of AD and other neurodegenerative diseases.

Conclusions: This integrative network biology study systematically identifies

molecular signatures and networks underlying brain regional vulnerability to
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aging in males and females. The findings pave the way for understanding the

molecular mechanisms of gender differences in developing neurodegenerative

diseases such as AD.

KEYWORDS

brain aging, gender differences, gene co-expression network, key regulators, Alzheimer’s
disease

Introduction

Aging-associated changes in the human brain contribute to
the decline of cognitive functions and the development of various
neurodegenerative disorders (Hsu et al., 2008; Lopez-Otin et al.,
2013). Gender-specific changes in aging processes may contribute
to the differences in the prevalence of several neurological disorders
between males and females. For instance, the incidence rate of
Parkinson’s disease in males is about 2-fold as in females (19.0/100K
in males vs. 9.9/100K in females) (Picillo et al., 2017), while there
are more females (3.3 million) living with Alzheimer’s disease than
males (2.0 million) (Alzheimer’s Association, 2015; Nebel et al.,
2018). Neuro-imaging studies have found many gender differences
in structural changes during brain aging (Murphy et al., 1996; Raz
et al., 1997; Coffey et al., 1998; Hsu et al., 2008; Kiraly et al., 2016).
For example, age-associated brain volume loss in the frontal and
temporal lobes is much more significant in men than women, while
in the hippocampus and the parietal lobes, the loss is greater in
women (Murphy et al., 1996). Another study found that the age-
related decrease in brain grey matter volume at the caudate nucleus,
putamen and thalamic regions is greater in men with a faster rate
of decline than in women (Kiraly et al., 2016). In contrast, females
have a lower white matter volume in the right deep temporal
regions than males (Hsu et al., 2008). White matter alterations
during aging in the precentral, cingulate, and anterior temporal
regions also showed significant differences between males and
females (Hsu et al., 2008). These findings suggest sex dimorphism
in aging-associated microstructural changes across brain regions.
However, molecular mechanisms underlying gender-specific age-
related structural changes remain elusive (Flood et al., 1987;
Pakkenberg et al., 2003; Bertoni-Freddari et al., 2007). The sex
dimorphism at the brain morphological levels is probably induced
by various molecular changes such as different hormone levels and
epigenetic modifications and gene expression alterations.

There were 9 established cellular and molecular hallmarks of
aging (Lopez-Otin et al., 2013), including genomic instability,
epigenetic alterations, telomere attrition, mitochondrial
dysfunction, proteostasis dysfunction, cellular senescence,
deregulated nutrient sensing, stem cell exhaustion, and altered
intercellular communication. Many studies have shown that these
hallmarks are sexually dimorphic factors associated with aging
(Barrett and Richardson, 2011; Dulken and Brunet, 2015; Gaignard
et al., 2015; Gentilini et al., 2015; Fischer and Riddle, 2018).
For example, genomic instability, such as mutation and genetic
mosaicism rate, is higher in males than in females (Machiela et al.,
2015; Podolskiy et al., 2016). On the other hand, aging hallmarks
showed differences in gene expression patterns between males and

females. Two studies of the Zebrafish brain showed that aging alters
gene expression and molecular dynamics of synapses in a sexually
dimorphic pattern (Arslan-Ergul and Adams, 2014; Karoglu
et al., 2017). Sexually dimorphism is also found in aging-related
neuroinflammation in the mouse hippocampus (Mangold et al.,
2017). Compared to animal studies, very few studies have examined
sex differences in human brain aging at a global molecular level.
A study of the microarray data of 40 samples from 4 brain regions
including entorhinal cortex (EC), hippocampus (HIPP_MA),
postcentral gyrus (PCG), prefrontal cortex (PFC) and superior
frontal gyrus (SFG) by Berchtold et al., showed that more genes
are changed in males than in females across 4 brain regions during
aging (Berchtold et al., 2008). Expression of the genes involved in
energy metabolism and protein synthesis was found to decrease
with aging, while immune-related genes were activated in both
sexes during aging, with greater alteration in the female brains
(Berchtold et al., 2008).

In this study, we aim to systematically investigate sex
differences of normal aging by examining RNA-Seq data collected
from 13 regions in the Genotype-Tissue Expression (GTEx) project
(GTEx Consortium, 2015). We identified aging-associated gene
expression patterns, gene co-expression network modules and key
network drivers in male and female brains. We further studied
the aging associated molecular signatures and modules shared by
both genders or specific to a gender group as well as their roles in
neurodegenerative disorders such as Alzheimer’s disease.

Materials and methods

GTEx data processing

GTEx RNA-Seq read counts and metadata were downloaded
from GTEx Portal phs000424.v7.p2.1 Raw read counts for brain
regions were extracted and a total of 1,671 samples from 13
brain regions were retained (Table 1). The demographic and
neuropathological information of those subjects was summarized
in Supplementary Table 1. Lowly expressed genes with expression
levels of at least 1 count per million in less than 20% of samples
were removed. A total of 16,494 genes were retained for further
analysis. Next, normalization factors were computed on the filtered
data matrix using the weighted trimmed mean of M-values (TMM)
method, followed by log2 transformation and voom (Law et al.,
2014) mean-variance analysis in preparation for Limma linear

1 https://www.gtexportal.org/home/datasets
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TABLE 1 Summary of sample sizes for gender and age in the 13 brain regions.

Region Region (full name) Male Female

Young Middle Aged Young Middle Aged

AMY Amygdala 8 29 29 5 11 18

ACC Anterior cingulate cortex 7 36 41 6 10 21

CD Caudate 9 52 54 8 16 21

CBH Cerebellar hemisphere 10 45 44 5 14 18

CB Cerebellum 13 57 50 6 17 30

CT Cortex 10 50 48 7 18 25

FC Frontal cortex 8 43 41 3 14 20

HIPP Hippocampus 10 35 38 5 13 22

HTH Hypothalamus 9 38 40 4 12 18

NAC Nucleus accumbens 9 48 46 6 16 22

PT Putamen 7 45 38 4 14 16

SC Spinal cord (cervical c-1) 5 25 26 4 16 15

SN Substantia nigra 4 26 29 5 9 15

modeling. The normalized expression data were then split into
matrices for males and females in each of the 13 brain regions.

Identification of age-correlated genes
(ACGs)

Pearson correlation coefficients were calculated between
expression levels of each gene and age for males and females,
respectively, in each of the 13 brain regions. P-values were
corrected by the Benjamini-Hochberg (BH) procedure (Benjamini
and Hochberg, 1995) to adjust for multiple testing. To identify
the differentially expressed genes (DEGs) between aged and young
brains, we split samples in each brain region into 3 groups: young
adult (age < 45), middle-aged (45 ≤ age < 60) and aged adult
(age≥ 60). DEGs between each pair of the 3 groups were identified
using the eBayes method to fit gene expression to a linear model
implemented by the limma R package (Ritchie et al., 2015). Sample
labels were permuted 1,000 times to obtain a null distribution of
t-statistics across all genes. The original t-statistic of each gene was
compared to the null distribution to calculate the FDR of that gene.
Genes identified as age-positively correlated genes (APCGs) or age-
negatively correlated genes (ANCGs) in at least one region for both
males and females were classified as consistent APCGs (or ANCGs).
Genes identified as APCGs (or ANCGs) in at least one region for
either only males or only females were classified as male-specific or
female-specific APCGs (or ANCGs).

To test the influence of sample size in the identification of
ACGs and DEGs, we randomly chose a subset of samples from
each region to identify ACGs and DEGs with the same procedure
as above. From the male samples in each age group, we randomly
selected the same number of samples as a corresponding female
group. The samples of the 3 groups were then used to identify ACGs
and DEGs with the above-described procedures. This process was
repeated 1,000 times to estimate distributions for the numbers of
ACG and DEG in each region. P-value was calculated as the number

of tests with ACGs/DEGs no less than the number of ACGs/DEGs
identified in the original sample set in that brain region, dividing
the number of repeats (i.e., 1,000).

We also performed an interaction analysis on age and gender
with all genes in addition to the analysis of each gender. We built
our model as follows:

Expression = β0 + β1BMI + β2 TRISCHD+ β3 SEX + β4 AGE

+β5 SEX : AGE+ µ1 RACE+ µ2DTHHRDY + ε

where BMI is Body Mass Index, DTHHRDY is a factor of death
classification, disease or injury, leading to the cause of death listed
in immediate cause of death. TRISCHD is the ischemic time interval
between actual death, presumed death, or cross-clamp application
and the start of the GTEx procedure. β indicates fixed linear effects
and µ is a random effect.

dbGaP data sets preprocessing

To validate the ACGs identified from the GTEx dataset, we
downloaded an RNA-seq data set from the study of mRNA
Sequencing of Human Cerebral Frontal Cortex (dbGaP Study
Accession: phs001353.v1.p1) in North American Brain Expression
Consortium (NABEC) (Dillman et al., 2017). Raw sequencing data
were aligned to human genome HG38 using the STAR aligner
(Dobin et al., 2013) and assigned to genes using the featureCounts
(Liao et al., 2014). Count matrix was preprocessed and normalized
using the same procedure of GTEx above. To match the age range
with the GTEx cohort, individuals younger than 20 or older than
70 were excluded from the following analysis. After correcting for
post-mortem interval, ACGs of the dbGaP FC were identified using
the Pearson correlation for male and female, respectively. FC region
male-specific APCGs and ANCGs were identified by removing
APCGs and ANCGs in females, respectively, and vice versa.
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Human samples for validation

Formalin-fixation paraffin-embedded human brain tissues
from the hippocampal formation were obtained from the
Neuropathology Brain Bank & Research CoRE, in accordance with
the relevant guidelines and policies of the Icahn School of Medicine
at Mount Sinai (ISMMS). The experimental procedures involving
human sample handling were approved by the appropriate
committee at James J. Peters VA Medical Center (JJP VAMC)
and ISMMS. Demographic information with 5–6 individuals/group
is provided in Table 4. A comprehensive neuropathological
assessment was performed on each brain to rule out the presence
of a major neurodegenerative disease in excess of normal aging.
Selection criteria was based on biological sex and age of death and
the absence of any clinical or neuropathological neurodegenerative
features. Middle-age subjects included anyone between the ages
of 42–59 years old and “aged” subjects included anyone over
the age of 60. Clinical exclusion criteria included dementia or
movement disorder diagnosis following a comprehensive chart
review. Neuropathological exclusion criteria included any macro or
microscopic neurodegenerative changes (i.e., Lewy bodies, neuritic
plaques, neuronal atrophy, neocortical neurofibrillary tangles, etc.)
with the exception of vascular pathology and/or mild age-related
changes (i.e., primary age-related tauopathy or other common
age-related changes) (Crary et al., 2014).

Real-time quantitative polymerase chain
reaction (RT-qPCR)

The total RNA was extracted using the RNeasy FFPE kit
following the instructions provided by the manufacture (Qiagen).
The mRNA levels of genes of interest (CD99) were determined by
RT-qPCR analysis. The CD99 mRNAs were normalized to actin and
then transformed to log2 fold changes when testing the significance
of the differences between the groups using the Student’s t-test.

Cell type and neuron loss rate estimation

For each sample, proportions of 6 brain cell types were inferred
from the normalized gene expression data using the digital sorting
algorithm (Zhong et al., 2013) with the cell markers of the 6
brain cell types extracted from the BRETIGEA package (McKenzie
et al., 2018). Spearman correlation coefficient and p-value were then
calculated between the proportion of each cell type and age for each
brain region. The p-values were corrected using the BH procedure
(Benjamini and Hochberg, 1995). The R package DGCA (McKenzie
et al., 2016) was used to calculate the correlation difference of
cell-type proportions and age between males and females. The
adjusted p-values of the DGCA analysis were estimated using 1,000
permutations. To measure the median cell type change rate across
age, we also fitted the cell type proportions with age using the non-
parametric Theil–Sen estimator (Sen, 1968), which is insensitive
to outliers by calculating the median of the slopes of all fitting
lines through pairs of points. In addition, a down-sampling analysis
was performed on the male samples for calculated the correlation
coefficient 1,000 times to test whether neuron proportion was

significantly correlated with age in the males with the same number
of samples as the females.

Co-expression network construction and
downstream analysis

Gene co-expression networks were constructed based on
normalized gene expression levels for the males or females in
each of the 13 brain regions using the Multiscale Embedded Gene
Co-expression Network Analysis (MEGENA) (Song and Zhang,
2015). For each gender group in each brain region, a planar-filtered
network was first constructed, and then a multiscale clustering
analysis was performed to identify gene co-expression modules
at multiple compactness scales. Modules were then compared to
random PFN modules generated by shuffling the link weights
of the parent cluster to calculate statistical significance. Lastly, a
multiscale hub analysis was conducted to identify highly connected
hubs of each significant module. Modules with too many (>5,000)
or too few (<50) genes were excluded from further analysis.

For each brain region in each gender group, genes in the
identified modules were mapped with their respective rankings
of correlation coefficients with age and fold changes (log2
transformed) between aged and young adults to quantify modules’
relevance with aging. The significance of a module’s association
with aging was calculated using a logistic regression approach
LRpath (Sartor et al., 2009), and p-values were then adjusted with
Bonferroni correction. A module of a brain region in the males
or females was defined as an age-associated module if it was
significantly enriched with ACGs and/or aged-young DEGs in the
same gender of that region.

Gene ontology (GO) biological process
and pathway enrichment analysis

GO biological process and KEGG pathway enrichment analysis
was performed using the R package GO-function (Wang et al.,
2012). GO biological processes with at least 1 human gene
annotated in the org.Hs.eg.db were extracted from GO.db data
package in Bioconductor version v3.5 (Huber et al., 2015). Similarly,
KEGG pathways with at least one human gene annotated were
extracted from the KEGG.db data package (Huber et al., 2015). The
input for the analysis was either a set of co-expression modules or
a gene signature such as age positively-correlated genes (APCGs),
age negatively-correlated genes (ANCGs), up-regulated genes or
down-regulated genes in aged brains versus young brains in
male/female group. The p-value for an intersection was calculated
by the hypergeometric distribution test and corrected using the BH
procedure (Benjamini and Hochberg, 1995).

Module preservation and visualization

Module preservation was calculated among modules between
the male and female networks for each brain region. To
identify common and unique modules, we applied the following
procedures: firstly, the significance of the overlap between any two
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modules was calculated using FET. P-value was corrected by the
BH procedure (Benjamini and Hochberg, 1995). We then defined
set overlap as follows:

set overlap(AB) =
2|A∩ B|
|A| + |B|

where A and B were sets of genes in two modules under
consideration. Lastly, two modules were considered preserved if
the adjusted FET p-value was less than 0.05 and the set overlap
size was at least 30%. A male module and a female module
were defined as preserved aging-associated modules if they were
preserved and significantly enriched with ACGs and/or aged-young
DEGs. Otherwise, an aging-associated module was defined as a
gender-specific aging-associated module if it was not enriched with
ACGs/DEGs or not preserved in the other gender network. Circos
plots were employed to visualize various features of the modules
in a co-expression network using the R package NetWeaver (Wang
et al., 2016). Global co-expression networks and modules were
visualized using Cytoscape (v3.3.0) (Shannon et al., 2003).

Results

Males are more vulnerable to brain aging
with greater neuron loss and microglia
gain

The sample demographics of the 13 brain regions are
summarized in Table 1. The age range of the subjects is between
20 and 70. There is no significant difference in the age distribution
between the two gender groups in each of the 13 brain regions
(Kolmogorov–Smirnov test, p ≥ 0.18; Supplementary Figure 1).
Notably, the number of male samples is approximately twice of
female ones in each region. The neuropathological characters and
confounding factors, including neurodegenerative diseases, post-
mortem delay and immediate cause of death, are summarized for
each brain region in Supplementary Table 1.

We first inferred the proportions of 6 brain cell types for each
sample. Generally, we found that the proportion of neurons was
negatively correlated with age, while the proportion of microglia
was positively correlated with age (Table 2). Specifically, under
an FDR cutoff of 0.05, the proportion of neurons was negatively
correlated with age in the CD, CBH, CT, FC, HIPP, HTH, NAC and
SC regions in the males, while in the other 5 regions, the negative
correlation was non-significant with adjusted p-values < 0.2
(0.064–0.184) (Table 2). In contrast, the negative correlation with
age was significant in 3 brain regions in the females, i.e., ACC, CT
and CB. To estimate the cell type rate of changes during aging in
these brain regions, we fitted the cell type proportions with age
using Theil–Sen estimator. We found that neuronal loss was faster
in the males than in the females in 9 brain regions, including AMY,
CD, CBH, CB, HIPP, HTH, NAC, PT and SC (Supplementary
Table 2), while the females showed a more neuronal loss in the
CT and SN regions than the males. However, the difference was
not significant in most of the regions except SC, in which males
(ρ =−0.379) and females (ρ = 0.044) showed a significant difference
in correlations between neuron proportions and age (adjusted
p-value = 0.03). In contrast, the males and the females had a similar

TABLE 2 Correlations of cell proportions and age in the males and
females*.

Region Neuron Microglia

Male ρ
(adj. p)

Female ρ
(adj. p)

Male ρ
(adj. p)

Female ρ
(adj. p)

AMY −0.324 (0.079) −0.260 (0.091) 0.573 (0.002) 0.265 (0.051)

ACC −0.332 (0.064) −0.275 (0.037) 0.535 (0.003) 0.283 (0.022)

CD −0.282 (0.012) −0.032 (0.833) 0.296 (0.004) 0.200 (0.222)

CBH −0.297 (0.012) −0.089 (0.710) −0.070 (0.530) −0.418 (0.022)

CB −0.185 (0.184) −0.314 (0.003) −0.009 (0.947) −0.034 (0.770)

CT −0.296 (0.012) −0.408 (0.014) 0.087 (0.483) 0.378 (0.022)

FC −0.236 (0.038) −0.211 (0.342) 0.083 (0.511) 0.355 (0.051)

HIPP −0.365 (0.038) −0.421 (0.001) 0.562 (0.002) 0.370 (0.005)

HTH −0.269 (0.031) −0.222 (0.342) 0.292 (0.016) 0.548 (0.005)

NAC −0.234 (0.038) −0.168 (0.390) 0.197 (0.085) 0.415 (0.022)

PT −0.158 (0.148) −0.183 (0.390) 0.238 (0.052) 0.327 (0.085)

SC −0.379 (0.013) 0.044 (0.833) 0.233 (0.122) 0.301 (0.102)

SN −0.285 (0.148) −0.218 (0.212) 0.328 (0.122) 0.018 (0.888)

*See Supplementary Table 2 in additional file 3 for the correlation of all 6 cell types.

TABLE 3 Number of age-correlated genes identified in the males and
females.

Region Male Female

# APCGs # ANCGs # APCGs # ANCGs

AMY 286 387 0 0

ACC 3 2 41 61

CD 842 1442 430 530

CBH 276 270 672 683

CB 663 513 2 4

CT 534 829 468 555

FC 311 410 0 0

HIPP 1563 2146 0 1

HTH 1639 1728 0 0

NAC 1 2 0 0

PT 31 9 0 0

SC 7 187 0 0

SN 0 0 0 0

rate of increase in microglia proportion with aging across all the
brain regions except CD, in which the males gained more microglia
than the females. In addition, the astrocyte proportion was altered
in a regional- and sex-specific manner during aging. Specifically,
the astrocyte proportion increased with age in the CT region of both
males and females and the male FC and CB regions. However, in the
SC region, the astrocyte proportion was negatively correlated with
age in the females (ρ = −0.437, adjusted p = 0.05) but positively
correlated with age in the males (ρ = 0.253, adjusted p = 0.16)
(Supplementary Table 2). In summary, these results indicate that
brain aging is accompanied by the decreased neuron proportion
and the decreased microglia proportion.

Frontiers in Aging Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fnagi.2023.1153251
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-15-1153251 May 16, 2023 Time: 17:47 # 6

Zhou et al. 10.3389/fnagi.2023.1153251

ACGs can be reproducibly identified in
males and females

We performed a standard transcriptome-wide association
study to identify genes whose expression levels were associated with
age. With a false discovery rate (FDR) cutoff of 5%, correlations
between gene expression and age in the 13 brain regions were
calculated separately for the male and female groups (Table 3).
Nine regions in the males have over 100 genes correlated with
age, but only 4 regions in the females have over 100 age-correlated
genes (ACGs). In the males, there were 546 to 3,709 genes whose
expression levels were positively or negatively correlated with age
in the AMY, CD, CBH, CB, CT, FC, HIPP and HTH regions while
the numbers of ACGs in the ACC, NAC, PT and SC regions were
much smaller. Notably, more than 95% of the ACGs in the SC were
negatively correlated with age.

In general, there are fewer ACGs in females than in males.
Specifically, we identified only 6 ACGs in the female CB region
and 1 for the HIPP region. No ACG was identified in the female
AMY, FC, HTH, NAC, PT, SC and SN regions. For CD and CT
regions, we identified approximately 1,000 ACGs in the females,
which were also less than those in males of these regions. However,
we identified 102 and 1,355 ACGs in the female ACC and CBH
regions, respectively, which were more than the ACG numbers in
the same regions of the males though the female sample sizes were
smaller. We identified a similar number of ACGs using Spearman
correlation (Supplementary Table 3). These results suggested that
the ACC and CBH region were probably more vulnerable in
females than in males. In addition, we also identified more DEGs
between the aged and young individuals in males than in females
(Supplementary Table 4). To summarize, we identified more ACGs
in the males than in the females across 11 brain regions except for
the ACC and CBH regions.

To investigate the overlap between ACGs in the males and
females across the 13 brain regions, we performed Fisher’s Exact
Test (FET) for ACG sets with at least one gene. Figure 1A
shows the overlaps between these ACG signatures. Note that the
reported significance was corrected for multiple testing. There were
significant overlaps between the APCG signatures in different brain
regions within each gender group and across two groups. A similar
pattern was also observed for the ANCG signatures. In contrast,
there was no significant overlap between the APCG and ANCG
signatures across the 13 regions and two gender groups. To further
compare the ACGs from the brain with ACGs signatures from
other organs, we performed an enrichment analysis using Fisher’s
exact test. After correcting the p-values using the BH procedure,
we found that the APCGs and ANCGs of the brain regions were
significantly enriched for their counterparts in the heart and artery
(Yang et al., 2015; Supplementary Table 5). To validate the ACG
signatures, we used an independent RNA-seq dataset in the FC
from dbGaP (Study Accession phs001353.v2.p1). To keep the same
range as the GTEx dataset, we removed individuals younger than
20 or older than 70, resulting in 102 males and 39 females for the
validation study. At an FDR of 5%, 81 APCGs and 91 ANCGs
were identified in the male FC, while 3 APCGs and 4 ANCGs
were identified in the female FC. Among those ACGs, 23 of the 91
ANCGs and 8 of the 81 APCGs are also identified as ANGCs and
APGCs in the male FC of the GTEx, which are significantly more

than expected by chance (Fisher’s exact test, p = 3.02E-17 for the
ANCGs, p = 1.42E-04 for the APCGs). As no ACG was identified in
the female FC in GTEx, we cannot evaluate the conservation of the
ACGs in the female FC. On the other hand, we also reproducibly
identified 22 male-specific APCGs and 27 male-specific ANCGs
in the dbGaP FC dataset, which are also significantly more than
expected by chance (Fisher’s exact test, p = 2.54E-03 for the male-
specific APCGs and p = 7.78E-04 for the male-specific ANCGs).

To further validate the ACGs, we collected 38 human
hippocampal samples (from 11 male and 10 female subjects, subject
demographic information provided in Table 4) and measured the
mRNA expression levels of CD99 using qPCR. CD99’s mRNA level
was significantly correlated with age in both males (the CD, CT
and HIPP regions) and females (the CT region) in the GTEx
dataset (Supplementary Table 6A). In our validation hippocampal
samples, CD99 expression level wassignificantly correlated with
age in both males (ρ = 0.47, p = 0.038) and females (ρ = 0.50,
p = 0.034) (Figure 1B). Furthermore, the CD99 expression levels
were significantly higher in the aged males than the middle-aged
males (t-test, p = 0.032), as well as higher in the aged females than
middle-aged females (t-test, p = 0.012) (Figure 1C). In addition,
CD99 expression levels were significantly higher in males than
in females, in both the middle-aged (t-test, p = 3.86E-05) and
the aged group (t-test, p = 2.40E-05). In summary, the validation
experiment shows that CD99 expression level is significantly
positively correlated with age in both males and females but shows
a significant difference between the two sex groups, consistent with
the transcriptomics based prediction. These results demonstrated
the reproducibility of our ACG signatures.

We then classified the ACGs across the 13 brain regions
into sex-consistent ACGs, male-specific ACGs and female-specific
ACGs (Supplementary Table 6A). In total, we identified 774 sex-
consistent APCGs and 998 sex-consistent ANCGs. On the other
hand, we identified 519 female-specific APCGs and 494 female-
specific ANCGs that are correlated with age in one or more brain
regions in females but not in males. In males, we identified 2,524
male-specific APCGs and 2,742 male-specific ANCGs that are
correlated with age in only one or more brain regions in males
but not in females. To study the functions and pathways of the
ACGs, we performed a Gene Ontology enrichment analysis for
each of the ACG lists. Generally, the top enriched pathways and
biological processes for both sex-consistent ANCGs and male-
specific ANCGs are “synaptic signaling”, “cognition”, “learning
or memory”, “mitochondrion organization” and “neurogenesis”
(Figure 1D and Supplementary Table 6B). Besides, the sex-
consistent ANCGs are also enriched in the “axonal transport”
and “vesicle transport along microtubule” biological processes,
while the male-specific ANCGs are enriched in the “myelination”,
“regulation of synapse organization” and “axon ensheathment”
pathways (Figure 1D). On the other hand, both the male-specific
APCGs and sex-consistent APCGs are enriched in the “immune
response” and “immune system process” pathways. In addition,
the male-specific APCGs are also enriched in the “regulation
of RNA biosynthetic process” and “response to stress” pathways
(Figure 1D). In contrast, females-specific ANCGs and APCGs
were significantly enriched in the “cellular metabolic process” and
“regulation of cell communication” pathways, respectively.

We then asked which genes were differentially correlated with
age between males and females. To test whether the correlation
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FIGURE 1

Age-correlated gene (ACG) identified in the GTEx, validation in the human hippocampus and Gene Ontology enrichment analysis of the ACGs.
(A) The numbers of ACGs are shown in the diagonal of the heatmap. The “+” sign after the abbreviation of each brain region indicates the signatures
positively correlated with age while “−” stands for those negatively correlated with age. Color intensity indicates adjusted p-values of the enrichment
test between a pair of ACG signatures. AMY, amygdala; ACC, anterior cingulate cortex (BA24); CD, caudate (basal ganglia); CBH, cerebellar
hemisphere; CB, cerebellum; CT, cortex; FC, frontal cortex; HIPP, hippocampus; HTH, hypothalamus; NAC, nucleus accumbens (basal ganglia); PT,
putamen (basal ganglia); SC, spinal cord (cervical c-1); SN, substantia nigra. (B) The mRNA expression levels of CD99 that were measured by
RT-qPCR and normalized to the actin expression levels in each sample and log2 transformed. Pearson correlation was used to calculate the
correlation coefficients between the normalized CD99 expression levels and age in the males (blue) and females (red). (C) The normalized CD99
expression levels in the middle-aged and aged healthy male and female hippocampal region. log2FC: 1.198 ± 0.147 in middle-aged male subjects
versus 0.206 ± 0.127 in middle-aged female subjects; versus 1.584 ± 0.146 in aged male subjects; versus 0.606 ± 0.098 in aged female subjects;
*p < 0.05, ****p < 0.0001 with Student’s t-test. (D) Top biological processes and pathways enriched with the age-positively correlated genes
(APCGs) or age-negatively correlated genes (ANCGs) consistant in both males and females as well as specific to each of the 2 gender groups.
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TABLE 4 Demographic information of the subjects for validation.

Group ID Age Clinical diagnosis Neuropathological diagnosis PMI (h)

Middle-aged female 1 56 Squamous cell carcinoma No diagnostic abnormality 24

2 57 Cardiomyopathy Ischemic infarcts 24

3 53 Severe Anemia No diagnostic abnormality 25

4 57 Squamous cell carcinoma Cerebrovascular disease 24

5 59 Acute myeloid leukemia Cerebrovascular disease 31

Middle-aged male 6 56 Diabetes Ischemic encephalopathy 24

7 50 Coronary artery disease Cerebrovascular disease 26

8 59 Myeloproliferative neoplasms No diagnostic abnormality 19

9 50 Acute necrotizing pancreatitis Cerebrovascular disease 23

10 52 Diabetic ketoacidosis Cerebrovascular disease 20

11 42 End-stage renal disease Cerebrovascular disease 58

Aged female 12 74 Adenocarcinoma Arteriosclerosis 24

13 86 Cardiac arrest Primary age-related tauopathy 29

14 82 Myocardial infarction Primary age-related tauopathy 22

15 77 Diabetes Primary age-related tauopathy 14

16 88 Metastatic adenocarcinoma No diagnostic abnormality 7

Aged male 17 83 Adenocarcinoma Arteriosclerosis 89

18 80 Fibromuscular stroma Cerebrovascular disease 16

19 82 Cholecystitis No diagnostic abnormality 11

20 97 Multiple organ failure Cerebrovascular disease 53

21 89 Pancreatic cancer Cerebrovascular disease 22

coefficients of age and gene expression were significantly different
between males and females, we performed a differential correlation
analysis for each region using an R package DGCA (McKenzie et al.,
2016). With a 5% FDR cutoff under 1,000 times of permutation, we
identified 65 to 805 genes differentially correlated with age between
males and females. We summarized the results in Supplementary
Table 7.

Identification of key gene subnetworks
and regulators underlying aging in males
and/or females

To gain insights into the global structures as well as the detailed
local organizations of co-expression and co-regulation of the above-
identified gene signatures underlying aging, we performed gene co-
expression network analysis of the gene expression data from each
brain region in each gender group using the multiscale embedded
gene co-expression network analysis (MEGENA) (Song and Zhang,
2015). The modules, comprised of highly co-expressed genes, were
first identified in each region in each gender group and were then
evaluated for relevance to aging by the enrichment for respective
ACG signatures.

Many top-ranked, aging-associated, region-wide gene modules
in the males are conserved in their respective female networks,
and vice versa (Supplementary Tables 8–20). For instance, the
module M11 of the male CBH network (encoded as CBH-
Male-M11) is significantly enriched for the ANCGs in the male

CBH (fold enrichment (FE) = 14.36, corrected p = 8.07E-53)
and the down-regulated genes in aged versus young male CBH
(FE = 6.48, corrected p = 1.69E-06) (Figure 2A). Among the
268 genes in the module CBH-Male-M11, 156 genes (66%)
fall into an aging-associated female module (CBH-Female-M194)
comprised of 205 genes (FE = 46.83, corrected p = 2.78E-252; see
Supplementary Table 12). The module CBH-Female-M194 is also
significantly enriched for the ANCGs in the female CBH (FE = 3.30,
corrected p = 2.37E-31) and the down-regulated genes in aged
versus young female CBH (FE = 2.63, corrected p = 3.86E-29)
(Figure 2B). Furthermore, 6 hub genes in the module CBH-Male-
M11 (Figure 2C) are also hubs of the module CBH-Female-M194
(Figure 2D), including MOG, ENPP2, MYRF, ANLN, MAG and
PLP1. Both modules were significantly enriched for myelination-
related biological processes (Supplementary Table 21), such as
“ensheathment of neurons” and “myelination”. To further validate
the shared hub genes identified in the 2 modules conserved
between the males and females, we examined gene signatures
in Plp1−/− mice or Myrf−/− mice from our previous study
(McKenzie et al., 2017) and by overlaying them onto the 2
modules (CBH-Male-M11 and CBH-Female-M194). We found
up-regulated genes identified from Plp1−/− cerebellum were
significantly enriched in CBH-Male-M11 (FE = 2.85, adjusted
p = 8.77E-06, Figure 2C) and CBH-Female-M194 (FE = 3.07,
adjusted p = 9.69E-06, Figure 2D). Similarly, down-regulated genes
identified from cultured mouse Myrf−/− oligodendrocytes were
significantly enriched in CBH-Male-M11 (FE = 2.22, adjusted
p = 1.84E-07) and CBH-Female-M194 (FE = 2.71, adjusted
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FIGURE 2

Aging-associated co-expression module shared between male and female cerebellar hemisphere (CBH). (A) Circos plot for the modules in the male
CBH network ranked by enrichment of the ACG and DEG signatures between aged versus young males. (B) Circos plot for the top modules in the
female CBH network ranked by enrichment of the ACG and DEG signatures in the CBH between aged versus young females. (C) Subnetwork of the
module CBH-Male-M11 in the male CBH network, which is conserved in the female CBH network. Blue nodes are the genes whose expression
levels are negatively correlated with age in the male CBH, while blue labels are the genes down-regulated in the CBH of the aged males versus that
of the young males. Large nodes are the hub genes of the module. Nodes with red borders are genes up-regulated in the CBH region of the Plp1−/−

mice versus the wild-type mice. (D) Subnetwork of the module CBH-Female-M194 in the female CBH network. Blue nodes are the genes whose
expression levels are negatively correlated with age in the female CBH, while blue labels are the genes down-regulated in the CBH of the aged
females versus that of the young females. Large nodes are the hub genes of the module. Nodes with red borders are genes up-regulated in the CBH
region of the Plp1−/− mice versus the wild-type mice.

p = 8.42E-11). As myelination is an important function in the
central nervous system, we further examined the myelination-
associated module in the other 12 regions. We found that the
myelination-associated module was significantly enriched with
ANCGs and conserved across all the brain regions (Supplementary
Table 22). Moreover, the hub genes in those modules are very
consistent across the 13 brain regions. The most frequent hub genes
in the myelination modules are MOG, MYRF, PLP1, CNP and
MAG (Supplementary Table 22). In summary, the above results
indicate that certain aging-associated processes, such as down-
regulation of the myelination/nerve ensheathment modules, are

well conserved between males and females across all the brain
regions.

In the AMY, HIPP, HTH and FC brain regions, we observed
many male aging-associated modules that don’t overlap with
female aging-associated modules (Supplementary Tables 8–20).
For instance, in the male hippocampal network (Figure 3A),
Hipp-Male-M3 (Figures 3B, C) was significantly enriched for
the ANCGs (FE = 3.22, corrected p = 5.71E-174) and the
down-regulated DEGs between aged versus young hippocampus
(FE = 3.63, corrected p = 3.50E-142). These genes in the module
Hippocampus-Male-M3 were implicated in the pathways such as
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“nervous system development”, “synaptic signaling” and “neuron
development” (Supplementary Table 21). Moreover, top hub genes
in this module (Figure 3D) were associated with the development
of Alzheimer’s disease, including VSNL1 (Kirkwood et al., 2016),
INA (Dickson et al., 2005), CHN1 (Kato et al., 2015), NMNAT2
(Ljungberg et al., 2012), and MAP7D2 (Khundakar et al., 2016).
In particular, INA, VSNL1, MYT1L and MAP7D2 were identified
as male-specific aging-associated hub genes across multiple brain
regions (see Supplementary Tables 6A, 8–20). In addition to
the Hipp-Male-M3, we also identified many modules specific to
the male gene coexpression networks (Supplementary Tables 8–
20), such as the modules HIPP-Male-M9, CB-Male-M48, SC-
Male-M100, and HIPP-Male-M27. These modules are significantly
enriched for the glia and neuron transmission functions such
as “regulation of catabolic process”, “glial cell differentiation”,
“vesicle-mediated transport in synapse”, and “chemical synaptic
transmission” (Supplementary Table 21).

Similarly, female-specific aging-associated modules have been
identified in other brain regions such as CD and CT. For
example, several modules in the female CT network (Figure 4A)
were significantly enriched for the ACG and DEG signatures
in the female CT without significant overlap with the aging-
associated module in the male CT network (Supplementary
Table 13). For example, CT-Female-M38, the 2nd module most
associated with aging (Figures 4B, C), was significantly enriched
for the ANCGs in the female CT (corrected p = 1.75E-63) and
the down-regulated DEGs in CT between aged versus young
females (corrected p = 3.89E-72) (Figure 4D). The genes in the
module CT-Female-M38 were associated with “neuron projection
morphogenesis” (FE = 2.25, corrected p = 3.67E-06) and “axon
development” (FE = 2.31, corrected p = 6.91E-05) (Supplementary
Table 21), and regulated by female-specific key drivers include
SRPK2, REPS2 and FXYD1. Moreover, there are also many female-
specific modules such as CT-Female-M10, NAc-Female-M6, AMY-
Female-M25 and CT-Female-M148 (Supplementary Tables 8–20)
and they are enriched for pathways like calcium ion regulated
exocytosis, protein targeting to ER, inflammatory response, and
cellular response to cytokine stimulus (Supplementary Table 21).

Aging-related modules and key genes
are associated with Alzheimer’s diseases

To investigate the association between normal brain aging
and Alzheimer’s disease (AD), we performed an enrichment
analysis between the ACG signatures and previous AD gene
signatures (Colangelo et al., 2002; Liang et al., 2008; Webster
et al., 2009; Avramopoulos et al., 2011; Blalock et al., 2011;
Szymanski et al., 2011; Miller et al., 2013; Zhang et al., 2013;
Satoh et al., 2014; Mostafavi et al., 2018; Klein et al., 2019;
Mathys et al., 2019). As shown in Figure 5, the ACG signatures
identified from various brain regions were significantly enriched
for the AD signatures identified from previous studies. More
importantly, the APCG signatures were significantly enriched for
the genes positively correlated with AD phenotypes (Braak staging
and atrophy) or genes up-regulated in AD versus control, while
the ANCG signatures were significantly enriched for the genes
negatively correlated with AD phenotypes or down-regulated in

AD. Specifically, the APCGs in the male FC, CB, CBH, CD,
CT, HIPP, HTH and AMY regions were significantly enriched
for the genes positively correlated with Braak stages and brain
atrophy in PFC and CB identified by Zhang et al. (2013) and
the genes up-regulated with AD versus control in the HIPP CA1
and CA3 sub-regions. On the other hand, the ANCGs in the
male AMY, CB, CD, CT, FC, HIPP and HTH regions significantly
overlapped the genes negatively correlated with Braak stages
and brain atrophy in the PFC (Zhang et al., 2013) and genes
down-regulated in thalamocortical radiations, superior temporal
gyrus and hippocampal CA1 and CA3 regions of AD brains
(Webster et al., 2009; Szymanski et al., 2011; Miller et al.,
2013). In summary, AD and aging showed many consistent
transcriptomic alterations as aging is the key vulnerability for AD
development.

Interestingly, 134, 95 and 42 down-regulated genes identified
from AD PFC excitatory neurons in the Mathys et al. single-
cell study (Mathys et al., 2019) were significantly enriched
for the ANCGs in the male HIPP (corrected p = 9.44E-11),
male HTH (corrected p = 1.57E-4) and female CBH (corrected
p = 0.015) regions, respectively. On the other hand, 38 and 14
up-regulated genes in AD excitatory neurons were enriched for
the APCGs in the male FC (corrected p = 2.18E-14) and the
female CBH (corrected p = 1.31E-03) regions, respectively. By
contrast, dysregulated genes in AD inhibitory neurons showed no
enrichment for the ACGs. Furthermore, the up-regulated genes
in AD astrocytes were significantly enriched for the APCGs in
six brain regions, including CB, CD, CT, FC, HIPP and HTH.
The results suggested that aging may have stronger effects on
excitatory neurons and astrocytes than other cell types during
AD development. Thus, aging effects on excitatory neurons and
astrocytes may increase vulnerability to AD development and
progression.

Discussion

Previous studies showed that the proportion of neuronal loss
varies not only in different brain regions (ranging from no more
than 10% (Pannese, 2011) to 50% (Devaney and Johnson, 1980),
but also in different neuron subtypes (Hua et al., 2008). Our
data shows that ACGs are enriched for the genes differentially
expressed in AD excitatory neurons in comparison with control,
but not those differentially expressed in inhibitory neurons,
confirming that the loss of neurons in certain neuron subtypes
is more severe than others during aging. Morphological studies
showed that synaptic function was also significantly altered during
aging (Pannese, 2011), with a decrease in dendrites and axons
as well as the loss of dendritic spines and myelin sheaths.
Moreover, transcriptomic analyses indicate that synapse-related
genes and co-expression modules are extensively down-regulated
across different brain regions (Berchtold et al., 2013; Dillman
et al., 2017). In this study, we showed that the males have
faster neuronal loss rates during aging than the females in 9
brain regions (including AMY, CD, CBH, CB, HIPP, HTH, NAC,
PT and SC), while the females had a faster rate of neuronal
loss in the CT and SN regions during aging. This supports
the previous findings that males are generally aging faster than
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FIGURE 3

Male-specific aging-associated co-expression network in the hippocampus. (A) The global MEGENA network from the male hippocampus. Each
color indicates a highly connected module. The top age-associated modules enriching for the ACGs and DEGs of the male hippocampus are
highlighted with red and cyan frames. (B) Sunburst plot of the multi-scale modules in the male hippocampus network. Red blocks show the
modules enriched for APCGs of the male hippocampus; blue blocks show the modules enriched for ANCGs of the male hippocampus; yellow
blocks show the modules enriched for both APCGs and ANCGs. (C) Heatmap of the top 25 modules in the male hippocampus network enriched
with ACGs. The left panel shows the adjusted p-values of ACG and DEG enrichments of the 25 modules. The right panel shows the adjusted
p-values of enrichment for the top 2 Gene Ontology biological processes in each of the 25 modules. (D) Subnetwork of the top age-associated
module Hippocampus-Male-M3. Nodes with blue labels are ANCG hub genes in the male hippocampus. Red and blue nodes are up- and
down-regulated genes in aged males versus young males, respectively.
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FIGURE 4

Female-specific aging-associated co-expression network and modules in the cortex. (A) The global MEGENA network from the female cortex. Each
color indicates a highly connected module. The top age-associated modules enriching for the ACGs and DEGs of the female cortex are highlighted
with red and cyan frames. (B) Sunburst plot of the multi-scale modules in the female cortex network. Red blocks show the modules enriched for
APCGs of the female cortex; blue blocks show the modules enriched for ANCGs of the female cortex; yellow blocks show the modules enriched for
both APCGs and ANCGs. (C) Heatmap of the top 25 modules in the female cortex network enriched with ACGs. The left panel shows the adjusted
p-values of ACG and DEG enrichments of the 25 modules. The right panel shows the adjusted p-values of enrichment for the top 2 Gene Ontology
biological processes in each of the 25 modules. (D) Subnetwork of the module CT-Female-M38. Red and blue nodes represent APCG and ANCG
hub genes in the female cortex, respectively.
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FIGURE 5

Overlapping between ACGs and Alzheimer’s disease gene signatures of previous studies. The numbers in the heat map show the shared gene
numbers. Color intensity indicates the adjusted p-value of Fisher’s Exact Test.

the females measured by many aging hallmarks (Barrett and
Richardson, 2011; Dulken and Brunet, 2015; Gaignard et al., 2015;
Gentilini et al., 2015; Fischer and Riddle, 2018). Further studies
should be designed to investigate the gender differences in
proteostasis dysfunction, cellular senescence, deregulated nutrient
sensing and altered intercellular communication during aging
since no study focuses on the gender differences of these 4
hallmarks. Opposite to the decreased neuron proportion during
aging, the microglia proportion increases with age in most
of the brain regions in both gender groups. The role of
increased microglia proportion in the brain during aging and its
contribution to gender differences in brain aging await further
investigation.

In this study, we identified more aging-associated genes in the
male HIPP, HTH, FC, CD, AMY and CB brain regions than in
the respective female regions. This is consistent with a prior study,
which showed that subcortical regions in males were aging faster
than in females (Kiraly et al., 2016). In contrast, we identified
more ACGs in the female ACC and CBH brain regions than the
respective male ones, suggesting that sex differences in aging-
associated gene expression changes are region-specific. In the CT,
CD and CBH regions, hundreds of ACGs were identified in both
males and females, while both gender groups have only a few
or no ACGs in the NAC, PT, SC and SN regions. As there are
twice as many males than females in most of the brain regions in

the current GTEx data, the statistical power is larger in the male
group, which may contribute to more ACGs identified in the male
brain regions than the corresponding female ones. Nevertheless,
the CBH region in the females has more ACGs than the males,
suggesting that the CBH may age faster in the females than the
males, which is further supported by the finding of the increased
proportion of microglia in the females than the males. Using an
independent human dataset from the dbGap and our hippocampal
RT-qPCR cohort, we reproducibly identified many ACGs in the
GTEx and validated CD99 as a ACG in both male and female.
Due to the relatively low statistical power in the female group
in the GTEx cohort, many ACGs in the females are yet to be
identified.

Age-related gene expression changes across the central nervous
system may contribute to the development of neurodegenerative
disorders and functional deficits. Understanding the normal
brain aging process helps elucidate the contribution of aging
to neurodegenerative disorders and impairment of the brain
and offers the potential to prevent, mitigate, and even reverse
the impairment with potential therapeutics targeting the
dysregulated pathways (Ali et al., 2017). Previous studies
suggested that age-related cognitive decline was associated
with mTOR signaling, chromatin modification, oxidative stress
and dysregulation of mitochondrial function (Bishop et al.,
2010; Wyss-Coray, 2016; Mostafavi et al., 2018). These changes
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during aging could account for the vulnerability of neurons
to neurodegenerative stressors because of their high energetic
demands (Bishop et al., 2010). Indeed, many key drivers in
the aging-related modules identified in both sexes have been
demonstrated to contribute to the development of AD and other
neurodegenerative disorders. For instance, our study shows that
a gene encoding nicotinamide nucleotide adenylyltransferase 2
(NMNAT2), a critical enzyme in the NAD biosynthetic process,
is significantly down-regulated during aging in both the males
and females. This finding is consistent with the decreased
expression of NMNAT2 in Alzheimer’s, Huntington’s, and
Parkinson’s diseases (Ali et al., 2016, 2017). The decreased
expression of NMNAT2 would reduce the biosynthesis of NAD
and then decrease bioenergy generation, which may contribute
to the vulnerability of neurons. However, we still do not know
the roles of many key drivers identified in this study in the
development of neurodegenerative diseases, such as REPS2 and
FXYD1.

Estrogen acts as anti-aging-hallmark roles in the brain, such
as promoting mitochondrial function, elevating DNA repair
enzymes and increasing synaptic plasticity (Zarate et al., 2017).
In the GTEx cohort, the genes coding estrogen receptors (ESR1
and ESR2) and aromatase (CYP19A1, HSD17B1 and HSD17B2)
were lowly expressed in the 13 brain regions studied here and
they were not correlated with age. For their low expression
levels, ESR2, HSD17B2 and CYP19A1 were excluded from
the further analyses. This suggested that brain neurons are
probably affected by the estrogen level decreasing in blood,
especially in females after menopause. This should be confirmed
by providing more pieces of evidence in future brain aging
studies.

Nevertheless, this study has some limitations. Firstly,
estimation of the cell proportions from the bulk tissue RNA-
seq data was based on the expression levels of the known marker
genes of six brain cell types. The age-associated changes of cell
type proportions in males and females need be further investigated
with single-cell RNA-Sequencing data with sufficient number of
young, middle-aged and aged brains. Secondly, the differences
in epigenetic alterations (Nativio et al., 2018; Klein et al., 2019)
between males and females are important sources of the gender
differences in gene expression changes during aging. What are
the gender-specific epigenetic alterations during brain aging?
What are the roles of those gender-specific aging epigenetic
alterations in neurodegenerative disease? These questions need
more data to answer in future studies of gender differences in brain
aging. Next, although we did not find a significant interaction
between age and gender due to the relatively sample size there
may be interactions between age and gender if enough samples are
obtained. Lastly, as there were twice as many males as females in
most of the brain regions in the current GTEx data, the statistical
power is larger in the male group, which may contribute to
higher numbers of ACGs identified in the male brain regions.
Nevertheless, the CBH region in the females showed more ACGs
than the males, suggesting that the CBH may age faster in the
females than the males, which is further supported by the finding
of the increased proportion of microglia in the females than the
males.

Conclusions

Dramatic differences in brain cell type proportion and
gene expression changes during aging between males and
females were observed in several brain regions. Key molecular
networks and targets underlying regional vulnerability to aging
in males and females were further identified. These findings
pave the way for understanding the molecular mechanisms of
gender differences in aging and developing neurodegenerative
diseases such as AD.
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