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ABSTRACT

Non-central distributions appear in two sample problems and are often used in several

fields, for example, in biostatistics. A higher order approximation for a percentage point of

the non-central t-distribution under normality is given by Akahira (1995) and is also shown

to be numerically better than others. In this paper, without the normality assumption, we

obtain a higher order approximation to the percentage point of the distribution of a non-

central t-statistic, in a similar way to Akahira (1995) where the statistic based on a linear

combination of a normal random variable and a chi-statistic takes an important role. Its

application to the confidence limit and the confidence interval for a non-centrality parameter

are also given. Further, a numerical comparison of the higher order approximation with the

limiting normal distribution is done and the former one is shown to be more accurate. As

a result of the numerical calculation, the higher order approximation seems to be useful in

practical situations, when the size of sample is not so small.
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1. INTRODUCTION

The non-central t-distribution was derived by Fisher (1931), and tables obtaining its

percentage points were given by Johnson and Welch (1940), Resnikoff and Lieberman (1957),

Bagui (1993) and others. Comparisons of some approximations for its percentage points were

provided by van Eeden (1961), Owen (1963) and others (see also Johnson et al. (1995)).

In the two sample problem, assuming the normality on the sample distributions, we

usually use the t-statistic in hypothesis testing and interval estimation. For example, let

(X1, . . . , Xn1) and (Y1, . . . , Yn2) be random samples from the normal distributions with means

θ1 and θ2 and a common variance σ2, respectively. Denote the sample means and the sample

variances by

X̄ :=
1

n1

n1∑

i=1

Xi, Ȳ :=
1

n2

n2∑

i=1

Yi, S2
1 :=

1

n1

n1∑

i=1

(Xi − X̄)2 and S2
2 :=

1

n2

n2∑

i=1

(Yi − Ȳ )2,

respectively. Then the statistic

T :=
X̄ − Ȳ

√
n1 + n2

n1n2

√
n1S2

1 + n2S2
2

n1 + n2 − 2

(1.1)

follows a non-central t-distribution with n1 +n2 − 2 degrees of freedom and a non-centrality

parameter δ := λ
√

n1n2/(n1 + n2), where λ := (θ1−θ2)/σ. So, we can consider the problems

of the testing hypothesis on λ and the interval estimation on λ using the statistic T given

by (1.1). In the above situation, we assume the normality condition on the underlying

distribution, and using the Cornish-Fisher expansion, derive the higher order approximation

to a percentage point of the non-central t-distribution. The approximation is shown to

be numerically accurate (see Akahira (1995) and Akahira et al. (1995)). However, the

normality assumption is too strict to apply the result to practical cases. Hence it seems to

be meaningful to derive a higher order approximation to the distribution of a non-central

t-statistic without the normality assumption.

Some works in the line of non-central distributions can be seen in Dı́az-Garćıa et al.

(2002) and Dı́az-Garćıa and Leiva-Sánchez (2003). Recently, the limiting behaviour of the
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non-central t-statistic under non-normality has been studied by Bentkus et al. (2007), but its

speed of covergence does not seem to be high. Here we derive a higher order approximation

to the upper 100α percentile, without the normality assumption, in a similar way to Akahira

(1995). We also obtain the confidence limit and the confidence interval of a non-centrality

parameter.

In Section 2, the non-central t-statistic Tn and a percentile of its distribution are defined.

Further, in order to obtain the approximation to a percentage point of the distribution of

Tn without the normality assumption we calculate the mean, variance and covariance of the

statistic based on a linear combination of a normal random variable and a chi-statistic. In

Section 3, using the Cornish-Fisher expansion we derive higher order approximations to a

percentage point of the distribution of Tn and the lower confidence limit and the confidence

interval of the non-centrality parameter. In Section 4, we compare the higher order approx-

imation with the limiting normal distribution and show it to be numerically more accurate.

In Section 5, an application to distribution patterns of plant species is discussed. In Section

6, some conclusions are mentioned.

2. THE CALCULATION OF THE MEAN, VARIANCE AND COVARIANCE OF SOME

STATISTICS FROM DERIVED FROM THE NON-CENTRAL T-STATISTIC

In this section, we define the non-central t-statistic, and in order to obtain the approxi-

mation to a percentage point of the distribution of the non-central t-statistic, we calculate

the mean, variance and covariance of the sample mean X̄ and the sample standard deviation

Sn.

Suppose thatX1, . . . , Xn are independent and identically distributed (i.i.d.) non-degenerate

continuous random variables with mean µ, variance 1 and finite sixth moment. Let µj :=

E[(X1 − µ)j] (j = 2, . . . , 6), X̄ := (1/n)
∑n

i=1 Xi, S2
n :=

∑n
i=1(Xi − X̄)2/(n − 1). Define

Tn :=
√
nX̄/Sn as the non-central t-statistic when µ #= 0 where Sn =

√
S2
n. In particular,

if the underlying distribution is N(µ, 1), then Tn follows the non-central t-distribution with

n − 1 degrees of freedom and a non-centrality parameter µ
√
n. Here we put σn := E(Sn).

For any α with 0 < α < 1, there exists tα such that P{Tn < tα} = 1 − α. The tα is called
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the upper 100α percentile of the distribution of the non-central t-statistic Tn.

First we have for any t ∈ (−∞,∞)

Pµ{Tn ≤ t} = Pµ

{√
nX̄

Sn
≤ t

}
= Pµ{

√
nX̄ − tSn ≤ 0}

= Pµ

{√
n(X̄ − µ)− t(Sn − σn) ≤ −µ

√
n+ tσn

}
. (2.1)

Here, for each i = 1, 2, . . . , let X ′
i := Xi − µ. Note that µj = E(X ′j

i ) (j = 2, . . . .6). Then

(2.1) is written as

Pµ{Tn ≤ t} = P0

{√
nX̄ ′ − t(Sn − σn) ≤ an(t)

}
= P0 {Z − t(Sn − σn) ≤ an(t)} , (2.2)

where an(t) := −µ
√
n + tσn and Z :=

√
nX̄ ′ with X̄ ′ := (1/n)

∑n
i=1 X

′
i. Since E(X ′

i) =

0 (i = 1, 2, . . . ), putting

Yn := Z − t(Sn − σn),

we obtain the mean Et(Yn) = 0 and the variance

Vt(Yn) = nV (X̄ ′) + t2V (Sn)− 2
√
ntCov(X̄ ′, Sn), (2.3)

where Cov(X̄ ′, Sn) denotes the covariance between X̄ ′ and Sn. In the right-hand side of

(2.3), we have

nV (X̄ ′) = 1, V (Sn) = E(S2
n)− σ2

n = 1− σ2
n, Cov(X̄ ′, Sn) = E(X̄ ′Sn). (2.4)

Here, we consider the case when t = O(
√
n).

2(i) The calculation of σn := E(Sn).

First we have by the Taylor expansion

σn = E(Sn) = E
[√

1 + (S2
n − 1)

]

= 1− 1

8
E
[
(S2

n − 1)2
]
+

1

16
E
[
(S2

n − 1)3
]
− 15

128
E
[
(S2

n − 1)4
]
+O

(
1

n3

)
. (2.5)

Since

E(S4
n) = 1 +

1

n

(
µ4 −

n− 3

n− 1

)
,
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E(S6
n) = 1 +

3

n
(µ4 − 1)− 1

n2
(6µ2

3 − µ6 + 3µ4 − 8) +
2

n3
(6µ4 − 7),

and

E(S8
n) = 1 +

6

n
(µ4 − 1) +

1

n2
(4µ6 + 3µ2

4 − 18µ4 − 24µ2
3 + 23) +O

(
1

n3

)
,

it follows that

E
[
(S2

n − 1)2
]
=

1

n
(µ4 − 1) +

2

n2
+

2

n3
+O

(
1

n4

)
, (2.6)

E
[
(S2

n − 1)3
]
=

1

n2
{µ6 − 15− 3(µ4 − 3) + 8− 6µ2

3}+
2

n3
{6(µ4 − 3) + 8}+O

(
1

n4

)
,

(2.7)

and

E
[
(S2

n − 1)4
]
=

3

n2
(µ4 − 1)2 +O

(
1

n3

)
. (2.8)

From (2.5) to (2.8) we have

σn = 1− 1

8n
(µ4 − 1)− 1

128n2

{
8(6µ2

3 − µ6 + 3µ4 + 2) + 15(µ4 − 1)2
}
+O

(
1

n3

)
. (2.9)

In particular, if the underlying distribution is N(0, 1), then

σn = 1− 1

4n
− 7

32n2
+O

(
1

n3

)
, (2.10)

which coincides with the value bn−1 in (2.6) of Akahira (1995).

2(ii) The calculation of Cov(X̄ ′, Sn) = E(X̄ ′Sn).

In a similar way to the above (i), we have by the Taylor expansion

E(X̄ ′Sn) = E
[
X̄ ′
√

1 + (S2
n − 1)

]

=
1

2
E(X̄ ′S2

n)−
1

8
E
[
X̄ ′(S2

n − 1)2
]
+

1

16
E
[
X̄ ′(S2

n − 1)3
]
+O

(
1

n3

)
. (2.11)

Since

E(X̄ ′S2
n) =

µ3

n
, (2.12)
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E(X̄ ′S4
n) =

2µ3

n
+

1

n2
(µ5 − 6µ3) +O

(
1

n3

)
,

E(X̄ ′S6
n) =

3µ3

n
+

1

n2
(µ3µ4 + µ5 − 7µ3) +O

(
1

n3

)
,

it follows that

E
[
X̄ ′(S2

n − 1)2
]
=

1

n2
(µ5 − 6µ3) +O

(
1

n3

)
, (2.13)

E
[
X̄ ′(S2

n − 1)3
]
=

3

n2
µ3(µ4 − 1) +O

(
1

n3

)
. (2.14)

From (2.11), (2.13) and (2.14) we obtain

E(X̄ ′Sn) =
µ3

2n
+

1

16n2
(9µ3 − 2µ5 + 3µ3µ4) +O

(
1

n3

)
. (2.15)

2(iii) The calculation of the variance and the third cumulant of Yn.

From (2.3), (2.4) and (2.15) we have

Vt(Yn) = 1− tµ3√
n
+

t2

4n
(µ4 − 1)− t

8n
√
n
(9µ3 − 2µ5 + 3µ3µ4) +O

(
1

n
√
n

)
. (2.16)

Note that t = O(
√
n). Let Wn := Yn/

√
Vt(Yn). Then Et(Wn) = 0 and Vt(Wn) = 1.

On the third cumulant of Yn, we have

κ3,t(Yn) : = E
[
{
√
nX̄ ′ − t(Sn − σn)}3

]

= n
√
nE
(
X̄ ′3)− 3ntE

[
X̄ ′2(Sn − σn)

]
+ 3

√
nt2E

[
X̄ ′(Sn − σn)

2
]

− t3E
[
(Sn − σn)

3
]
. (2.17)

Then we obtain by the Taylor expansion

E(X̄ ′2Sn) = E
[
X̄ ′2
√
1 + (S2

n − 1)2
]

= E(X̄ ′2) +
1

2
E
[
X̄ ′2(S2

n − 1)
]
− 1

8
E
[
X̄ ′2(S2

n − 1)2
]
+O

(
1

n3

)
(2.18)

for large n. Since

E(X̄ ′2) =
1

n
,
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E(X̄ ′2S2
n) =

1

n− 1
E

(
X̄ ′2

n∑

i=1

X ′
i
2

)
− n

n− 1
E(X̄ ′4)

=
1

n− 1

(
µ4

n
+

n− 1

n

)
− n

n− 1

{
µ4

n3
+

3(n− 1)

n3

}

=
1

n
+

µ4 − 3

n2
,

E
[
X̄ ′2(S2

n − 1)2
]
=

1

n2
(µ4 + 2µ2

3 − 1) +
1

n3
(µ6 − 11µ4 − 6µ2

3 + 20) +O

(
1

n4

)
,

E
[
X̄ ′2(S2

n − 1)3
]
=

1

n3
(µ6 + 6µ3µ5 + 3µ2

4 − 15µ4 − 42µ2
3 + 11) +O

(
1

n4

)
,

it follows from (2.18) that

E(X̄ ′2Sn) =
1

n
+

1

8n2
(3µ4 − 2µ2

3 − 11) +O

(
1

n3

)
. (2.19)

Since, by (2.6), (2.7) and (2.8),

E(S3
n) = E

[
{1 + (S2

n − 1)}3/2
]

= 1 +
3

2
E(S2

n − 1) +
3

8
E
[
(S2

n − 1)2
]
− 1

16
E
[
(S2

n − 1)3
]
+

3

128
E
[
(S2

n − 1)4
]

+O

(
1

n3

)

= 1 +
3

8n

(
µ4 −

n− 3

n− 1

)
− 1

16n2
(2− 3µ4 + µ6 − 6µ2

3) +
9

128n2
(µ4 − 1)2

+O

(
1

n3

)

= 1 +
3

8n
(µ4 − 1)− 1

16n2
(µ6 − 3µ4 − 6µ2

3 − 10) +
9

128n2
(µ4 − 1)2 +O

(
1

n3

)

for large n, substituting E(X̄3) = µ3/n2, (2.12), (2.15) and (2.19) into (2.17), we have

κ3,t(Yn) =
µ3√
n
− 3nt

{
1

n
+

1

8n2
(3µ4 − 2µ2

3 − 11)− σn

n
+O

(
1

n3

)}

+ 3
√
nt2
[
µ3

n
− 2σn

{
µ3

2n
+

1

16n2
(9µ3 − 2µ5 + 3µ3µ4) +O

(
1

n3

)}]
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− t3
{
1 +

3

8n
(µ4 − 1) +

1

16n2
(3µ4 − µ6 + 6µ2

3 + 10) +
9

128n2
(µ4 − 1)2 − 3σn

+2σ3
n +O

(
1

n3

)}

=3t(σn − 1)− t3 +
µ3√
n

{
3t2(1− σn) + 1

}
− 3t

8n

{
3µ4 − 2µ2

3 − 11 + t2(µ4 − 1)
}

− 3t2σn

8n
√
n
(9µ3 − 2µ5 + 3µ3µ4)−

t3

16n2
(10 + 3µ4 − µ6 + 6µ2

3)−
9t3

128n2
(µ4 − 1)2

− t3σn(2σ
2
n − 3) +O

(
t3

n3

)
. (2.20)

Substituting (2.9) in (2.20) we also obtain

κ3,t(Yn) =
µ3√
n
− 3t

4n

{
2(µ4 − 3)− µ2

3

}
+

3t2

4n
√
n
{µ5 − µ3(µ4 + 5)}

− t3

16n2
(1 + 2µ6 − 12µ2

3 − 3µ2
4) +O

(
t3

n3

)
. (2.21)

In particular, if the underlying distribution is N(µ, 1), then

κ3,t(Yn) = − t3

4n2
+O

(
t3

n3

)
,

which coincides with the result in Lemma 1 in Akahira (1995).

Letting t = c
√
n+ d with some constants c and d, from (2.16) and (2.21) we have

Vc,d(Yn) := 1− cµ3 +
c2

4
(µ4 − 1) +

d

2
√
n
{c(µ4 − 1)− 2µ3}+

d2

4n
(µ4 − 1)

− c

8n
(9µ3 − 2µ5 + 3µ3µ4) +O

(
1

n
√
n

)
, (2.22)

κ3,c,d(Yn)

:=
1√
n

[
µ3 −

3c

4

{
2(µ4 − 3)− µ2

3

}
+

3c2

4
{µ5 − µ3(µ4 + 5)}− c3

16
(1 + 2µ6 − 12µ2

3 − 3µ2
4)

]

− 3d

16n

[
4
{
2(µ4 − 3)− µ2

3

}
− 8c {µ5 − µ3(µ4 + 5)}+ c2(1 + 2µ6 − 12µ2

3 − 3µ2
4)
]

+O

(
1

n
√
n

)
. (2.23)
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Remark 2.1 In the right-hand side of (2.22), the term of constant order is nonnegative, i.e.

1− cµ3 +
c2

4
(µ4 − 1) ≥ 0,

since, for a random variable X with E(X) = 0 and E(X2) = 1

E

[{
X − c

2
(X2 − 1)

}2]
= 1− cµ3 +

c2

4
(µ4 − 1)

(see Bentkus et al. (2007)).

3. HIGHER ORDER APPROXIMATIONS TO A PERCENTAGE POINT OF THE DIS-

TRIBUTION OF Tn

In this section we derive higher order approximations to the upper percentile using the

results of Section 2. From (2.2) we obtain

Pµ{Tn ≤ t} = P0 {Z − t(Sn − σn) ≤ an(t)}

= P0{Yn ≤ an(t)}

= P0

{
Wn ≤ tσn − µ

√
n√

Vt(Yn)

}
. (3.1)

Using the Cornish-Fisher expansion, we can obtain higher order approximation formulae of

a percentage point of the distribution of Tn.

Theorem 3.1 The upper 100α percentile tα of the distribution of Tn can be derived from

the formula

tασn − µ
√
n√

Vtα(Yn)
= uα +

1

6
κ3,tα(Wn)(u

2
α − 1) +O

(
1

n

)
, (3.2)

where uα is the upper 100α percentile of the standard normal distribution, σn and Vt(Yn)

are given by (2.9) and (2.16), respectively, and

κ3,t(Wn) = κ3,t(Yn) {Vt(Yn)}−3/2

with (2.21).
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The proof is straightforward from (3.1) and the Cornish-Fisher expansion. From Theorem

3.1 we have the following.

Corollary 3.1 Let Tn be the non-central t-statistic. Then the lower confidence limit δ̂ of

the non-centrality parameter δ := µ
√
n of level 1 − α and the confidence interval [δ, δ̄] of δ

of level 1− α are given by

δ̂ = σnTn −
√

VTn(Yn)

{
uα +

1

6
κ3,Tn(Wn)(u

2
α − 1)

}
+Op

(
1

n

)
,

δ = σnTn −
√

VTn(Yn)

{
uα/2 +

1

6
κ3,Tn(Wn)(u

2
α/2 − 1)

}
+Op

(
1

n

)
,

δ̄ = σnTn +
√
VTn(Yn)

{
uα/2 +

1

6
κ3,Tn(Wn)(u

2
α/2 − 1)

}
+Op

(
1

n

)
.

Remark 3.1 In particular, if the underlying distribution is N(µ, 1), then

Vt(Yn) = 1 +
t2

2n
+O

(
1

n
√
n

)
, (3.3)

κ3,t(Yn) = − t3

4n2
+O

(
1

n
√
n

)
, (3.4)

hence, from (3.2)

tασn − µ
√
n√

1 +
t2α
2n

+O

(
1

n
√
n

) = uα − t3α(u
2
α − 1)

24n2

(
1 +

t2α
2n

)−3/2{
1 +O

(
1

n

)}
. (3.5)

The approximation formula (3.5) of the non-central t-distribution with n − 1 degrees of

freedom and a non-centrality parameter µ
√
n is also derived from (2.8) in the paper by

Akahira (1995), i.e.

tαbν − µ
√
n√

1 + t2α(1− b2ν)
= uα − t3α(u

2
α − 1)

24{1 + t2α(1− b2ν)}3/2

{
1

ν2
+

1

4ν3
+O

(
1

ν4

)}
, (3.6)

where ν = n− 1 and

bν =

√
2

ν

Γ((ν + 1)/2)

Γ(ν/2)
= 1− 1

4ν
+

1

32ν2
+

5

128ν3
+O

(
1

ν4

)
.
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The existence and uniqueness of a solution of the equation (3.6) on tα are shown to be

guaranteed in Akahira et al. (1995). Under the normality assumption, the variance and the

third cumulant of Yn are exactly given by

Vt(Yn) = E
[
{Z − t(Sn − bn−1)}2

]
= 1 + t2(1− b2n−1),

κ3,t(Yn) = t3bn−1

{
2(1− b2n−1)−

1

n− 1

}
,

respectively (see Akahira (1995)) which are used in (3.6), but, instead of them, the approx-

imate values (3.3) and (3.4) derived from (2.16) and (2.21) respectively are done in (3.5).

Hence the higher order approximation (3.6) is seen to be much better than (3.5).

Since tα is the upper 100α percentile of the distribution of the non-central t-statistic Tn,

it follows from (3.1), (2.22) and the first order approximation that

tασn − µ
√
n√

Vc,d(Yn)
= uα + o(1),

i.e.

tα =
1

σn

{
µ
√
n+ uα

√
Vc,d(Yn)

}
+ o(1).

From (2.9) and (2.22) we have

tα = µ
√
n+ uα

{
1− cµ3 +

c2

4
(µ4 − 1)

}1/2

+ o(1). (3.7)

Here, letting c = µ, we obtain d = σ0uα, where

σ0 :=

{
1− µµ3 +

µ2

4
(µ4 − 1)

}1/2

.

From (2.22) and (2.23) we have

Vµ,σ0uα(Yn) =σ2
0 +

σ0uα

2
√
n
{µ(µ4 − 1)− 2µ3}

+
σ2
0u

2
α

4n
(µ4 − 1)− µ

8n
(9µ3 − 2µ5 + 3µ3µ4) +O

(
1

n
√
n

)
, (3.8)

κ3,µ,σ0uα(Yn) =
1√
n

[
µ3 −

µ

16

{
12(2(µ4 − 3)− µ2

3)− 12µ(µ5 − µ3(µ4 + 5))

11



+µ2(1 + 2µ6 − 12µ2
3 − 3µ2

4)
}]

− 3σ0uα

16n

[
4
{
2(µ4 − 3)− µ2

3

}
− 8µ {µ5 − µ3(µ4 + 5)}

+µ2(1 + 2µ6 − 12µ2
3 − 3µ2

4)
]
+O

(
1

n
√
n

)

=:
A√
n
+

B

n
+O

(
1

n
√
n

)
(say). (3.9)

Then we have the following.

Theorem 3.2 The upper 100α percentile tα of the distribution of the non-central t-statistic

Tn is given by

tα =
1

σn

[
µ
√
n+
√
Vµ,σ0uα(Yn)

{
uα +

1

6
κ3,µ,σ0uα(Wn)(u

2
α − 1) +O

(
1

n

)}]
, (3.10)

where σn and Vµ,σ0uα(Yn) are given by (2.9) and (3.8), respectively and

κ3,µ,σ0uα(Wn) = σ−3
0

[
A√
n
− 3Auα

4n
{µ(µ4 − 1)− 2µ3}+

B

n
+O

(
1

n
√
n

)]
(3.11)

with

A = µ3 −
µ

16

[
12
{
2(µ4 − 3)− µ2

3

}
− 12µ {µ5 − µ3(µ4 + 5)}

+µ2(1 + 2µ6 − 12µ2
3 − 3µ2

4)
]
,

B = −3σ0uα

16

[
4
{
2(µ4 − 3)− µ2

3

}
− 8µ {µ5 − µ3(µ4 + 5)}

+µ2(1 + 2µ6 − 12µ2
3 − 3µ2

4)
]
.

Proof Since 1 − α = Pµ{Tn ≤ tα} for 0 < α < 1, by the Cornish-Fisher expansion, we

obtain from (3.1)

tασn − µ
√
n√

Vµ,σ0uα(Yn)
= uα +

1

6
κ3,µ,σ0uα(Wn)(u

2
α − 1) +O

(
1

n

)
, (3.12)

where Vµ,σ0uα(Yn) is given by (3.8) and

κ3,µ,σ0uα(Wn) =
1

{Vµ,σ0uα(Yn)}3/2
κ3,µ,σ0uα(Yn)

12



with κ3,µ,σ0uα(Yn) given by (3.9). A straightforward calculation derives (3.11) from (3.8) and

(3.9). From (3.12) we obtain (3.10). This completes the proof.

Remark 3.2 The approximate value (3.10) of tα can be easily obtained by a pocket calcu-

lator, which is a merit.

Remark 3.3 If the underlying distribution has a symmetric density f(x) around x = k,

then

µ := E(X1) = k, µ3 = µ5 = 0,

hence, in Theorem 3.2,

A = −3k

2
(µ4 − 3),

B = −3σ0uα

16

{
8(µ4 − 3) + k2(1 + 2µ6 − 3µ2

4)
}
.

4. NUMERICAL COMPARISON OF THE HIGHER ORDER APPROXIMATION WITH

THE LIMITING NORMAL DISTRIBUTION

The limiting distribution of the non-central t-statistic Tn is given by Bentkus et al. (2007),

i.e. the statistic σ−1
0 (Tn − µ

√
n) converges in law to N(0, 1) as n → ∞. Then the upper

100α percentile tα of the distribution of Tn is asymptotically given by

tα = µ
√
n+ σ0uα + o(1) (4.1)

as n → ∞, since

α = P{Tn > tα} = P
{
σ−1
0 (Tn − µ

√
n) > σ−1

0 (tα − µ
√
n)
}
.

On the other hand, since σn = 1 + o(1) as n → ∞ from (2.9), it follows from the first order

approximation (3.7) with c = µ that tα = µ
√
n+σ0uα+o(1) as n → ∞, which concides with

(4.1) derived from the limiting normal distribution. Note that the approximation (3.10) is

a higher order one than (4.1). In order to compare the higher order approximation (3.10)

with the first order one (4.1), in the case when α = 0.05, we give various examples including

asymmetric distributions. In the below tables except for Table 4.6 in Section 4, the true

13



value of the upper 5 percentile of the distribution of the non-central t-statistic means the

9,500th one from the smallest one among the ones of the statistic calculated from the total

repeated number 10,000 of size n of sample. In Table 5.2 of Section 5, the total repeated

number is 100,000, hence 95,000th one from the smallest one is used as the true value of the

upper 5 percentile.

Example 4.1 (Gamma distribution). Suppose that X1, . . . , Xn are i.i.d. random variables

according to the gamma distribution G(2, 1/
√
2) with a density

f(x) =






2xe−
√
2x for x > 0,

0 otherwise.

Then the moments of the distribution up to the 6th order are given by

µ = E(X1) =
√
2, µ2 = 1, µ3 =

√
2, µ4 = 6, µ5 = 16

√
2, µ6 = 110.

In order to compare the higher order approximation (3.10) with the first order one (4.1), the

numerical calculation is done. As is seen in Table 4.1, the relative errors of (3.10) are much

smaller than those of (4.1) when α = 0.05 and n = 5(5)30(10)50, 100.

14



Table 4.1 The relative errors of the higher order approximation (3.10) and the first order

one (4.1).

n true value (4.1) (3.10)

5 7.426089 −0.3028901 −0.2321060

10 7.451146 −0.1294413 −0.0499075

15 8.181845 −0.0843342 −0.0192098

20 8.903006 −0.0633411 −0.0094226

25 9.536338 −0.0472664 −0.0013070

30 10.15138 −0.0385061 0.0013949

40 11.32113 −0.0320048 −0.0005986

50 12.31424 −0.0243409 0.0016650

100 16.38862 −0.0141513 −0.0002046

Example 4.2 (Exponential distribution). Suppose that X1, . . . , Xn are i.i.d. random

variables according to the exponential distribution with a density

f(x) =






e−x for x > 0,

0 otherwise.

Then the moments of X1 up to the 6th order are given by

µ = µ2 = 1, µ3 = 2, µ4 = 9, µ5 = 44, µ6 = 265.

In order to compare the higher order approximation (3.10) with the first order one (4.1), the

numerical calculation is done. As is seen in Table 4.2, the relative errors of (3.10) are much

smaller than those of (4.1) for α = 0.05 and n = 20(5)30(10)50, 100.
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Table 4.2 The relative errors of the higher order approximation (3.10) and the first order

one (4.1).

n true value (4.1) (3.10)

5 5.126078 −0.2429066 −0.5034625

10 5.377911 −0.1061343 −0.1478104

15 5.9033 −0.0652974 −0.0604899

20 6.438533 −0.0499404 −0.0320808

25 6.957756 −0.0449723 −0.0233087

30 7.388235 −0.0360242 −0.0134978

40 8.183828 −0.0262002 −0.0048068

50 8.908046 −0.0215677 −0.0021358

100 11.77633 −0.0111605 0.0012118

Example 4.3 (Weibull distribution). Suppose that Y1, . . . , Yn are i.i.d. random variables

according to the Weibull distribution with a density

f(x) =






γxγ−1

λγ e−(x/λ)γ for x > 0,

0 for x ≤ 0,

where γ > 0 and λ > 0. Then, for each k = 1, 2, . . . , k-th order moment of X1 around 0 is

given by

E
(
Xk

1

)
= λkΓ

(
k

γ
+ 1

)
.

Let γ = 2, and Xi = 2Yi/(λ
√
4− π) (i = 1, 2, . . . ). Then the moments of Xi up to the 6th

order are given by

µ =

√
π

4− π
, µ2 = 1, µ3 =

2
√
π(π − 3)

(4− π)3/2
, µ4 =

32− 3π2

(4− π)2
,

µ5 =
4
√
π(π2 + 5π − 25)

(4− π)5/2
, µ6 =

384 + 120π − 60π2 − 5π3

(4− π)3
.

In order to compare the higher order approximation (3.10) with the first order one (4.1), the

numerical calculation is done. As is seen in Table 4.3, the relative errors of (3.10) are much

smaller than those of (4.1) for α = 0.05 and n = 5(5)30(10)50, 100.
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Table 4.3 The relative errors of the higher order approximation (3.10) and the first order

one (4.1) in the case λ = 1 and γ = 2.

n true value (4.1) (3.10)

5 9.454586 −0.3111258 −0.1829024

10 9.630487 −0.1397195 −0.0535203

15 10.52915 −0.0840153 −0.0204432

20 11.64788 −0.0735825 −0.0241829

25 12.33538 −0.0433533 −0.0018386

30 13.28742 −0.0431927 −0.0081295

40 14.78891 −0.0307264 −0.0035844

50 16.20312 −0.0271812 −0.0051052

100 21.68477 −0.0147048 −0.0031483

Example 4.4 (Birnbaum-Saunders distribution). When Z is a normal random variable

with mean 0 and variance 1, the distribution of a random variable

Y = β





1

2
γZ +

√(
1

2
γZ

)2

+ 1






2

,

where β and γ are positive parameters, which is called the Birnbaum-Saunders (B-S) distri-

bution (see Johnson et al. (1995) and also, e.g. Balakrishnan et al. (2009), (2011), Leiva

et al. (2007)). Suppose that Y1, . . . , Yn are i.i.d. random variables according to the B-S

distribution. Put Xi = 2Yi/(βγ
√

5γ2 + 4) (i = 1, 2, . . . ). Then the moments of Xi up to the

6th order are given by

µ =
γ2 + 2

γ
√
5γ2 + 4

, µ2 = 1, µ3 =
4γ(11γ2 + 6)

(5γ2 + 4)3/2
, µ4 =

3(211γ4 + 120γ2 + 16)

(5γ2 + 4)2
,

µ5 =
8γ(1433γ4 + 790γ2 + 120)

(5γ2 + 4)5/2
, µ6 =

5(50681γ6 + 27516γ4 + 4752γ2 + 192)

(5γ2 + 4)3
.

In order to compare the higher order approximation (3.10) with the first order one (4.1), the

numerical calculation is done. As is seen in Table 4.4, the relative errors of (3.10) are much

smaller than those of (4.1) for α = 0.05, γ = 1 and n = 10(5)30(10)50, 100.
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Table 4.4 The relative errors of the higher order approximation (3.10) and the first order

one (4.1).

n true value (4.1) (3.10)

10 5.881246 −0.1261818 −0.0495977

15 6.382393 −0.0834394 −0.0015297

20 6.88221 −0.0629464 0.0109349

25 7.383125 −0.0550262 0.0099599

30 7.826788 −0.0476183 0.0099903

40 8.63897 −0.0390729 0.0074187

50 9.285513 −0.0255864 0.0135670

100 12.1612 −0.0151548 0.0061507

Example 4.5 (Two-sided exponential distribution). Suppose that Y1, . . . , Yn are i.i.d.

random variables according to the two-sided exponential distribution with a density

f(x) =
1

2
e−|x−µ| for −∞ < x < ∞, (4.2)

where −∞ < µ < ∞. Put Xi = Yi/
√
2 (i = 1, 2, . . . ). Then the moments of X1 up to the

6th order are given by

µ2 = 1, µ4 = 6, µ6 = 90, µ3 = µ5 = 0.

It is clear that E(X1) = µ. Since the density (4.2) is symmetric around x = µ, it is seen that

the situation is a typical case in Remark 3.3. Comparing the higher order approximation

(3.10) with the first order one (4.1), from Table 4.5 we see that (3.10) is much better than

(4.1) for α = 0.05 and n = 5(5)30(10)50, 100.
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Table 4.5 The relative errors of the higher order approximation (3.10) and the first order

one (4.1) in the case µ = 1/
√
2.

n true value (4.1) (3.10)

5 5.73092 −0.3582322 −0.2062444

10 5.35649 −0.1911028 −0.0601495

15 5.57938 −0.1333464 −0.0290928

20 5.86239 −0.1029154 −0.0169521

25 6.14907 −0.0840387 −0.0109561

30 6.42849 −0.0713589 −0.0077872

40 6.95202 −0.0551063 −0.0045828

50 7.42971 −0.0448106 −0.0028036

100 9.39077 −0.0237382 −0.0007294

Example 4.6 (Normal distribution). Suppose that X1, . . . , Xn are i.i.d. random variables

according to the normal distribution N(µ, 1). Then the moments of X1 up to the 6th order

are given by

µ3 = µ5 = 0, µ2 = 1, µ4 = 3, µ6 = 15.

Comparing the higher order approximation (3.5) with (3.6) for α = 0.05, we see that (3.6)

is good although it is worse than (3.5).
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Table 4.6 The errors of the higher order approximation formula of the upper 5 percentile

for η = µ
√
n/
√

2ν + nµ2 which is a transformation from µ
√
n in the domain (−∞,∞) to

η in the range (−1, 1) where ν = n − 1. The true values are referred from Yamauti et al.

(1972), and the errors of the higher order approximation formula (3.6) are taken from Table

1 in Akahira (1995).

ν η true value (3.5) (3.6)

5 0.9 14.0781 −0.59430 0.044

0.5 4.9462 −0.16158 0.009

0.1 2.4764 −0.05493 0.001

−0.1 1.5774 −0.02473 0.000

−0.5 −0.1872 −0.000222 0.000

−0.9 −4.0292 −0.085520 0.001

10 0.9 15.1240 −0.22070 0.009

0.5 5.1564 −0.05465 0.001

0.1 2.3534 −0.01457 0.000

−0.1 1.2912 −0.00466 0.000

−0.5 −0.9254 −0.00219 0.000

−0.9 −6.4634 −0.05788 0.000

20 0.9 18.1294 −0.09030 0.003

0.5 5.9580 −0.02040 0.000

0.1 2.4235 −0.00413 0.000

−0.1 1.0439 −0.00076 0.000

−0.5 −1.9539 −0.00257 0.000

−0.9 −10.0559 −0.03550 0.000

Example 4.7 (t-distribution). Suppose that Y1, . . . , Yn are i.i.d. random variables according

to the t-distribution with ν degrees of freedom with a density

fν(x) =
Γ ((ν + 1)/2)√

πνΓ(ν/2)

(
1 +

x2

ν

)−(ν+1)/2

(4.3)
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for −∞ < x < ∞ and ν > 0. Put Xi =
√
(ν − 2)/νYi (i = 1, 2, . . . ). Then the moments of

Xi up to the 6th order are given by

µ = 0 (ν > 1), µ2 = 1 (ν > 2), µ3 = 0 (ν > 3),

µ4 =
3(ν − 2)√
2(ν − 4)

(ν > 4), µ5 = 0 (ν > 5), µ6 =
15(ν − 2)2√

2(ν − 4)(ν − 6)
(ν > 6).

Since the density (4.3) is symmetric around x = 0, it is seen that the situation is in Remark

4.3 for ν > 6. Comparing the higher order approximation (3.10) with the first order one

(4.1), from Table 4.7 we see that (3.10) is much better than (4.1) for α = 0.05, ν = 7 and

n = 5(5)30(10)50, 100.

Table 4.7 The relative errors of the higher order approximation (3.10) and the first order

one (4.1).

n true value (4.1) (3.10)

5 2.054912 −0.1995521 −0.1922330

10 1.779899 −0.0758745 −0.0304899

15 1.717872 −0.0425072 −0.0012178

20 1.706298 −0.0360125 −0.0011182

25 1.731649 −0.0501251 −0.0208813

30 1.702207 −0.0336957 −0.0079291

40 1.648981 −0.0025052 0.0183744

50 1.678272 −0.0199145 −0.0030698

100 1.662832 −0.0108141 −0.0018775

Example 4.8 (Logistic distribution). Suppose that Y1, . . . , Yn are i.i.d. random variables

according to the logistic distribution with a density

f(x) =
e−x

(1 + e−x)2
for −∞ < x < ∞. (4.4)

Put Xi =
√
3Yi/π (i = 1, 2, . . . ). Then the moments of Xi up to the 6th order are given by

µ = µ3 = µ5 = 0, µ2 = 1, µ4 =
21

5
, µ6 =

279

7
.
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Since the density (4.4) is symmetric around x = 0, it is seen that the situation is in Remark

3.3. Comparing the higher order approximation (3.10) with the first order one (4.1), from

Table 4.8 we see that (3.10) is much better than (4.1) for α = 0.05 and n = 5(5)30(10)50, 100.

Table 4.8 The relative errors of the higher order approximation (3.10) and the first order

one (4.1).

n true value (4.1) (3.10)

5 2.169503 −0.2418310 −0.1288189

10 1.813658 −0.0930760 −0.0152498

15 1.764209 −0.0676558 −0.0119935

20 1.713897 −0.0402866 0.0035842

25 1.721701 −0.0446367 −0.0092705

30 1.71441 −0.0405737 −0.0107384

40 1.671952 −0.0162098 0.0069667

50 1.674737 −0.0187458 0.0007780

100 1.656844 −0.0072391 0.0022851

As is seen from the above examples, the higher order approximation (3.10) is useful in

practical situations, when the size n of sample is not smaller than 15.

5. An application to the practical case

In Andrews and Herzberg (1985), distribution patterns of plant species are stated as

follows. Cain and Evans (1952) mapped in detail an old-field grasslands community in

southeastern Michigan, plotting the occurrence of three plant species: Lespedeza capitata,

Liatris aspera and Solidago rigida. From these, Evans (1952) prepared quadrat converages

of 16, 8, 4, 2, 1, 1/2, 1/4, 1/8 and 1/16 square metres, recording the frequencies with which

each of the species appeared in the quadrats. For Solidago rigida, golden rod, the frequency

distributions for the three largest quadrat sizes are given in Table 5.1.
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Table 5.1 Frequency Distribution of Solidago rigida

Frequency

Quadrat coverage 0 1 2 3 4 5 6 7 8 9 10 14 15+

16m2 245 94 36 31 8 10 0 2 0 1 1 1 0

8m2 615 162 48 20 5 4 1 1 1 1 0 0 0

4m2 1425 222 51 13 2 2 0 1 0 0 0 0 0

In an application to a practical case, we often have a frequency distribution which gives

us information on the true distribution of data. In order to extract the information from

the frequency distribution of Table 5.1, we consider two different approximate distributions

instead of the true distribution which is unknown and obtain the moments up to the 6th

order. One depends on the gamma approximation with parameters estimated by the moment

method, and another follows from the direct approximation with sample moments up to the

6th order calculated from the frequency distribution of Table 5.1 based on the data from the

true distribution. Here, it is also remarked that the underlying distribution is assumed to

be continuous but not discrete in this paper.

(i) Gamma approximation. We consider the approximation of the frequency distribution of

Table 5.1 by the gamma distribution G(α, β) with a density

f(x) =






1

βΓ(α)

(
x

β

)α−1

e−x/β for x > 0,

0 for x ≤ 0,

where α > 0 and β > 0. Since the mean and the variance are given by µ = αβ and

µ2 = αβ2, respectively, we take the sample mean µ̂ and the sample variance µ̂2 calculated

from the frequency distribution in Table 5.1 as approximate values of µ and µ2. Letting

µ̂ = αβ and µ̂2 = αβ2, we have α̂ and β̂ as the solutions α and β of the equations. Next,

suppose that Y1, . . . , Yn are i.i.d. random variables according to the gamma distribution

G(α̂, β̂). Put Xi := Yi/
√

α̂β̂ (i = 1, 2, . . . ). Then the moments of X1 up to the 6th order
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are given by

µ1 =
√
α̂, µ2 = 1, µ3 =

2√
α̂
, µ4 = 3

(
1 +

2

α̂

)
,

µ5 = 4

(
5√
α̂
+

6

α̂3/2

)
, µ6 = 5

(
3 +

26

α̂
+

24

α̂2

)
.

In a similar way to Example 4.1, we have the following table to compare the higher order

approximation (3.10) with the first order one (4.1).

Table 5.2 The relative errors of the higher order approximation (3.10) and the first order

one (4.1) to a percentage point.

Quadrat coverage n α̂ β̂ true value (4.1) (3.10)

16m2 429 0.3443477 2.6264989 13.53494 −0.0023746 0.0006546

8m2 858 0.2283017 1.9807752 15.30205 −0.0011273 0.0006176

4m2 1716 0.1496402 1.5110062 17.27925 −0.0004485 0.0006106

As is seen from Table 5.2, the tendency seems to be similar to Table 4.1 where the approxi-

mation (3.10) and (4.1) are numerically shown to be accurate.

(ii) A relative comparison of the gamma approximation with the direct one under the (higher

order) approximations. First we consider the direct approximation by Table 5.1. From the

frequency distribution in Table 5.1 we obtain the sample moments µ̂ and µ̂j (j = 2, . . . , 6).

Substituting µ̂/
√
µ̂2 and µ̂j/µ̂

j/2
2 (j = 2, . . . , 6) for µ̂, µ̂j (j = 2, . . . , 6), respectively, in (3.10)

and (4.1), we have the following table to compare the gamma approximation with the direct

one.

Table 5.3 The relative differences of the gamma approximation to the direct approximation

under the approximations (3.10) and (4.1) to a percentage point.

Quadrat coverage Relative difference under (4.1) Relative difference under (3.10)

16m2 −0.0034540 −0.0135256

8m2 0.0089510 0.0041513

4m2 0.0099052 0.0089399
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Since, as is seen from Table 5.3, the relative differences are small, the gamma approximation

to the true distribution seems to be numerically accurate through the approximations (3.10)

and (4.1) to a percentage point.

6. Conclusions

In this paper, without the normality assumption, we derive the higher order approx-

imation to the percentage point of the distribution of a non-central t-statistic, using the

Cornish-Fisher expansion. It is also seen that the approximations give extensions of the

results under the normality assumption. In particular, the value of the higher order approx-

imation to a percentage point is easily obtained by a pocket calculator, provided that the

moments of the underlying distribution up to the sixth order are known. From numerical

results in the cases of Birnbaum-Saunders, exponential, gamma, logistic, normal, t-, two-

sided exponential and Weibull distributions, the higher order approximation is seen to be

numerically better than the first order one. Indeed, the relative errors of the higher order

approximation are smaller than the first order one, when the size of sample is not so small

in the above cases. Hence it seems to be useful for symmetric and asymmetric distributions.

In the applications to distribution patterns of plant species we consider two different ap-

proximate distributions instead of the true distribution which is unknown and obtain the

moments up to the 6th order. One depends on the gamma approximation with parameters

estimated by the moment method, and another follows from the direct approximation with

sample moments up to the 6th order calculated from the frequency distribution based on the

data from the true distribution. Since the relative differences of the gamma approximation

to the direct one under the (higher order) approximation to a percentage point are seen to be

small, the gamma approximation to the true distribution seems to be numerically accurate.

Hence the approach is seen to deserve a practical application.
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Dı́az-Garćıa, J. A., Leiva-Sánchez, V. and Galea, M. (2002). Singular elliptical distribution:

Density and applications. Commun. Statist. -Theory Meth., 31(5), 665–681.
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