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Abstract

This paper concerns a method of selecting a subset of features for a logis-
tic regression model. Information criteria, such as the Akaike information
criterion and Bayesian information criterion, are employed as a goodness-of-
fit measure. The feature subset selection problem is formulated as a mixed
integer linear optimization problem, which can be solved with standard math-
ematical optimization software, by using a piecewise linear approximation.
Computational experiments show that, in terms of solution quality, the pro-
posed method has superiority over common stepwise methods.

Keywords: Logistic regression, Feature subset selection, Mixed integer
optimization, Information criterion, Piecewise linear approximation

1. Introduction

Binary classification aims to develop a model for separating two classes
of samples that are characterized by numerical features. Some examples of
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binary classification problems are prediction of corporate bankruptcy [3], can-
cer diagnosis [14], and e-mail spam filtering [11]. There are several statistical
learning methods for binary classification, e.g., classic discriminant analy-
sis, logistic regression, and support vector machine (see, e.g., [20]). Among
them, this paper focuses on logistic regression and its feature subset selection
problem.

The feature subset selection problem is one of choosing a set of significant
features from many candidates for model construction. The most commonly
used algorithm is the stepwise method [12], which consists of forward selec-
tion (adding one feature) and backward elimination (eliminating one feature).
To evaluate a subset model of logistic regression, goodness-of-fit (GOF) mea-
sures, such as Mallows’ Cp [28] and Akaike information criterion (AIC) [1],
are frequently employed (see, e.g., [17]). However, several shortcomings of
stepwise methods have been pointed out (see, e.g., [19]), and consequently,
many alternative methods have been proposed (see, e.g., [8, 15, 22, 26]).

Among them, metaheuristics (see, e.g., [38]), for instance, tabu search [33]
and particle swarm optimization [36] can be used for feature subset selection.
L1-regularized logistic regression [21, 25] can also be used to select feature
subsets. These algorithms perform well even on large-scale problems; how-
ever, they do not necessarily find a best subset of features under certain GOF
measures.

The purpose of binary classification is twofold, i.e., prediction and de-
scription (see, e.g., [18]). Feature subset selection is known to be beneficial
for prediction purposes because it can improve the predictive performance
of a statistical model by eliminating irrelevant features for prediction. For
description purposes, on the other hand, statistical models are used to un-
derstand the cause-and-effect relationships between the selected features and
the response class. A better subset of features clearly leads to more reliable
results for description purposes; accordingly, the best subset of features is
required even if the computation takes a significant amount of time.

Branch and bound algorithms [10, 31, 32, 35, 37] are capable of comput-
ing the best subset of features according to the criterion functions used in
these studies, such as the Bhattacharyya distance and divergence. These al-
gorithms make an efficient computation by assuming that a subset of features
should be not better than any larger sets containing it. This monotonicity
assumption, however, is not satisfied by the commonly used GOF measures,
e.g., Mallows’ Cp and AIC.

In view of these facts, we take a mixed integer optimization (MIO) ap-
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proach to feature subset selection. This approach was proposed in the 1970s
(see [2]), and it has recently received renewed attention as a result of algo-
rithmic advances and hardware improvements. Indeed, the effectiveness of
MIO formulations has been verified, e.g., in [7, 23, 24, 29, 30], in the context
of feature subset selection for linear regression. To the best of our knowledge,
nevertheless, none of the existing studies have considered MIO formulations
for feature subset selection in the logistic regression model.

The purpose of the present paper is to devise MIO formulations for fea-
ture subset selection in logistic regression. The problem is first formulated as
a mixed integer nonlinear optimization (MINLO) problem. Next, it is con-
verted into a mixed integer linear optimization (MILO) problem, which can
be solved with standard MIO software, by making a piecewise linear approx-
imation of the logistic loss function. The greatest advantage of our MILO
formulation is its ability to provide an optimality guarantee of the selected
features on the basis of information criteria.

The effectiveness of our formulation is assessed through computational ex-
periments on various datasets from the UCI Machine Learning Repository [4].
The computational results demonstrate that when the number of candidate
features was less than 40, our method successfully provided a feature subset
that was sufficiently close to an optimal one in a reasonable amount of time.
Furthermore, even if there were more candidate features, our method often
found a better subset of features than the stepwise methods did in terms of
information criteria.

2. Feature Subset Selection for Logistic Regression

This section gives a brief review of logistic regression and poses the feature
subset selection problem for it.

2.1. Logistic regression model

Let us suppose that we are given n samples of the pairs, (xi, yi) for i =
1, 2, . . . , n. Here, xi = (xi1, xi2, . . . , xip)" is a p-dimensional feature vector,
and yi ∈ {−1, 1} is a binary class label for each sample i = 1, 2, . . . , n. In the
logistic regression for binary classification, the occurrence probability of the
class label y = 1 is modeled with a sigmoid function (see, e.g., [16, 17, 20]),

Pr(y = 1 | x) = 1

1 + exp(−(w"x+ b))
,
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where the intercept, b, and the p-dimensional coefficient vector,w = (w1, w2, . . . , wp)",
are parameters to be estimated.

By simple calculation, we find that

Pr(y = −1 | x) = 1− Pr(y = 1 | x) = 1

1 + exp(w"x+ b)
.

Therefore, the logistic regression model for both y ∈ {−1, 1} can be expressed
as follows:

Pr(y | x) = 1

1 + exp(−y(w"x+ b))
. (1)

The maximum likelihood estimation method estimates the parameters so
that the log likelihood function, !(b,w), is maximized:

!(b,w) = log

(
n∏

i=1

Pr(yi | xi)

)

= −
n∑

i=1

log
(
1 + exp(−yi(w

"xi + b))
)

= −
n∑

i=1

f(yi(w
"xi + b)), (2)

where

f(v) = log(1 + exp(−v)) (3)

is called the logistic loss function. This function is convex because its second
derivative always has a positive value. Hence, maximizing the log likelihood
function (2) is a convex optimization that can be performed by executing
standard nonlinear optimization algorithms, such as the Newton-Raphson
algorithm (see, e.g., [16]).

2.2. Feature subset selection problem

This paper selects a subset S ⊆ {1, 2, . . . , p} of the candidate features
according to the information criteria (see, e.g., [9]).

Eliminating the j-th feature from the logistic regression model (1) is
equivalent to setting the corresponding coefficient, wj, to zero. As a result,
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we will try to minimize the weighted sum of the maximum log likelihood and
the number of parameters,

IC(S) = −2max{!(b,w) | wj = 0 (j $∈ S)}+ F (|S|+ 1), (4)

where F is a preset dimensionality penalty [13]. For instance, F = 2 and
F = log(n) correspond to the Akaike information criterion (AIC, [1]) and
Bayesian information criterion (BIC, [34]), respectively.

The feature subset selection problem for the logistic regression model (1)
is framed as a combinatorial optimization problem,

ICopt = min{IC(S) | S ⊆ {1, 2, . . . , p}}. (5)

3. Mixed Integer Optimization Formulations

This section presents mixed integer optimization (MIO) formulations for
feature subset selection.

3.1. Mixed integer nonlinear optimization formulation

Let z = (z1, z2, . . . , zp)" be a vector of 0-1 decision variables; zj = 1 if
j ∈ S; zj = 0, otherwise. The feature subset selection problem (5) can be
formulated as a mixed integer nonlinear optimization (MINLO) problem,

minimize
b,w,z

2
n∑

i=1

f
(
yi(w

"xi + b)
)
+ F

(
p∑

j=1

zj + 1

)
(6)

subject to zj = 0 ⇒ wj = 0 (j = 1, 2, . . . , p), (7)

zj ∈ {0, 1} (j = 1, 2, . . . , p). (8)

The logical implications (7) can be represented by a special ordered set
type one (SOS1) constraint [5, 6]. This constraint implies that not more
than one element in the set can have a nonzero value, and it is supported by
standard MIO software. By using the SOS1 constraint, the logical implica-
tions (7) can be rewritten as follows:

{1− zj, wj} = SOS1 (j = 1, 2, . . . , p). (9)

If zj = 0, then 1− zj has nonzero value, and wj must be zero from the SOS1
constraints (9).
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Figure 1: Piecewise linear approximation of the logistic loss function

3.2. Piecewise linear approximation

The objective function (6) to be minimized is a convex but nonlinear
function, which may cause numerical instabilities in the computation. In
addition, most MIO software cannot handle such a nonlinear objective func-
tion. In view of these facts, we shall make a piecewise linear approximation
of the logistic loss function (3).

Let V = {v1, v2, . . . , vm} be a set of m discrete points. Since the graph
of a convex function lies above its tangent lines, the logistic loss function (3)
can be approximated by the pointwise maximum of a family of tangent lines;
that is,

f(v) ≈ max{f ′(vk)(v − vk) + f(vk) | k = 1, 2, . . . ,m}
= min{t | t ≥ f ′(vk)(v − vk) + f(vk) (k = 1, 2, . . . ,m)}.

Figure 1 shows the graph of the logistic loss function (3) together with
the tangent lines at v1 = −∞, v2 = −1, v3 = 1, and v4 = ∞. Also note that

f ′(v1)(v − v1) + f(v1) = −v, (10)

f ′(v4)(v − v4) + f(v4) = 0. (11)

6



− 4 − 2 0 2 4
− 1

0

1

2

3

4

5

− 4 − 2 0 2 4
− 1

0

1

2

3

4

5

(a) V = {−∞,∞} (b) V = {−∞,∞} ∪ {0}
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(c) V = {−∞, 0,∞} ∪ {−1.90} (d) V = {−∞,−1.90, 0,∞} ∪ {1.90}

Figure 2: Process of the greedy algorithm for selecting tangent lines

The pointwise maximum of the four tangent lines creates a piecewise linear
underestimator to the logistic loss function (3) (see Figure 1).

3.3. Greedy algorithm for selecting tangent lines

It is crucial to select a limited number of tangent lines that provide a good
piecewise linear approximation. To accomplish this, we develop a greedy
algorithm for selecting a set of tangent lines.

We begin with the two tangent lines (10) and (11) as in Figure 2 (a), where
the shaded portion represents the gap between the logistic loss function (3)
and its piecewise linear approximation. Our greedy algorithm adds tangent
lines one by one so that the area of the shaded portion in Figure 2 (a) will
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be minimized. The process of this algorithm is shown in Figures 2 (b)–(d).
Here, since the new tangent lines cut off the shaded triangles, the algorithm
amounts to sequentially selecting a tangent line that cuts off the biggest
triangle. The area of a triangle can be easily calculated from the coordinates
of its three vertices.

3.4. Mixed integer linear optimization formulation

Let t = (t1, t2, . . . , tn)" be a vector of auxiliary decision variables for cal-
culating the value of the logistic loss function for each sample. By making
a piecewise linear approximation of the logistic loss function (3), the prob-
lem (6)–(8) reduces to a mixed integer linear optimization (MILO) problem,

minimize
b, t,w,z

2
n∑

i=1

ti + F

(
p∑

j=1

zj + 1

)
(12)

subject to ti ≥ f ′(vk)
(
yi(w

"xi + b)− vk
)
+ f(vk)

(i = 1, 2, . . . , n; k = 1, 2, . . . ,m), (13)

zj = 0 ⇒ wj = 0 (j = 1, 2, . . . , p), (14)

zj ∈ {0, 1} (j = 1, 2, . . . , p). (15)

It is clear that the MILO problem (12)–(15) approaches the original
MINLO problem (6)–(8) by increasing the number of tangent lines at ap-
propriate points. The MILO problem (12)–(15) has the advantage of being
able to give an optimality guarantee to the obtained solution.

Let obj∗MILO be the optimal value of the objective function (12). Since
it is an underestimator to the original objective function (4), obj∗MILO is less
than ICopt. We denote an optimal solution to the MILO problem (12)–(15)
by (b∗, t∗,w∗, z∗). Although the associated feature subset S∗ = {j | j =
1, 2, . . . , p, z∗j = 1} is not necessarily an optimal solution to problem (5), it
is possible to make a posteriori accuracy evaluation as follows:

obj∗MILO ≤ ICopt ≤ IC(S∗). (16)

In other words, if

IC(S∗)− obj∗MILO

is small, it is guaranteed that the feature subset S∗ is sufficiently close to an
optimal one in the sense that IC(S∗) is nearly equal to ICopt.
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4. Computational Results

This section assesses the computational performance of our MILO ap-
proach.

We downloaded 12 datasets for the classification analysis from the UCI
Machine Learning Repository [4]. The datasets for multi-class classification
were converted into instances of binary classification by giving a class label
yi = 1 to the samples belonging to the largest class, and by giving yi = −1
to all other samples. Table 1 lists these instances, where n and p are the
number of samples and number of candidate features, respectively.

Table 1: List of instances
abbreviation n p original dataset [4]
Mammo 830 18 Mammographic Mass
Image 2310 18 Image Segmentation
Parkin 195 22 Parkinsons
Stat-H 270 25 Statlog (Heart)
Breast 194 33 Breast Cancer Wisconsin (Prognostic)
Biodeg 1055 41 QSAR biodegradation
SPECTF 267 44 SPECTF Heart
Spam 4610 58 Spambase
Stat-G 1000 61 Statlog (German Credit Data)
Digits 3823 62 Optical Recognition of Handwritten Digits
Flags 194 67 Flags
Libras 360 90 Libras Movement

For all the instances, each integer and real variable was standardized so
that its mean was zero and its standard deviation was one. Each categorical
variable was transformed into dummy variable(s). Samples including missing
values and redundant variables having the same value in all samples were
eliminated.

The computational experiments compared the performances of the fol-
lowing methods:

• SWconst: stepwise method starting with S = ∅,

• SWall: stepwise method starting with S = {1, 2, . . . , p},

9



• MILO(V ): MILO formulation (12)–(15), where V is the set of points
for tangent lines.

Both stepwise methods iteratively add or eliminate one feature that leads
to the largest decrease in the information criterion. The MILO formula-
tion (12)–(15) employed three sets of points for tangent lines,

V1 = {0,±1.90,±∞} (|V1| = 5, see also Figure 2 (d)),

V2 = {0,±0.89,±1.90,±3.55,±∞} (|V2| = 9),

V3 = {0,±0.44,±0.89,±1.37,±1.90,±2.63,±3.55,±5.16,±∞} (|V3| = 17).

These were computed by the greedy algorithm described in Section 3.3. As
shown above, the greedy algorithm yielded a symmetric set of points.

All computations were performed on a Windows computer with an In-
tel Core i7-2600 CPU (3.40 GHz) and 12 GB memory. Gurobi Optimizer
6.0.0 (http://www.gurobi.com) was used to solve the MILO problems. Here,
the logical implications (14) were imposed in the form of SOS1 constraints (9)
with the SOS TYPE1 function in Gurobi Optimizer. The stepwise meth-
ods were performed with the step function implemented in R 3.1.2 (http:
//www.R-project.org).

Tables 2–5 show the computational results of minimizing AIC and BIC.
The column labeled “IC(S)” is the value of the information criterion (4),
where S is the set of features selected by each method. Note that the smallest
values for each instance are bold-faced. The column labeled “objMILO” is the
value of the objective function (12). The column labeled “|S|” is the number
of selected features, and the column labeled “time (s)” is computation time in
seconds. The MILO computation was terminated if it did not finish by itself
after 10000 seconds. In this case, the solution obtained within 10000 seconds
is not necessarily an optimal one to the problem (12)–(15), and accordingly,
objMILO may be greater than ICopt.

Tables 2–5 reveal that the stepwise methods, SWconst and SWall, fre-
quently arrived at different feature subsets for the same instance. In partic-
ular, for Breast, SWconst and SWall respectively selected 12 and 24 features
for minimizing AIC in Table 2, and more surprisingly, 2 and 13 features for
minimizing BIC in Table 4. It is clear that SWconst or SWall failed to find
the best subset of features in terms of the information criteria. This is one of
the fundamental shortcomings of the stepwise methods; however, it is note-
worthy that they completed the search process within 1000 seconds for all
the instances.
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Let us next discuss the cases where the MILO computation finished within
10000 seconds. In this case, the relationship (16) holds. Tables 2–5 confirmed
that many tangent lines narrowed the gap between the upper bound, IC(S)
and the lower bound, objMILO. In the case of Stat-H in Table 2, IC(S) and
objMILO of MILO(V1) were 196.17 and 182.39, and those of MILO(V3) were
195.78 and 194.90. In other words, MILO(V3) found a feature subset such
that the associated AIC value was 195.78, and it guaranteed that the smallest
AIC value was greater than 194.90. This optimality guarantee is the most
notable characteristic of our MILO formulation, and it is not shared by a
number of heuristic approaches.

The computation time of solving the MILO problems increased as the
number of tangent lines grew. This is because the number of the con-
straints (13) depends on the number of tangent lines. Therefore, it is es-
sential to select a limited number of tangent lines, and our greedy algorithm
is useful for accomplishing this objective.

MILO(V3) always attained the smallest AIC value among the five methods
when its computation finished within 10000 seconds. This suggests that the
number of tangent lines of V3 is sufficiently large. MILO(V2) failed to find a
best feature subset for Stat-H in Table 4. MILO(V1) often failed to find a best
feature subset even though its computation finished within 10000 seconds.

We next turn to the cases where the MILO computation was terminated
due to the time limit. In this case, the feature subsets provided by the
stepwise methods were sometimes better than those of the MILO formula-
tions. For instance, both SWconst and SWall found better feature subsets
than those of the MILO formulations for Digits in Table 5. However, if
viewed from the opposite perspective, the MILO formulations successfully
yielded good-quality solutions to most of the instances in spite of the time
limit. In particular, the MILO formulations significantly outperformed the
stepwise methods for Libras in Table 5. More specifically, the BIC values
of the MILO formulations were 41.20, 47.09 and 47.09, whereas those of the
stepwise methods were 82.05 and 52.98. If it is allowed to spend a long
time on the computation, our MILO approach will be a reasonable option
for subset selection from many candidate features.

5. Conclusion

This paper dealt with the feature subset selection problem for logistic
regression. It is easy to frame this problem as a mixed integer nonlinear
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optimization (MINLO) problem, but the MINLO problem is hard to handle.
Thus, we formulated its approximation as a mixed integer linear optimiza-
tion (MILO) problem by applying a piecewise linearization to the nonlinear
logistic loss functions.

Our research contribution is the computational framework for selecting
a subset of features with an optimality guarantee. This is the crucial differ-
ence between our method and a number of heuristic approaches. Moreover,
raising the number of tangent lines leads to greater accuracy in the piecewise
linear approximation. In this sense, our MILO approach is close to the exact
method of computing the best subset of features.

It was demonstrated that our method frequently outperformed the step-
wise methods in terms of solution quality. This fact proves the effectiveness
of the mixed integer optimization methodology in feature subset selection,
and hence, it should be of use in other statistical analyses as well.

Many heuristic approaches represented by the stepwise methods can quickly
reach a good-quality solution in exchange for optimality even if there are a
large number of candidate features. By contrast, our MILO formulation
spends a long time searching for a solution with an optimality guarantee.
For practical purposes, it is necessary to use both approaches as the situa-
tion demands.

To improve tractability, we reduced the MINLO problem to the MILO
problem. However, the MINLO problem may be solved directly by using a
tailored branch-and-bound algorithm, because it becomes a convex optimiza-
tion problem if the integrality of the problem is relaxed. Another direction of
future research will be to extend our MILO formulation to multi-class clas-
sification. Specifically, we will tackle a feature subset selection problem in
discrete choice models, such as the logit model [27]. We also need to consider
selecting a subset of features on the basis of goodness-of-fit measures other
than AIC and BIC.
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Table 2: Results of minimizing AIC (p ≤ 41)

instance n p method IC(S) objMILO |S| time (s)
Mammo 830 18 SWconst 628.10 — 8 2.09

SWall 632.64 — 11 2.89
MILO(V1) 628.51 587.69 9 3.47
MILO(V2) 628.10 616.37 8 7.29
MILO(V3) 628.10 625.27 8 24.62

Image 2310 18 SWconst 438.39 — 10 6.72
SWall 433.32 — 12 6.63
MILO(V1) 433.32 403.74 12 131.20
MILO(V2) 433.13 424.23 12 326.81
MILO(V3) 433.13 430.80 12 1218.67

Parkin 195 22 SWconst 123.62 — 5 0.33
SWall 113.96 — 8 1.33
MILO(V1) 113.50 106.07 7 4.12
MILO(V2) 113.50 111.45 7 15.33
MILO(V3) 113.50 112.93 7 30.79

Stat-H 270 25 SWconst 197.74 — 12 0.91
SWall 199.24 — 13 1.31
MILO(V1) 196.17 182.39 10 6.81
MILO(V2) 195.78 192.13 11 71.64
MILO(V3) 195.78 194.90 11 138.49

Breast 194 33 SWconst 162.94 — 12 1.06
SWall 152.13 — 24 1.49
MILO(V1) 147.04 137.96 18 22.88
MILO(V2) 147.04 144.56 18 57.72
MILO(V3) 147.04 146.41 18 240.39

Biodeg 1055 41 SWconst 657.50 — 20 19.80
SWall 653.29 — 22 40.20
MILO(V1) 653.29 613.26 22 1441.26
MILO(V2) 653.29 641.32 22 3863.64
MILO(V3) 653.29 650.18 22 >10000
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Table 3: Results of minimizing AIC (p ≥ 44)

instance n p method IC(S) objMILO |S| time (s)
SPECTF 267 44 SWconst 172.34 — 9 1.28

SWall 169.42 — 16 8.89
MILO(V1) 168.93 158.93 14 490.06
MILO(V2) 168.33 165.58 14 1197.12
MILO(V3) 168.33 167.58 14 5470.24

Spam 4610 58 SWconst 1912.88 — 43 339.62
SWall 1912.88 — 43 246.73
MILO(V1) 1914.08 1783.66 41 7827.50
MILO(V2) 1912.88 1875.71 43 >10000
MILO(V3) 1912.88 1903.11 43 >10000

Stat-G 1000 61 SWconst 958.15 — 23 12.34
SWall 966.57 — 26 48.64
MILO(V1) 957.92 904.89 24 >10000
MILO(V2) 960.08 946.01 23 >10000
MILO(V3) 958.59 955.12 23 >10000

Digits 3823 62 SWconst 327.34 — 24 180.33
SWall 325.74 — 25 769.29
MILO(V1) 325.43 296.80 25 >10000
MILO(V2) 326.71 317.90 26 >10000
MILO(V3) 329.65 326.84 26 >10000

Flags 194 67 SWconst 42.00 — 20 6.56
SWall 48.00 — 23 57.69
MILO(V1) 40.00 40.00 19 >10000
MILO(V2) 40.00 40.00 19 >10000
MILO(V3) 42.00 42.00 20 >10000

Libras 360 90 SWconst 22.00 — 10 6.53
SWall 18.00 — 8 323.22
MILO(V1) 16.00 14.00 6 >10000
MILO(V2) 16.00 16.00 7 >10000
MILO(V3) 16.00 16.00 7 >10000
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Table 4: Results of minimizing BIC (p ≤ 41)

instance n p method IC(S) objMILO |S| time (s)
Mammo 830 18 SWconst 657.96 — 4 0.49

SWall 668.83 — 6 3.79
MILO(V1) 657.96 617.12 4 2.49
MILO(V2) 657.96 646.06 4 5.73
MILO(V3) 657.96 655.21 4 20.47

Image 2310 18 SWconst 496.59 — 9 5.51
SWall 500.44 — 9 8.00
MILO(V1) 497.45 462.02 7 60.90
MILO(V2) 495.51 486.75 8 446.78
MILO(V3) 495.51 493.11 8 1109.00

Parkin 195 22 SWconst 140.70 — 1 0.09
SWall 140.86 — 5 1.47
MILO(V1) 137.60 129.26 5 5.26
MILO(V2) 137.60 135.64 5 13.92
MILO(V3) 137.60 137.06 5 43.64

Stat-H 270 25 SWconst 229.50 — 4 0.27
SWall 239.60 — 8 1.64
MILO(V1) 226.77 210.44 5 4.89
MILO(V2) 226.77 222.31 5 47.03
MILO(V3) 226.29 225.37 6 119.29

Breast 194 33 SWconst 195.17 — 2 0.17
SWall 200.97 — 13 2.72
MILO(V1) 194.22 182.11 3 135.41
MILO(V2) 192.36 189.62 9 433.64
MILO(V3) 192.36 191.69 9 1810.77

Biodeg 1055 41 SWconst 744.25 — 11 9.83
SWall 748.67 — 14 48.36
MILO(V1) 744.22 701.77 14 >10000
MILO(V2) 744.40 732.65 10 >10000
MILO(V3) 744.25 741.01 11 >10000
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Table 5: Results of minimizing BIC (p ≥ 44)

instance n p method IC(S) objMILO |S| time (s)
SPECTF 267 44 SWconst 196.82 — 4 0.54

SWall 196.82 — 4 10.81
MILO(V1) 196.82 186.62 4 93.00
MILO(V2) 196.82 193.90 4 303.52
MILO(V3) 196.82 196.04 4 1441.01

Spam 4610 58 SWconst 2154.75 — 29 406.85
SWall 2154.75 — 29 406.85
MILO(V1) 2155.44 2019.14 31 >10000
MILO(V2) 2154.77 2113.82 28 >10000
MILO(V3) 2154.75 2144.35 30 >10000

Stat-G 1000 61 SWconst 1047.32 — 11 4.56
SWall 1060.95 — 14 56.13
MILO(V1) 1047.32 994.54 11 >10000
MILO(V2) 1049.03 1034.29 10 >10000
MILO(V3) 1051.01 1047.44 11 >10000

Digits 3823 62 SWconst 446.68 — 14 60.90
SWall 448.07 — 16 859.33
MILO(V1) 449.36 416.41 13 >10000
MILO(V2) 454.22 443.48 13 >10000
MILO(V3) 468.57 465.13 14 >10000

Flags 194 67 SWconst 129.79 — 5 0.84
SWall 126.42 — 23 58.63
MILO(V1) 129.87 112.08 4 >10000
MILO(V2) 105.50 105.19 18 >10000
MILO(V3) 121.83 121.45 12 >10000

Libras 360 90 SWconst 82.05 — 5 2.59
SWall 52.98 — 8 323.98
MILO(V1) 41.20 41.20 6 >10000
MILO(V2) 47.09 47.09 7 >10000
MILO(V3) 47.09 47.09 7 >10000
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