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 In precision agriculture, the Normalized Difference Vegetative Index (NDVI) 
considers the spectral characteristics of healthy green vegetation. This index is 
an effective way of detecting the green state of plants. This is why we choose to 
use NDVI as a reference index to predict the effect of Root-Knot nematodes and 
grafting on vegetable crop health from proximal remote sensing machines. 
These machines were used to estimate different physiological, biochemical, and 
agronomic parameters as indicators of stress (GA, GGA, SPAD, and canopy 
temperature). Leaf level pigments were measured using a handheld sensor 
(SPAD). Canopy vigor and biomass were assessed using vegetation indices 
derived from RGB images and the NDVI was measured with a portable 
spectroradiometer (Greenseeker). The plant level water stress was assessed 
indirectly by plant temperature using an infrared thermometer. We conclude 
that the grafted plants were less stressed and more protected against nematode 
attack. The comparison of NDVI index predicted by AI models showed that 
artificial neural network MLP demonstrated the best prediction performance 
than the linear regression method. However, their R-squared decreased from 
0.820 to 0.772, and NRMSE increased from 12.3% to 12.4%, respectively. 
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1. INTRODUCTION  

The failure to adopt adequate management 
practices allows nematode populations to 
succeed at very high levels, causing yield losses 
that will exceed 50% (Blok et al. 2008; Kashaija 
et al. 2004). Once introduced in a neighborhood, 
it becomes very difficult to eradicate a nematode 
problem, and it is necessary to adopt practices of 
population reduction and minimization of 
potential damages (Expósito et al. 2019). The 
most important trial is the application of 
resistant or tolerant crop cultivars (Sorribas et 
al. 2005). Because of that, the primal view of the 
challenge and the adoption of practices to escape 
greater losses are of great significance (Guan et 
al. 2014). The below-mentioned control tools 

represent  lead-ins for the use of precision 
farming, either as localized practices or through 
variable rate technologies (Abrougui et al. 
2022a). The collection of root samplings and soil 
in high density for transferring to the laboratory 
can bring prohibitive, and indispensable styles 
are required to characterize the distribution of 
nematodes with the applicable resolution level 
(Abd-Elgawad. 2020). Remote sensing with the 
use of high-resolution multispectral images is 
one of the techniques that has been employed 
(Abrougui et al. 2022b). Therefore, it is 
necessary to take over that high populations of 
the nematode beget a meaningful reduction of 
the crop biomass, which allows the employment 
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of vegetation indexes that offer a good 
correlation with the biomass to indicate places 
with a lesser probability of circumstance of 
nematodes. In this sense, the use of 
hyperspectral sensors associated with novel 
techniques of data analysis can allow the 
differentiation of the causes of variability and 
isolate the sites with nematode problems with 
greater accuracy (Hunt et al. 2013; Hamdane et 
al. 2022). In fact, with variable rate application, 
deductions of 40 in the volume of nematicide 
related have been observed, substantially in the 
areas of a field where the nematodes aren't yet 
extant and the product doesn't require to be 
applied. In addition to the benefit per hectare, 
the application of the site-specific application 
brings an environmental accrual not yet 
quantified, since the nematicides applied are 
largely poisonous and its operation in spots 
where it isn't imperative can contribute to the 
elimination of distinct organisms and beget 
natural imbalances (Silva-Sánchez et al. 2019). 
In fact, new methodologies have been brought to 
farming by advancements in precision farming 
and plant phenotyping that permit fast and non-
destructive assessments of crop health. In order 
to better study the crop's physiological status 
and its nutrient or other operation conditions, 
leaf sensors, and proximal or remote sensing 
devices may be esteemed more productive 
(Araus and Kefauver, 2018). Non-destructive 
techniques to predict the chlorophyll content of 
vegetation (SPAD) are of significant importance 
to agricultural management operations, 
particularly in the area of precision agriculture 
(Gitelson et al. 2003; Kaufmann et al. 2010). The 
normalized difference vegetative index (NDVI) 
resulting from visible and near-infrared (NIR) 
reflectance is strictly related to vegetation 
presence or vigor (Tucker, 1979; Thenkabail et 
al. 2000; Thenkabail et al. 2002; Huang et al. 
2021). Precision farming has also been approved 
by RGB (Red, Green, Blue) or multispectral 
cameras to capture several field images that may 
be combined via photogrammetric techniques to 
establish orthophotos covering large areas 
(Kefauver et al. 2017). The multispectral images 
contain many values per pixel apart the 
traditional red, green and blue values to analyze 
and process spectral vegetation indexes that 
may offer detailed information on plant health, 
including fungal infections and treatment needs 
(Kefauver et al. 2015). In this work, field sensors 
and fast assessment ways involving non-
destructive, proximal, and remote sensing were 
exploited to collect information on plant 

physiological status in greenhouses to compare 
the impacts of nematodes on diverse vegetative 
crops. To emphasize the needfulness for quickly 
assessing nematode harm to crop development, 
comparisons were made between the growth 
and physiological status of various crops grafted 
to root stock resistant to root-knot nematodes 
(RKNs) and those without grafting (non-grafted). 
There is an absence of a comprehensive and 
detailed assessment of the performance of 
different artificial intelligence (AI) approaches, 
from linear regression to complicated advanced 
techniques in vegetable crop health estimation 
and the most important indices to be used as 
input data for AI models must be determined. 
Therefore, the impact of plant treatments and 
vegetation indexes needs to be further studied. 
Furthermore, research should evaluate and 
demonstrate the AI models’ skills in successfully 
tackling extreme events (Hanifeh et al. 2022). 
The main purpose of this study is to assess the 
efficacy of grafting for controlling root 
nematodes and the possibility of improving crop 
productivity and evaluate the performance of AI 
approaches to crop health prediction from 
grafting treatment and different vegetation 
indexes such as MLR and MLP artificial 
networks. 

2. MATERIAL AND METHODS 

2.1. Study Area and Dataset 

This research was carried out in a plastic 
greenhouse located at the experimental station 
of Agròpolis (41◦17018.100 N 2◦02038.500 E + 
18 m above the sea level, approx.) of the 
Barcelona School of Agri-food and Biosystems 
Engineering of the Universitat Politècnica de 
Catalunya (Barcelona, Spain). Due to rotations, 
different crops were used for four years. Melon 
plants (Cucumis melo L.) were grown with half 
non-grafted plants and the others grafted with 
(Cv paloma). Tomato (Solanum lycopersicum L.), 
used with half non-grafted and half with grafting 
with (Durinta spp). The experiment was also 
done with eggplant (Solanum melongena L.) with 
half non-grafted and half grafted with (Cucumis 
metuliferus L.). Finally, pepper plants (Capsicum 
annuum) again half non-grafted plants and other 
half were grafted. Two crop treatments (grafted 
or non-grafted) and (control, low, high infection) 
for 6 total treatments. Every treatment has been 
repeated with an increase to 10 plots for grafted 
and non-grafted control. Individual plots 
consisted of a row 2.5 m long and 1.5 m wide 
containing 4 plants spaced 0.55 m between 
them. Parcels were spaced 0.9 m within a row 
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and 1.5 m between rows. The soil has a loamy 
sand texture, with 1.8% organic matter (w/w) 
and 0.5 dS m−1 electric conductivity. Plants were 
fertilized and irrigated by a drip irrigation 
system with NPK solution (15–5-30) at 31 kg 
ha−1, iron chelate, and micronutrients at 0.9 kg 
ha−1. The relative crop yield was calculated as 
the crop yield in infested plot in relation to the 
mean crop yield in non-infested plots. All 
sensors were used between September 28th and 
October 8th on four successive years in the same 
plots. Each plot was tilled separately to avoid 
soil contamination. 

 2.2. Sensors and Measurements 

All sensors were used during the fruit 
development phase at the same time of day for 
each year (Table 1). SPAD (Soil Plant Analysis 
Development) values are calculated by division 
of light transmission intensities at 650 nm (red) 

by 942 nm (infrared) in order to estimate 
chlorophyll content (Kaufmann et al. 2010; 
Konica, 2012). The NDVI sensor emits brief 
bursts of red and infrared light (656 nm and 774 
nm), and then measures the amount of each type 
of light that is reflected from the plant. NDVI 
index ranges from 0.00 to 0.99 (Gracia-Romero 
et al. 2019). The RGB images were subsequently 
analyzed using the Maize Scanner 
plugin(https://github.com/sckefauver/CIMMY). 
This software includes a JAVA8 version of 
Breedpix 2.0 (https://bio-protocol.org/e1488, 
IRTA, Lleida, Spain), which calculates RGB 
vegetation indices through the use of RGB and 
different color properties (Kefauver et al. 2017) 
such as GA (Green Area) and GGA (Greener 
Green Area) which gives an idea on the foliar 
surface area of the plant canopy (Zaman-Allah. 
2015). Temperature measurements in (◦C) were 
taken per plant, for plot and leaf temperature. 
The canopy temperature was furthermore 
adjusted by the ambient temperature to offer 
crop water stress estimate such the plant deeply 
cools through transpiration; it is the canopy 

temperature deficit, which may increase as a 
sign of nematode damage to the crop root 
system (Silva-Sánchez et al. 2019; Duncan et al. 
2005). 

2.3. Statistical Processing  

The statistical processing was based on two 
programs: MS Office Excel 2007 for making 
simple average calculations as well as standard 
deviation. While the ANOVA statistical 
processing was obtained using Statgraphics 
Centurion XVI.I. The calculation of correlation 
values was completed in MS Office Excel 2007 
and the graphics were obtained with Sigma Plot 
12.5 (Systat software, Chicago, IL, USA). 

2.4. Descriptions of artificial intelligence 
algorithms 

In order to minimize the residual sum of 
squares, MLR still the most basic form of a linear 
model. Thus, the objective function is (Citakoglu, 
2017; Li and Ren, 2020; Tabari et al. 2011):  

∑ (y − Xw) 2                               (1)  
 
where y is the actual or the desired value, X is 
the input variable value and w is weight. 
MLP, multi-layer perceptron of artificial neural 
networks (ANNs), is a non-linear function 
approximator in layers utilizing back 
propagation with no activation function in the 
output layer. It used the rectified linear unit 
(Relu) function as the activation function in the 
hidden layers (Feng et al. 2019; Mehdizadeh et 
al. 2020; Bayatvarkeshi et al. 2021):  
 

g(z) = max(0, z)                             (2) 
 
Depending on the type of the problem, MLP uses 
various loss functions. In prediction models, MLP 
uses the square error loss function as: 
 

 1/2 ∑(y − Xw) 2 + α/2 ∑w 2               (3)  
 
Initial random weights allow MLP to minimize 
the loss function through repeatedly updating 
these weights. When the algorithm reaches a 
pre-set maximum number of iterations, or when 
the loss improvement is below a specific small 
number, it stops. Maximum number of iterations 
was 10,000, which determines the number of 
epochs, meaning how many times each data 
point is used. 
In the present study, NDVI, GA, GGA, the canopy 
temperature, and the crop treatments CT 
(grafted or non-grafted) are the plant and 
physiological variables used as the inputs of the 

Table 1. The measurements performed from 
various sensors during the study 

Measurement Sensor 
Chlorophyll content and 
nitrogen in the plant: SPAD 

SPAD-502 Plus 

Plant health and vigor (NDVI) Trimble GreenSeeker 

Vegetation cover (GA, GGA) Panasonic Lumix 
DMC-GX7 

Canopy temperature Infrared thermometer 
and digital hygrometer 

Crop Yield (kg/plant) - 
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benchmark algorithm, and the chlorophyll 
content and nitrogen in the plant (SPAD) is the 
output of the model. Artificial Neural Networks 
(ANN) are interconnected by structures called 
perceptrons and consist of input, output and 
hidden layers which transform the input into 
something that the output layer can utilize using 
the NeuroSolutions software. To facilitate the 
model performance assessment, the applied AI 
models outputs recquire to be compared. Several 
error indicators are employed to measure the 
quality of modeling, including maximum residual 
error (MaxE), mean absolute error (MAE), mean 
square error (MSE), root mean square error 
(RMSE), normalized root mean square error 
(NRMSE) and coefficient of determination (R-
squared). The evaluation metrics are defined as:  
 

                  (4) 
 

                     (5) 
 

 
                    (6) 

 
 

(7) 
 

 
 

        (8)  
 
 

                                                   (9) 
 
where y obs is the observed value, y calc is the 
predicted value by the AI mode,            is the 
mean of calculated values and n is the number of 
data points. 

3. RESULTS AND DISCUSSION 

3.1. Sensor’s physiological parameters 

Table 2 presents the values of the various 
physiological parameters of vegetable crops with 
grafted and others not grafted grown in semi-
controlled greenhouses and with application of 
the three different levels of infection by the 
meloidogynous nematode. The values of the 
different parameters decreased going from the 
controlled plants to the one heavily infected. We 
also noted that for the control the role of grafting 
is not seen. Conversely, the grafted plants shows 
more affected values for the different 
parameters than that of the non-grafted plants, 

which are strongly affected by infection which 
reduces the various parameters.  
The comparison of grafted and non-grafted 
plants shows that the canopy temperature is 
higher in non-grafted plants. Non-grafted and 
grafted plants were slightly different for the 
temperature recorded. The chlorophyll 
concentration given by the SPAD for the grafted 
plants showed greater values than of the non-
grafted plants. Concerning the NDVI parameter, 
the grafted plants showed values that also 
exceed that non-grafted therefore indicating a 
higher concentration of nitrogen or uptake 
(Hamdane, 2020). The plant area presented by 
GA showed that the non-grafted plants have 
more plant area (0.57) than that of the grafted 
plants, up to 0.46. The great amount of 
photosynthetically efficient plant surface 
presented by GGA showed that non-grafted 
plants are more similar in the Control but the 
grafted plants are healthier in both the Low and 
High groups. For plants lowly infected by 
nematode, we show that the difference between 
grafted and non-grafted plants is very low. 
Concerning Tomato crop with high infection, the 
grafted plants showed highest values of GA with 
0.55. 

According to the Table 3, the Pearson correlation 
calculated at p ≤ 0.05  showed that temperature 
affects negatively on the different parameters. 
NDVI is positively correlated with other 
parameters, but most strongly related to GA and 
GGA with value 0.79. The SPAD chlorophyll 
content has a positive relationship with most 
parameters. GA has a strongly positive 
relationship with GGA but for GGA, their 
relationship with most parameters is weak. 
ANOVA (Table 4) mentions that the crop is 
strongly affecting the GA which is logical since 
the crops put in place have leaves of different 
sizes which subsequently affects the GA. But 
also, we note the treatment (grafted or non-
grafted) affects the GA parameter. This may be 
since grafting protects the root surface from 
attack by nematode which ensures greater GA 
values than non-grafted (Hamdane, 2020). 
Fig. 1(A) shows that there is a significant 
difference between eggplant and the two crops 
tomato and melon. Then we can classify crops 
according to their GA means, which finds in first 
place eggplant and after melon, thirdly tomato 
and finally pepper. 
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Fig. 1(B) shows the superiority of grafted 
treatment compared to that not grafted for all 
combinations; this means that grafting protects 
the plant roots from nematode attacks, which 
causes wilting or reduction of the foliar surface 
(Hamdane, 2020). Therefore, the grafted plants 
are less affected by the attack and maintain a 

larger foliar surface allowing obtaining a greater 
GA value than the non-grafted plants. We also 
note that the interaction grafted*eggplant was 
the best possible combination inversely to that 
grafted*pepper, where the differences between 
grafted and non-grafted is not as clear. 

Table 2. Average values of the different physiological parameters for the different vegetable crops 
with three different infection levels for four years experiments  
 
Crop Treatment Nematode Temp SD SPAD SD NDVI SD GA SD GGA SD 

Melon Non-grafted Control 26.81 1.25 42.10 1.44 0.46 0.01 0.57 0.22 0.30 0.07 

Melon Grafted Control 26.76 0.32 49.89 0.46 0.47 0.04 0.46 0.01 0.29 0.01 

Melon Non-grafted Low 26.55 0.87 49.40 1.20 0.50 0.02 0.50 0.18 0.35 0.01 

Melon Grafted Low 26.02 0.59 50.26 1.59 0.55 0.07 0.53 0.12 0.36 0.03 

Melon Non-grafted High 26.51 2.48 46.61 1.45 0.49 0.01 0.49 0.14 0.33 0.04 

Melon Grafted High 26.17 1.09 49.41 6.16 0.48 0.07 0.54 0.11 0.38 0.04 

Melon Non-grafted Control 23.95 0.80 34.68 3.61 0.51 0.01 0.43 0.04 0.19 0.04 

Melon Grafted Control 23.53 0.90 41.41 0.48 0.53 0.04 0.51 0.05 0.28 0.01 

Melon Non-grafted Low 23.46 0.43 44.12 1.98 0.54 0.07 0.45 0.07 0.27 0.05 

Melon Grafted Low 24.16 2.43 36.41 1.09 0.47 0.01 0.41 0.12 0.24 0.01 

Melon Non-grafted High 23.55 1.73 42.19 0.78 0.53 0.04 0.45 0.09 0.33 0.02 

Melon Grafted High 23.51 2.02 46.53 4.35 0.49 0.02 0.43 0.06 0.36 0.08 

Tomato Non-grafted Control 24.16 0.44 39.41 3.78 0.40 0.06 0.37 0.09 0.33 0.01 

Tomato Grafted Control 24.37 0.31 39.82 2.63 0.40 0.05 0.33 0.01 0.26 0.01 

Tomato Non-grafted Low 22.19 0.44 43.67 5.52 0.45 0.01 0.33 0.13 0.26 0.01 

Tomato Grafted Low 20.80 1.42 50.78 1.07 0.62 0.01 0.49 0.02 0.41 0.02 

Tomato Non-grafted High 20.59 1.60 50.06 5.56 0.57 0.06 0.46 0.06 0.39 0.05 

Tomato Grafted High 21.01 1.59 51.37 4.35 0.52 0.01 0.55 0.01 0.36 0.03 

Eggplant Non-grafted  26.42 1.51 100.30 0.32 0.58 0.12 0.55 0.15 0.36 0.016 

Eggplant Grafted  26.64 0.98 111.65 0.40 0.70 0.08 0.80 0.15 0.60 0.022 
Pepper Susceptible and Grafted 26.96 0.77 55.15 2.88 0.47 0.15 0.09 0.05 0.08 0.05 

Pepper Resistant and Grafted plant 27.15 0.58 57.31 3.40 0.41 0.05 0.07 0.02 0.05 0.02 

Pepper Susceptible and non-grafted 26.36 0.78 51.35 7.56 0.38 0.12 0.08 0.05 0.07 0.04 

Pepper Resistant and Non-grafted 26.20 0.52 56.32 3.25 0.31 0.05 0.04 0.02 0.03 0.02 

SPAD, soil plant analysis development, leaf chlorophyll content; NDVI, normalized difference vegetation index; GA, green area; 
GGA, greener green area; SD, standard deviation. 

Table 3. Correlation between the measured 
parameters for the different vegetable crops 
(melon, tomato, eggplant, and pepper) 

     Temp NDVI SPAD GA GGA 

Temp 1.00 

NDVI -0.26 1.00 

SPAD 0.33 0.50 1.00 

GA -0.1 0.79 0.29 1.00 

GGA -0.27 0.79 0.38 0.93 1.00 

          
 

Table 4. Analysis of Variance (ANOVA) for Green 
Area (GA) parameter for the different vegetable 
crops (melon, tomato, eggplant and pepper) and for 
both treatments (grafted, non-grafted). 

Source Sum of 
squares 

Gl Medium 
Square 

Reason-
F 

P-
value 

Model 0.71 7 0.10 25.38 0.00 
Residue 0.06 16 0.004   
Crop 0.67 3 0.22 55.98 0.00 
Treatments 0.03 1 0.03 6.74 0.02 
Treatments*Crop 0.03 3 0.01 2.58 0.09 
Residue 0.06 16 0.004   
Total (corrected) 0.80 23    
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Grafting had also a significant effect on the 
conservation of the foliar surface against the 
attack of nematodes causing yellowing of the leaf 
and reducing the photosynthetic activity in the 
plant. Plant resistance has been noted as an 
effective and profitable control method to 
reduce the RKN reproduction rate and the 
equilibrium density (Sorribas et al. 2005). This 
prevents subsequent yield losses on the 
following crop that are directly related to 
nematode population densities in the soil at 
planting stage. Also, some authors have 
mentioned that a higher fruit yield was obtained 
when plants of melon were grafted onto 
different Cucurbita rootstocks (Miguel et al. 
2004). This may have resulted from different 
factors such as increase in uptake of water and 
nutrients, resulting from the larger root systems 
and increased diseases tolerance. Other previous 
studies (Bletsos, 2005) show that the grafting of 
melon (Cucumis melo L.), and watermelon 
(Citrullus lanatus) has been reported to increase 
crop vigor and yield of melon and may be useful 
for low-input sustainable horticulture. Fruit 
yields were also higher in the grafted plants 
utilizing resistant rootstocks compared to non-
grafted plants (Owusu et al. 2016). Some studies 
mentioned that grafted eggplants had lower 
disease incidence, higher yield, and larger fruit, 

which is similar to the present results 
(Iouannou, 2001). Therefore, root system size 
and vigor may be associated with resistance to 
soil borne diseases. Moreover, vigorous roots 
help improve nutritional status and thus the 
overall health of plants, which may augment 
resistance against foliar diseases, though this 
study focused on the assessment of aboveground 
biomass and plant physiological properties as 
proxies for root damage due to nematodes or 
protection by grafting. 

3.2. Performance of developed AI models 

The primary step of modeling was splitting the 
data into two groups. Although the data were 
randomly split for training and testing purposes, 
the training and testing data were maintained 
for all models. Thus, artificial intelligence models 
were trained and tested with the same data set. 
After the training procedure, the model was fed 
with testing data such inputs, and prediction 
results were acquired. The predicted outcomes 
and real values were simultaneously reshaped 
into a 1-dimensional series, and the 
performances of the models were evaluated 
using the error metrics (Khemis et al. 2022). In 
the present study, linear regression and multi-
layer perceptron were employed to predict 
NDVI. The mentioned models were applied to 

A                                                                                                       B 

 
 
 
 
 
 
 
 
 
     Fig. 1. Dispersion of the green area (GA) means for plant treatments and different vegetable crops 
 

Table 5. Error analysis of predicted NDVI values using AI models 

AI Models  Processing elements (PES) in each Hl 
MLP Hidden 

layer (Hl) 
number 

Upper 
PES 

Lower 
PES 

Transfer MaxE MAE MSE RMSE NRMSE R2 

 1 2 2 TANH 0.08 0.026 0.0012 0.034 12.4% 0.820 
 1 3 3 TANH 0.081 0.026 0.0013 0.034 12.4 0.81 
 1 4 4 TANH 0.081 0.026 0.0013 0.034 12.39 0.81 
 1 5 5 TANH 0.081 0.027 0.0014 0.035 12.36 0.80 
 1 6 6 TANH 0.081 0.028 0.0014 0.035 12.35 0.79 
 1 7 7 TANH 0.081 0.028 0.0014 0.036 12.35 0.79 
 1 8 8 TANH 0.081 0.028 0.0014 0.036 12.33 0.78 
 1 9 9 TANH 0.082 0.029 0.0014 0.037 12.31 0.779 
 1 10 10 TANH 0.082 0.029 0.0014 0.037 12.31 0.778 
MLR - - - - 0.082 0.030 0.0014 0.038 12.3% 0.772 
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two sets of data with different quantities of 
information to assess the performance of the 
various AI models. To measure the quality of 
different AI models, the statistical indicators of 
Equations (4)–(9) were applied, and the results 
of the error analysis are presented in Table 5. 
As seen in Table 5, R-squared values (R2>0.7) 
which shows a good correlation between the 
results predicted by AI models and NDVI data. 
This outcome is confirmed by the scatter plots 
illustrated in Fig. 2 and offers an overall 
acceptable performance for MLR and MLP 
methods. Relatively poor MAE, MSE and NRMSE 
obtained by the linear regression results 

demonstrated that this method cannot precisely 
predict NDVI index. However, MLP with one 
hidden layer and two nodes in the upper and 
lower hidden layer had a better performance 
than other ANN configurations and linear 
regression model. The MAE for the best 
configuration of MLP models is 0.026, while MLR 
model had MAE of 0.030. The RMSE for the best 
configuration of MLP models is 0.034, while MLR 
model had MAE of 0.038. The scatter plots of 
predicted results and actual data are 
demonstrated in Fig. 3. The fit lines in Fig. 3 
scatter plots represent the effect of each 
individual input parameter in NDVI index 

 
Multi–Layer Perceptron                                                         Multi–Linear Regression 

Fig. 2. Scatter plots of predicted and observed Normalized Difference Vegetative Index (NDVI) using 
different AI models 

 

 
Fig. 3. Scatter plots of predicted NDVI index and individual input parameters 
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Table 6. Importance of the input variables for 
the MLP artificial neural network with better 
performance 
Input variable Importance 

Treatments 15.2% 
Temperature 39.6% 
GA 100% 
GGA 32.9% 
SPAD 38.7% 
 

prediction. The relative importance of the 
variables in the improvement of prediction 
accuracy can be determined by performing a 
sensitivity analysis (Abdipour et al. 2019; 
Kowalski and Kusy, 2017). According to Mehmet 
et al. (2022) and Sung-Sik et al. (2020), the 
algorithm employed in the current study divides 
the connection weights of the network to set the 
relative importance of each input variable. It can 
be proven that the most significant predictor 
variable (Table 6) is the GA index (100% of 
importance), followed by the canopy 
temperature (39.6%), SPAD (38.7%), and GGA 
(32.9%). The least significant parameter is the 
plant treatment (Grafted or no grafted) (15.2%). 
Understanding the relationship among GA, T, 
SPAD, and NDVI is thereby of great interest and 
importance. 

 
4. CONCLUSION 

A precise and cost-effective model for soil 
vegetable crop health prediction, which has the 
advantages of artificial intelligence techniques, is 
developed in the present research. Therefore, AI 
models linear regression, and artificial network 
MLP were employed to generate a 
comprehensive assessment of the performance 
of two AI approaches in NDVI index estimation. 
In this regard, five variables of plant treatment 
(grafted or no grafted), canopy temperature, GA, 
GGA indexes, and SPAD were employed. The 
results show that AI is a promising approach in 
crop health estimation, and developed AI models 
show a reliable ability in NDVI prediction. The 
key findings of this study are summarized as 
follows: 

 Grafting techniques constitute a means of 
protection against attack by root nematodes. 

 Grafted eggplant the most efficient 
combination ensuring good resistance and 
adaptation to soil containing nematodes pests.  

 Proximal remote sensing machines and 
integrated pest management complete strategy 
may help to ensure both the sustainability of 

food production and minimize the number of 
nematodes in the soil. 

 MLP method, showed the best performance in 
predicting NDVI index with the highest 
correlation coefficient and lowest error 
metrics. 

 A sensitivity analysis shows that green area 
index (GA), the canopy temperature and SPAD 
play the most important roles in NDVI 
prediction, while plant treatment can be 
neglected in AI models. 
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