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ABSTRACT

Gene rewiring is a common evolutionary phe-
nomenon in nature that may lead to extinction for
living organisms. Recent studies on synthetic bi-
ology demonstrate that cells can survive genetic
rewiring. This survival (adaptation) is often linked to
the stochastic expression of rewired genes with ran-
dom transcriptional changes. However, the probabil-
ity of adaptation and the underlying common princi-
ples are not clear. We performed a systematic sur-
vey of an assortment of gene-rewired Escherichia
coli strains to address these questions. Three differ-
ent cell fates, designated good survivors, poor sur-
vivors and failures, were observed when the strains
starved. Large fluctuations in the expression of the
rewired gene were commonly observed with increas-
ing cell size, but these changes were insufficient for
adaptation. Cooperative reorganizations in the corre-
sponding operon and genome-wide gene expression
largely contributed to the final success. Transcrip-
tome reorganizations that generally showed high-
dimensional dynamic changes were restricted within
a one-dimensional trajectory for adaptation to gene
rewiring, indicating a general path directed toward
cellular plasticity for a successful cell fate. This find-
ing of global coordination supports a mechanism of
stochastic adaptation and provides novel insights
into the design and application of complex genetic
or metabolic networks.

INTRODUCTION

Gene rewiring, or an alteration of preexisting genetic con-
nections, is a common evolutionary phenomenon (1–3). In
nature, rewiring is caused by mutations in promoters or by
the transposition of genomic sequences to other loci and

is considered a means of conferring novel gene regulation
and/or essentialities in evolution (4–7). Such genetic alter-
ations may lead to either survival or extinction for the or-
ganism, as the alterations could in turn lead to disturbances
in existing regulatory patterns. Nevertheless, increasing ex-
perimental studies indicate that cells can survive genetic
rewiring with a high probability. For example, newly con-
nected gene networks have been shown to be tolerated by
bacteria (8), and successful adaptation has been observed
in bacterial and yeast cells undergoing gene rewiring in re-
sponse to external changes (9–11).

Successful cell fates were largely explained by stochastic
switching of rewired genes (10,12–14). That is, the stochas-
ticity of gene expression (15–19) occasionally produces fit
cells in response to unforeseen environments (i.e. stochas-
tic adaptation, Supplementary Figure S1A) (10,13,20–21).
Stochastic adaptation does not require specific regulation,
but it largely relies on cell diversity within a genetically
identical population (22,23). Therefore, stochastic adapta-
tion is considered a universal survival strategy in living cells
(20,24). Despite previous experimental results and a pro-
posed mechanism for adaptation, how often the stochas-
tic expression of rewired genes results in adaptation and
whether stochasticity in rewired genes is solely sufficient for
a successful cell fate are not known.

Current studies identified common features of global
changes in living organisms, which prompted us to consider
a general mechanism for adaptation via transcriptome re-
organization under cellular plasticity in rewired cells. Pio-
neering transcriptome studies commonly observed random
patterns in global gene expression, which indicated that cel-
lular plasticity contributed to the adaptation of rewired cells
(11,25). In comparison, common patterns of transcriptome
reorganization in response to external stress were largely re-
ported in native cells (i.e. wild-type strains). For example,
the correlation between growth rate and gene expression
was universal regardless of variations in external perturba-
tions in yeast and bacteria (26–29). Recent studies on cellu-
lar networks illustrated the general mechanisms of network
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dose compensation (30), metabolic restriction (31) and the
coordination between proteome and metabolic signals (32).
In comparison, whether and how the global reorganization
of gene expression contributes to stochastic adaptation is
not clear.

Previous studies using several genetic structures (9–11)
were insufficient to reach a general conclusion of the prob-
ability of stochastic adaptation or any common patterns
in transcriptome reorganization. Therefore, systematic sur-
veys of rewiring cells with varied cell fates were required
to determine common properties and investigate organi-
zational principles of living systems (33). This study per-
formed a systematic survey of gene rewiring under a defined
stress condition to identify inherent survival approaches
of cells and provide novel insights into cellular plasticity.
Genetic disruptions were introduced by rewiring the struc-
tural genes within the His operon (34–36) to a monostable
synthetic gene circuit at other chromosomal sites in Es-
cherichia coli (37). Because the rewired gene essential for
histidine biosynthesis was controlled by a foreign promoter,
the stochastic switching of the rewired gene could provide
the opportunity for survival from histidine starvation (10).
This study first reported three different cell fates that were
mediated by stochastic switching of gene expression, which
were designated good survivors, poor survivors, and fail-
ures. The stochasticity of the rewired genes and reorgani-
zation in global gene expression were evaluated to identify
similar and distinct features that corresponded to final cell
fates. In conclusion, the stochasticity of the rewired gene it-
self was insufficient to reach a successful cell fate, but the co-
ordinated reorganization of global gene expression within a
restrictive dimension was essential. These results indicate a
certain level of universal discipline during stochastic adap-
tation, which is represented by cellular plasticity in rewired
cells.

MATERIALS AND METHODS

Strains

The OSU11 and OSU12-geneX E. coli strains (Figure 1A)
were constructed as previously described (10,37). Both
strains carry a core genetic circuit, PtetA–gfpuv5 and Ptrc–
dsred.t4–tetR–PEM7–zeo, located in their genomes at the
galK and intC sites, respectively. PtetA–gfpuv5 consists of
the promoter PtetA and the mutated gfp gene (gfpuv5) en-
coding green fluorescent protein (GFP), and Ptrc–dsred.t4–
tetR–PEM7–zeo is comprised of the promoter Ptrc, dsred.t4
encoding red fluorescent protein (RFP), tetR encoding the
repressor protein and the independent expression unit of
the zeocin resistance gene, zeo, with its promoter PEM7.
The correlation between the co-expressed gfp gene and the
downstream rewired genes were previously demonstrated
(10,37).

Cell culture and growth rate

Escherichia coli cells were cultured in minimal medium in
the presence of 1 mM histidine at 37◦C for several passages
to reach a constant growth rate, as previously described
(10). Single colonies from the resultant populations were

isolated and stored at −80◦C until analysis. All cell cul-
tures were inoculated using the single colony derived glyc-
erol stocks. Precultures were incubated with 100 �M iso-
propyl �-D-1-thiogalactopyranoside (IPTG) to induce full
expression of the TetR repressor, which was reported by
RFP expression. Exponentially growing cells were subse-
quently transferred to fresh media containing 50 or 100 nM
doxycycline hydrochloride (Dox) to induce the expression
of the downstream rewired genes, as reported by GFP ex-
pression. Following the induction of the rewired genes, the
cultures were subjected to both histidine-depleted (–His)
and histidine-rich (+His) conditions for additional analysis.
Under the conditions of +His and –His (>10 h) conditions,
the initial and final cell concentrations were controlled at
∼103 and ∼107 cells/ml, respectively. Under the conditions
of –His (10 min) and –His (2 h) conditions, the cell concen-
trations of the precultures (before transfer) were maintained
at ∼107 cells/ml. The cells that were harvested 10 min or
2 h after transfer were counted to confirm their final con-
centrations, which were often close to their initial concen-
trations. The growth rate (h−1) was evaluated by the speed
with which the number of offspring increases during the ex-
ponential growth phase, and calculated according to the fol-
lowing commonly used (10,29,38) formula: growth rate (μt)
= ln(Ct/C0)/t, where Ct, C0 and t represent the final and ini-
tial cell concentrations (cells/ml) and the culture time from
initial to final time points (h), respectively.

Histidine depletion

Aliquots of 350 �l of exponentially growing cells (106–107

cells/ml) were harvested by centrifugation at 8000 rpm for
1 min at 37◦C using spin columns (Ultrafree-MC Centrifu-
gal Filter Units, 0.22 �m; Millipore). After discarding the
flow-through fraction, the cells were washed with 350 �l of
the identical medium without histidine. After an additional
centrifugation, the cells were suspended in 350 �l of fresh,
histidine-free medium. The concentration of the cell suspen-
sion was determined using flow cytometry, and cells were
then inoculated at 106–107 cells/ml (slow growth strains)
or 104–106 cells/ml (other strains) in 5 mL of the identical
histidine-free medium.

Flow cytometry

The cell concentration, gene expression (fluorescence inten-
sity), and cell volume of E. coli cells were determined us-
ing a flow cytometer (FACSCantoTM II; Becton Dickinson)
equipped with a 488-nm argon laser, a 515–545-nm emis-
sion filter (GFP), and a 563–589-nm emission filter (RFP).
The following PMT voltage settings were applied: forward
scatter (FSC), 450; side scatter (SSC), 400; GFP, 500; and
RFP, 600. The flow rate for the sample measurements was
set to low. Each calculation was performed using 10 000
collected cells. Cell samples were mixed with fluorescent
beads (Fluoresbrite YG Microspheres, Calibration Grade
3.00 �m; Polysciences) to calculate the cell concentration.
Daily detection accuracy was monitored using eight-peak
beads (SPHEROTM Rainbow Calibration Particles (eight
peaks), 3.0–3.4 �m)) for data calibration.
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FCM analysis

The data obtained by flow cytometry were converted to the
fcs2.0 format and analyzed by custom-designed scripts writ-
ten in R (39) using the free packages flowCore and flowViz,
which are available from the Bioconductor web site (http:
//www.bioconductor.org/). Fluorescent beads loaded for the
calculation of cell concentration, cell debris and systematic
errors resulting from events that occurred at the bottom or
top of the instrument’s range were eliminated as previously
described (10,14). The protein abundance of the rewired
genes, which are represented by GFP bias, was calculated
by dividing the green fluorescence value (GFP FI) by the
red fluorescence value (RFP FI). The relative cell size was
evaluated by the FSC value.

Microscopic observation

Cell samples for FCM analysis were applied to a micro-
scopic observation chamber. A volume of 1 �l of exponen-
tially growing cells in the presence or absence of histidine
was placed on a glass slide and covered with a cover slip.
For membrane staining, 1 �l of a 200 mg/ml solution of
FM 4–64 (Molecular Probes) was added. Fluorescent im-
ages were acquired using a fluorescence microscope (Eclipse
TE2000-E, Nikon) and recorded using an EMCCD cam-
era (iXon, Andor). Filter sets of 465–495 nm excitation,
515–555 nm emission and 530–550 nm excitation, >575 nm
emission were used to measure fluorescence intensity from
GFP and FM4–64, respectively. The area of cells was cal-
culated by summing the number of fluorescent pixels using
ImageJ software (http://rsbweb.nih.gov/ij/). The relative cell
size was calculated by measuring at least 45 cells for each
condition.

Microarrays and expression data normalization

Three biological replicates were performed for each condi-
tion, resulting in a total of 90 arrays in this study (Sup-
plementary Figure S8). Total RNA was prepared and
microarray analysis was performed using an Affymetrix
GeneChip R© system as described elsewhere (29,40). A high-
density DNA microarray was utilized with the Affymetrix
GeneChip system, and data extraction was performed
based on the finite hybridization model (41,42) as previously
described (29,40). The raw expression data sets were sub-
jected to normalization (43), resulting in a common mean
value (logarithmic) in all data sets. To avoid potential noise
caused by the small values, normalized expression data with
values less than −1.5 were removed, resulting in a total of
3398 genes for subsequent analysis. The averaged expres-
sion value for each gene over the three biological repli-
cates was used for computational analyses. Both the nor-
malized expression data sets and the raw CEL files were de-
posited in the NCBI Gene Expression Omnibus database
under the GEO Series accession number (http://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE55719).

Computational analysis

The Bioconductor software package RankProd (44), which
is based on the rank product method (45), was employed

to identify differential gene expression (DEGs) caused by
histidine depletion. Binomial tests were performed to eval-
uate the significance of the extracted gene groups using free
software packages available from the Broad Institute (http:
//www.broadinstitute.org). All statistical tests and compu-
tational analyses, except for the gene set enrichment anal-
ysis (GSEA), were performed using R (39). GSEA (46),
which was used to identify the gene groups with significant
changes, and PCA (47,48), which was used to classify ex-
pression patterns according to gene expression level vari-
ance, were performed as previously described (29). PCA
converts the high-dimensional data set (i.e. 3398 genes rep-
resenting 3398 dimensions) into low-dimensional space (e.g.
three dimensions). K-means clustering was performed as
previously described (29). The gene expression levels (loga-
rithmic scale) obtained under histidine-rich conditions were
subtracted from those acquired under histidine-depleted
conditions. Consequently, two transcriptional change val-
ues (−His (2 h) and −His) and a base value of zero (+His)
were acquired for each gene in each strain. −His (10 min)
data were eliminated because the growth rate contained sub-
stantial noise caused by the short time period being mea-
sured. K-means clustering analysis was performed on this
data set, which comprised 22 × 3398 values. PCA was per-
formed on three transcriptional change values (−His (10
min), −His (2 h) and −His), which also comprised 22 ×
3398 values.

Annotation of gene function and regulation

The entire data set of gene names and categories was ob-
tained from GenoBase, Japan (http://ecoli.aist-nara.ac.jp/
gb6/Download.html). Transcriptional network information
was obtained from RegulonDB v8.0 (49) (http://regulondb.
ccg.unam.mx). The transcriptional networks comprising
more than 15 regulated genes controlled by a regulator
were used in the analysis. MultiFun annotation was per-
formed according to the GenProtEC database (50) (http:
//genprotec.mbl.edu). The MultiFun classification was ap-
plied to annotations comprising >15 genes. The gene cat-
egories were in accordance with a previous report (51).
GO term annotations for E. coli strain K-12 were ob-
tained from the Gene Ontology database (52,53) (http://
www.geneontology.org). GO terms (biological processes)
that comprised fewer than 15 or greater than 1000 genes
were excluded from the analysis.

RESULTS

Success and failure in stochastic adaptation

An assortment of rewired E. coli strains, i.e. an OSU12 se-
ries (Figure 1A), was employed to evaluate whether cells
with rewired genetic structures were able to survive starva-
tion (i.e. the generality of adaptation to disturbed regula-
tion in response to histidine depletion, which was previously
demonstrated using a single strain (10)). Each strain carried
a gene from the native His operon rewired to a monostable
synthetic gene circuit (Figure 1A) at another chromosomal
location, including a previously reported strain (10). There-
fore, these structural genes (hisG, hisD, hisC, hisB, hisA, hisF

http://www.bioconductor.org/
http://rsbweb.nih.gov/ij/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE55719
http://www.broadinstitute.org
http://ecoli.aist-nara.ac.jp/gb6/Download.html
http://regulondb.ccg.unam.mx
http://genprotec.mbl.edu
http://www.geneontology.org
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series each have a deficient His operon and a single rewired structural gene (hisG, hisD, hisC, hisB, hisA, hisF and hisI). (B) Growth fitness in the presence
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indicate that significant cell growth was undetected within 2 days.

and hisI), which are essential for histidine biosynthesis (Fig-
ure 1A, I), were no longer subject to their native regulation
by the histidine-sensing His operon (34–36) but were con-
trolled by the foreign Ptet promoter in response to the chem-
ical inducer doxycycline (Figure 1A, II). The expression of
the rewired genes was reported by the coexpression of green
fluorescent protein (GFP). The native strain (i.e. OSU11,
Figure 1A, III), which carried the native His operon, was
utilized as a control, as previously reported (10,37).

Both success and failure were observed among a total of
eight strains under histidine starvation. The growth rates
of the rewired strains were comparable to the growth rate
of the native strain under histidine-rich conditions (Fig-
ure 1B, filled), verifying that the genetic reconstruction and
the diversity of the rewired genes slightly disturbed cell
growth under histidine-rich conditions. However, signifi-
cant growth decreases, which were accompanied by gene-
specific effects, were observed under histidine-depleted con-
ditions (Figure 1B, open). The strains with rewired hisB,
hisC or hisF exhibited relatively high growth fitness that

was similar to that of the native strain, indicating that
these rewired strains successfully achieved adaptive states
that were comparable to the native regulation. Conversely,
cell growth was undetectable in the hisD- or hisG-rewired
strains, providing the first cases of failure in adaptation to
gene rewiring. Additionally, largely suppressed growth was
observed in the hisA- or hisI-rewired strains, although these
strains were sustainable. Such diverse cell fates were com-
monly observed in the presence of 50–200 nM doxycycline,
which determined the basal expression levels of the rewired
genes (Supplementary Figure S2). These results provided
the first experimental evidence of differentiated cell fates
mediated by the stochastic switching of rewired genes un-
der identical conditions.

Cell fate decision was attributed to fluctuation in rewired
genes

The fluctuating expression of rewired genes was clearly
demonstrated in the population distributions of GFP bias,
which represents the specific expression of the rewired gene



1308 Nucleic Acids Research, 2015, Vol. 43, No. 2

0

2

4

0.1 1 10
0

2

4

0.1 1 10

0

2

4

0.1 1 10

0

2

4

0.1 1 10

0

2

4

0.1 1 10

0

2

4

0.1 1 10

0

2

4

0.1 1 10
0

2

4

0.1 1 10

hisB hisA

hisI

hisD

hisG

4

2

0

native

2

0
-1 0

hisC
4

hisF

10 -1 0 10 -1 0 10 -1 0 10
GFP bias, log10(GFP FI/RFP FI) [a.u.] 

re
la

tiv
e 

fre
qu

en
cy

 [a
.u

.]

+ His
- His

A

B

0

0.3

0.6

0 0.2 0.4
0

0.3

0.6

0 0.2 0.4

gr
ow

th
 (-

H
is

) [
h-

1 ]

sd (+His)            sd (-His)

GFP bias, log10(GFP FI/RFP FI) [a.u.] 

0.880, P<0.005 -0.769, P<0.01

0 0.2 0.4 0 0.2 0.4
0

0.3

0.6

m
ea

n 
of

 G
FP

 b
ia

s,
 

lo
g 1

0(
G

FP
 F

I/R
FP

 F
I) 

[a
.u

.]

+ His
- His 

**

**
*

0

0.4

0.8

native hisB hisC hisF hisA hisI hisD hisG

0

0.2

0.4

native hisB hisC hisF hisA hisI hisD hisG

**
*

sd
of

 G
FP

 b
ia

s,
lo

g 1
0(

G
FP

 F
I/R

FP
 F

I) 
[a

.u
.] 

C

D

Figure 2. Expression of rewired genes as GFP bias. (A) Distributions of GFP bias in the presence and absence of histidine. Steady distributions of the
relative cellular GFP bias in the presence (dashed lines) or absence (solid lines) of histidine are shown. The strains are indicated by the names of the rewired
genes. (B) Average protein abundance. The mean values of the GFP bias in the presence (filled) and absence (open) of histidine are shown. Asterisks indicate
significant increases (*P < 0.05 and **P < 0.005). C. Cell-to-cell variation in GFP bias. The standard deviation of the GFP bias in the presence (filled)
and absence (open) of histidine are shown. Asterisks indicate significant increase as described in (B). (D) The relationship between growth and variation.
The growth rates (Figure 1B, open) are plotted against the standard deviations (shown in C) for the data from the native, hisB, hisC, hisF, hisA and hisI
strains. The strains are indicated by the names of the rewired genes. All data sets are on a logarithmic scale. The standard errors of every four independent
tests are indicated.



Nucleic Acids Research, 2015, Vol. 43, No. 2 1309

0

0.5

1

native hisB hisC hisF hisA hisI hisD hisG

0

1

2

3

native hisB hisC hisF hisA hisI hisD hisG

AA

B

+ His

- His 

* **
*

m
ea

n 
of

 re
la

tiv
e 

ce
ll 

si
ze

,
lo

g 1
0(

FS
C

) [
a.

u.
]

ce
ll 

si
ze

 v
ar

ia
tio

n,
sd

of
 lo

g 1
0(

FS
C

) [
a.

u .
]

*

**

*

growth rate [h-1] 

re
la

tiv
e 

ce
ll 

si
ze

,
m

ea
n 

lo
g 1

0(
FS

C
) [

a.
u .

]

r = -0.75 (P < 0.001)

1.5

2.0

2.5

3.0

0 0.2 0.4 0.6

C

+ His
- His

Figure 3. Relative cell size. (A) Average cell size. The mean values of the relative cell size, which is represented by the FSC value, in the presence (filled) and
absence (open) of histidine are shown. (B) Variation in cell size. The standard deviation of the FSC values in the presence (filled) and absence (open) of
histidine are shown. The standard errors of every four independent tests are indicated. Asterisks indicate significant increases (*P < 0.05 and **P < 0.001).
(C) The relationship between cell size and growth in the presence and absence of histidine. Growth rates (Figure 1B) are plotted against mean cell sizes,
FCM (Figure 3A). Cells growing in the presence and absence of histidine are indicated as filled and open circles, respectively. The correlation coefficients
and corresponding p values are indicated. Standard errors are indicated as error bars.

(GFP FI/RFP FI, where RFP was constitutively induced;
Figure 2A, Supplementary Figure S3). In the good sur-
vivors (hisB, hisC and hisF), the GFP bias exhibited a strong
preference for induced levels in response to histidine de-
pletion, with high statistical significance (Figure 2B, aster-
isks, Supplementary Figure S3), regardless of the primary
mean expression levels (Figure 2B, black). In contrast, such
changes were undetected in the poor survivors (hisA and
hisI) or in the failures (hisD and hisG), although their pri-
mary mean expression levels were relatively higher than that
in the good survivors of hisC and hisF.

Notably, the variations in expression within the popula-
tion were largely related to the final fate, and these results
were consistent with the properties of stochastic adaptation.
The good survivors exhibited a relatively high degree of cell-
to-cell variation within the initial populations compared to

the other groups (Figure 2C, filled). The poor survivors ex-
hibited a relatively small initial variation, which tended to
increase the variation for adaptation (Figure 2C, asterisks).
A positive correlation was found between the initial vari-
ation in expression (i.e. standard deviation) and the final
adaptiveness (i.e. growth rate) among the six survivors (Fig-
ure 2D, left). In addition, a negative correlation between
variation and adaptation in histidine depleted conditions
(Figure 2D, right) was also found. The selection of adap-
tive cells may have occurred in the populations exhibiting
a large initial variation, such that the variation finally be-
came small in the good survivors. Conversely, an increase
in variation most likely occurred in the populations of poor
survivors to help breed adaptive cells by chance.
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Changes in cell size compensated for stochastic adaptation

In addition to the fluctuating gene expression (Figure 2),
the cell size, as a typical indicator of adaptivity, was also
observed. Cell size influences the fluctuated abundance of
gene product, which is known as the system dilution effect
(54). Therefore, the means and variations of cell sizes within
populations were evaluated. Cell size distributions demon-
strated the fluctuation of cell size (Supplementary Figure
S4), as well as what found in gene expression (Figure 2A,
Supplementary Figure S3). The survivors but not the fail-
ures tended to increase their cell size in response to histidine
depletion (Figure 3A). The increased cell size, specifically in
cell length, was quantitatively verified by microscopic obser-
vation (Supplementary Figure S5). This filamentation strat-
egy, which was commonly observed in wild-type cells as a
stress response (55–57), was assumed to compensate the in-
sufficient fluctuation in gene expression and to facilitate fu-
ture propagation or generate fluctuations in abundance of
gene products by system dilution effect. The strains with

large variations in cell size, such as the poor-surviving hisI-
rewired strain (Figure 3B), may still be in the process of ran-
domly searching for better adaptations.

The slightly increased cell size detected in most strains
was correlated with a slightly decreased growth rate un-
der histidine-depleted conditions could be seen (Figure 3C,
Supplementary Figure S5C). We reasoned that most cells
in the good survivor populations had completely adapted
to the stress, such that their cell sizes were slightly increased
with only a small variation. Conversely, both adaptive and
maladaptive cells were present in the poor survivor popula-
tions, and thus the average cell size was large and exhibited a
large variation (Figure 3B). The phenotypic plasticity at the
morphological level might compensate for the insufficient
fluctuations in rewired gene expression, particularly in the
poor survivors. The results suggested that the mean expres-
sion of the rewired gene was not the only determining factor
for adaptation, and the variation of expression within pop-
ulations and/or the changes in cell size facilitated random
searching for an adaptive state.
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Successful cell fate required the cooperative expression of the
His operon

The expression of all rewired genes showed fluctuations to
a certain extent (Figures 2 and 3), but the final cell fates (i.e.
growth fitness) of these rewired strains in histidine-depleted
conditions were dissimilar (Figure 1B). The presence of
cooperative gene regulation was further investigated using
transcriptome analyses. Six survivors of the same growing
conditions that were used for FCM analysis were exam-
ined. The expression patterns between histidine-rich and
histidine-depleted conditions largely differentiated in the
rewired strains compared with the native strain (Figure 4A,
dot plots). Several differentially expressed genes (DEGs, de-
termined by the rank product method) were identified in the
rewired strains; however, only a few overlapped with those

in the native strain especially in poor survivors (Figure 4A,
Venn diagrams). Among all DEGs, only seven genes were
shared by the survivors (Figure 4B). In addition, gene set en-
richment analysis (GSEA), which identified the gene groups
and/or networks of significant transcriptional changes in
response to histidine depletion, presented large variability
(Supplementary Figure S7). These results reflected random
patterns of expression at the individual gene or group level
in the rewired strains, supported by the previously reports
(11,25).

Additional analyses of the transcriptome changes in the
early responsive phase were performed (Figure 5A) because
of this failure to obtain common regulatory features in the
survivors growing in the exponential phase (Figure 4). Over-
all, the induced expression of both the rewired gene and the
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other structural genes of the His operon was detected in the
survivors in the absence of histidine and was comparable to
the expression by the native strain (Figure 5B, Supplemen-
tary Figure S9). Such cooperated upregulation of all com-
ponents in the His operon might be necessary for sufficient
biosynthesis of histidine. In particular, the structural genes
of the His operon were highly upregulated 2 h after histi-
dine depletion in most strains (Figure 5B, blue), following
a 10-min delay for significant changes (Figure 5B, black).
Induced expression of the rewired genes in the correspond-
ing rewired strains, either in early responsive (2 h) or later
exponential phases (>10 h), were crucial for the successful
cell fate (Figure 5B, black asterisks), which was consistent
to FCM analyses (Figure 2). Strains that failed to maintain
high expression levels at 2 h (Figure 5B, red asterisks) finally
succumbed to maladaptation. Success appeared to largely
depend on the original location of the rewired gene within
the His operon. The strains carrying genes (hisG and hisD)
that were rewired from loci close to the highly conserved
‘attenuator’ (35–36,58) failed to maintain the induced ex-
pression of these essential rewired genes. The chromoso-
mal locations of genes may limit cellular plasticity, which
is consistent with previous findings on the relationship be-

tween chromosome structure and plasticity in gene expres-
sion (59).

Cooperative global transcriptional reorganization guided a
success path

Principal component analysis (PCA) using all data sets
was performed to obtain a conceptual abstract of global
cooperation for success in stochastic adaptation. High-
dimensional transcriptome reorganizations were primarily
restricted within a narrow space and composed of any two
PCs of the three main PCs (Figure 6A). In particular, a
highly significant correlation was found between the two
primary PCs (PC1 and PC2, except for failures), which ac-
counted for ∼54% of the total changes (Figure 6A, left).
This negative correlation illustrated a trade-off in gene ex-
pression for a homeostatic transcriptome, and a single-
directional trajectory allowed for survival (Figure 6A, red
dashed line). The large varied distribution of transcriptome
changes at 2 h (Figure 6A, 2 h circles) reflected the man-
ner of stochastic adaptation. However, survivors occurred
along this trajectory, and the failures dropped off.

Moreover, normalized distances on this PC1/PC2-
correlated trajectory showed that growth rates correlated
to adaptiveness. The distance from the vertical projection
of the circles on the trajectory to a defined initial point on
the trajectory was calculated and normalized within one
unit (Figure 6B). Data sets of the 10 min bins were ex-
cluded because the growth rates that were estimated dur-
ing this 10 min were unreliable. A positive correlation with
high significance was observed between normalized dis-
tances and growth rates (Figure 6C), which indicated that
transcriptome reorganizations cooperated with the rewired
genes to direct successful adaptation. Growth-correlated
genes as determined by K-means clustering clearly demon-
strated that the genes positively and negatively loaded on
the PC1/PC2 trajectory mostly comprised clusters that pos-
itively and negatively correlated to the growth rates, respec-
tively (Supplementary Figure S8A and B), which strongly
supports the finding of the PC1/PC2 trajectory as a success
path.

Gene enrichment analysis identified gene functions re-
lated to mobility/transport and transposition in the posi-
tive and negative loadings, respectively (Figure 6D, Gene
category, MultiFun, GO term). K-means clustering analysis
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confirmed that the enriched gene functions concentrated in
nonessential processes (Supplementary Figure S8C). These
results were quite different from studies on regular adapta-
tion by native regulations, which often reported that cen-
tral biological functions, such as translation, were enriched
in the growth-correlated gene clusters (27,29). In addition,
the enriched transcriptional networks in the positive load
(Figure 6D, TF, positive) partially overlapped with the net-
works that were identified in the native response to general
stresses (29,40) (e.g. rpoD). However, the enrichment of gene
regulations failed to identify any regulatory networks with
significant changes in the negative loading (Figure 6D, TF,
negative), which is consistent with the enriched gene func-
tions. These results indicate that the stochastic adaptation
of these rewired strains was also attributable to coopera-
tive reorganization of the expression of those nonessential
genes (e.g. phage/IS in common), which is quite different
from the well-known stress response mechanisms that are
tightly regulated by the corresponding genes (e.g. rpoS for
general starvation stress). This finding raised an intrigu-
ing question whether it was the cooperative transcriptional
changes in the nonessential genes that potentially assisted
the rewired genes of stochastic switching to stay at the
proper expression level. In summary, the single-dimension
PC1/PC2 trajectory that was highly abstracted from the
multidimensional transcriptome reorganization guided suc-
cess in stochastic adaptation and the contribution of the
cooperative expression of both basal-related and nonessen-
tial genes. The population analysis based on the reporter
gene gfp (Figure 2) and the transcriptome analysis evalu-
ating the genome-wide expression patterns (Figure 6) drew
comparable conclusions, in which successful cell fates that
are mediated by directional changes in gene expression can
be achieved in the absence of specific regulation.

DISCUSSION

The present study systematically investigated the mecha-
nism of stochastic adaptation that is often proposed to
occur via successful fluctuations that correspond to the
rewired genes. Previous studies have demonstrated that cells
possess the ability to cope with the challenge presented by
a particular gene being rewired (9–11). That is, cells were
induced to search for the proper states independent of the
specific regulatory mechanism by the stochastic switching
of a certain gene (i.e. the rewired genes) essential for cell
growth (10,12–13,20). In this study, the genes originally
controlled by the well-known His operon were systemati-
cally subjected to rewiring. By considering growth recovery
(Figure 1B), three different cell fates were identified: highly
adaptive (hisB, hisC and hisF), poorly adaptive (hisA and
hisI), and maladaptive (hisG and hisD). This survey pro-
vides the first experimental evidence regarding the proba-
bility (five of seven strains) that a stochastic strategy will
succeed under a certain defined condition (i.e. histidine de-
pletion).

It is intriguing that the strains whose rewired genes were
regulated in the same way and were involved in an identi-
cal pathway had the different cell fates. First, the success
of stochastic adaptation likely depends on the order of ei-
ther regulation or metabolism. Because hisG and hisD are

the first genes expressed from the His operon (Figure 1A),
their expression might require highly precise regulation in
contrast to other structural genes, which might be loosely
controlled under native regulation. In addition to this lo-
cus priority in the His operon, the function of genes that
are involved in the metabolic pathway may play a role. The
initial and final steps of histidine biosynthesis are controlled
by hisG and hisD, respectively (Figure 7, red). If the order of
gene expression and the order in which a protein plays a role
indicate the accuracy of the genetic and metabolic controls
(60), then hisD and hisG must respond in a highly efficient or
rapid manner. Transcriptome reorganizations of these two
rewired strains may fail to reach the PC1/PC2 trajectory
(Figure 6) within the time limit for growth recovery, because
random searching for proper expression patterns was time-
consuming. Second, the surrounding metabolic pathways
(61,62) may influence the adaptivity. The strains carrying
the rewired genes participating in the reactions upstream of
the bifurcation for purine metabolism (61,62) were poorly
adapted (Figure 7, blue), whereas those located downstream
were highly adapted (Figure 7, green), indicating that the
key metabolic pathway may contribute to the stochastic
switching-mediated fate decision and supporting the con-
clusion that a global cooperative reorganization of gene ex-
pression is essential for the success of stochastic adaptation.
Third, the hisF strain showed a less significant change in
GFP bias (Figure 2) and maintained its cell size (Figure
3), compared with the other two good survivors. We as-
sume that the dosage of hisF gene product that was required
for cell growth might be lower than that for other strains,
because this strain showed greater growth fitness than the
other rewired strains under all of the induced expression
conditions (Supplementary Figure S2). The dose-to-fitness
relationship of hisF might be different from other genes,
most likely because this gene works together with hisH (63)
in histidine biosynthesis. Because the partner gene hisH was
maintained under native regulation, the rewiring of hisF
might be less lethal than the rewiring of other genes that
function alone; therefore, perhaps less change is required.

As a first and intriguing finding, the cooperative tran-
scriptional reorganization (Figures 4–6) that occurred glob-
ally within a limited space, in addition to the fluctuated
expression of the rewired genes and cell size increase, was
important for successful stochastic adaptation (Figure 6C).
The poor survivors showed a higher degree of global reorga-
nization than the good survivors (Figures 4 and 6), but they
all remained along the PC1/PC2 trajectory. This global co-
ordinative change was assumed to occur partially by chance
because it was only the phage- and IS-related genes, but not
regulators that were significantly enriched in the negative
load of the success path (Figure 6D). This nonessentiality in
enriched gene functions agreed well with the fact that large
cell-to-cell variations of GFP bias were observed in the sur-
vivors (Figure 2).

A perspective model is proposed based on these results.
The PC1/PC2 trajectory represents a success path (Figure
8, red bold line) in response to environmental perturbations
(e.g. histidine depletion). This path guides the success of
stochastic adaptation in gene rewiring in the same direction
that is regulated by regular adaptation via native regula-
tions. Different cell fates are drawn when the rewired strains
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carrying damaged regulations encounter unfavorable envi-
ronments, which is due to the cell-to-cell variation in gene
expression and cell size within the initial populations (Fig-
ure 8, light gray circle). Cells that luckily switched to the
induced expression level of the essential rewired genes (Fig-
ure 8, green) in cooperation with synchronized transcrip-
tome reorganization following the success path turned to
alive (Figure 8, red circles). Cells of the transcriptome reor-
ganization left this success path (Figure 8, gray arrow) and
tended to succumb to death despite stochastic switching of
the rewired gene (Figure 8, open circle).

It is unclear whether all 3398 genes had randomly
searched for the proper expression levels; nevertheless, the
global reorganization occurred directionally along a one-
dimensional path. This success path is most likely restricted
or shaped by the metabolome, because the cell fates me-
diated by a stochastic strategy were well categorized from
a metabolic perspective (Figure 7). As gene rewiring is
thought to be highly likely in natural evolution (1), this one-
dimensional path may potentially provide a direction for
evolutionary changes at the level of the transcriptome. The
distance along this defined path may reveal the evolutionary
potential for preexisting gene networks to form novel regu-
latory connections that are adaptive to unforeseen environ-
ments. The observed path was admittedly limited to the con-
text of histidine starvation, but this first successful attempt
to search for a general path among 3398 potential dimen-
sions strongly indicates that a general design principle un-
derlies cellular plasticity. This finding illustrates the mecha-
nism of stochastic adaptation and offers novel insights into
the systematic design and application of complex gene net-
works.
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