
The effect of self-choice on behavioral
performance in reward seeking

著者 瀬戸川 剛
year 2014
その他のタイトル 報酬探索における行動成績に対する自己選択の効果
学位授与大学 筑波大学 (University of Tsukuba)
学位授与年度 2013
報告番号 12102甲第6990号
URL http://hdl.handle.net/2241/00124064



 

博士論文 

 

 

 

 

The effect of self-choice on behavioral performance 

in reward seeking 

 

(報酬探索における行動成績に対する自己選択の効果) 

 

 

 

平成 25年度 

 

 

筑波大学大学院 人間総合科学研究科 感性認知脳科学専攻 

瀬戸川 剛 

 

 

筑波大学 



- 1 - 

 

 

Doctor Thesis 

 

 

The effect of self-choice on behavioral performance 

in reward seeking 

 

 

 

Tsuyoshi Setogawa 

 

Graduate school of Comprehensive Human Sciences 

University of Tsukuba 

 

 

 

 

University of Tsukuba 

March, 2014 

 

 



- 2 - 

 

Contents 

 

Abstract ·········································································································· 4 

Introduction ···································································································· 5 

A. Estimated reward value underlies decision-making ················································ 5 

B. Value estimation in reward-seeking behavior ······················································· 7 

C. Self-choice and motivation ············································································· 10 

D. The objective and the outline of my study ·························································· 11 

Materials and Methods ···················································································· 13 

Subjects ········································································································ 13 

Experimental conditions ···················································································· 13 

Task procedures ······························································································ 14 

Computer assigned reward schedule task ······························································ 14 

Decision-making reward schedule task ································································· 15 

Probability matching ······················································································ 16 

Data analysis and model fitting ··········································································· 17 

Results ··········································································································· 21 

Discussion ······································································································· 26 

Model selection and interpretation of the model fitting ·········································· 26 



- 3 - 

 

Interpretation of my results and comparison with other studies ······················· 29 

Speculations and future directions ········································································ 32 

References ······································································································ 34 

Acknowledgements·························································································· 46 

Figure Legends ······························································································· 47 

Table Legends································································································· 52 

Figures ··········································································································· 53 

Tables ············································································································ 65 



- 4 - 

 

Abstract 

When an individual chooses one item from two or more alternatives, they compare the 

values of the expected outcomes. The outcome value can be determined by the 

associated reward amount, the probability of reward, and the workload required to earn 

the reward. Rational choice theory states that choices are made to maximize rewards 

over time, and that the same outcome values lead to an equal likelihood of choices. 

However, the theory does not distinguish between conditions with the same reward 

value, even when acquired under different circumstances, and does not always 

accurately describe real behavior. Recent psychological studies in humans have revealed 

that the performance of subjects during cognitive and behavioral tasks improves when 

they choose the task conditions themselves. Here, I examined whether the same is true 

with reward-seeking behavior. I hypothesized that self-choice could increase the value 

of the chosen material, and the increased value would then lead to improved 

performance. To investigate this, I trained monkeys with two kinds of reward schedule 

task: a decision-making reward schedule task (RSd) and a computer-assigned reward 

schedule task with matched probability (RSm). In RSd, the monkeys could choose one 

of two alternatives associated with a different workload and a different reward amount. 

In contrast, in RSm, a computer assigned reward schedules randomly. Task 

performances (error rate and reaction time) improved significantly in RSd compared to 

RSm. Theoretical analysis using a modified temporal-difference learning model showed 

an enhanced schedule state value in RSd. These results suggest that an increased reward 

value underlies the improved performances by self-choice during reward-seeking 

behavior. 
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Introduction 

 

A. Estimated reward value underlies decision-making 

To survive a battle of existence, an organism needs to estimate the values of outcomes, 

compare them, and then choose the one of alternatives by which the gain can be 

maximized. Thus, it has been generally acknowledged that the animals and the human 

beings are endowed with the ability to estimate optimal values and to make rational 

decisions for their survivals.  

When an individual chooses one item from two or more alternatives, they make 

a choice based on their preference. This suggests that the item selected is the one with 

the greatest value to the individual, regardless of its “objective value”. This is referred 

to as the “subjective value”. Many researchers report that the subjective values are 

determined by the future reward amount, the probability of reward, the delay to 

receiving the reward, and the workload required to earn the reward. Indeed, the animals 

consistently preferred larger rewards to smaller ones (Boysen et al., 2001; Watanabe et 

al., 2001). Though the animals sometimes preferred immediate smaller rewards to later 

larger rewards (Ainslie, 1974; Kalenscher and Pennartz, 2008; Richards et al., 1997; 

Rodriguez and Logue, 1988), a theoretical model of the temporal discounting of reward, 

which will be described in detail in the next chapter, could explain this. In the studies 

based on the framework of operant conditioning, the monkeys also tended to choose the 

alternative associated with smaller workload rather than the one with larger workload 

(Kennerley and Walton, 2011; Hosokawa et al., 2013). Furthermore the animals 

preferred the alternatives associated with the higher probability of reward than with the 

lower one (Samejima et al., 2005).  
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In recent studies using multi-trial reward schedule tasks, my colleagues showed 

that the monkey’s behavioral performance was influenced by the workload necessary to 

earn reward (Mizuhiki et al., 2012; Ravel and Richmond, 2006; Shidara and Richmond, 

2002; Simmons et al., 2007). The task required the monkeys to complete the repeat of 

simple visual-discrimination trials. Those studies revealed that the error rate in 

visual-discriminations decreased as the remaining workload reduced. Again the error 

rate also decreased as the reward amount increased (Inaba et al., 2013; Toda et al., 2012). 

In another study using the deferent reward that was dispensed after a 

visual-discrimination, the animal showed the higher behavioral performances as the 

delay became shorter (Minamimoto et al., 2009). These results suggest that there is a 

close relationship between animal’s motivation to perform visual-discriminations and 

expected reward value that is calculated from amount, workload or delay of the reward. 

When describing the choices that animals including humans make, a starting 

point is how closely the behavior matches theory. Rational choice theory, a standard 

theory in economics that is too simplistic to describe human and animal behavior, 

postulates that behavior is organized to maximize rewards over time. The primary 

axioms of rational choice theory are completeness (where potential outcomes are ranked 

according to their values), transitivity (where the outcome of non-adjacent items in the 

list of alternatives respects the order of the values) (Kreps, 1990; Allingham, 2002), and 

independence of irrelevant alternatives (where adding an item to the list of potential 

alternatives must not interfere with the order of the items already in the list) (Ray, 1973). 

A corollary of transitivity is that outcomes of equal value should elicit equal choices. 

However, in some previous reports, there is considerable criticism for an 

economic model ‘Homo economicus’, which states that the humans have ability to 
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estimate unbiased values and to judge rationally (Kickert, 1979; Persky, 1995). A 

research suggests that people rely on a limited number of heuristic principles to make 

simple judgment rather than to calculate optimal values in actual environment 

(Kahneman et al., 1982). They provided the evidences against the optimal and rational 

computation that are believed as inherent in our value estimation (Cox et al., 1982; 

Delgado et al., 2008). According to them, the probability weighting, framing, loss 

aversion and other heuristics underlies the decisions of animals and humans, and these 

often give rise to suboptimal value estimation and irrational decision-making 

(Kahneman et al., 1982). However, it is unknown whether these suboptimal value 

estimations occur in the reward-seeking behavior. In this thesis, I tried to show whether 

the value estimation in reward-seeking behavior was always optimal. For this purpose, I 

developed the theoretical model to account for the behavioral performances during the 

reward-seeking behavior. I explain this point in the next chapter. 

 

B. Value estimation in reward-seeking behavior 

In an actual environment, an outcome is often delayed after its associated action is 

completed. As described in the preceding chapter, the error rates during the multi-trial 

reward schedule task decreased as the remaining workload to the reward reduced. This 

can be interpreted generally as follows: the outcome value becomes larger as the delay 

becomes shorter. Grounded in this interpretation, it could be considered that many 

decisions are involved in trade-off between the amount of an outcome and the time of 

acquisition of an outcome. When the two alternatives, which are constructed from 

different amount of reward and different time to reward, are chosen with equal 

probability, these value of alternatives could be almost same. The temporal discounting 
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rule (Frederick et al., 2002; Green and Myerson, 2004) can be derived from the 

experiments using an ‘inter-temporal choice’ paradigm. This paradigm is defined as a 

decisions to choose the one of alternatives that associated with the different onsets of 

reward. Indeed an experiment based on the temporal discounting rule clearly showed 

that the human subjects chose the option with the maximum of temporally discounted 

value (Rao, 2010). Other studies using animals showed that the animal’s 

decision-making is also well accounted by this discounting function (Kable and 

Glimcher, 2010; Kim et al., 2008; Louie and Glimcher, 2010; Minamimoto et al., 2009). 

Here I introduce the three mathematical models of temporal discounting, which 

are widely accepted by researchers. Since the 1930s, the exponential function has been 

the one of canonical models to explain the discounted value of future rewards 

(Samuelson, 1937). This can be described as follows: 

                                              V =
R

ekD
 

where V is a subjective reward value. R is a reward amount. D is a delay to reward. k is 

a discount factor that determines the rate of discounting the value. It has been believed 

that this model can secure the subject’s preference throughout the time course (Fig. 1A). 

The hyperbolic function has been another major function to describe the 

discounting. Several researchers suggested that the hyperbolic function could explain 

the actual inter-temporal choice more correctly (Bickel and Marsch, 2001; Mazur, 1987; 

Schultz, 2010). This function can be described as follows: 

          V =
R

1+kD
 

where V is the subjective reward value. R is the reward amount. D is the delay to reward. 

k is the discount factor. Interestingly, this model predicts the “preference reversals”. Let 

(1) 

(2) 
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(3) 

us assume that there are two alternatives associated with different amount of reward 

with different delay. Let us further assume that the value of the larger reward with the 

larger delay is larger than that of the smaller reward with the smaller delay. The notion 

“impulsive preference reversals” refers that the order of the values in those outcomes 

often reverses if the equal length of time is added to the delay until both outcomes (Fig. 

1B). For example, the one prefers the $100 right now to the $120 in one month though 

the one prefers the $120 in 12+1 months to the $100 in 12 months under the impulsive 

preference reversals. Note the differences in delay between two alternatives are equal in 

either combination. 

Finally, a model I introduce here is the temporal-difference (TD) learning 

model. This model is implemented in a reinforcement learning procedure by which the 

decision-maker maximizes the long-term returns (Potjans et al., 2011; Samejima et al., 

2003; Sutton and Barto, 1998). In the reinforcement learning, an agent continuously 

interacts with an environment by receiving the information about the current state St and 

feedback reward rt for the previous action at St-1 (how good or bad it was) and by 

choosing a next action. These interactions occur in a sequence of every discrete state at 

time step t (Fig 1C). The agent makes a useful update using the observed information of 

reward rt+1 and estimates environmental state St+1. The goal of this learning is to 

generate the optimal actions leading to maximal reward. The TD learning rule can be 

generalized as follows: 

V(St)←V(St)+α[rt+1+γV(St+1)- V(St)] 

where V(St) is a value of environmental state S at time t. α is learning rate. rt+1 is the 

observed reward of St+1. Parameter γ is a temporal discount rate corresponding to the 

discount factor, k, in the temporal discounting (γ is equal to the inverse of k). The 
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learning will be finished when the difference between the value of reward obtained by 

action rt+1+γV(St+1) and the estimated current environmental state value V(St) becomes 

0. The TD learning method approximates its current estimate based on previously 

learned estimates and is utilized for understanding value-based decision-making 

(Nakahara and Kaveri, 2010).  

For better understanding of mathematical substrate for animals’ reward-seeking 

behavior, I propose these models to provide a clue to analyze the behavior. In the next 

chapter, I will discuss the relationship between an individual’s choice and their 

motivation. 

  

C. Self-choice and motivation 

When we face the case that we can take the one from several items, there are two ways 

of doing it. We choose the item by ourselves, or we let the others choose the items for us. 

The psychological studies using word memory task showed that the recall performance 

of participants was better when they chose the items by themselves than when the 

experimenters assigned items (Perlmuter et al., 1971; Takahashi, 1991). Recently these 

behavioral changes have been referred to as a ‘self-choice effect’ in word memory. 

Consistent with this, another study reported that the participants performing anagram 

tasks were more efficient in learning when they chose the task items by themselves 

(Iyengar and Lepper, 1999).  

There are two putative mechanisms to account for self-choice effect. 1. 

Motivational hypothesis: Perlmuter and Monty (1973) proposed that a subject’s level of 

motivation increased when the participant chose the words that should be remembered 

by their own. They suggest that the increased motivation might elicit the improvement 
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in task performances. 2. Meta-memory hypothesis: In this hypothesis, Takahashi (1991) 

suggest that the participants chose items that were easily remembered. This might 

enhance the memory performances. 

Besides the word memory in above, there is possibility that the self-choice 

enhances the wide range of cognitive and behavioral performances. Zuckerman and his 

colleagues (1978) reported that the participants showed the higher performances in 

playing a puzzle game that was chosen by participants. They hypothesized that the 

increased motivation promoted to achieve higher performances in the game. According 

to a Self-Determination Theory introduced by Deci and Ryan (1985, 2002), the 

motivation could be classified into two functional divisions: an intrinsic and an extrinsic 

motivation (Lepper et al., 1973). The intrinsic motivation was defined as the natural, 

inherent drive to seek out challenges and new possibilities associated with cognitive and 

social development. On the other hand, they stated that the extrinsic motivation came 

from external sources. Zuckerman et al. (1978) suggested that subjects’ intrinsic 

motivation might play a key role in enhancing the puzzle game performances. This was 

called an ‘enhancing effect’. 

 

D. The objective and the outline of my study 

These findings raise a possibility that the behavioral performance improvement by 

self-choice generally take place in reward-based decision-making. However, if, as the 

economists assume, the subject can rationally estimate the values of items, the 

performance should not be improved by self-choice since the value of item remains to 

be insusceptible to whether the items are chosen by oneself or others. To address this, I 

introduced two kinds of reward schedule task. In the decision-making reward schedule 
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task (RSd), a subject was able to choose one of two schedules associated with different 

amounts of reward and workload. In the computer-assigned reward schedule task, the 

amount of reward and workload were determined by computer. I trained rhesus 

monkeys to perform these two tasks, and compared their behavioral performances (error 

rate and reaction time during the visual-discrimination trials). Then I examined whether 

behavioral performance could be estimated by the theoretical model of the modified 

reinforcement learning rule. 
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Materials and Methods 

 

Subjects 

Data were obtained from three adult male rhesus monkeys (Macaca mulatta; monkey P, 

~7.1 kg; monkey H, ~8.4 kg; monkey K, ~6.0 kg). There was an advantage to use the 

monkeys because they were free from prejudice against / in favor of performing the task.  

Monkeys P and H were naïve monkeys whereas monkey K was used after other 

experiment of recording from dorsal raphe nucleus during reward schedules. All 

monkeys learned the all tasks within 12 months of training. The experiments were 

approved by the Animal Care and Use Committee of University of Tsukuba, and were 

all conducted in strict accordance with the guidelines for the Care and Use of 

Laboratory Animals of University of Tsukuba. The guideline is based on the 

recommendations of the National Research Council (USA) as published in the ILAR 

"Guide for the Care and Use of Laboratory Animals", and all research procedures 

followed the recommendations of the ILAR Guide. 

 

Experimental conditions 

Monkeys sat in a primate chair facing a 22-inch cathode-ray tube (CRT) monitor 

(CV921X; TOTOKU, Japan) placed 1.0 m from their eyes. Three touch-sensitive bars 

were attached to the front panel of the primate chair at the level of the monkeys’ hand. 

These bars were referred to as the center bar, and right and left choice bars. A water 

reward was dispensed from a stainless tube that was positioned at the monkey’s lips. 

Experiments were conducted in a sound-isolated dark room, and sound was masked 

further using white noise. Experimental control and data acquisition were performed 
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using the real-time experimental system “REX” adapted for the QNX operating system 

(Hays et al., 1982). Visual stimuli were presented by “Presentation” (Neurobehavioral 

Systems, Inc., Albany, CA) running on a Windows computer. 

 

Task procedures 

Computer assigned reward schedule task 

I designed behavioral paradigms and visual stimuli based on previous studies (Shidara 

and Richmond, 2002; Mizuhiki et al., 2012; Toda et al., 2012; Inaba et al., 2013). These 

monkeys were initially trained to perform simple visual discrimination trials (Fig. 2A). 

The monkey had to touch the center bar to initiate each trial. Immediately thereafter, a 

white rectangle visual cue, which I explain later, was presented at the top of the monitor. 

Then, 800 ms from the onset of the visual cue, a fixation spot (a small white square, 

0.17 × 0.17°) was presented at the center of the monitor. The fixation spot was replaced 

after 400 ms with a red square (WAIT signal, 0.40 × 0.40°). When the red square was 

present, the monkey had to keep touching the center bar. After a randomly chosen 

period (400, 600, 800, 1000, or 1200 ms), the color of the square changed to green (the 

GO signal). To receive a reward, the monkey had to release the center bar 150–1000 ms 

after the GO signal. If the monkey released the center bar successfully, the color of the 

square changed to blue (OK signal), which indicated that the trial had been completed 

correctly. The visual cue and the square were extinguished after 250–350 ms from the 

onset of the OK signal, and a liquid reward was delivered. An error occurred when the 

monkey released the center bar too early (while the square was red or earlier than 150 

ms after the appearance of the GO signal), or did not release the center bar within 1 s of 

the onset of the GO signal. When the monkey made an error, the visual cue and square 
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were extinguished immediately and the trial was terminated. The inter-trial interval 

(ITI) was 1 s after a rewarded trial or error. 

When the percentage of correct trials for simple visual discriminations 

exceeded 80%, the computer assigned reward schedule task was introduced (Fig. 2B). 

In this task, the monkey was required to perform 1, 2, 3, or 4 repeats of a visual 

discrimination trial (schedule) successfully to earn 1, 2, 3, or 4 drops of liquid reward 

(0.15, 0.30, 0.45, or 0.60 mL water). During the trials, the visual cue was presented at 

the top of the monitor. The brightness and length of the visual cue indicated the reward 

amount and the number of remaining trials, respectively (Fig. 2C). The brightness of the 

visual cue was proportional to the reward amount: 25% brightness, 1 drop of water; 

50% brightness, 2 drops; 75% brightness, 3 drops; and 100% brightness (white, 30.19 

lux) 4 drops. The length of the visual cue was extended in proportion to the schedule 

progress. The schedule states were abbreviated as trial number / schedule length: 1/4, 

25% of full length (6.06 × 0.60°); 1/3, 33.3% of full length (8.08 × 0.60°); 1/2 and 2/4, 

50% of full length (12.12 × 0.60°); 2/3: 66.7% of full length (16.16 × 0.60°); 3/4, 75% 

of full length (18.18 × 0.60°); 1/1, 2/2, 3/3 and 4/4, 100% of full length (24.24 × 0.60°). 

The trials with the longest cues were reward trials, whereas those with shorter cues were 

no-reward trials. When the monkey made an error, the same schedule state was 

repeated. 

 

Decision-making reward schedule task 

The decision-making reward schedule task (RSd, Fig. 3) consisted of self-choice and 

reward schedule parts. When the monkey touched the center bar, the self-choice part 

began. At 500 ms from the onset of the fixation spot (a small white square of 0.17 × 
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0.17 deg), the choice targets appeared on either side of the fixation spot for 3 s. The 

choice targets indicated the alternatives that the monkey could choose. The brightness 

and length of the choice target were proportional to the reward amount (25% brightness, 

1 drop of water; 50% brightness, 2 drops; 75% brightness, 3 drops; and 100% 

brightness [white] 4 drops) and schedule length: 1 schedule, 25% length (1.50 × 0.60°); 

2 schedules, 50% length (3.00 × 0.60°); 3 schedules, 75% length (4.50 × 0.60°); 4 

schedules, 100% length (6.00 × 0.60°), respectively (Fig. 3C). Pairs of choice targets 

were picked randomly from the choice target set. There were 16P2=240 combinations of 

left and right choice targets. To make a decision, the monkey had to touch either the 

right or the left bar that was on the same side as the chosen target 150–3000 ms after the 

onset of the choice targets. If the monkey kept touching the chosen bar for 500 ms, the 

unchosen target and the fixation spot were extinguished. The chosen target was also 

extinguished after an additional 500 ms, and the chosen reward schedule began 1 s after 

a successful self-choice. If the monkey did not touch either choice bar within 150–3000 

ms, touched the choice bar too early (within 150 ms of the onset of the choice targets), 

or touched the center or unchosen bars within 500 ms of making a choice, the trial was 

scored as a choice error. After a choice error, the fixation spot and the choice targets 

were extinguished and the trial was terminated. An ITI of 1 s occurred after a choice 

error. Then the self-choice part of the trial began again with the same options as the 

preceding trial. 

 

Probability matching 

In RSd, the number of the chosen schedules was biased by the monkeys’ decision 

preference, because they chose the shorter schedules with the larger rewards 
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preferentially (Fig. 4). The percentage of each schedule in computer assigned reward 

schedule task was matched with the percentage from the reward schedule parts of RSd. I 

abbreviated the computer assigned reward schedule task with matched probability as 

‘RSm’. First, behavioral data were collected from a 5-day RSd experiment. Then the 

probabilities of each schedule (Table 1) were calculated from these data, and a 5-day 

RSm was conducted with the same probability as RSd. Three sessions (weeks) of RSd 

and RSm were conducted in an alternating fashion (total 6 weeks) for monkeys P and H, 

and two sessions for monkey K. 

 

Data analysis and model fitting 

The “R” statistical programming language (R Foundation for Statistical Computing, 

Team RDC, 2004) was used for statistical analyses. For model fitting, I developed 

software using C++ in the Integrated Development Environment of Visual Studio 2010 

(Microsoft). 

To investigate whether behavioral performances improved during the schedules 

chosen by the monkeys, the error rates and reaction times of the reward schedule part 

were analyzed in all sessions. The error rate was defined as the ratio of the number of 

failed trials to the number of whole correct and failed trials in each schedule state. The 

reaction time was defined as the time to release the center bar after GO signal appeared. 

The χ2 test and t-test were used to perform a statistical test for the error rates and 

reaction times, respectively. 

Then model fitting was carried out to estimate the error rates in the reward 

schedule parts of RSd and RSm using the context-sensitive model described by La 

Camera and Richmond (2008). The context-sensitive model incorporated the sunk cost 
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(Sutton, 1991) into a conventional temporal difference learning rule (Sutton and Barto, 

1998), formulated as follows: 

V(τ,s)= r+γV(τ+1,s)+σV(τ-1,s)  (4) 

where V(τ,s) is the current schedule state value; r denotes the reward amount; τ = 1, 2, 

… , s denotes the trial number; s = 1, 2, 3, 4 denotes the schedule length.; γ (0≤γ<1) is a 

temporal discount rate; and σ (0≤σ<1) quantifies the fraction of the value carried 

forward to the next trial. When τ = s, the trial terminated. La Camera and Richmond 

employed this model to describe every state value in 1, 2, and 3 trial schedules with a 

fixed amount of reward. I expanded this model to estimate the state value for up to 4 

trial schedules with 1–4 drops of reward and incorporated the nonlinear effect of reward 

amount. I called this model an Extended Context-Sensitive model (ECS model). In the 

ECS model, the current state value V(τ,s) was expressed as: 

V(τ,s) = rm + γV(τ+1,s) + σV(τ-1,s)   (5) 

where the exponent m (0<m<1) controls the effect of the nonlinear reward amount 

because the relationship between reward amount and error rates was nonlinear 

(Cochran–Armitage test, Table 2). Following this equation, each state value can be 

written as: 

V11=rm 

V22=rm(1-γσ)-1, V12=γV22 

V33=rm(1-γσ)(1-2γσ)-1, V23=γ(1-γσ)-1V33, V13=γV23   

V44=rm(1-2γσ)(1-3γσ+γ2σ2)-1, V34=γ(1-γσ)(1-2γσ)-1V44, V24=γ(1-γσ)-1V34, V14=γV24 

Finally, the error rate E(τ,s) in trial τ in schedule s was calculated from the state value 

V(τ,s) using a three-parameter logistic function: 

       E(τ, s) = C +
1−C

1+e(βV(τ,s)−δ)     (7) 

(6) 
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where the parameter C (0≤C<1) determines the lower asymptote, the inverse 

temperature parameter β controls the steepness of the sigmoidal curve, and δ determines 

the degree of horizontal translation. To find the optimal values of the parameters, all 

combinations of parameter values that were changed in 1/50 step were searched. Then 

the square errors between the actual and estimated error rates were calculated to identify 

the optimal parameter values that minimized the square error. For model fitting, the 

error rates from the schedule states were excluded when the observations occurred in 

less than 10 trials, for example, a four-trial schedule with one drop in monkey K. This 

state was observed only two and nine times in RSd and in RSm, respectively. The 

schedule state values were calculated by applying the optimal parameter values to 

equation 6, and then were compared between RSd and RSm. 

Also I examined the correlation between the differential values of two choice 

targets and the time for choosing one of these targets in self-choice part. By this 

procedure, I tested whether the decisions were based on the differential values of two 

choice targets (differential values were defined as the difference between first schedule 

state values calculated by equation 6). The dexterity of hand movement seemed to be 

different between when choosing right and left targets. Thus all of 240 combinations of 

choice targets were further divided in the cases of choosing right target and left target. 

Then I hypothesized that the monkey might be able to perform the schedules 

that were longer than 4 trials if the values were increased after self-choice. To test this, I 

preliminarily introduced longer schedule version of RSd and RSm for one monkey. 

Both of these tasks contained 1, 2, 4 or 8 trial schedules with 1, 2, 4 or 8 drops of 

reward. 

Finally I removed the trials from the end of each session of RSd and RSm in 
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order to adjust the numbers of cumulative reward drops in any sessions to be equal. 

Using these truncated data I compared the error rates between two tasks and fit them by 

ECS model. As shown later, the number of performed trials was different day by day. 

Furthermore the monkeys could perform the larger number of trials in RSm than RSd 

probably because there was no self-choice part in RSm (see results). If the monkeys 

intended to achieve the lower error rates in the fewer number of trials, they should avoid 

further loss by making errors. Using the truncated data, I tried to balance the degree of 

motivation related with the different level of loss aversion among all sessions. 
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Results 

 

The percentage of chosen schedules in all combinations of choice targets during the 

self-choice part of RSd (Fig. 4) was analyzed. Monkeys preferentially chose shorter 

schedules with a larger reward. Even if the ratio of workload to reward amount was the 

same for two alternatives (e.g., four trials with two drops vs. two trials with one drop), 

the shorter one was chosen preferentially. These results suggest that the monkeys could 

discriminate between choice targets and correctly identify the workload and reward 

amount. 

To investigate whether behavioral performances improved when subjects chose 

the schedules, the error rates and reaction times of the reward schedules were compared 

between RSd and RSm. In either task, I counted whole number of errors throughout all 

sessions then calculated the percentage of errors by dividing the number of errors by 

that of all trials. The percentage of errors in the RSd (Monkey P: 674/12682, 5.54% 

[total number of error trials / total number of trials started]; Monkey H: 1875/16586, 

11.30%; Monkey K: 122/3377, 3.63%) was lower than that in the RSm (Monkey P: 

1612/16602, 10.59%; Monkey H, 2975/19785, 15.04%; Monkey K: 310/5888, 5.47%) 

in all animals (Fig. 5A) (χ2-test, Monkey P: χ2=221.43, df=1, p<0.01; Monkey H: 

χ2=108.41, df=1, p<0.01; Monkey K: χ2=14.88, df=1, p<0.01). Furthermore all monkeys 

showed shorter reaction time in RSd (Monkey P: 554.6 ms, Monkey H: 529.6 ms, 

Monkey K: 405.6 ms) than in RSm (Monkey P: 581.1 ms, Monkey H: 564.2 ms, 

Monkey K: 441.3 ms) (Fig. 5B) (t-test, Monkey P: t=16.71, df=24683.09, p<0.01; 

Monkey H: t=20.90, df=31411.06, p<0.01; Monkey K: t=21.52, df=8267.58, p<0.01). 

When the error rates and reaction times in each schedule state were examined, most 
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were smaller and shorter in RSd than in RSm, respectively (Fig. 6). These results are 

consistent with my hypothesis that improved performance with self-choice also occurs 

in reward-related behavior. 

However, the lack of predictability could have limited the performances in RSm, 

because the future workload and reward amount in RSd were guaranteed when the 

monkeys chose schedules but were unpredictable in RSm until the schedules began. To 

determine whether the improvement of the behavioral performances in RSd were due to 

control over predictability, I next compared the error rates in the non-first schedule 

states (2/2, 2/3, 3/3, 2/4, 3/4, 4/4) between RSd and RSm because there was no 

difference in the predictability in these states, as the visual cue in the first trial had 

already indicated the remaining workload and reward amount. However, the error rates 

and reaction times in the non-first schedule states in RSd were significantly lower and 

shorter than those in RSm, respectively (Fig. 7) (error rate: χ2-test, Monkey P: 

χ2=131.54, df=1, p<0.01; Monkey H: χ2=18.90, df=1, p<0.01; Monkey K: χ2=6.38, df=1, 

p<0.01) (reaction time: t-test, Monkey P: t=12.17, df=12486.14, p<0.01; Monkey H: 

t=20.83, df=15843.02, p<0.01; Monkey K: t=16.93, df=4055.63, p<0.01), though there 

was no difference in schedule predictability in the non-first schedule states of both tasks. 

These results suggest that the better performances in RSd might depend on the context 

whether the monkeys chose the schedules that should be performed, but not on the 

future predictability. 

 

To analyze the information processing of reward value, I performed model 

fitting of the error rates with the ECS model, which incorporates the sunk cost into a 

computational temporal difference learning rule. Figure 8 shows the error rates 
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estimated by the ECS model, which are consistent with the actual error rates in RSd and 

RSm for all three monkeys. The optimal parameters are summarized in Table 3. In each 

monkey, parameter γ (which controlled the discounting of future outcomes) was larger 

in RSm than RSd, whereas m (which controlled the nonlinear reward amount effect) 

was smaller in RSm than in RSd. There were no specific trends for σ, which accounted 

for the sunk cost effect, β, C, and δ, which determined the shape of logistic curve. 

Next, I calculated the schedule state values V(τ,s) using these optimal 

parameters with equation 6 (Fig. 9). The values of the first schedule states (1/1, 1/2, 1/3, 

and 1/4) were similar between the two tasks, whereas the values of the non-first 

schedule states exhibited a greater increase in RSd than in RSm as the schedule 

progressed. These tendencies were consistent among the monkeys though the 

parameters in logistic functions (β, C and δ) were very different among three monkeys 

(Table 3). These results suggest that the values of schedules chosen by monkeys were 

higher than those chosen by computers, which led to better behavioral performances in 

RSd. 

I investigated whether the choice behavior in the self-choice part could be 

accounted for by the values of two choice targets. In the self-choice part, the monkeys 

might estimate the values of two choice targets, compare them and choose the one with 

higher value from two targets. If both of the choice targets had close values, the 

comparison of these values might be more difficult for monkeys. Consequently, the 

reaction time, that is defined as the time from the onset of choice targets to touching 

either left or right bar, might be longer as the difference of the values between two 

targets become smaller. Here I defined the difference in value as the difference of the 

values between two targets that were simultaneously presented in the self-choice part. I 
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found that there were significant inverse correlations between difference in value and 

the reaction time (Fig. 10) (Monkey P: when left target was chosen; p<0.001, r2=0.25, 

when right target was chosen; p<0.001, r2=0.33, Monkey H: when left target was 

chosen; p<0.001, r2=0.28, when right target was chosen; p<0.001, r2=0.26, Monkey K: 

when left target was chosen; p<0.001, r2=0.18, when right target was chosen; p<0.001, 

r2=0.26). 

Next, I examined the possibility that each monkey might perform schedules 

that were longer than four trials after self-choice, because most monkeys did not 

perform RSm schedules with more than four trials (unpublished observation in the past). 

Therefore, for one monkey, I repeated the task using revised schedules (1, 2, 4, or 8 

trials) and rewards (1, 2, 4, or 8 drops). The monkey stopped performing RSm (100% 

error) immediately and irritably shook the primate chair when given an eight-trial 

schedule, even with eight drops of reward. In contrast, the monkey performed RSd even 

when using eight trial schedules with one drop of reward (Fig. 11). This highlights how 

powerful the effect self-choice may be. 

Finally, I compared the error rates between two tasks using the truncated data. 

Although the monkeys were allowed to perform the task until they stopped each day, the 

number of completed trials was lower in RSd than in RSm, possibly because of the 

addition of the self-choice part of the RSd. Because the total reward amount earned in 

each session was smaller in RSd than in RSm, it is possible that the monkeys in RSm 

became more satiated during the extra trials, leading to more errors. To assess this 

possibility, I analyzed the trials from the beginning of each session to the time when the 

cumulative drops of reward reached a specific number (defined as the smallest number 

of drops for each monkey in any day: 234 drops for monkey P, 403 drops for monkey H, 
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and 109 drops for monkey K). Nevertheless, the monkeys made significantly fewer 

errors during RSd (Fig. 12A) (χ2-test, Monkey P: χ2=176.31, df=1, p<0.01; Monkey H: 

χ2=28.44, df=1, p<0.01; Monkey K: χ2=5.50, df=1, p=0.02). Then I collected the error 

rates in each schedule state and tried to fit them using the ECS model. The results were 

consistent with those by using the error rates collected from whole trials (Fig. 12B, 

12C), except for the data from monkey K because the number of error trials was not 

enough to perform the model fitting. 
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Discussion 

 

Although improved behavioral performance with self-choice has been described in 

psychology studies, it has remained unknown whether self-choice affects 

reward-seeking behaviors. Here, I used RSd and RSm to investigate this possibility, and 

found that error rates and reaction times were significantly lower and shorter in RSd 

than in RSm, respectively. Furthermore, the schedule state values (calculated using the 

ECS model that incorporated the sunk cost and effect of reward amount into a 

conventional reinforcement learning rule) were higher in RSd than in RSm. These 

results suggest that the item values could be influenced by the action carried out by the 

decision-maker, which leads to better performances. The underlying mechanisms of my 

findings might be consistent with those described previously in human psychological 

studies, where cognitive skills such as memory and learning improve for a self-chosen 

item. 

 

Model selection and interpretation of the model fitting 

The value of future reward is inversely correlated with the time taken to achieve it. In 

standard behavioral models, the widely used functions that account for the temporal 

discounting of future reward are exponential or hyperbolic functions (Glimcher et al., 

2007; Kim et al., 2008; Schweighofer et al., 2006; Schultz, 2010; Louie and Glimcher, 

2010). In studies using deferred reward, either function can be used to weigh rewards 

received at different points in time and applied to fit the behavioral performances of 

operant actions (Minamimoto et al., 2009). However, it was inappropriate to apply these 

temporal discounting functions to predict the error rates in my experiment, because my 
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task consisted of a sequence of discrete trials with varying times required to complete a 

schedule; the number of errors was different during each schedule, and the time to 

release the bar varied. The main factors that are likely to have influenced the reward 

value in my schedule task are remaining workload (Mizuhiki et al., 2012; Shidara and 

Richmond, 2002), the completed no-reward trials (La Camera and Richmond, 2008), 

and the reward amount (Toda et al., 2012; Inaba et al., 2013). The completed no-reward 

trials can be interpreted as an incurred cost that is irretrievable, which is known 

generally as the sunk cost (Sutton, 1991). To calculate the schedule state value using 

these parameters, I developed the ECS model by combining the influence of reward 

amount with a context-sensitive reinforcement model which was used to estimate the 

error rates in the schedule task by considering the remaining workload and sunk cost. 

Then I calculated the error rates from the schedule state value using a three-parameter 

logistic function. This function is often used in studies based on item-response theory 

(Harris, 1989). An advantage for using this function in my task is to standardize the 

diversity in behavior sensitivity to reward value, kinetic skill of hand movement and 

frequency of failure in rational decision. Indeed there were the cases that the error rates 

in reward trial never reached 0% possibly due to low ability to perform bar-release (see 

Fig. 6A, 6C, 6E). As for such cases, the behavioral response at the high end of the 

ability continuum was accounted by the parameter C. Besides, the parameter β and δ 

determine the steepness and horizontal translation of the curve, respectively. In the item 

response theory in which the 3 parameter logistic model has been often used, β and δ 

can approximate the discriminability for response items (Hambleton and Jones, 1993). 

Based on this, I interpreted that these parameters corresponded to the behavioral 

sensitivity toward the reward value in my task. Despite the differences in a manner to 
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transform reward value to behavioral response among individuals, reward value could 

be well accounted for with error rates by regulating C, β and δ in the 3-parameter 

logistic function. 

The ECS model analysis could provide a clue to examine the underlying 

mechanisms of my findings. According to the normative view, the value of reward can 

computationally be determined by associated quantities. At one extreme, we can say that 

the reward values are computed in the environment rather than in the decision-maker 

(Sutton and Barto, 1998). However, I found that the value estimation is susceptible to 

the context as to whether the subjects chose the items. Thus, this study now forges an 

idea that the choice itself is involved with the estimation of outcome value.  

Two major parameters, the discount rate (γ) and the nonlinear effect of reward 

amount (m) showed consistent trends between three monkeys (Table 3). I initially 

expected that γ would be larger in RSd than in RSm, because a smaller γ discounts the 

value of future reward more. However, γ in RSd was smaller in all monkeys. The larger 

discounting is thought to be the substrate of impulsiveness (Onoda et al., 2011); 

therefore, the monkeys could select an impulsive strategy while performing RSd. In 

contrast, a higher m contributed to higher state values in RSd, as shown in Figure 9. If 

the self-choice part is considered the sunk cost, it elevates the values of the subsequent 

reward schedule part of RSd. This leads to larger γ values in the first schedule states of 

RSd compared to RSm. However, the values of the first schedule states were similar 

between the two tasks. Therefore, the rate of ramping in the schedule state values along 

the schedule progress appeared to depend on the difference in context between the 

self-chosen and enforced schedules. Finally, using the best estimates from reward 

schedule part, I could successfully predict the behavior in the self-choice part. I found 
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significant correlation between differential values of two choice targets and time to 

choose one of them (Fig. 10). This result supports the legitimacy of my model. 

 

Interpretation of my results and comparison with other studies 

Previous studies have reported that the animals preferred free-choice to forced-choice 

even if the alternatives were same in either choice. (Catania, 1975, 1980; Cerutti and 

Catania, 1997; Suzuki, 1999). The human psychological studies also showed that people 

preferred the cases in which there were opportunity to make choices and to control their 

own outcomes (Condry, 1977; Lepper and Malone, 1987). Consistently, it has been 

shown that the absence of choice produced a variety of detrimental effects on 

motivation and performance (Deci et al., 1982; Schulz and Hanusa, 1978). The words 

memory tasks in the earlier studies also showed that the words were better remembered 

when they were chosen by participants rather than provided by the experimenter 

(Perlmuter et al., 1971; Monty et al., 1973; Takahashi et al, 1991; Watanabe, 2004). 

Taken together, I hypothesized that the performances of cognitive and behavioral skills 

related to self-chosen item might improve. This hypothesis has been supported by the 

results that the monkeys exhibited better performances in bar-releases during the 

schedules chosen by the monkeys (Fig. 6). However, there were three other possibilities 

that give rise to the performance improvement. 

Apparently, the monkeys chose shorter schedules with larger reward in RSd. 

The percentages of such preferred schedules were disproportionally large in RSd (see 

Fig. 4 and table 1). Consequently, the whole amount of reward in RSd session would 

become larger than that in the reward schedules with equal probability of each schedule. 

The larger amount of reward might reinforce the behavior in RSd. I could solve this 
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discrepancy by introducing RSm in which the probability of every schedule state was 

matched to that of RSd. Rather, the amount of reward per unit time was smaller in RSd 

than RSm because of the necessary time for the self-choice part. Nonetheless, the 

performance in bar-release during RSd yet remained as better. 

The schedule predictability might also improve the performances in RSd. The 

future workload and reward amount in RSd were promised before reward schedule part 

began. This might allow the monkeys to alter their internal state in order to facilitate 

correct and fast response in the following schedules. The premovement neural activity 

might provide the foundation of this (Lebedev et al., 1994). On the other hand the 

monkeys did not have enough time for motor preparation before the beginning of 

schedules in RSm. However I could not agree with this hypothesis because the error 

rates in the non-first schedule states in RSd were better than those in RSm (Fig. 7). 

The number of performed reward schedules was larger in RSm than in RSd 

probably because of the necessary time for the self-choice part (see results). I further 

hypothesized that the better performance in RSd was achieved because the monkeys 

intended to avoid further loss by making errors. Thus I analyzed monkeys’ 

performances using truncated data in which the trials were extracted so as to adjust the 

amount of cumulative reward to be equal. As a result, the error rates in RSd remained 

better than RSm. Thus I could not agree with this hypothesis (Fig. 12). 

Taken together, the self-choice itself seemed to affect the task performances as 

well as amount (Inaba et al., 2013; Kobayashi et al., 2010), probability (Abler et al., 

2006) and delay (Minamimoto et al., 2009) of reward. Furthermore, none of the 

hypotheses referring the higher frequency of reward dispensing, future predictability or 

avoiding further loss could explain the improved performance under self-choice. 
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Rational choice theory has been used to approximate animal and human 

behavior, and it remains a useful theoretic framework because it describes these 

behaviors well. However, there are many examples where one or more of the axioms of 

the theory is broken. Observations by Kahneman and Tversky (1979) have led to a 

whole school of economic work now called “prospect theory”, which attempts to 

demonstrate how reward-seeking behavior can be biased by the context in which 

options are presented. The present study also describes an example that does not fit into 

rational choice theory, because there were differences in the subjective value between a 

self-chosen work schedule and a single required work schedule. The increased value 

occurred even when the monkey had to do a little more work that took more time in 

RSd than in RSm. Rational choice theory would have predicted that the value of these 

two conditions should be equal; however, they were not. This suggests that self-choice 

is one of the heuristics of bounded rationality, where an economic agent restricts 

rationality but to the limitations of cognitive ability and psychological biases (Simon, 

1955). What this implies for human behavior is intriguing. Previous psychological 

studies on humans have reported that behavioral performances such as memory and 

learning are improved when a subject chooses an item used in the task compared to 

when it is assigned (Perlmuter et al., 1971; Takahashi, 1991; Iyengar and Lepper, 1999). 

My results suggest that these phenomena can also be explained by an increase in the 

subjective value of items when chosen rather than assigned. Such value enhancement by 

self-choice might substantially affect our daily decision behavior. 
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Speculations and future directions 

The beneficial aspects of value changing due to the self-choice, one can easily 

conceptualize the frameworks of system to enhance the performances and outcomes in 

industrial, educational and economical fields. To obtain excellent results, educators 

might think that they should not restrain the students from independence actions, and 

leaders might dare to leave the management of system to the discretion of people. 

However, the self-choice biased value sometimes prevents us from making optimal 

decisions. For instance, people often choose lottery with number selection by 

themselves although its odds of winning might be equal to lottery without number 

selection. We have to consider that the reliance on the value changing due to the 

self-choice could sometimes lead to systematic errors. 

In the present study, I offered only two alternatives to the monkeys at a time. 

However, in our daily life, we often face situations in which we have to choose one 

from three or more alternatives. When there are more alternatives, do the behavioral 

performances become increasingly better? A modern psychological research shows that 

people increasingly feel unhappy even if they experience greater material abundance 

and freedom of choice (Schwartz et al, 2002). One explanation is that the opportunity 

cost, that is, the potential loss by not making the next-best choices exceeds the benefits 

from a given choice (Keeney and Raiffa, 1993). This effect was referred to as ‘the 

paradox of choice’ (Schwartz, 2004). However the relation between the effect of 

self-choice and the number of alternatives has not been clarified. Further study is 

needed to determine how many alternatives are best to maximize reward value. 

I have not examined neuronal mechanism underlying the effect of self-choice in 

this study. However, it might be an important issue which brain regions are related to 



- 33 - 

 

this effect. Previous studies showed that choice behavior is regulated by several brain 

regions such as prefrontal cortex. Some neuroimaging studies pointed out that the 

fronto-cortico-striatal network might play important roles in calculating temporal 

discounting (Ballard and Knutson, 2009; Kable and Glimcher, 2007; Tanaka et al., 

2004). Single unit recordings in non-human primates also suggested that the neuronal 

activities in prefrontal cortex are involved in decision-making (Kennerley and Wallis, 

2009; Kim et al., 2009; Lee et al., 2007). Neurons in the dorsolateral prefrontal cortex 

(DLPFC) were reported to be implicated in encoding of information about magnitude 

and timing of an upcoming reward (Leon and Shadlen, 1999; Tsujimoto and Sawaguchi, 

2005). Moreover, Kim et al. (2008) demonstrated that some DLPFC neurons encode the 

difference in the temporally discounted values of alternative. This finding suggests that 

the DLPFC neurons might play a key role in inter-temporal choice. On the other hand, 

lesions of the orbitofrontal cortex (OFC) in monkey impair the ability to modify 

behavior when the expected outcomes of decisions dynamically changed (Izquierdo et 

al., 2004). In addition, Padoa-Schioppa and Assad (2008) reported that OFC neurons in 

monkey encode the subjective reward value. Taken together, these findings suggested 

important roles of DLPFC and OFC in reward-based decision-making. Thus, increase of 

reward value in self-choice might possibly be regulated by neural activity of these brain 

regions. In future studies, I am planning to record single unit activities from DLPFC and 

OFC to investigate neuronal mechanisms of self-choice effect. 
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Figure legends 

 

Figure 1. Value estimation models. 

(A) Exponential discounting curves from a smaller-sooner (SS) and a larger-later (LL) 

reward. At every point their heights stay proportional to their subjective values at the 

time (e.g. T1, T2). The heights of the bars represent the actual reward amounts. (B) 

Hyperbolic discounting curves from a smaller-sooner (SS) and a larger-later (LL) 

reward. The curved lines represent change in subjective value as a function of time (if 

one were offered a choice between SS and LL rewards at T1, one would choose LL 

reward, whereas if one were offered a choice between the same rewards at T2, one 

would choose the SS reward). The heights of the bars represent the actual reward 

amounts. (C) The scheme of TD learning. The agent observes an input environmental 

state St and takes an action. Then, it receives a reward feedback rt+1 from the 

environment St+1. The agent makes a useful update using the observed reward rt+1 and 

estimate environmental state St+1. 

 

Figure 2. Reward schedule task.  

(A) Sequential red-green visual discrimination trial. When the monkey touched a center 

bar, the fixation spot came on in the center of the monitor in front of the monkey. The 

monkey must release the center bar within 1 sec after red target (WAIT signal) changed 

to green (GO signal). If the monkey successfully released the bar, the color of the square 

changed to blue (OK signal) and liquid reward was given. (B) Example of reward 

schedule task (with 4 drops reward). The reward schedule task was composed of 1, 2, 3 

and 4 repeats of the visual discriminations to earn 1, 2, 3 or 4 drops of liquid reward 



- 48 - 

 

(0.15, 0.30, 0.45 or 0.60 ml of water). Throughout trials, the visual cue was presented at 

the top of monitor and its brightness and size indicated reward amount and number of 

remaining trials, respectively (see Fig. 2C). Schedule states were abbreviated as ‘trial 

number / schedule length’ (e.g. the second trial in 3 trial schedule was labeled as ‘2/3’). 

The number of required trials and the amount of reward were randomly picked up by 

computer. Blue and red arrows indicate the sequences of correct and error responses, 

respectively. (C) Visual cues in 4 trial schedules with different amount of reward. 

Brightness and length of the visual cue indicate reward amount and proximity, 

respectively. 

 

Figure 3. Decision-making reward schedule task (RSd).  

(A) The settings of monkey and experiment apparatus. The monkey was squatted in a 

primate chair equipped with three touch sensitive bars (right bar, center bar, and left bar). 

(B) The self-choice part in RSd. By touching the center bar, two different choice targets 

were randomly selected and presented on either side of the fixation spot for 3 sec. The 

brightness and length of these choice targets were proportional to the reward amount 

and schedule length, respectively (see Fig. 3C). After the monkey chose one of them, 

chosen schedule began. (C) The choice targets set. The brightness and length of choice 

target were proportional to the reward amount and schedule length, respectively. 

 

Figure 4. Choice probability for all target combinations.  

Choice probabilities in all combinations of two choice targets during RSd in (A) 

monkey P, (B) monkey H and (C) monkey K. In the labels of the columns (showing the 

right target) and rows (showing the left target), the reward amount and schedule length 
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of the choice targets are abbreviated as “drop–trial.” The labels are ordered according to 

the ratio of reward amount and schedule length. The color density shows the probability 

of choosing the left target. 

 

Figure 5. Behavioral performances.  

(A) Gray and black bars show the error rate in the reward schedule part of RSd and 

RSm, respectively. Error rates were averaged across whole trials (*p < 0.01, χ2 test). (B) 

Gray and black bars show the reaction time in the reward schedule part of RSd and 

RSm, respectively (*p < 0.01, t-test). Error bars indicate SE. 

 

Figure 6. Behavioral performances in every schedule state.  

In the panel, the figures in left column show the error rate in every schedule state. Again 

the figures in right column show the reaction time in every schedule state. (A) (B) from 

monkey P, (C) (D) monkey H and (E) (F) monkey K. Gray and black bars show the 

behavioral performances in the reward schedule part of RSd and RSm, respectively. The 

horizontal axis represents the schedule states and reward amounts. In every schedule 

state, the error rates and the reaction times associated with 1, 2, 3, and 4 drops of reward 

are ordered from left to right. The error rates and the reaction times of the four-trial 

schedule with one drop of reward in monkey K were excluded because of the small 

number of trials (see Materials and Methods). 

 

Figure 7. Behavioral performances in non-first schedule states.  

Gray and black bars show the performances in the reward schedule part of RSd and 

RSm, respectively. (A) Error rate and (B) reaction time in all monkeys. Asterisks 
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indicate significant differences (*p < 0.01, χ2 test). Error bars in (B) indicate SE. 

 

Figure 8. Fitting of error rates.  

The actual error rates (gray bars) are overlaid with the fitted error rates using the ECS 

model (solid lines with open diamonds). In the panel, the numbers in the left column 

show the results of fitting in RSd. The numbers in the right column show the results of 

fitting in RSc. (A) (B) monkey P, (C) (D) monkey H, and (E) (F) monkey K. The labels 

on the horizontal axis are the same as in Fig. 6. The model parameters that most 

accounted for actual error rates were sought using least-square minimization procedure. 

The error rates of the four-trial schedule with one drop of reward in monkey K were 

excluded because of the small number of trials (see Materials and Methods). 

 

Figure 9. Estimated values of every schedule state. 

Estimated values of every schedule state in (A) monkey P, (B) monkey H, and (C) 

monkey K. Red lines with red circles show the values in RSd, whereas blue lines with 

blue open squares show RSm. The vertical axis describes the value of the estimated 

schedule state. The labels on the horizontal axis are the same as in Fig. 6. 

 

Figure 10. Relation between difference in values of two targets and the time to 

choose one of them.  

In the panel, the figures in left column show the relation between difference in values of 

two choice targets and the reaction time to touch the left bar. Again the figures in right 

column show the relation between difference in values of two choice target and the 

reaction time to touch the right bar. (A) (B) monkey P, (C) (D) monkey H, and (E) (F) 
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monkey K. Circles indicate all of 120 combinations of choice targets. Linear regression 

revealed that there was significant correlation between difference in values of two 

targets and the time to touch the one of bars (A: p<0.001, r2=0.25, B: p<0.001, r2=0.33, 

C: p<0.001, r2=0.28, D: p<0.001, r2=0.26, E: p<0.001, r2=0.18, F: p<0.001, r2=0.26). 

 

Figure 11. Error rates in 8 trial schedule versions.  

Error rates in eight trial schedule versions of RSd (monkey P). The horizontal axis 

represents the schedule states and reward amounts. In every schedule state, the error 

rates associated with 1, 2, 4, and 8 drops of reward are ordered from left to right. 

 

Figure 12. Error rate in the truncated data. 

(A) Error rates from truncated data. Gray and black bars show the performances in the 

reward schedule part of RSd and RSm, respectively. Asterisks indicate significant 

differences (**p < 0.01, *p < 0.05, χ2 test). (B) Fitted error rates. The actual error rates 

(gray bars) are overlaid with the predicted error rates by ECS model (solid lines with 

open diamonds). The labels in horizontal axis are same as in Fig. 6. (B-1) RSd in 

monkey P, (B-2) RSm in monkey P (B-3) RSd in monkey H, (B-4) RSm in monkey H. I 

could not fit the data from monkey K because the truncated data did not contain enough 

trials for fitting. (C) Estimated schedule state value. (C-1) monkey P (RSd: γ = 0.34, σ = 

0.96, m = 0.38; RSm: γ = 0.82, σ = 0.12, m = 0.2) and (C-2) monkey H (RSd: γ = 0.76, 

σ = 0, m = 0.72; RSm: γ = 0.90, σ = 0, m = 0.22). Red lines with red circles indicate the 

values in RSd, while the blue lines with blue open squares indicate those in RSm. The 

vertical axis describes the value of the estimated schedule state. The labels on the 

horizontal axis are the same as in Fig. 6. 
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Table legends  

 

Table 1. The probabilities of chosen schedules in RSd.  

The horizontal row means the reward amount. The vertical column means the number of 

visual discrimination trials. Each color shows the range of choice probability (blue: 

0%-5%, green: 5%-10%, red: 10%-15%). 

 

Table 2. Results of Cochran–Armitage test of error rates for reward amount.  

The upper table shows the test results of RSd and the lower table shows the test results 

of RSm. The horizontal row is the test result for each schedule state in 3 monkeys. 

 

Table 3. The optimal value of all parameters by the ECS model.  

The estimated values in RSd and RSm for 3 monkeys are shown in each column. γ; the 

rate of discounting the reward, σ; the fraction of value carried forward to the next trial, 

β; the steepness of the sigmoidal curve, m; non-linear effect of reward amount, δ; the 

degree of horizontal translation, C; the lower asymptote. 
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Figure 11
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< 5 %

< 10 %

< 15 %

0 % ≦

５ % ≦

１0 % ≦

5.71 % 2.69 % 1.31 % 0.40 %
9.29 % 5.98 % 3.00 % 2.39 %
11.59 % 9.41 % 6.07 % 3.88 %
13.10 % 11.28 % 8.25 % 5.66 %

single trial 2 trials 4 trials3 trials
1 drop
2 drops

4 drops
3 drops

6.84 % 3.92 % 1.62 % 0.12 %
9.58 % 6.03 % 2.80 % 0.93 %
11.19 % 9.27 % 5.53 % 3.17 %
13.50 % 12.13 % 9.20 % 4.17 %

single trial 2 trials 4 trials3 trials
1 drop
2 drops

4 drops
3 drops

7.00 % 2.69 % 1.05 % 0.55 %
11.05 % 6.83 % 3.90 % 2.25 %
11.29 % 8.80 % 6.40 % 3.73 %
11.49 % 9.67 % 7.47 % 5.84 %

single trial 2 trials 4 trials3 trials
1 drop
2 drops

4 drops
3 drops

Table 1.

Monkey P

Monkey H

Monkey K  Each color indicates the 
range of choice probability.

The probabilities of chosen schedules in RSd
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= 0.28

< 0.05

Monkey HMonkey P Monkey K

Table 2.

= 0.67

< 0.05

< 0.05

= 0.48

< 0.05

= 0.20

= 0.81

< 0.05

= 0.26

= 0.47

< 0.05

< 0.05

< 0.05

< 0.05

< 0.01

< 0.05

< 0.05

= 0.86

= 0.10

< 0.05

< 0.05

< 0.05

< 0.05

= 0.36

< 0.05

< 0.05

ー

－

Schedule state

1/1
1/2
2/2
1/3
2/3
3/3
1/4
2/4
3/4
4/4

χ 2 pdf χ 2 p χ 2 p
RSd

3
3
3
3
3
3
3
3
3
3

2.79

9.38

Monkey HMonkey P Monkey K

1.62

26.85

6.83

0.74

20.26

6.62

6.38

5.82

= 0.43

< 0.05

= 0.66

< 0.05

= 0.08

= 0.86

< 0.05

= 0.09

= 0.09

= 0.12

9.42

6.61

21.47

39.62

27.35

12.64

60.82

16.62

3.34

5.67

< 0.05

= 0.09

< 0.05

< 0.05

< 0.05

< 0.05

< 0.01

< 0.05

= 0.34

= 0.13

15.51

22.96

5.76

1.96

13.49

6.24

6.30

0.66

2.39

2.89

< 0.05
< 0.05
= 0.12

= 0.58
< 0.05
= 0.10
= 0.10
= 0.88
= 0.49
= 0.41

Schedule state

1/1
1/2
2/2
1/3
2/3
3/3
1/4
2/4
3/4
4/4

χ 2 pdf χ 2 p χ 2 p
RSm

3
3
3
3
3
3
3
3
3
3

3.81

27.97

1.55

28.13

9.29

2.49

44.97

4.70

0.98

8.56

4.01

2.51

17.64

27.83

22.13

12.27

77.92

28.34

18.36

0.74

6.26

31.69

10.54

14.41

42.52

3.21

14.89

31.11

ー

ー

Results of Cochran‒Armitage test
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RSd RSm RSd RSm RSd RSm
γ 0.68 0.840.52 0.84 0.88 0.90
σ 0 0.080.46 0 0 0
β 2.6 9.809.2 6.8 10 9.8
m 0.88 0.040.30 0.18 0.18 0.14
δ 0 6.43.4 3.6 7.0 7.2
C 0.006 0.0080.038 0.062 0.072 0.089

Monkey HMonkey P Monkey K

Table 3. The optimal values of all parameters estimated by ECS model
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