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Abstract

Most computational tasks in scientific and engineering calculations are linear alge-

braic operations, which compute vectors and matrices, such as the solving of systems

of linear equations. On computers, real numbers are represented using floating-point

numbers and are computed with floating-point arithmetic operations. Floating-point

operations have rounding errors and these errors may become a critical issue for some

applications. With the advances realized in computational science, there is a need

for more accurate computation, especially in large-scale and long-term simulations.

In such applications the accumulation of numerical errors may lead to even more

serious problems in the future. Therefore we need to improve the accuracy and

precision in floating-point operations.

In this thesis, I will describe the implementation, performance, and effectiveness

of linear algebraic operations using extended precision floating-point arithmetic on

Graphics Processing Units (GPUs). Although GPUs are specialized hardware ac-

celerators that are designed to perform graphics processing, in recent years GPUs

have become capable of performing general purpose computational operations that

were traditionally handled by CPUs. As a result, General Purpose computing on

GPUs (GPGPUs) has been a major topic of research in the HPC area.

I will firstly describe the implementation and performance of triple- and quadruple-

precision Basic Linear Algebra Subprograms (BLAS) subroutines: AXPY, GEMV

and GEMM on GPUs. Quadruple-precision operations are performed using Double-

Double (DD) arithmetic which is a method for performing quadruple-precision floating-

point arithmetic in software. On the other hand, I am proposing two new triple-

precision floating-point formats, Double+Single (D+S)-type and Double+Int (D+I)-

type formats, and a method of computing these values on GPUs. I will show the

performance comparison of double-, triple-, and quadruple-precision subroutines on

an NVIDIA Tesla M2050 Fermi architecture GPU. Since the GPU has relatively high

floating-point performance compared to the memory bandwidth, the performance of

triple- and quadruple-precision AXPY and GEMV are memory bound. Therefore,

their execution times of triple- and quadruple-precision subroutines are close to 1.5
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and 2 times more than that of double-precision subroutines, respectively.

Next I will describe the application of using extended precision arithmetic for

sparse linear algebra on GPUs. To implement fast sparse matrix operations on

GPUs, I will present techniques for optimizing Sparse Matrix-Vector multiplication

(SpMV) for the CRS format on NVIDIA Kepler architecture GPUs. The proposed

implementation is based on an existing method proposed for Fermi architecture,

an earlier generation of the Kepler architecture. My proposed implementation takes

advantage of three new features introduced in Kepler: a 48KB read-only data cache,

shuffle instructions and expansion of the MaxGridDimX. On the Tesla K20 Kepler

architecture GPU, my proposed implementation achieved better double-precision

performance than implementations optimized for the previous generation of GPU.

Finally, I will describe the implementation and performance evaluation of Krylov

subspace methods using quadruple-precision floating-point arithmetic on GPUs.

The convergence of the Krylov subspace methods, which are iterative methods for

solving linear systems, is significantly affected by rounding errors and there are

cases where reducing rounding errors with extended precision arithmetic causes the

algorithm to converge more quickly. I implemented the CG and BiCGStab meth-

ods, which are Krylov subspace methods, using quadruple-precision floating-point

arithmetic, and compares the performance to the standard double-precision imple-

mentations. On unpreconditioned methods, the use of quadruple-precision arith-

metic required approximately 1.11–2.20 times more execution time than that of

the double-precision versions for one iteration. On the other hand, the quadruple-

precision iteration time for methods with double-precision incomplete LU precondi-

tioning is only slightly more than that of double-precision. I will show cases where

the quadruple-precision version can reach a solution faster than the double-precision

version.



Chapter 1

Introduction

Today, numerical analysis techniques are widely used in scientific and engineering

fields, such as astronomy, weather forecasting, molecular modeling, and industrial

design. Computational tasks in these fields typically require a large number of

computations and a large amount of memory; supercomputers are used to perform

such computations. Therefore, computer science, especially the high performance

computing (HPC) area, plays a key role in developing hardware and software for

supercomputer computation.

Most computational tasks in scientific and engineering calculations are linear

algebraic operations, which compute vectors and matrices such as the solving of

systems of linear equations. On computers, real numbers are represented using

floating-point numbers and are computed with floating-point arithmetic operations.

In fact, the LINPACK benchmark [1], which is used to rank the world’s top super-

computers in the TOP500 list [2], performs dense linear algebraic operations using

floating-point operations, and its performance is evaluated using the “Flops” value,

which represents the number of floating-point operations performed per second.

Floating-point operations are required not only for scientific and engineering

computations, but also for multimedia processing; most processors currently provide

floating-point support in hardware. Floating-point numbers are stored with a fixed

number of significand and exponent digits, and the numbers are computed with

finite-precision floating-point arithmetic operations. Thus, floating-point numbers

cannot always precisely represent real numbers, and the result of floating-point

operations may include numerical errors, such as loss of significance and rounding

errors.

These errors may become a critical issue for some applications, and in some

cases, the usual hardware floating-point operation precision is insufficient; there-

fore, improved accuracy and precision in floating-point operations is required. For

1



1.1. PRECISION OF FLOATING-POINT ARITHMETIC

example, it is known that the convergence of Krylov subspace methods, which are

iterative methods for solving linear systems, is significantly affected by rounding er-

rors; there have also been cases where the reduction of rounding errors with higher

precision floating-point arithmetic caused the algorithm to converge more quickly

[3]. Moreover, with the advances realized in computational science, there is a need

for more accurate computation, especially in large-scale and long-term simulations,

and the accumulation of numerical errors may lead to even more serious problems

in the future [4].

Currently, most modern processors support 64-bit floating-point operations with

a 52-bit significand. I will focus on the demand for extending significand precision in

linear algebraic operations by examining the implementation, performance, and ef-

fectiveness of linear algebraic operations using such extended precision floating-point

arithmetic on Graphics Processing Units (GPUs). Although GPUs are specialized

hardware accelerators for CPUs, which are designed to perform graphics processing,

they have recently enabled the performance of general purpose computations that

were traditionally handled by CPUs. As a result, General Purpose computing on

GPUs (GPGPUs) has been a major topic of research in the HPC area. It is believed

that the study of linear algebraic operations using extended precision floating-point

arithmetic on GPUs is important for future use.

The remainder of this chapter gives the background knowledge required to un-

derstand the following chapters and an overview of this thesis.

1.1 Precision of Floating-Point Arithmetic

1.1.1 IEEE Standard for Floating-Point Arithmetic

Floating-point formats and rounding are standardized by the Institute of Electrical

and Electronics Engineers (IEEE) as the IEEE Standard for Floating-Point Arith-

metic (IEEE 754). The first version, which was adopted in 1985 (IEEE 754-1985),

defined the well-known “single-” and “double-” precision binary floating-point for-

mats. The latest version, IEEE 754-2008 [5], published in 2008, defines four types

of binary floating-point formats as shown in Table 1.1. Currently, most modern

processors such as the x86 and GPUs have hardware support for the IEEE’s binary

floating-point formats of single-precision or both single- and double-precision, and its

arithmetic operations. The “binary16” half-precision and “binary128” quadruple-

precision formats were officially added into IEEE 754-2008. With the exception of

binary16, the remaining formats are basic and can be used for arithmetic operations,

whereas binary16 is not a basic format and is intended only for storage. The for-

2



CHAPTER 1

Table 1.1: Binary floating-point basic formats defined in IEEE 754-2008

Name Common name Exponent Significand Total

binary16 Half-precision 5 bits 10+1 bits 16 bits

binary32 Single-precision 8 bits 23+1 bits 32 bits

binary64 Double-precision 11 bits 52+1 bits 64 bits

binary128 Quadruple-precision 15 bits 112+1 bits 128 bits

mats have one sign bit, the exponent bits, and the significand bits with the extra bit

shown as “+1” in Table 1.1 of the explicitly stored width, because a floating point

number is normalized such that the most significant bit is one. In addition to the

binary floating-point formats, IEEE 754-2008 now supports decimal floating-point

formats intended for applications that are required to emulate decimal rounding.

Moreover, IEEE 754-2008 specifies extended- and extendable-precision formats.

The IEEE’s extended precision format is recommended for extending the precisions

used for arithmetic beyond the binary floating-point basic formats with both wider

significand precision and exponent range, and both precision and range are defined

under user control in the extendable-precision format. The x86 processor supports

the 80-bit extended precision floating-point format, which meets the requirements of

the IEEE’s extended precision format, with a 15-bit exponent and 64-bit significand.

Note that the IEEE’s extended precision format requires the extension of both

significand precision and exponent range. However, in this thesis, “extended preci-

sion” denotes also the extension of the significand precision alone.

1.1.2 Extended Precision Floating-Point Arithmetic

Besides the 80-bit extended precision on the x86, most common processors, includ-

ing GPUs, do not support any precision higher than double-precision; therefore,

operations with higher precision than a precision supported by hardware must be

executed by software implementation. For example, IEEE’s binary128 quadruple-

precision floating-point operations are available in the Intel Fortran Compiler [6],

the GNU Fortran compiler and the GNU C Compiler [7] on the x86, but they are

computed by software.

There are two principal ways of computing extended precision floating-point

numbers using software. The first approach is the most straightforward: computing

the extended precision floating-point numbers using integer arithmetic operations.

This method is mainly used on arbitrary precision libraries such as the GNU Multiple

3
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Precision Arithmetic Library (GMP) [8]. The binary128 emulations on the x86 are

also implemented by this approach.

The second approach computes extended precision floating-point numbers using

hardware implemented floating-point arithmetic and stores the numbers in a few

pairs of floating-point values. The representative example is quadruple-precision

floating-point operations using double-double (DD) arithmetic [9][10][11]. The method

is used on the well-known quadruple- and octuple-precision floating-point arithmetic

library – the QD library [12]. For DD arithmetic, a quadruple-precision floating-

point number is represented using a pair of double-precision floating-point values,

which have a higher and a lower part of the significand of the quadruple-precision

floating-point numbers. DD arithmetic computes quadruple-precision floating-point

arithmetic using only double-precision floating-point arithmetic operations. This

approach can utilize the sign, the exponent, and the significand of existing floating-

point formats; therefore, compared to the former approach, it has a speed advantage

when only quadruple- or octuple-precision are required [4]. However, this approach

cannot extend the exponent bit of the existing floating-point format.

Software processing of extended precision floating-point arithmetic operations

involves highly computational intensive operations, and generally requires a greater

computation time compared to the single- and double-precision floating-point oper-

ations by hardware on most modern processors.

1.2 GPU Computing

GPUs are specialized hardware accelerators for CPUs, designed to perform graphics

processing tasks such as 3D shading and were originally designed to only perform

graphics processing. In recent years, however, they have enabled us to perform

general purpose computations that were traditionally handled by CPUs by a process

called GPGPUs, which has been a major topic of research in the HPC area. In fact,

since November 2009, GPU-equipped supercomputers have appeared in the top 10

of the TOP500 list [2].

The computational performance of GPUs has increased more rapidly than that of

CPUs due to the rapid increase in the video games market. As a result, GPUs have

provided a better cost performance than traditional CPUs. The early generation

of GPUs supported only single-precision floating-point operations; GPU vendors,

however, have released products that have targeted the HPC market, supporting

double-precision floating-point operations, and error correcting code memory (ECC

memory). Furthermore, GPU programming has become easier with the development
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of GPU programming tools such as AMD Accelerated Parallel Processing (APP)

[13], NVIDIA compute unified device architecture (CUDA) [14], and OpenCL [15].

In addition, GPUs have recently received attention as energy efficient processors.

1.2.1 Performance Characteristics

GPUs have high floating-point performance and high memory bandwidth. For in-

stance, the Cray XK7 supercomputer [16], which is used as the base system of the

Titan supercomputer at Oak Ridge National Laboratory, has an AMD Opteron 6274

CPU (16 cores) and an NVIDIA Tesla K20X GPU per node. The theoretical peak

performance of the CPU is 281.6 GFlops of double-precision floating-point perfor-

mance and 51.2 GB/s of the bandwidth of the main DRAM memory, whereas for

the GPU, the theoretical peak performance is 1.31 TFlops and the bandwidth of

the DRAM memory is 250 GB/s, respectively.

However, the architecture of GPUs is quite different from that of traditional

CPUs. The most noticeable feature of the GPU is that it has a “many core” and

“multithreaded” architecture. GPUs have a number of simple cores, which generally

range from a few hundred to a few thousand, and a program is performed with a

massive number of threads on the cores. Because of this architecture, GPUs achieve

high performance only for highly parallel computations, such as vectors or matrices.

On the other hand, GPUs need to be controlled from CPUs and operating sys-

tems do not run on GPUs. GPUs can act only as accelerators for CPUs, which are

connected via a peripheral bus such as the PCI Express (PCIe) bus. In addition, a

general GPU connected bus, PCIe 2.0 ×16, has a theoretical maximum bandwidth

of 8 GB/s each way, which is narrower than that of the DRAM memory. Thus, only

computationally intensive applications are capable of effectively utilizing GPUs.

1.2.2 CUDA

Compute Unified Device Architecture (CUDA) [14] is a parallel computing platform

and programming model developed by NVIDIA. CUDA provides programming lan-

guages of extensions of C/C++ and Fortran to develop programs for GPUs. Al-

though various languages and frameworks for developing these have been proposed,

CUDA is one of the most widely used GPGPU platforms. I use CUDA and here

describes its corresponding technical terms and knowledge to understand this thesis

with reference to the NVIDIA CUDA C Programming Guide [17].

In CUDA, a GPU is called a “CUDA device” or simply a “device,” whereas the

CPU is called a “host.” CUDA devices are classified by several generations according
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Figure 1.1: GPU architecture (NVIDIA Fermi architecture)

to the Compute Capability (CC). As an example of the CUDA devices, Figure 1.1

shows NVIDIA Fermi architecture GPUs [18], which was the CC 2.0 version released

in 2009.

Devices having a large number of simple cores are called “CUDA cores.” Each

CUDA core has an Arithmetic Logic Unit (ALU) and a Floating-Point Unit (FPU).

The FPU supports the IEEE 754-2008 compliant single- and double-precision floating-

point operations, and the Fused Multiply-Add (FMA) instruction that performs

a× b + c with one rounding step. Several CUDA cores are contained in the Stream-

ing Multiprocessor (SM) and a device has several SMs. Each SM has register files,

Special Function Units (SFUs), load/store units, and 64 KB of fast on-chip memory.

The on-chip memory can be configured as 48 KB of shared memory, which can be

used as scratch-pad memory with 16 KB of L1 cache or as 16 KB of shared memory

with 48 KB of L1 cache. Each device also has a global memory, which is an off-chip

DRAM memory and an L2 cache.
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Figure 1.2: CUDA device and thread hierarchy

In CUDA, programs that are performed on GPUs are called “kernel grids” or

“grids,” which are invoked by the host. The grid is performed using a large number

of threads on many CUDA cores. The threads are distributed to SMs as a group

of threads called a “thread block.” Each thread is performed on a CUDA core, and

each thread block is performed on an SM. The number of threads in a thread block

and the number of thread blocks are configurable, but the threads on a thread block

are executed with every 32 threads on an SM. The unit of 32 threads, which is

called a “warp,” executes the same instruction at the same time. This architec-

ture is called single instruction multiple threads (SIMT) architecture by NVIDIA.

In CUDA, GPUs achieve high performance by hiding memory access latency with

computations by switching the large number of threads.

The hierarchy of CUDA cores and threads is related to the memory hierarchy.

Figure 1.2 shows the hierarchy and relation among the CUDA core, memory, and
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thread. Each level of the hierarchy corresponds to the data accessibility of the

threads. For example, a thread cannot access the data on the register files of the

other threads; the data on shared memory, however, is accessible among the threads

in the same thread block. This means that shared memory can be used not only as

scratch-pad memory, but also for data communication between threads in the same

thread block.

1.3 Overview of the Thesis

The thesis intends to show the implementation and performance of linear algebraic

operations using extended precision floating-point arithmetic on GPUs. This chapter

describes the scope of this study, main contributions, and the organization of this

thesis.

1.3.1 Scope of the Study

As extended precision operations, this paper will focus on triple- and quadruple-

precision operations where they are defined as a computation for floating-point

data, which approximately has the triple and quadruple length of IEEE 754 single-

precision’s significand of 23-bit, respectively. As described previously, GPUs do not

support higher than double-precision operations by hardware and therefore, such

higher precision operations are executed by software implementation.

For implementation and evaluation, I will target NVIDIA GPUs and the CUDA

environment. Specifically, it uses GPUs with the Fermi architecture [18] released in

2009 and the Kepler architecture [19] released in 2012. I will focus on linear algebra

operations on a single GPU; the operations are computation for the data on the

global memory of a single GPU. Thus, this thesis does not discuss the performance,

which includes the time required to transfer data between the CPU and GPU via

the PCIe bus.

As linear algebra operations, the first half of the thesis focuses on basic linear

algebra operations for vector and dense matrix, and the latter half on sparse op-

erations. Specifically, in the first half of the thesis, I will implement three Basic

Linear Algebra Subprograms (BLAS) [20] subroutines: AXPY (y = αx+y), GEMV

(y = αAx + βy) and GEMM (C = αAB + βC) as examples of vector and dense

matrix operations. In the latter half, I will focus on sparse matrix operations. The

thesis firstly shows the implementation and optimization of double-precision Sparse

Matrix-Vector multiplication (SpMV) on GPUs. I then implement the Conjugate

Gradient (CG) and Bi-Conjugate Gradient Stabilized (BiCGStab) methods, which
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are Krylov subspace methods, hence, iterative methods for solving linear systems:

y = Ax, using quadruple-precision arithmetic. The CG and BiCGStab methods

mainly consist of some SpMV subroutines and some vector-vector operations such

as AXPY.

1.3.2 Contributions

The main contributions of this thesis are as follows.

First, this paper reveals that the performance of some linear algebra opera-

tions using quadruple-precision floating-point arithmetic becomes memory bound

on GPUs, and the execution time is approximately two times that of the double-

precision operations due to the low Bytes/Flop ratio of GPUs.

Second, triple-precision operations for linear algebra operations on GPUs as a

new extended precision choice between double- and quadruple-precision are pro-

posed. This paper realizes the triple-precision linear algebra operations which are

faster than the quadruple-precision operations where the performance of the opera-

tion is memory bound on both triple- and quadruple-precision.

Third, this paper presents optimization techniques of a SpMV subroutine for the

CRS format on NVIDIA Kepler architecture GPUs. By utilizing new features of the

Kepler architecture GPUs, speedups are achieved over the implementation for the

earlier generation of Kepler architecture GPUs.

Finally, the performance of the CG and BiCGStab methods, which are Krylov

subspace methods, are shown, using quadruple-precision floating-point arithmetic

on GPUs. This paper suggests potential speedups by using quadruple-precision

arithmetic instead of double-precision on GPUs.

1.3.3 Organization of the Thesis

The remainder of this thesis is organized as follows.

Chapter 2 will show the implementation and performance of triple- and quadruple-

precision BLAS subroutines: AXPY, GEMV and GEMM on the Fermi architecture

GPU. This section will firstly introduce double-double (DD) arithmetic, an existing

method used to perform quadruple-precision floating-point arithmetic in software.

On the other hand, I am proposing two new triple-precision floating-point formats,

Double+Single (D+S)-type and Double+Int (D+I)-type formats, and a method of

computing these values on GPUs. The evaluation will show the performance com-

parison of double-, triple-, and quadruple-precision subroutines on an NVIDIA Tesla

M2050 GPU and discuss the performance using the Bytes/Flop ratio of the GPU
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and the operations. As a result, this chapter will show that although the per-

formance of the triple- and quadruple-precision GEMM is computationally bound,

triple- and quadruple-precision AXPY and GEMV are memory bound, and their

execution times are therefore close to 1.5 and 2 times more than that of double-

precision subroutines, respectively.

Chapter 3 will show optimization techniques for double-precision SpMV for the

CRS format on NVIDIA Kepler architecture GPUs using CUDA. This research is a

step toward implementing and evaluating iterative methods for solving sparse linear

systems using quadruple-precision operations in Chapter 4. This chapter will show

the optimizations utilizing three new features of the Kepler architecture: a 48KB

read-only data cache, shuffle instructions and expanding MaxGridDimX. The per-

formance evaluation will show the effects of three optimizations on the 200 matrices

that are randomly selected from the University of Florida Sparse Matrix Collection

[21] on the Tesla K20 Kepler architecture GPU. As a result, the implementation op-

timized for the Kepler architecture is approximately 1.04 to 1.78 times faster than

the original implementation for the Fermi architecture. Moreover, the implemen-

tation optimized for the Kepler architecture outperforms the NVIDIA cuSPARSE

library’s [22] implementation of the SpMV routine for the CRS format for 174 of

the 200 matrices.

Chapter 4 will show the application of quadruple-precision operations on GPUs

for iterative methods for solving sparse linear systems. The convergence of the

Krylov subspace methods, which are iterative methods for solving linear systems:

y = Ax, is significantly affected by rounding errors. Therefore, there are cases where

reduction in rounding errors with quadruple-precision arithmetic causes the algo-

rithm to converge more quickly. Even if the use of quadruple-precision arithmetic

increases the execution time of one iteration, the total time until convergence may

be reduced if an increased precision can sufficiently compensate for this by reducing

the number of iterations. I implemented the CG and BiCGStab methods, which

are Krylov subspace methods, using quadruple-precision floating-point arithmetic

on GPUs. Then, I will compare the performance to the standard double-precision

implementations on the Tesla K20 GPU. Note that this research aims to accelerate

the methods using quadruple-precision arithmetic instead of double-precision arith-

metic; therefore, the input data, the coefficient matrix, and the right hand vector

are given in double-precision. The performance evaluation will show the execution

time of one iteration of the unpreconditioned methods using quadruple-precision

arithmetic is only approximately 1.11 to 2.20 times more than the double-precision

versions. Moreover, I will show that there are cases where the time until convergence

can be reduced using quadruple-precision arithmetic instead of double-precision,
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even when quadruple-precision arithmetic is not necessary.

Finally, Chapter 5 will conclude the thesis and discuss future work.
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Triple- and Quadruple-Precision

BLAS Subroutines on GPUs

2.1 Introduction

Most computational tasks in scientific and engineering computations are linear al-

gebraic operations that use floating-point operations; however, floating-point opera-

tions have rounding errors, which may become a critical issue for some applications.

With progress in computational science, there is a need for more accurate computa-

tion, especially in large-scale computing where the accumulation of rounding errors

may lead to even more serious problems. The usual precision of hardware floating-

point operations is insufficient in some cases, and greater accuracy and precision are

required.

Although GPUs are specialized hardware accelerators for CPUs and are designed

to perform graphics processing, they have recently enhanced general purpose com-

putations and performances that were traditionally handled by CPUs. As a result,

GPU computing has become a major focus of research in the HPC area. However,

GPUs do not support higher than double-precision floating-point arithmetic through

hardware. Therefore, it must be executed via software implementation.

Quadruple-precision operations have often been used as extended precision op-

erations. For example, the double-double (DD) arithmetic [9] [10] [11] has been

proposed and is often used to compute quadruple-precision floating-point arithmetic

by software.

This chapter aims to discuss the performance of triple- and quadruple-precision

linear algebra operations on GPUs. In order to evaluate the performance of triple-

and quadruple-precision operations on basic linear algebra operations, I will imple-
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ment representative Basic Linear Algebra Subprograms (BLAS) [20] subroutines:

AXPY (y = αx + y), GEMV (y = αAx + βy), and GEMM (C = αAB + βC) on an

NVIDIA Tesla M2050, which is a Fermi architecture GPU.

The remainder of this chapter is organized as follows. Section 2.2 introduces

DD arithmetic for quadruple-precision operations on GPUs. Section 2.3 proposes

triple-precision floating-point formats and their operations on GPUs. The imple-

mentation of triple- and quadruple-precision BLAS subroutines on GPUs is shown

in Section 2.4. Section 2.5 provides the performance prediction of triple-precision

BLAS subroutines on GPUs. Section 2.6 shows the performance evaluation results,

which include performance comparisons of the triple- and quadruple-precision sub-

routines with the double-precision subroutines. Finally, Section 2.8 concludes this

chapter.

2.2 Quadruple-Precision Floating-Point Operations

The quadruple-precision floating-point format was standardized in IEEE 754-2008

[5] as binary128. Some compilers supported the fotmat and operations by software

for the x86 [6] [7]. However, the support is not available on GPUs.

However, double-double (DD) arithmetic [9] [10] [11] has been proposed and is of-

ten used to compute quadruple-precision floating-point arithmetic by software. This

represents one quadruple-precision number by combining two double-precision num-

bers, and quadruple-precision floating-point arithmetic operations are performed

using only double-precision floating-point arithmetic operations. Although this ap-

proach cannot extend the exponent bit of the existing floating-point format, it can

utilize the sign, the exponent, and the significand of existing floating-point arith-

metic operations; therefore, it has a speed advantage compared to methods imple-

mented using integer arithmetic operations [4]. Binary128 emulation requires integer

arithmetic operations, and therefore, I used DD arithmetic.

The concept of DD arithmetic was proposed in 1971 by Dekker [9], who called this

approach “double-length” arithmetic, and showed his ALGOL 60 procedures in his

paper. After the late 1990s, Bailey [10] and Briggs [11] developed a software library

to perform quadruple-precision arithmetic operations using two IEEE 754 double-

precision arithmetic operations, calling it “double-double” arithmetic. In addition,

Hida et al. have developed the QD library [12], written in C++/Fortran-90, for

quadruple-precision arithmetic by using DD arithmetic, and octuple-precision arith-

metic by using quad-double (QD) arithmetic, which represents an octuple-precision

number by combining four double-precision numbers. DD and QD arithmetics are
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DD-type Quadruple Precision	
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Figure 2.1: Quadruple-precision floating-point format on DD arithmetic

also implemented for NVIDIA’s GPUs by Lu et al. [23] and Field-Programmable

Gate Array (FPGA) devices by Dou et al. [24]. Graça [25] implemented double-

precision floating-point arithmetic for GPUs that are not supported by hardware

using double-float arithmetic, which is an approach that is similar to DD arithmetic.

Thall [26] also implemented double-float and quad-float arithmetic on GPUs.

This section introduces algorithms of DD arithmetic for addition and multipli-

cation that are required to implement the three BLAS subroutines. I used the same

algorithms as DD arithmetic in the QD library. Throughout this thesis, normal

arithmetic operations are represented using {+,−,×,÷}, and the IEEE754-2008

floating-point operations with rounding to the nearest-even are represented using {
+©, −©, ×©, ÷© }.

2.2.1 DD-type Quadruple-Precision Floating-Point Format

DD arithmetic represents a quadruple-precision floating-point number a using a pair

of two double-precision floating-point numbers, ahi and alo: a = ahi + alo, as shown

in Figure 2.1. ahi and alo represent a higher and a lower part of a significand of

a quadruple-precision number, respectively. This assumes that |alo| ≤ 0.5ulp(ahi).

“Ulp” denotes “unit in the last place,” i.e., the gap between a floating-point number

and the next largest number.

In IEEE 754-2008, the double-precision floating-point number format is defined

as “binary64” with a significand part having 52 bits (actually, the total precision is 53

bits including the implicit bit) as shown in Table 1.1. Therefore, the total significand

precision of the DD number is 52 + 52 = 104 bits (actually, 106 bits including the

implicit bits), and approximately 32 decimal digits. Note that the exponent and

the significand of the DD number are less than the “binary128” IEEE 754-2008

quadruple-precision floating-point value format, which has a 112 bit significand with

a 15 bit exponent.
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Figure 2.2: Concept of DD arithmetic

2.2.2 DD-type Quadruple-Precision Floating-Point Arith-

metic

This section introduces algorithms of quadruple-precision addition and multiplica-

tion in DD arithmetic. Figure 2.2 shows the concept of the quadruple-precision

addition and multiplication in DD arithmetic. The methods are similar to those

used by humans to compute two-digit numbers on paper.

DD arithmetic is based on the following error-free floating-point operations.

Algorithm 1 Error-free addition: TwoSum (Knuth [27])

1: function [s, e]←TwoSum(a, b)

2: s← a +© b

3: v ← s −© a

4: e← (a −© (s −© v)) +© (b −© v)

5: end function

TwoSum by Knuth [27] is an error-free floating-point addition algorithm. It

produces an expansion a + b such that s + e = a + b, where s is an approximation

of a + b, and e represents the rounding error in the calculation of s.

QuickTwoSum by Dekker [9] is another error-free floating-point addition algo-

rithm. It produces an expansion a + b such that s + e = a + b, provided that

|a| ≥ |b|. The TwoSum algorithm requires six double-precision floating-point op-

15



2.2. QUADRUPLE-PRECISION FLOATING-POINT OPERATIONS

Algorithm 2 Error-free addition: QuickTwoSum (Dekker [9])

Require: |a| ≥ |b|
1: function [s, e]←QuickTwoSum(a, b)

2: s← a +© b

3: e← b −© (s −© a)

4: end function

erations (Flops), but the QuickTwoSum algorithm only requires three Flops. This

algorithm is used to normalize the DD number to satisfy |alo| ≤ 0.5ulp(ahi).

Algorithm 3 Error-free multiplication: TwoProdFMA (Karp et al. [28])

1: function [p, e]←TwoProdFMA(a, b)

2: p← a ×© b

3: e←fma (a× b− p)

4: end function

TwoProdFMA is an error-free floating-point multiplication algorithm. This al-

gorithm produces p+e = a×b, where p is an approximation of a×b, and e represents

the rounding error in the calculation of p. The first error-free multiplication algo-

rithm was proposed by Veltkamp and Dekker [9]. Afterward, Karp and Markstein

[28] modified the algorithm to that described above by using a double-precision

Fused Multiply-Add (FMA) instruction, which calculates a× b+ c with an interme-

diate result of 106 bits, with one rounding step (see also Nievergelt [29] and Ogita

et al. [30]). In this algorithm, fma(a× b− p) represents the calculation of a× b− p

using the FMA instruction.

The FMA instruction is available on some processors such as Power architecture

processors, Intel Itanium, and recent NVIDIA, and AMD GPUs. Most processors

that support the FMA instruction perform a× b + c (2 Flops) by one instruction in

the same number of cycles as either a multiply (a× b) or an add (a + b) instruction

that performs one Flop. Therefore, the TwoProdFMA algorithm performs three

Flops with two instructions.

Quadruple-precision addition algorithms use the aforementioned error-free floating-

point operation algorithms. There are two kinds of quadruple-precision addition

algorithms in the QD library: QuadAdd and QuadAddSloppy.

The QuadAdd algorithm calculates a quadruple-precision addition: c = a + b

(c = chi + clo, also for a and b).

The QuadAddSloppy algorithm permits a few bits of error in the lower part of

the DD number. Although this algorithm does not prevent the loss of digits when
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Algorithm 4 Quadruple-precision addition: QuadAdd (Bailey [12])

1: function [chi, clo]←QuadAdd(ahi, alo, bhi, blo)

2: [s1, s2]← TwoSum(ahi, bhi)

3: [t1, t2]← TwoSum(alo, blo)

4: s2 ← s2 +© t1
5: [s1, s2]← QuickTwoSum(s1, s2)

6: s2 ← s2 +© t2
7: [chi, clo]← QuickTwoSum(s1, s2)

8: end function

Algorithm 5 Quadruple-precision addition: QuadAddSloppy (Bailey [12])

1: function [chi, clo]←QuadAddSloppy(ahi, alo, bhi, blo)

2: [s, e]← TwoSum(ahi, bhi)

3: e← e +© (alo +© blo)

4: [chi, clo]← QuickTwoSum(s, e)

5: end function

a carry occurs in the calculation of the lower part, it is simpler than the former

QuadAdd algorithm. The QuadAddSloppy algorithm requires 11 Flops, whereas

the QuadAdd algorithm requires 20 Flops and is considered effective when users do

not want to sacrifice speed in exchange for a small increase in accuracy. In fact,

the QuadAddSloppy algorithm is used by the default addition algorithm in the QD

library. Therefore, I used the QuadAddSloppy algorithm.

The quadruple-precision multiplication algorithm is also based on error-free floating-

point algorithms.

Algorithm 6 Quadruple-precision multiplication: QuadMul (Bailey [12])

1: function [chi, clo]←QuadMul(ahi, alo, bhi, blo)

2: [p1, p2]← TwoProdFMA(ahi, bhi)

3: p2 ← p2 +© (ahi ×© blo) +© (alo ×© bhi)

4: [chi, clo]← QuickTwoSum(p1, p2)

5: end function

The QuadMul algorithm calculates a quadruple-precision multiplication: c =

a × b (c = chi + clo, also for a and b). This algorithm guarantees 106-bit accuracy

and IEEE-style rounding, which is the same as the QuadAdd algorithm.

As previously shown, the quadruple-precision addition and multiplication algo-

rithms are performed using only double-precision floating-point operations without
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any branch-statement. Table 2.1 shows the number of double-precision floating-

point instructions and Flops for quadruple-precision multiply-add operations in DD

arithmetic. Three BLAS subroutines: AXPY, GEMV, and GEMM mainly consist

of multiply-add operations. Note that in the QuadMul algorithm, there is a differ-

ence between the total number of instructions and the total number of Flop counts

because of the use of the FMA instruction that performs a× b + c (two Flops) with

one instruction.

Table 2.1: Number of double-precision floating-point instructions and Flops for

quadruple-precision multiply-add

# of double-precision floating-point instructions # of

Add/Sub Mul FMA Total Flops

QuadAddSloppy 11 0 0 11 11

QuadMul 5 3 1 9 10

QuadMul+QuadAdd 16 3 1 20 21

2.3 Triple-Precision Floating-Point Operations

I will propose new methods for triple-precision operations for linear algebra oper-

ations on GPUs. The performance of triple-precision linear algebra operations has

been ignored in recent years. Triple-precision operations may be effective in cases

where double-precision is insufficient and quadruple-precision is not necessary, but

triple-precision is sufficient. In such cases, triple-precision operations, which are

faster than quadruple-precision operations, are desired.

Triple-precision floating-point operations were implemented by Ikebe [31] in the

1960s. His method represents a triple length floating-point value by combining

three floating-point values and performs triple-precision arithmetic using fixed-point

arithmetic operations. In 2012, Ozawa [32] also implemented triple-precision arith-

metic on x86 CPUs. He represents a triple-precision floating-point value using

three double-precision values, and performs triple-precision arithmetic using double-

precision floating-point arithmetic. Such methods using three floating-point values

require more computation cost compared to DD arithmetic; therefore, I will propose

new methods to store triple-precision floating-point values and compute these values

on GPUs, which are based on DD arithmetic.
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Figure 2.3: D+S-type triple-precision floating-point format

2.3.1 D+S-type Triple-Precision Floating-Point Format

I proposed the double+single (D+S)-type triple-precision floating-point format shown

in Figure 2.3. This format uses a single-precision value to represent the lower part

instead of a double-precision value as in the DD-type format: a triple-precision

floating-point value a(t) is represented as a(t) = a
(d)
hi + a

(s)
lo using a double-precision

floating-point value a
(d)
hi and a single-precision floating-point value a

(s)
lo (|a(s)

lo | ≤
0.5ulp(a

(d)
hi )). Here, superscripts of values, ‘(s)’, ‘(d)’, ‘(t)’ and ‘(q)’ denote single-,

double-, triple- and quadruple-precision floating-point values, respectively.

The total significand precision of the D+S-type format is 52 + 23 = 75 bits (77

bits, including the implicit bits) and approximately 24 decimal digits. The exponent

is 8 bits, which is less than 11 bits of IEEE’s double-precision and the DD-type,

because the lower part is stored into the “binary32” single-precision, which has an

8-bit exponent.

2.3.2 D+S-type Triple-Precision Floating-Point Arithmetic

This thesis attempts to realize D+S arithmetic that uses the same algorithms as

DD arithmetic. DD arithmetic consists entirely of double-precision floating-point

operations, while D+S arithmetic can use single-precision floating-point operations

when calculating the single-precision portion of the lower part.

This thesis includes some symbols to show the precision of a value and an oper-

ation (single or double) for the original algorithms of DD arithmetic. Superscripts

of values, ‘(s)’ and ‘(d)’ denote single- and double-precision floating-point values,

respectively. (x(d))(s) indicates typecasting a value from double-precision x(d) to

single-precision x(s). Operations where both values have the same precision are

performed using that precision.
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TwoSumTriple is an error-free floating-point addition algorithm for D+S arith-

metic, which is based on the TwoSum algorithm. The TwoSumTriple algorithm

produces an expansion a(d) + b(d) such that s(d) + e(s) = a(d) + b(d), where s(d) is an

approximation of a(d) + b(d) and e(s) is the rounding error in the calculation of s(d).

Algorithm 7 Error-free addition: TwoSumTriple

1: function [s(d), e(s)]←TwoSumTriple(a(d), b(d))

2: s(d) ← a(d) +© b(d)

3: v(d) ← s(d) −© a(d)

4: e(s) ← (a(d) −© (s(d) −© v(d)))(s) +© (b(d) −© v(d))(s)

5: end function

QuickTwoSumTriple is also an error-free floating-point addition algorithm to

normalize the D+S number, which is based on the QuickTwoSum algorithm. The

QuickTwoSumTriple algorithm produces an expansion a(d) + b(s) such that s(d) +

e(s) = a(d) + b(s), provided |a(d)| ≥ |b(s)|.

Algorithm 8 Error-free addition: QuickTwoSumTriple

Require: |a(d)| ≥ |b(s)|
1: function [s(d), e(s)]←QuickTwoSumTriple(a(d), b(s))

2: s(d) ← a(d) +© (b(s))(d)

3: e(s) ← b(s) −© (s(d) −© a(d))(s)

4: end function

TwoProdFMATriple is an error-free floating-point multiplication algorithm for

D+S arithmetic, which is based on the TwoProdFMA algorithm. It produces an

expansion a(d)× b(d) such that p(d) + e(s) = a(d)× b(d), where p(d) is an approximation

of a(d) × b(d) and e(s) is the rounding error in the calculation of p(d).

Algorithm 9 Error-free multiplication: TwoProdFMATriple

1: function [p(d), e(s)]←TwoProdFMATriple(a(d), b(d))

2: p(d) ← a(d) ×© b(d)

3: e(s) ← (fma (a(d) × b(d) − p(d)))(s)

4: end function

The triple-precision addition and multiplication in D+S arithmetic uses the

aforementioned algorithms.

TripleAddSloppy is the triple-precision addition algorithm based on the QuadAddSloppy

algorithm: c(t) = a(t) + b(t) (c(t) = c
(d)
hi + c

(s)
lo , also for a and b).
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Algorithm 10 Triple-precision addition: TripleAddSloppy

1: function [c
(d)
hi , c

(s)
lo ]←TripleAddSloppy(a

(d)
hi , a

(s)
lo , b

(d)
hi , b

(s)
lo )

2: (c
(d)
hi , c

(s)
lo )← TwoSumTriple(a

(d)
hi , b

(d)
hi )

3: c
(s)
lo ← c

(s)
lo +© (a

(s)
lo +© b

(s)
lo )

4: (c
(d)
hi , c

(s)
lo )← QuickTwoSumTriple(c

(d)
hi , c

(s)
lo )

5: end function

The TripleMul algorithm based on the QuadMul algorithm calculates the triple-

precision multiplication: c(t) = a(t) × b(t).

Algorithm 11 Triple-precision multiplication: TripleMul

1: function [c
(d)
hi , c

(s)
lo ]←TripleMul(a

(d)
hi , a

(s)
lo , b

(d)
hi , b

(s)
lo )

2: (c
(d)
hi , c

(s)
lo )← TwoProdFMATriple(a

(d)
hi , b

(d)
hi )

3: c
(s)
lo ← c

(s)
lo +© ((a

(d)
hi )(s) ×© b

(s)
lo ) +© (a

(s)
lo ×© (b

(d)
hi )(s))

4: (c
(d)
hi , c

(s)
lo )← QuickTwoSumTriple(c

(d)
hi , c

(s)
lo )

5: end function

Table 2.2 shows the number of floating-point instructions and cycles for D+S and

DD addition and multiplication functions on the Tesla M2050 GPU. For the “add”,

“mul”, and “fma” instructions, “rn” denotes round-to-the-nearest-even, and “f32”

and “f64” indicate 32-bit (single-precision) and 64-bit (double-precision) floating-

point operations, respectively. “cvt” indicates the typecasting instruction. On the

GPU, single- and double-precision floating-point instructions are performed in one

and two cycles, respectively. Therefore, D+S arithmetic is initially expected to at-

tain better performance than DD arithmetic. However, many typecastings between

single- and double-precisions, which also require two cycles, are required. For this

reason, D+S arithmetic requires more cycles than DD arithmetic.

2.3.3 Computation of D+S-type Values using DD Arith-

metic

Theoretically D+S arithmetic requires more instructions than DD arithmetic on the

Tesla M2050 GPU due to many typecastings, as previously mentioned. Hence, it is

better to compute triple-precision values using DD arithmetic than to compute them

using D+S arithmetic. In other words, the input and output data of a linear algebra

operation use the D+S-type triple-precision floating-point formats; the arithmetic

operations are, however, performed on quadruple-precision using DD arithmetic;

the temporary values on register files for storing intermediate results are also stored
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Table 2.2: Floating-point instruction and cycle counts for D+S and DD arithmetic

on Tesla M2050

Instruction D+S arithmetic DD arithmetic

TripleAddSloppy TripleMul QuadAddSloppy QuadMul

add.rn.f32 1 cycle × 4 1 cycle × 3 1 cycle × 0 1 cycle × 0

mul.rn.f32 1 cycle × 0 1 cycle × 2 1 cycle × 0 1 cycle × 0

add.rn.f64 2 cycles × 7 2 cycles × 2 2 cycles × 11 2 cycles × 5

mul.rn.f64 2 cycles × 0 2 cycles × 1 2 cycles × 0 2 cycles × 3

fma.rn.f64 2 cycles × 0 2 cycles × 1 2 cycles × 0 2 cycles × 1

cvt.f64.f32 2 cycles × 1 2 cycles × 1 2 cycles × 0 2 cycles × 0

cvt.f32.f64 2 cycles × 3 2 cycles × 4 2 cycles × 0 2 cycles × 0

Total cycles 26 cycles 23 cycles 22 cycles 18 cycles

using the DD-type format. Although this method has no speed advantage compared

to quadruple-precision operations for arithmetic operations, it is able to reduce the

data access time for global memory and it may then have a speed advantage on

linear algebra operations.

Figure 2.4 shows the concept of this method. The D+S-type data on global

memory is loaded to register files, and is then these converted to DD-type data.

The DD-type data is computed by using DD arithmetic. The result stored in DD-

type is converted to D+S-type on the register files, and finally, the D+S-type data

is stored in global memory.

On GPUs, the main bottleneck in data access from an FPU to data in global

memory is the access time for global memory. Although the bandwidth of a Tesla

M2050’s register is unknown, it can be estimated in a way similar to that presented

by Tan et al. [33], i.e., the bandwidth of shared memory, which is fast on-chip

memory on GPUs, is 1030.4 GB/s. It can be presumed that the bandwidth of the

register is at least greater than this value. However, the nominal peak bandwidth

of global memory, which is off-chip memory, is 148 GB/s.

Therefore, this method may still have a speed advantage compared to quadruple-

precision operations when the data access time for global memory is greater than

the time for arithmetic operations. This method is also effective for reducing data

transfer time between CPU and GPU via the PCIe bus and inter-node communi-

cation time on GPU clusters. The theoretical peak bandwidth of the PCIe 2.0 x16

is 8GB/s for each direction, which is much slower than that of global memory, and

therefore, the bandwidth may become an application performance bottleneck.
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Figure 2.4: Triple-precision operations using DD arithmetic on GPUs

However, this method does not offer an advantage in computationally bound

operations, except that it saves global memory space. In such a case, the peak per-

formance is equal to that of the quadruple-precision operation using DD arithmetic.

In addition, this method wastes register space compared to the triple-precision arith-

metic using D+S arithmetic.

2.3.4 D+I-type Triple-Precision Floating-Point Format

The D+S-type triple-precision floating-point format has an 8-bit exponent, which

is less than the 11-bit exponent of the IEEE’s double-precision format and the DD-

type format. This may become a problem resulting in over- or underflow when the

data is converted to the D+S-type format from the double- and quadruple-precision

formats.

The Double+Int (D+I)-type triple-precision floating-point format shown in Fig-

ure 2.5 is proposed to address this problem. The arithmetic operations are assumed

to be computed using DD arithmetic as in the case of the D+S-type values. The
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D+I type Triple Precision	


Lower-part (32-bit integer)	
Higher-part (binary64)	
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sign (1 bit)	
 exponent	
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Figure 2.5: D+I-type triple-precision floating-point format

D+I-type format uses a 32-bit integer value to store the lower part of the DD-type

format rather than the single-precision value of the D+S-type format. The top 32

bits of the lower part of the DD-type format, which is stored in a double-precision

value, are stored in the 32-bit integer value, i.e., the top 32 bits include the sign

bit (1 bit), the exponent bits (11 bits), and the significand of the top 20 bits of the

double-precision value. The total significand precision of the D+I-type format is

52 + 20 = 72 bits (73 bits, including the implicit bits) and the exponent is 11 bits:

it is increased to the same width as that of the double-precision and the DD-type

format. However, the significand is decreased by 3 bits compared to the D+S-type.

Typecastings between D+I- and DD-type values can be implemented using the

union definition of the C language and logical shift operations. Listing 2.1 shows the

typecasting function from the DD- to D+I-type format. The function refers to the

lower double-precision floating-point value of the DD-type value as a 64-bit integer

value, and cuts down the lower 32 bits by a logical right-shift operation, while the

top 32 bits are stored in a 32-bit integer value. Lines 14–23 in Listing 2.1 perform

rounding to the nearest even, which is the most accurate and is the default rounding

mode in the IEEE standard. When the rounding operation is skipped it rounds to

zero. Rounding to the nearest even allows error within 0.5 ulp and rounding to

zero allows error within 1 ulp. The typecasting function from D+I- to the DD-type

format shown in Listing 2.2 refers to the lower 32-bit integer value of the D+I-type

value as a 64-bit integer value, left-shifts the bit data, and stores the bit data in a

double-precision floating-point value using the union definition.
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Listing 2.1: Conversion from DD-type to D+I-type

1 union doub l e in t64 {
2 i n t 6 4 t i n t 6 4 ;

3 double double ;

4 } ;
5

6 h o s t d e v i c e f o r c e i n l i n e void dd to d i

7 ( double2 dd , double &d , i n t 3 2 t &i ) {
8 union doub l e in t64 u ;

9 i n t 6 4 t odd , border ;

10

11 u . double = dd . y ;

12 l = ( i n t 3 2 t ) ( u . i n t 6 4 >> 32 ) ;

13

14 odd = u . i n t 6 4 & 0xFFFFFFFF;

15 border = 0x80000000 ;

16

17 i f ( odd < border ) {
18 }
19 else i f ( odd > border ) {
20 i++;

21 } else {
22 i f ( i&1 == 1) i++;

23 }
24 d = dd . x ;

25 }

2.4 Implementation of Triple- and Quadruple-

Precision BLAS Subroutines on GPUs

Several frequently used low-level kernel operations on basic linear algebra opera-

tions, such as matrix multiplication, are defined as Basic Linear Algebra Subpro-

grams (BLAS) [20], which is an application programming interface (API) for basic

linear algebra operations. The BLAS is a de facto standard that has various imple-

mentations on different architectures, not only according to computer vendors [34],

but also based on open source projects [35]. The BLAS subroutines are classified
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Listing 2.2: Conversion from D+I-type to DD-type

1 h o s t d e v i c e f o r c e i n l i n e void d i t o dd

2 (double d , i n t 3 2 t i , double2 &dd) {
3 union doub l e in t64 u ;

4 i n t 6 4 t l ;

5

6 l = ( i n t 6 4 t ) i ;

7 u . i n t 6 4 = l << 32 ;

8

9 dd . x = d ;

10 dd . y = u . double ;

11 }

into three level operations: 1, 2, and 3. Level-1 contains vector-vector operations

such as AXPY (y = αx + y). Level-2 contains matrix-vector operations such as

GEMV (y = αAx+βy). Level-3 contains matrix-matrix operations such as GEMM

(C = αAB + βC).

To evaluate the performance of linear algebra operations on triple- and quadruple-

precision, I will implement representative BLAS subroutines of three levels: AXPY,

GEMV, and GEMM and evaluates their performance on GPUs.

2.4.1 DD Arithmetic Functions

The DD arithmetic functions that perform the quadruple-precision addition and

multiplication are implemented as CUDA device functions. These functions are

defined as an inline function using the “ forceinline ” keyword to avoid a function

call overhead. The DD value is stored using a double2-type value, a vector-type

defined in CUDA. The double2-type value consists of two double-type values, and

it is handled as one 16 byte value by the CUDA compiler [36].

Listing 2.3 shows an example of the implementation of the DD multiplica-

tion. The CUDA compiler automatically replaces multiply-add operations with the

FMA instruction. To prevent the FMA instruction from altering the result of the

quadruple-precision multiplication algorithm, the built-in functions, dmul rn and

dadd rn are used for a separate multiplication and addition, respectively.
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Listing 2.3: Implementation of QuadMul

1 d e v i c e f o r c e i n l i n e void QuadMul

2 ( double2 a , double2 b , double2 &c ) {
3 double2 t ;

4 TwoProdFMA (a . x , b . x , t . x , t . y ) ;

5 t . y = dadd rn ( t . y , dadd rn

6 ( dmul rn ( a . x , b . y ) , dmul rn ( a . y , b . x ) ) ) ;

7 QuickTwoSum ( t . x , t . y , c . x , c . y ) ;

8 }

2.4.2 Implementation of BLAS Kernels

Implementation techniques for kernels for the BLAS subroutines are the same as the

general approach employed for single- or double-precision subroutines. Triple- and

quadruple-precision subroutines perform quadruple-precision floating-point arith-

metic using DD arithmetic instead of double-precision floating-point arithmetic by

calling the aforementioned DD arithmetic device functions.

On the AXPY and the GEMV, each thread computes an element of the vector

of y in parallel. On the GEMM, these threads are arranged as a two-dimensional

structure. I implemented only the general case where the input matrices are not

transposed and the input vectors are incx = incy = 1 (the increment interval for the

elements of vector x and y).

For triple-precision subroutines, the interface of triple-precision BLAS subrou-

tines uses D+S- or D+I-type triple-precision formats. However, the operations are

performed using DD arithmetic, and the temporary values for storing the intermedi-

ate results are of DD-type. In other words, the BLAS kernel is quadruple-precision,

but the interface is triple-precision. Listing 2.4 shows an example of the implemen-

tation of a triple-precision AXPY subroutine using the D+I-type format. Since the

implementation internally uses DD arithmetic, triple-precision subroutines require

typecasting between triple- and quadruple-precision formats for loading and storing

data. The “di to dd” and “dd to di” functions perform typecasting between the DI-

and DD-type formats shown in Listing 2.2 and Listing 2.1, respectively.

The GEMV and the GEMM use a blocking algorithm to access the shared mem-

ory for data reuse using an example from Nath et al.’s GEMM implementation for

the Fermi architecture [37]. The shared memory is a fast on-chip memory that can

be shared among threads in the multiprocessor and can be used as a user-managed

scratch-pad memory. Figures 2.6 and 2.7 show the implementation of the GEMV
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Listing 2.4: Triple-precision AXPY using D+I-type format

1 g l o b a l void TAXPY

2 ( int n , double a1 , int a2 , double ∗x1 , int ∗x2 ,

3 double ∗y1 , int ∗y2 ) {
4 int t i d = blockDim . x ∗ blockIdx . x + threadIdx . x ;

5 double2 ar , xr , yr ;

6

7 d i t o dd ( a1 , a2 , ar ) ;

8 while ( t i d < n) {
9 d i t o dd ( x1 [ t i d ] , x2 [ t i d ] , xr ) ;

10 d i t o dd ( y1 [ t i d ] , y2 [ t i d ] , yr ) ;

11 yr = QuadAdd (QuadMul ( ar , xr ) , yr ) ;

12 dd to d i ( yr , y1 [ t i d ] , y2 [ t i d ] ) ;

13 t i d += gridDim . x ∗ blockDim . x ;

14 }
15 }

and the GEMM, respectively. In these figures, the areas shown in black are stored

to the shared memory. NT means the number of threads in a thread block and BLK

means the GEMM blocking size. Each thread block performs the inner product

calculations in the direction of the black arrow. The optimal values of NT and BLK

are experimentally determined, based on the thread group that accessed the GPU’s

memory. For GEMV the optimal NT is 128, for GEMM the optimal BLK is 16, and

NT is 8 on both triple- and quadruple-precision subroutines.

2.4.3 Data Structures of Triple- and Quadruple-Precision

Value Arrays in Global Memory

This section discusses the optimal way to layout D+I-, D+S-, and DD-type arrays

in global memory, which in turn defines the BLAS interface.

On dense linear algebra operations, such as BLAS subroutines, the memory

access pattern is sequential. In CUDA, several memory access transactions are coa-

lesced into a single transaction when consecutive threads access consecutive memory

addresses. In particular, one memory transaction can transfer a maximum of 128

bytes at a time, provided the data is aligned to an address that is a multiple of the

memory transaction size.
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Figure 2.6: GEMV kernel

One triple-precision value is represented by a pair of 8-byte (a double-precision

floating-point value) and 4-byte value (a single-precision floating-point value on the

D+S-type or an integer value on the D+I-type): the structure, which defines one

triple-precision value, is 12 bytes. Therefore, when using an array of the structures,

which is called the array-of-structures (AoS) layout, satisfying this alignment condi-

tion is difficult. Instead, a triple-precision value array can be stored independently

using two arrays, an 8-byte and a 4-byte value array. This method is called the

structure-of-arrays (SoA) layout and can satisfy the 128-byte alignment condition.

Figure 2.8 shows the layout of D+S-type value arrays in global memory for both

AoS and SoA layouts. I used the latter SoA layout for storing triple-precision data

in global memory. This chapter presents a comparison of both layouts in the per-

formance evaluation and shows that the SoA layout performs better than the AoS

layout.

For quadruple-precision, one DD-type value is represented by two 8-byte values,

such problems do not occur. I used the AoS layout which stores one quadruple-

precision array to an array of DD-type structures.

29



2.5. PERFORMANCE PREDICTION

K	
 N	


M	


K	


Matrix A	


Matrix B	


Matrix C	


BK	


BK	


NT	


NT	


Figure 2.7: GEMM kernel

2.5 Performance Prediction

This section estimates the performance of the three BLAS subroutines: AXPY

(y = αx + y), GEMV (y = αAx + βy), and GEMM (C = αAB + βC) on the Tesla

M2050 GPU. This research assumes that test problems are square matrices of size

N ×N and vectors of length N .

2.5.1 Theoretical Peak Performance on DD Arithmetic

The three BLAS subroutines consist mainly of multiply-add operations that perform

a×b+c. All of the floating-point operations on AXPY are multiply-add operations.

For GEMV, the largest O(N2) term, a matrix-vector multiplication of Ax, all con-

sists of multiply-add operations, as does that for GEMM, the largest O(N3) term,

which is a matrix-matrix multiplication of AB. The performance of multiply-add

operations on the GPU is discussed here.

Firstly, the theoretical peak floating-point performance of the Tesla M2050 GPU

is shown. An Floating-Point Unit (FPU) of the GPU performs double-precision
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Figure 2.8: Array of Structures (AoS) layout and Structure of Arrays (SoA) layout

on D+S-type values

multiply-add operations (a× b+ c) using one FMA instruction in two cycles. There-

fore, the theoretical peak performance of double-precision multiply-add operations

is 1.15[GHz]× 14[SM]× 32[CUDACore]× (2[Flop]/2[cycle]) = 515.2[GFlops].

Quadruple-precision multiply-add operations are equivalent to 11+10=21 [Flop]

of double-precision floating-point operations using DDAddSloppy and DDMul, as

shown in Table 2.1 and require 40 cycles. Therefore, DD arithmetic requires 20

times the cycles (i.e., execution time) of double-precision arithmetic. The theoretical

peak performance of quadruple-precision multiply-add operations is 1.15[GHz] ×
14[SM]×32[CUDACore]×(21[Flop]/40[cycle]) = 270.48[GFlops] of double-precision

floating-point operations. This performance is approximately half of the theoretical

peak performance of the GPU. This is because on quadruple-precision multiply-add

operations, only one of the 21 instructions is the FMA instruction that performs

two Flops computations, while the other instructions are addition or multiplication

instructions that perform only one Flop operation.

Here, I introduce DDFlops that refer to the number of DD-type quadruple-

precision floating-point operations per second, instead of general Flops for double-

precision. Thus, quadruple-precision multiply-add operations can be defined as

2 DDFlops. Therefore, the theoretical peak performance of quadruple-precision

multiply-add operations is 1.15[GHz]×14[SM]×32[CUDACore]×(2[DDFlop]/40[cycle]) =

25.76[GDDFlops]. This is just 1/20 of the value of double-precision theoretical peak

Flops.
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2.5.2 Performance Prediction using the Bytes/Flop and

Bytes/DDFlop ratios

The Bytes/Flop ratio indicates the amount of data (bytes) required per floating-

point operation (one Flop) for a certain operation. For a processor, the ratio in-

dicates the amount of data that can be processed by a system in one Flop. When

the Bytes/Flop ratio of a BLAS subroutine is larger than that of a GPU, the per-

formance of the subroutine on the GPU is memory bound: limited by the global

memory bandwidth of the GPU. This section provides the performance prediction

of double-, triple-, and quadruple-precision BLAS subroutines on the GPU using the

ratio. The thesis uses Bytes/Flop for double-precision operations. For triple- and

quadruple-precision subroutines with DD arithmetic on GPUs, Bytes/DDFlop, i.e.,

the amount of data (bytes) required or can be processed per DD-type floating-point

operation (one DDFlop) is used.

Bytes/Flop and Bytes/DDFlop for GPU

On the Tesla M2050 GPU, the theoretical peak floating-point performances of

double- and DD arithmetic are 515.2 GFlops and 25.76 GDDFlops, respectively. The

theoretical peak memory bandwidth of global memory is 148 GB/s. Therefore, for

double-precision arithmetic operations, the Bytes/Flop ratio is 148[GB/s]/515.2[GFlops] ≈
0.29[Bytes/Flop], and for DD arithmetic operations, the Bytes/DDFlop ratio is

148[GB/s]/25.76[GDDFlops] ≈ 5.75[Bytes/DDFlop].

Bytes/Flop and Bytes/DDFlop for AXPY

On AXPY, 2N Flops computations are performed on 2N and N floating-point values

for storing and loading, respectively. For the double-precision subroutine, a floating-

point value is 8 Bytes, and therefore, the Bytes/Flop ratio is 12 Bytes/Flop. The

Bytes/Flop ratio is bigger than GPU’s Bytes/Flop ratio for double-precision, ap-

proximately 0.29 Bytes/Flop. Therefore, it can be predicted that the performance

of double-precision AXPY will be memory bound on the GPU. For the triple- and

quadruple-precision subroutines, the floating-point values are 12 and 16 Bytes, re-

spectively, and their Bytes/DDFlop ratios are 18 and 24 Bytes/DDFlop, respec-

tively. The ratios are larger than GPU’s ratio for DD arithmetic, approximately

5.75 Bytes/DDFlop, and therefore, it can be presumed that the performances of

triple- and quadruple-precision AXPY will also be memory bound on the GPU.

32



CHAPTER 2

Bytes/Flop and Bytes/DDFlop for GEMV

On GEMV, for a matrix of size N×N , 2N2+3N Flops computations are performed

on N2+2N and N for floating-point value loading and storing, respectively. For sim-

plicity, when the O(N) term is omitted, the Bytes/Flop ratio for the double-precision

subroutine is 4 Bytes/Flop. For the triple- and quadruple-precision subroutines, the

Bytes/DDFlop ratios are 6 and 8 Bytes/DDFlop, respectively. For all precision

subroutines, the ratios are larger than the corresponding GPU’s ratios. Therefore,

it can be predicted that the performances of all precision GEMV will be memory

bound on the GPU as well as AXPY.

Bytes/Flop and Bytes/DDFlop for GEMM

On GEMM, for matrices of size N × N , 2N3 + 3N2 Flops computations are per-

formed on 4N2 floating-point value load/store operations. However, in the estima-

tion, the cache is assumed to be unlimited. For simplicity, when O(N2) is omit-

ted, the Byte/Flop ratio for double-precision subroutine is 16/N Bytes/Flop and

the Bytes/DDFlop ratios for triple- and quadruple-precision subroutines are 24/N

and 32/N Bytes/DDFlop, respectively. For all precision subroutines, the ratios are

smaller than the corresponding GPU’s ratios when N > 55 and therefore, it can

be predicted that the performances of all precision GEMM will be computationally

bound on the GPU.

In conclusion, it can be predicted that AXPY and GEMV are memory bound

and GEMM is computationally bound on all precision in theory. Table 2.3 shows

the Bytes/Flop and Bytes/DDFlop ratios for three BLAS subroutines. It is ex-

pected that when the performance is memory bound, the execution times of triple-

and quadruple-precision subroutines are approximately 1.5 and 2.0 times that of the

double-precision subroutine, respectively in theory. When the performance is com-

putationally bound, the performance of triple-precision subroutines is approximately

equal to that of quadruple-precision subroutines because both subroutines perform

the same DD arithmetic and the execution time of triple- and quadruple-precision

subroutines are approximately 20 times that of the double-precision subroutine.

2.6 Performance Evaluation

This section evaluates the performance of triple- and quadruple-precision BLAS sub-

routines and comparison with the double-precision subroutines on the Tesla M2050.
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Table 2.3: Bytes/Flop and Bytes/DDFlop for BLAS subroutine

AXPY GEMV GEMM

Double-precision [Bytes/Flop] 12 4 16/N

Triple-precision [Bytes/DDFlop] 18 6 24/N

Quadruple-precision [Bytes/DDFlop] 24 8 32/N

Table 2.4: Evaluation environment

CPU Intel Xeon E5630 (2.53 GHz, Quad-Core) × 2 sockets

RAM 24 GB (DDR3)

GPU NVIDIA Tesla M2050

Video RAM 3 GB (GDDR5, ECC-enabled)

GPU Bus PCI-Express 2.0 x16

OS CentOS 6.3 (x86-64) kernel 2.6.32-279.11.1.el6.x86 64

CUDA CUDA 5.0

Compiler gcc 4.4.6 (-O3), nvcc 5.0 (-O3)

2.6.1 Evaluation Methods

Table 2.4 shows the evaluation environment. I will compare the execution times of

double-, triple-, and quadruple-precision BLAS subroutines. For double-precision

subroutines, NVIDIA CUBLAS 5.0 [34] is used. Test problems are square matrices

of size N × N with column-major order and vectors of length N . All input data

and the α and β parameters comprise random numbers which are generated using

the DD-type random number generator function (ddrand) in the QD library. For

double- and triple-precision, the DD-type random numbers are converted to each

precision.

To accurately evaluate the performance, a subroutine is repeatedly executed for

at least one second and at least three times and then the average execution time

is calculated. The performances of triple- and quadruple-precision subroutines are

represented using DDFlops.

2.6.2 Performance Comparison of Double-, Triple- and

Quadruple-Precision BLAS Subroutines

This section shows the DDFlops performance of triple- and quadruple-precision sub-

routines. In addition, the relative execution times for triple- and quadruple-precision
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subroutines are presented as a multiple of the execution time of the double-precision

subroutines of CUBLAS.

AXPY

Figures 2.9 and 2.10 show the DDFlops performance and relative execution times,

respectively. Although the triple- and quadruple-precision operations require 20

times the double-precision floating-point instructions of the double-precision opera-

tion, the actual execution times for triple- and quadruple-precision subroutines are

close to 1.5 and 2.0 times, respectively, as expected in Section 2.5. However, when

N < 10, 000, no performance gap exists due to the kernel generation overhead be-

cause the execution time of an empty kernel is approximately equal to that of AXPY

when N < 10, 000. The performance of triple-precision subroutines using the D+S-

and D+I-type formats is also approximately the same.

GEMV

Figures 2.11 and 2.12 show the DDFlops performance and relative execution times,

respectively. As was the case for AXPY, it can be predicted that the performance

of GEMV is memory bound on all precisions on the GPU in Section 2.5. As a

result, the execution times for triple- and quadruple-precision subroutines are close

to 1.5 and 2.0 times that of the double-precision subroutine, respectively. The

relative execution times for triple- and quadruple-precision subroutines decrease as

N increases because the throughput of the triple- and quadruple-precision GEMV

kernel is less than that of the double-precision subroutine of CUBLAS for small

vectors and matrices.

GEMM

Figures 2.13 and 2.14 show the DDFlops performance and relative execution times,

respectively. It can be predicted that the performance of GEMM is computation-

ally bound for all precisions on the GPU as expected in Section 2.5. Therefore,

the performance of triple-precision subroutines is approximately equal to that of

quadruple-precision subroutines because both subroutines perform the same DD

arithmetic. When N = 2, 048, quadruple-precision GEMM attains approximately

22.4 GDDFlops and reaches approximately 87% of 25.76 GDDFlops which is the

theoretical peak performance. On the other hand, the performance of CUBLAS’s

double-precision GEMM is approximately 313.4 GFlops and only reaches approxi-

mately 61% of the theoretical peak performance. Tan et al. [33] reported the dif-
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Figure 2.9: Performance of triple- and quadruple-precision AXPY (DDFlops: DD-

type floating-point operations per second)
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Figure 2.10: Relative execution time of AXPY (value is the multiple of the execution

time of the double-precision subroutine)
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Figure 2.11: Performance of triple- and quadruple-precision GEMV (DDFlops: DD-

type floating-point operations per second)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  2000  4000  6000  8000  10000

R
el

at
iv

e 
E

xe
cu

tio
n 

T
im

e

N

GEMV (Relative Execution Time)

Double (CUBLAS)
D+S-triple
D+I-triple

DD-quadruple
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Figure 2.13: Performance of triple- and quadruple-precision GEMM (DDFlops: DD-

type floating-point operations per second)
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(Structure-of-Arrays) layouts on D+S-type triple-precision AXPY

ficulty with the optimization for double-precision GEMM on Fermi architecture

GPUs. However, the use of DD arithmetic increases the density of arithmetic

instructions per memory access and, as a result, higher execution efficiency was

achieved. Hence, the execution times for triple- and quadruple-precision subrou-

tines are approximately 14 times that of the double-precision subroutine, despite

the fact that DD arithmetic requires 20 times the execution time of double-precision

arithmetic in theory.

2.6.3 AoS Layout vs. SoA Layout

Figure 2.15 shows the performance comparison of the D+S-type triple-precision

AXPY using the AoS and SoA layouts. The performance of AXPY is memory

bound; therefore, it is greatly affected by memory access performance. This result

indicates that the time taken by the SoA layout is approximately 1.3 times less than

that of the AoS layout.

2.6.4 D+S Arithmetic v.s. DD Arithmetic

Here the performances of triple-precision GEMM using D+S and DD arithmetic are

compared.
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Figure 2.16: Performance comparison of D+S and DD arithmetic on GEMM

One D+S-type floating-point operation is defined as “1 DSFlop” and the 1 DS-

Flop per second is defined as “1 DSFlops”. For D+S arithmetic, triple-precision

multiply-add operations (2 DSFlops) are performed in 26 + 23 = 49 [cycle] on the

Tesla M2050 GPU, as shown in Table 2.2. Therefore, the theoretical peak perfor-

mance of D+S arithmetic on the GPU is 1.15[GHz] × 14[SM] × 32[CUDACore] ×
(2[DSFlop]/49[cycle]) ≈ 21.03[GDSFlops]. This value is approximately 1/1.22 times

that of the theoretical peak performance of DD arithmetic.

Figure 2.16 shows the execution times for triple-precision GEMM using D+S

and DD arithmetic on the GPU when N = 2, 048. The implementation using D+S

arithmetic is approximately 1.28 times slower than that using DD arithmetic. This

performance gap is equivalent to the theoretical peak performance gap of the D+S

and DD arithmetic of approximately 1.22 times. The performance efficiencies of

triple-precision GEMM with D+S and DD arithmetic are approximately 90% and

86% of the theoretical peak, respectively. On AXPY and GEMV, the performance

with D+S and DD arithmetic is approximately equal because the performance of

the two subroutines is memory bound.

2.6.5 Accuracy Evaluation

The results of the accuracy comparison among double-, triple-, and quadruple-

precision subroutines on GEMM are shown in Table 2.5. This table shows the

error relative to the octuple-precision result by the equivalent subroutine of MBLAS

on CPUs. In the evaluation, the input is uniform random double-precision numbers

from 0 to 1. Note that the triple-precision subroutines use DD arithmetic.
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Table 2.5: Relative error to octuple-precision result (input: uniform random num-

bers in the range of 0 to 1 in double-precision)

GEMV GEMM

N = 100 N = 1, 000 N = 100 N = 1, 000

Double-precision 2.77E-16 4.60E-16 2.70E-16 7.83E-16

D+S-type triple-precision 8.20E-25 1.36E-24 8.75E-25 1.34E-24

D+I-type triple-precision 6.36E-24 1.16E-23 6.93E-24 1.07E-23

DD-type quadruple-precision 1.92E-32 6.57E-32 2.14E-32 6.45E-32

The error of the D+I-type triple-precision is approximately eight to nine times

that of the D+S-type triple-precision because the significand bits of the D+I-type

format is 3 bits smaller than that of the D+S-type format.

2.7 Related Work

A quadruple-precision GEMM subroutine has been implemented on GPUs. Nakasato

[38] implemented this using DD arithmetic on ATI’s GPUs. Nakata et al. also im-

plemented such GEMM on an NVIDIA Tesla C2050 GPU [39]. The two papers

focused on the optimization of GEMM and achieved higher execution efficiency

than the quadruple-precision GEMM implemented in this chapter. However, there

is no implementation of the other subroutines and discussion of the performance.

I have presented the performance of all levels of BLAS subroutines on GPUs and

shown that the performance of quadruple-precision AXPY and GEMV using DD

arithmetic is memory bound.

There are BLAS implementations using DD arithmetic for CPUs. MPACK [40]

is a multiple-precision LAPACK that includes a multiple-precision BLAS, MBLAS.

MPACK uses two existing high-precision arithmetic libraries: the GNU multiple

precision library (GMP) [8] and MPFR [41] for arbitrary-precision operations, and

the QD library for octuple- and quadruple-precision operations. XBLAS [42] is

an extended precision BLAS implementation using DD arithmetic internally where

both the input and output are double-precision.
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2.8 Conclusion

This chapter showed the implementation and performance of triple- and quadruple-

precision BLAS subroutines: AXPY, GEMV and GEMM on the NVIDIA Tesla

M2050 Fermi architecture GPU. For quadruple-precision subroutines, DD arithmetic

was used. For triple-precision subroutines, I have proposed new methods to store

triple-precision floating-point values: D+S-type and D+I-type triple-precision for-

mats. The D+S-type has a 75-bit significand and 11-bit exponent, and the D+I-type

has a 72-bit significand and 8-bit exponent. I have also proposed D+S arithmetic,

but it is slower than DD arithmetic. Therefore, DD arithmetic was also used for the

computation of triple-precision values.

This chapter revealed the relative time cost of the triple- and quadruple-precision

BLAS subroutines on the GPU. On the BLAS subroutines, DD arithmetic requires

20 times the execution time of double-precision arithmetic in theory. However, since

the GPU has relatively high floating-point performance compared to the memory

bandwidth, the performance of triple- and quadruple-precision AXPY and GEMV

is limited by the bandwidth of the global memory, and the computation time of

DD arithmetic is hidden by the memory access time. As a result, the execution

times of triple- and quadruple-precision subroutines are close to 1.5 and 2 times

more than that of the double-precision subroutines, respectively. In such cases, the

triple- and quadruple-precision operations by software achieve sufficient performance

without hardware support of the triple- and quadruple-precision arithmetic. On

GEMM, the performance is computationally bound and the execution times for the

triple- and quadruple-precision subroutines are approximately 14 times that of the

double-precision subroutine because of the low execution efficiency of CUBLAS’s

double-precision subroutine. The use of DD arithmetic increases the density of

arithmetic instructions per memory access, so as a result, higher execution efficiency

was achieved.

I have proposed new methods of triple-precision operations for linear algebra

operations on GPUs as a new choice of extended precision between double- and

quadruple-precision. Triple-precision operations may be effective in cases where

double-precision is insufficient and quadruple-precision is not necessary, but triple-

precision is sufficient. The triple-precision floating-point formats that are proposed

in this paper realized a triple-precision linear algebra operation which is faster than

the quadruple-precision operation in cases where the performance of the operation

is memory bound on both triple- and quadruple-precision. In such cases, the use of

the triple-precision formats reduces the data size and the execution time to 3/4 that

of quadruple-precision formats. It is predicted that memory bandwidth bottleneck
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will be tight in exascale computing [43]. In other words, the Bytes/Flop ratio of

processors and systems is becoming smaller. In such environments, many operations

are becoming memory bound rather than computationally bound. For GPU clusters,

the bandwidth of the PCI Express bus (PCIe) is 8 GB/s; therefore, the performance

of the internode communication between GPUs may be limited by the bandwidth of

PCIe. Moreover, in large-scale computing, an accumulation of rounding errors can

become a more serious problem. Therefore, triple-precision floating-point operations

are predicted necessary for the emerging exascale computing era.

For future work, the performance evaluation and the utilization of triple- and

quadruple-precision operations in actual applications is expected.
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Optimization of Sparse

Matrix-vector Multiplication on

NVIDIA Kepler Architecture

GPUs

3.1 Introduction

Sparse Matrix-Vector multiplication (SpMV), that performs y = Ax (where x and

y are vectors and A is a sparse matrix) is one of the most important operations in

scientific and engineering computing. In general, in order to save memory, a sparse

matrix is stored in two kinds of arrays: a data array which only stores the non-zero

elements of the matrix and index arrays which store the addresses of the non-zero

elements. Thus, sparse matrix operations require indirect memory access which is

complex compared to the dense operations. Moreover, various kinds of distribu-

tions of the non-zero elements are considered. Therefore, efficient implementation

of SpMV requires a large number of optimization techniques.

This chapter presents optimization techniques for SpMV for the Compressed

Row Storage (CRS) format on NVIDIA Kepler architecture GPUs using CUDA.

The CRS format is one of the most widely used storage formats for sparse matrices.

In the CRS format, a sparse matrix is stored into the data array by scanning the

matrix in the row direction and two index arrays: an index array, which represents

the column number of the non-zero elements in the data array, and a pointer array,

which points to the first non-zero element of each row (see Figure 3.1).

Various storage schemes have been proposed for GPUs. For example, Bell and
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v  a sparse matrix is stored into “val” by scanning the 
matrix in the row direction 

     val = {8, 9, 4, 5, 7, 5, 6, 2, 6, 7, 9, 6, 2, 2, 7, 2, 8} 
     
                1,     ...     5,    ...    , 9, . ,11,  ..  ,14,15, .. 18 

v “ptr” points to the first non-zero element of each row 
      ptr = {1, 5, 9, 11, 14, 15, 18} 

v  “ind” represents the column number of the non-zero elements in the data array 
        ind = {1, 2, 5, 6, 2, 3, 4, 5, 2, 4, 1, 4, 6, 3, 3, 4, 5} 

Figure 3.1: CRS format

Garland [44] proposed a new storage format, HYB (Hybrid), which combines the

existing ELL (Ellpack) and COO (Coordinate) formats and was implemented on

GPUs. The HYB format outperforms the CRS format. Many other storage schemes

have been implemented on GPUs so far [45] [46] [47]. On the other hand, an auto-

tuning method is effective for SpMV since the optimal storage scheme is dependent

upon the distribution of the non-zero elements of the matrix. For instance, Kub-

ota and Takahashi [48] presented an auto-tuning method which selects the optimal

storage format using a percentage and variability of non-zero elements.

However, an SpMV routine for the CRS format that can perform well for a wide

variety of matrices is still necessary, especially in numerical libraries. It may be

necessary to convert the storage format from CRS to other formats in some cases.

On auto-tuning methods, it may be necessary to scan the matrix to determine the

optimal storage format in advance. In fact, the SpMV routine for the CRS format is

still provided in various numerical libraries such as the NVIDIA cuSPARSE library

[22] for sparse matrix operations on GPUs for CUDA environments.

In this chapter, I will implement a fast SpMV routine for the CRS format for

Kepler architecture GPUs. The implementation is based on an existing method

proposed for the Fermi architecture, which is an earlier generation of the GPU, and

takes advantage of some of the new features of the Kepler architecture. This chapter

will be organized as follows: Section 3.2 will describe related work. Section 3.3 will

briefly introduce the Kepler architecture. Section 3.4 will describe the implementa-

tion. Section 3.5 will show the effects of the optimization techniques and compare

the performance of the SpMV routine to the NVIDIA cuSPARSE library. Finally,

Section 3.6 will conclude this chapter.
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3.2 Related Work

Two methods to implement SpMV for the CRS format on GPUs have been presented

by Bell and Garland [44]. The first one, the CRS-scalar method, performs the

calculation of each row of a matrix (calculation of one element of the vector y in

y = Ax) using one thread per row. The second method, the CRS-vector method,

assigns multiple threads to calculate a single row. The CRS-scalar method can be

easily implemented with minimum changes from the CPU code, but it may be not

suitable for efficient memory access on GPUs. On GPUs, several memory access

transactions are coalesced into a single transaction when consecutive threads access

consecutive memory addresses. The CRS-vector method can offer more efficient

memory access patterns than the CRS-scalar method. Bell and Garland allocated

32 threads for the calculation of one row.

In the CRS-vector method, if the number of non-zero elements per row is less

than 32, reducing the number of calculation threads per row may improve the per-

formance. Baskaran and Bordawekar [49] used 16, instead of 32, threads to compute

a row with CRS-vector. Guo and Wang [50] proposed a method that switches the

number of threads to either 16 or 32 based on the characteristics of the input ma-

trix. El Zein and Rendell [51] switched between the CRS-scalar and CRS-vector

methods based on the number of non-zero elements per row. Reguly and Giles

[52] improved the performance of the CRS-vector method by selecting the optimal

number of threads from among 1, 2, 4, 8, 16 and 32 in proportion to the average

number of non-zero elements per row. Furthermore, Yoshizawa and Takahashi [53]

selected the optimal number of threads from among 1, 2, 4, 8, 16 and 32 based on

the maximum number of non-zero elements per row. The strategy of varying the

number of threads from 1–32 based on the number of non-zero elements per row is

effective. The average-based approach is preferred because the average number of

non-zero elements per row can be calculated without pre-scanning the input matrix.

Therefore, the implementation is based on Reguly and Giles’s method.

The Kepler architecture was launched by NVIDIA in 2012. Davis and Chung

[54] compared the performance of the Kepler and the Fermi, which is an earlier

generation of GPU, using the GeForce series of GPUs. Their report shows that

the Kepler is slower than the Fermi, but they used the same program on the both

GPUs. Most existing reports have focused on an earlier generation of GPU. There is

no research regarding the implementation and evaluation of optimization techniques

for the Kepler architecture of GPUs. I will target a Tesla K20 GPU which is based

on the Kepler architecture.
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Figure 3.2: Thread mapping for the cases of NT=1, 2 and 4 on the CRS-vector

method

3.3 Kepler architecture GPUs

An overview of the Kepler architecture can be found in the White Paper [19] by

NVIDIA. The most major change from the previous generation of Fermi architecture

GPUs is that the streaming multiprocessor, called SM on the Fermi architecture, has

been replaced with an updated version called SMX. The SM has 32 CUDA cores,

but that number has been increased to 192 on the SMX. As a result, the maximum

number of warps, threads, and thread blocks per multiprocessor have also increased.

MaxGridDimX (the number of thread blocks in the x-direction that can be defined

in a grid) has also increased from 65,535 to 2,147,483,647. In addition, the total

number of registers has doubled to 65,536 and the total number of registers available

to a thread has also increased from 63 to 255. Moreover, the execution efficiency

of double-precision operations has been improved from the Fermi architecture by

improving the warp scheduler.

On the other hand, the Kepler architecture supports some new features. Among

them, a new 48KB read-only data cache and new shuffle instructions will be expected

to improve the performance of SpMV. The 48KB read-only data cache can only be

used to load data that does not change the value during the kernel execution. This

cache was accessible by using the texture unit on earlier generations of GPUs, but

has seen major improvements on the Kepler architecture. The shuffle instructions

are new instructions used to access a value different threads in the same warp. I

will utilize the 48KB read-only data cache, shuffle instructions and expansion of the

MaxGridDimX to optimize SpMV on the Kepler architecture. The next section will

explain the details of the three optimization techniques.
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3.4 Implementation

This section describes the implementation. The SpMV routine, implemented using

double-precision, computes y = αAx + βy, which is compatible with the SpMV

routine of the cuSPARSE library. The implementation is based on Reguly and

Giles’s method which is based on the CRS-vector method and selects the number of

threads for the calculation of a single row (NT) from among NT = 1, 2, 4, 8, 16 and

32 in proportion to the average number of non-zero elements per row. The average

number of non-zero elements per row is available in advance without pre-scanning

the input matrix.

Figure 3.2 shows a conceptual diagram of the thread mapping for the cases of

NT=1, 2 and 4 on the CRS-vector method. When NT=1, it is equivalent to the

CRS-scalar method. The CRS-vector method computes an inner product in the row

direction using multiple threads. In Figure 3.2, “iteration” means a loop in the row

direction. The NT can be up to 32 because thread synchronization is not required

within a warp (=32 threads). Listing 3.1 shows the host code. In the host code, the

NT is determined and the kernel codes for each NT are called.

Listing 3.2 shows the kernel code for the Fermi architecture. I further optimized

the implementation for the Kepler architecture by (1) using the 48KB read-only data

cache, (2) avoiding the outermost loop, (3) using shuffle instructions. Listing 3.3

shows the kernel code optimized for the Kepler architecture. Note that, the second

for-loop in the kernel codes (Listings 3.2 and 3.3) is unrolled since the number of

iterations which is the same as NT is determined in advance of the kernel launch. The

following subsections will explain the details of the three optimization techniques

for the Kepler architecture.

3.4.1 48KB Read-only Data Cache

The 48KB read-only data cache can be applied only to data that does not change

the value during the execution of a kernel. The cache can be accessed via a tex-

ture unit by mapping data in global memory to texture memory, which can also

be done on the earlier Fermi generation architecture as shown in Listing 3.2, but

before Kepler using the cache required complex programs and had many limitations.

However, starting with the Kepler architecture, the cache can be accessed directly

from the SM with general load operations. Reading through the read-only data

cache is performed using an independent path of the L1 cache path. The read-only

data cache is automatically managed by the CUDA compiler by using “const” and

“ restrict ” qualifiers to direct the compiler to pass data in this read-only cache
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Listing 3.1: Host code of SpMV

1 int SpMV (char trans , int m, int n , int nnz , double alpha ,

2 double ∗ a va l , int ∗ a ptr , int ∗ a idx , double ∗x ,

3 double beta , double ∗y ) {
4 int NT, ntx , nbx ;

5 f loat nnzrow = ( f loat ) nnz /( f loat )m;

6 NT = max(1 , min (32 , ( int )pow ( 2 . , c e i l ( l og2 ( nnzrow ) ) ) ) ) ;

7 ntx = 128 ;

8 nbx = m / ( ntx / NT) + ( (m % ( ntx / NT) ) != 0 ) ;

9 dim3 threads ( ntx ) ;

10 dim3 gr id (nbx ) ;

11 i f ( t rans == ’N ’ ) {
12 i f (NT == 32) {
13 cudaFuncSetCacheConfig ( SpMV kernel32 ,

14 cudaFuncCachePreferL1 ) ;

15 SpMV kernel32 <<< gr id , threads >>>

16 (m, alpha , a va l , a ptr , a idx , x , beta , y ) ;

17 } else i f (NT == 16) {
18 . . . .

19 } else i f (NT == 2) {
20 . . . .

21 } else {
22 . . . .

23 }
24 }
25 }

as arguments to kernel functions. The implementation utilized the 48KB read-only

data cache to read the vector x from the global memory in the implementation.

3.4.2 Avoid Outermost Loop

On the Kepler architecture, MaxGridDimX (the number of thread blocks that can

be defined in the direction of dimension x in a grid) was extended from 65,535 to

2,147,483,647. As a result, the implementation can avoid the outermost loop in the

CRS-vector method to calculate an index of a vector by using a thread ID and a

thread block ID.
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Listing 3.2: Kernel code of SpMV for the Fermi architecture

1 t ex ture <int2 , cudaTextureType1D ,

2 cudaReadModeElementType> tex x ;

3 stat ic i n l i n e d e v i c e double f e t c h x ( const int &i ) {
4 register i n t 2 v = tex1Dfetch ( tex x , i ) ;

5 return h i l o i n t 2 d oub l e ( v . y , v . x ) ;

6 }
7

8 g l o b a l void SpMV kernelNT Fermi ( int m, double alpha ,

9 double ∗ a va l , int ∗ a ptr , int ∗ a idx ,

10 double ∗x , double beta , double ∗y ) {
11 int i ;

12 int tx = threadIdx . x ;

13 int t i d = blockDim . x ∗ blockIdx . x + tx ;

14 int rowid = t i d / NT;

15 int l ane = t i d % NT;

16 s h a r e d double va l s [ 1 2 8 ] ;

17 while ( rowid < m) {
18 va l s [ tx ] = 0 . 0 ;

19 for ( i = a pt r [ rowid ] + lane ;

20 i < a pt r [ rowid + 1 ] ; i += NT)

21 va l s [ tx ] += a va lue [ i ] ∗ f e t c h x ( a index [ i ] ) ;

22 for ( i = NT / 2 ; i > 0 ; i >>= 1)

23 va l s [ tx ] += va l s [ tx + i ] ;

24 i f ( lane == 0)

25 y [ rowid ] = alpha ∗ va l s [ tx ] + beta ∗ y [ rowid ] ;

26 sync th r ead s ( ) ;

27 rowid += gridDim . x ∗ blockDim . x / NT;

28 }
29 }

In the CRS-vector method, RowMax, the maximum dimension of a matrix that

can be calculated, is obtained by setting RowMax = MaxGridDimX × BlockDim.x

/ NT. “BlockDim.x” means the number of threads for the x dimension in a thread

block. In the implementation, the optimal size of the BlockDim.x is 128. Row-

Max becomes minimum when NT = 32. Thus on the Fermi architecture, RowMax
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Listing 3.3: Kernel code of SpMV for the Kepler architecture

1 g l o b a l void SpMV kernelNT Kepler ( int m, double alpha ,

2 double ∗ a va l , int ∗ a ptr , int ∗ a idx ,

3 const double ∗ r e s t r i c t x ,

4 double beta , double ∗y ) {
5 int i , int va l h i , v a l l o ;

6 int tx = threadIdx . x ;

7 long long t i d = blockDim . x ∗ blockIdx . x + tx ;

8 long long rowid = t i d / NT;

9 int l ane = t i d % NT;

10 double va l ;

11 i f ( rowid < m) {
12 va l = 0 . 0 ;

13 for ( i = a pt r [ rowid ] + lane ;

14 i < a pt r [ rowid + 1 ] ; i += NT)

15 va l += a va l [ i ] ∗ x [ a idx [ i ] ] ;

16 for ( i = NT / 2 ; i > 0 ; i >>= 1) {
17 v a l h i = doub l e 2h i i n t ( va l ) ;

18 v a l l o = doub l e 2 l o i n t ( va l ) ;

19 va l += h i l o i n t 2 d oub l e (

20 s h f l x o r ( va l h i , i , 32) ,

21 s h f l x o r ( va l l o , i , 3 2 ) ) ;

22 }
23 i f ( lane == 0)

24 y [ rowid ] = alpha ∗ va l + beta ∗ y [ rowid ] ;

25 }
26 }

= 65, 535× 128/32 = 262, 140. In order to compute a vector longer than 262,140, it

is necessary to recalculate the vector’s address using a loop: recalculation of rowid

and the outermost while-loop are required as shown in Listing 3.2 instead of the

outermost if-statement in Listing 3.3. In addition, a thread synchronization instruc-

tion was required when using shared memory for reduction (the implementation can

avoid this thread synchronization by declaring the shared memory with the volatile

suffix, but this method performs worse than using thread synchronization).

On the other hand on the Kepler architecture, RowMax has increased: RowMax

51



3.5. PERFORMANCE EVALUATION

= 2, 147, 483, 647 × 128/32 = 8, 589, 934, 588. The capacity of global memory on

current GPUs is less than 10GB. RowMax is equivalent to a 32GB single-precision

vector. Therefore, MaxGridDimX on the Kepler architecture is sufficient to point

to the index of any vector that can be loaded with current GPUs and the outermost

loop is not required.

3.4.3 Shuffle Instruction

The CRS-vector method computes a reduction at the second for loop shown in List-

ing 3.3. When NT ≥ 2 on the CRS-vector method, the NT threads perform the

reduction within a single warp. On the earlier architectures, the operation must be

performed using shared memory to exchange values among the threads in a warp.

The Kepler architecture can access a value on any other thread within the warp

without shared memory by using shuffle instructions. There are 4 types of shuffle

instructions that are supported starting with Kepler: indexed any-to-any ( shfl),

shift right to N-th neighbour ( shfl up), shift left to N-th neighbour ( shfl down)

and butterfly (XOR) exchange ( shfl xor). Whereas shared memory requires sep-

arate load and store steps, shuffle instructions reduce this to a single step, and thus

it can be expected that the shuffle instructions will outperform the equivalent shared

memory instructions.

The implementation used the butterfly exchange shuffle instruction for the re-

duction. Because the shuffle instructions support only a 32-bit value, moving 64-bit

data requires two 32-bit movements. A 64-bit double value is converted into two 32-

bit integer values and exchanged the two 32-bit values with the shuffle instruction,

and then the result, which consists of the two 32-bit integer values, is converted to

a single 64-bit double value.

3.5 Performance Evaluation

3.5.1 Evaluation Methods

I used an NVIDIA Tesla K20 Kepler architecture GPU. The evaluation environment

is shown in Table 3.1. The “-arch sm 35” compiler flag for nvcc is required in

order to use the features of the Kepler architecture. This section evaluated the

GPU kernel execution time. To measure the performance accurately, a routine is

repeatedly executed for at least one second at least 3 times, then computed the

average execution time.
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Table 3.1: Evaluation Environment

CPU Intel Xeon E3-1230 3.20GHz

RAM 16 GB (DDR3)

OS CentOS 6.3 (kernel: 2.6.32-279.14.1.el6.x86 64)

GPU Tesla K20 (5GB, GDDR5, ECC-enabled)

CUDA CUDA 5.0 (Driver version: 304.54)

Compiler gcc 4.4.6 (-O3), nvcc 5.0 (-O3 -arch sm 35)

All input values other than the matrix A are composed of uniform random num-

bers. For the input sparse matrices, 200 matrices are randomly selected from the

University of Florida Sparse Matrix Collection [21]. The selected matrices are all

real square matrices that have a different number of non-zero elements or a differ-

ent number of rows. The number of rows varies between 1,813–5,558,326, and the

number of non-zero elements varies between 4,257–117,406,044.

In order to investigate the effect of each optimization technique for the Kepler

architecture used in this research, I implemented and evaluated the following five

implementations:

• Ver. Fermi: Optimized for the Fermi architecture (does not use Vers. A–C

optimizations)

• Ver. A: Only using 48KB read-only data cache

• Ver. B: Only avoiding outermost loop

• Ver. C: Only using shuffle instruction

• Ver. Kepler: Optimized for the Kepler architecture (uses Vers. A–C optimiza-

tions)

Ver. Fermi is optimized for the Fermi architecture and is the same implemen-

tation shown in Listing 3.2. Vers. A–C is applied each optimization one by one.

Note that Ver. Fermi, B, and C take advantage of the texture cache by mapping

the data on global memory to texture memory for loading the vector x, like on the

Fermi architecture. Ver. A and Ver. Kepler use the read-only data cache instead of

the texture cache. Ver. Kepler is the final version and is optimized for the Kepler

architecture and is the same implementation shown in Listing 3.3.
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Figure 3.3: Flops performance for the cases with the 4 largest and 4 smallest speedup

of Ver. A (only using 48KB read-only data cache) to Ver. Fermi

Table 3.2: Properties of the matrices shown in Figure 3.3

Matrix Rows Nonzeros % of Nonzeros Nonzeros/Row NT

mult dcop 02 25187 193276 0.03050 7.67 8

shermanACb 18510 145149 0.04240 7.84 8

dc2 116835 766396 0.00561 6.56 8

ckt11752 dc 1 49702 333029 0.01350 6.70 8

... ... ... ... ... ...

gsm 106857 589446 21758924 0.00626 36.91 32

thermomech dM 204316 1423116 0.00341 6.97 8

shallow water1 81920 327680 0.00488 4.00 4

parabolic fem 525825 3674625 0.00133 6.99 8

3.5.2 Result

Ver. A: only using 48KB read-only data cache

Figure 3.3 shows the Flops performance for the cases with the 4 largest and 4

smallest speedup of Ver. A to Ver. Fermi on the 200 matrices. Table 3.2 shows the

properties of the 8 matrices. The maximum speedup of Ver. A to Ver. Fermi is
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Figure 3.4: Flops performance for the cases with the 4 largest and 4 smallest speedup

of Ver. B (only avoiding outermost loop) to Ver. Fermi

Table 3.3: Properties of the matrices shown in Figure 3.4

Matrix Rows Nonzeros % of Nonzeros Nonzeros/Row NT

cage15 5154859 99199551 0.00037 19.24 32

cage13 445315 7479343 0.00377 16.80 32

olesnik0 88263 744216 0.00955 8.43 16

turon m 189924 1690876 0.00469 8.90 16

... ... ... ... ... ...

hcircuit 105676 513072 0.00459 4.86 8

Pd 8081 13036 0.01996 1.61 2

poli large 15575 33074 0.01363 2.12 4

adder dcop 40 1813 11246 0.34214 6.20 8

approximately 1.78 times on “mult dcop 02” and on the others on the top 4 cases

also attain approximately 1.77 – 1.78 times speedups. Except the worst case of

0.98 times speed down on “parabolic fem”, all the other cases on the 200 matrices

attain speedup. On the Kepler architecture using the read-only cache improves

the performance when compared to the implementation using the texture cache by

accessing via a texture unit by mapping data in global memory to texture memory,
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Figure 3.5: Flops performance for the cases with the 4 largest and 4 smallest speedup

of Ver. C (only using shuffle instruction) to Ver. Fermi

Table 3.4: Properties of the matrices shown in Figure 3.5

Matrix Rows Nonzeros % of Nonzeros Nonzeros/Row NT

2cubes sphere 101492 1647264 0.01599 16.23 32

torso3 259156 4429042 0.00659 17.09 32

FEM 3D thermal2 147900 3489300 0.01595 23.59 32

cfd2 123440 3087898 0.02027 25.02 32

... ... ... ... ... ...

dw2048 2048 10114 0.24114 4.94 8

bwm2000 2000 7996 0.19990 4.00 4

m3plates 11107 6639 0.00538 0.60 1

Pd 8081 13036 0.01996 1.61 2

like on the Fermi architecture.

Ver. B: only avoiding outermost loop

Figure 3.4 shows the Flops performance for the cases with the 4 largest and 4

smallest speedup of Ver. B to Ver. Fermi on the 200 matrices. Table 3.3 shows the
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Figure 3.6: Flops performance for the cases with the 4 largest and 4 smallest speedup

of Ver. Kepler to Ver. Fermi

Table 3.5: Properties of the matrices shown in Figure 3.6

Matrix Rows Nonzeros % of Nonzeros Nonzeros/Row NT

circuit5M 5558326 59524291 0.00019 10.71 16

mult dcop 02 25187 193276 0.03047 7.67 8

circuit 3 12127 48137 0.03273 3.97 4

shermanACb 18510 145149 0.04236 7.84 8

... ... ... ... ... ...

shallow water1 81920 327680 0.00488 4.00 4

appu 14000 1853104 0.94546 132.36 32

bcsstm35 30237 20619 0.00226 0.68 1

nd24k 72000 28715634 0.55393 398.83 32

properties of the 8 matrices. The maximum and minimum speedups of Ver. B to Ver.

Fermi are approximately 1.22 times on “cage15” and 0.99 times on “adder dcop 40”,

respectively. It is expected that avoiding the outermost loop is effective especially

when Rows > 262, 140, however, the clear relation between Rows and the effect was

not found.
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Figure 3.7: Flops performance for the cases with the 4 largest and 4 smallest speedup

of Ver. Kepler to cuSPARSE’s subroutine

Table 3.6: Properties of the matrices shown in Figure 3.7

Matrix Rows Nonzeros % of Nonzeros Nonzeros/Row NT

c-33 6317 56123 0.14064 8.88 16

memplus 17758 126150 0.04000 7.10 8

add20 2395 17319 0.30193 7.23 8

fp 7548 848553 1.48941 112.42 32

... ... ... ... ... ...

mult dcop 02 25187 193276 0.03047 7.67 8

bloweya 30004 150009 0.01666 5.00 8

dc2 116835 766396 0.00561 6.56 8

boyd2 466316 1500397 0.00069 3.22 4

Ver. C: only using shuffle instruction

Figure 3.5 shows the Flops performance for the cases with the 4 largest and 4

smallest speedup of Ver. C to Ver. Fermi on the 200 matrices. Table 3.4 shows the

properties of the 8 matrices. The maximum and minimum speedups of Ver. C to

Ver. Fermi are approximately 1.27 times on “2cubes sphere” and approximately 0.99
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times on “Pd”, respectively. On the top 4 matrices, the NT, which is the number of

threads for the calculation of a single row, is 32 and larger than that on the 4 worst

cases. The implementation selects the NT from among 1–32 in proportion to the

Nonzeros/Row and the use of the shuffle instruction increases in proportion to the

NT. Therefore, the effect of the shuffle instruction is relatively high on the matrices

which have relatively large Nonzeros/Row.

Ver. Kepler: final version for Kepler architecture (uses three optimiza-

tions)

Figure 3.6 shows the Flops performance for the cases with the 4 largest and 4

smallest speedup of Ver. Kepler to Ver. Fermi on the 200 matrices. Table 3.5 shows

the properties of the 8 matrices. The maximum and minimum speedups of Ver.

Kepler to Ver. Fermi are approximately 1.78 times on “circuit5M” and 1.04 times

on “nd24k”, respectively.

On the other hand, Ver. Kepler outperforms cuSPARSE’s subroutine for 174 of

the 200 matrices. Figure 3.7 shows the Flops performance for the cases with the

4 largest and 4 smallest speedup of Ver. Kepler to cuSPARSE’s subroutine on the

200 matrices. Table 3.6 shows the properties of the 8 matrices. The maximum and

minimum speedups of Ver. Kepler to cuSPARSE’s subroutine are approximately

7.60 times on “c-33” and 0.07 times on “boyd2”, respectively.

3.6 Conclusion

This chapter presented optimization techniques for SpMV for the CRS format on

NVIDIA Kepler architecture GPUs using CUDA. The implementation is based on

the existing method proposed for the Fermi architecture, an earlier generation of

GPUs, and takes advantage of three new features of the Kepler architecture: a

48KB read-only data cache, shuffle instructions and expanding the MaxGridDimX.

On the Tesla K20 Kepler architecture GPU on double-precision operations, the

implementation optimized for the Kepler architecture is approximately 1.04 – 1.78

times faster than the implementation optimized for the Fermi architecture for the 200

matrices which are randomly selected from the University of Florida Sparse Matrix

Collection. Especially, the use of read-only cache obtained the biggest speedup

among the tree optimizations with minor code change. On programs using the

texture cache implemented for the Fermi architecture, the read-only cache should

be used instead of the texture cache. Furthermore, I has showed the implementation

outperforms the SpMV routine for the CRS format of the cuSPARSE 5.0 for 174 of
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the 200 matrices, and it is up to approximately 1.45 times faster than the SpMV

routine. It can be concluded that the techniques shown in this chapter are effective

for implementing a fast SpMV routine for the CRS format on Kepler architecture

GPUs.
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Chapter 4

Krylov Subspace Methods using

Quadruple-Precision Arithmetic

on GPUs

4.1 Introduction

The convergence of the Krylov subspace methods, which are iterative methods for

solving linear systems, is significantly affected by rounding errors. Thus, there are

cases where reducing rounding errors with quadruple-precision floating-point arith-

metic causes the algorithm to converge more quickly when compared to double-

precision arithmetic [3]. The Krylov subspace methods are an example of an appli-

cation that requires extended precision arithmetic. This chapter will describe the

implementation and performance evaluation of two Krylov subspace methods: the

Conjugate Gradient (CG) and Bi-Conjugate Gradient Stabilized (BiCGStab) when

using quadruple-precision arithmetic on an NVIDIA Tesla K20 GPU.

Krylov subspace methods are often used to solve large sparse linear systems

Ax = b. Figures 4.1 and 4.2 [55] show the algorithms for the CG and BiCGStab

methods, respectively. The CG method is applied when the coefficient matrix A is

a symmetric positive definite matrix, and the BiCGStab method can be used when

the coefficient matrix A is asymmetric. The convergence of the Krylov subspace

methods depends on the spectral properties of the coefficient matrix. To improve

the convergence, preconditioners which approximate the coefficient matrix are often

used. In the algorithms shown in Figures 4.1 and 4.2 the preconditioning matrix

M is used. By setting M = I, the algorithms become the same as their unpre-

conditioned counterparts. This chapter will first describe the implementation of

61



4.1. INTRODUCTION

r0 = b−Ax0

for : k = 1, 2, ... do

solve Mzk−1 = rk−1

ρk−1 = 〈rk−1,zk−1〉
if k = 1 then

p1 = z0

else

βk−1 = ρk−1/ρk−2

pk = zk−1 + βk−1pk−1

end if

qk = Apk

αk = ρk−1/〈pk, qk〉
xk = xk−1 + αkpk

rk = rk−1 − αkqk

if ||rk||2/||r0||2 ≤ ε break

end for

Figure 4.1: Preconditioned CG method

the unpreconditioned methods and then will describe the implementation of the

preconditioned methods.

Using quadruple-precision arithmetic is also effective for improving convergence.

Even if the use of quadruple-precision arithmetic increases the execution time of one

iteration, the time until convergence may be reduced if the number of iterations is

reduced to the point that it compensates for the increased execution time as shown

in Figure 4.3. Although the mixed precision approach [56] generally utilizes lower

precision arithmetic to accelerate computation, however I decided to use higher

precision arithmetic to reduce the computation time by reducing the number of

required iterations.

Chapter 2 showed that the performance of quadruple-precision dense matrix-

vector multiplication is memory bound, and the execution time is only about twice

that of the double-precision operation on GPUs. Since these methods mainly consist

of Sparse Matrix-Vector multiplication (SpMV) and some vector-vector operations,

they are generally regarded as being memory-intensive. Thus, the use of quadruple-

precision arithmetic at most doubles the execution time of one iteration of the

double-precision version on GPUs.

In this chapter, I will evaluate the performance of these methods using quadruple-

precision arithmetic. Next, I will discuss how to use quadruple-precision arithmetic
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r0 = b−Ax0

r̃ = r0

for : k = 1, 2, ... do

ρk−1 = 〈r̃, rk−1〉
if ρk−1 = 0 method fails

if k = 1 then

pk = rk−1

else

βk−1 = (ρk−1/ρk−2)(αk−1/ωk−1)

pk = rk−1 + βk−1(pk−1 − ωk−1vk−1)

end if

solve pk = Mp̂

vk = Ap̂

αk = ρk−1/〈r̃,vk〉
s = rk−1 − αkvk

if ||s||2/||r0||2 ≤ ε then

xk = xk−1 + αkp̂

break

end if

solve s = Mŝ

t = Aŝ

ω = 〈t, s〉/〈t, t〉
xk = xk−1 + αkp̂ + ωkŝ

rk = s− ωkt

if ||rk||2/||r0||2 ≤ ε break

if ω = 0 break

end for

Figure 4.2: Preconditioned BiCGStab method

to potentially speed-up these methods. This chapter is organized as follows: Sec-

tion 4.2 will introduce related work. Section 4.3 will show the implementation of

the CG and BiCGStab methods using quadruple-precision floating-point arithmetic

on GPUs. Section 4.4 will compare the performance of the quadruple-precision im-

plementations with the double-precision versions and discuss the results. Finally,

Section 4.5 will conclude the chapter.
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Figure 4.3: Accelerating iterative methods using high precision arithmetic

4.2 Related Work

Hasegawa [3] compared the performance of an unpreconditioned BiCG method us-

ing quadruple-precision arithmetic to the preconditioned method using only double-

precision arithmetic on various CPU architectures. He did not show cases where im-

plementations using quadruple-precision arithmetic outperformed those using only

double-precision arithmetic, but he expected that the use of quadruple-precision

arithmetic may be an effective alternative to preconditioning which has low paral-

lelism on parallel architectures.

Some linear algebra libraries for CPUs support quadruple-precision arithmetic

for sparse iterative methods [57] [58] and there are some research into utilizing

quadruple-precision arithmetic for Krylov subspace methods. Kotakemori et al.

[59] described the implementation and performance of the BiCG methods using

quadruple-precision arithmetic for lis [58], a sparse iterative solver library for CPUs.

Their paper shows that on CPUs the use of quadruple-precision arithmetic requires

approximately 2.99–4.56 times more execution time than that of the double-precision

version per iteration. They also showed the DQ-SWITCH method which is a mixed

precision method using both double- and quadruple-precision arithmetic on CPUs.

Furuichi et al. [60] implemented the Generalized Conjugate Residual (GCR)

methods using quadruple-precision arithmetic on the NEC SX-9 supercomputer.

They used double-precision operations only for the preconditioning operations, all

other operations were implemented using quadruple-precision. As a result, they

improved the convergence without significantly increasing the execution time. Saito

et al. [61] also showed convergence improvement of the GCR methods on the Scilab
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toolbox they developed for CPUs by using quadruple-precision arithmetic for certain

parts of the algorithm.

Such research show that the use of quadruple-precision arithmetic improves

the convergence and is useful for solving problems which cannot be solved using

double-precision solvers. However, it can be hypothesized that the use of quadruple-

precision arithmetic can also be used to accelerate double-precision solvers even when

quadruple-precision arithmetic is not necessary. In addition, although Krylov sub-

space methods have been implemented on GPUs [62] [63], there is no research on the

implementation and performance of methods using quadruple-precision arithmetic

on GPUs.

4.3 Implementation

This section shows the implementation of the CG and BiCGStab methods using

quadruple-precision arithmetic on GPUs. I implemented the unpreconditioned and

preconditioned versions using both the double and quadruple-precision to compare

the performance. The target environment is the NVIDIA Kepler architecture GPUs

[19] of compute capability 3.5.

4.3.1 Overview of Quadruple-Precision Versions

I aimed to improve the convergence of the methods by using quadruple-precision

arithmetic instead of double-precision arithmetic. Thus, for the implementations

using quadruple-precision arithmetic, on sparse linear systems Ax = b, where the

input, the coefficient matrix A and the vector b are given in the double-precision

format. The vector x and all other floating-point data are stored in the quadruple-

precision format. Quadruple-precision floating-point arithmetic is used instead of

double-precision arithmetic everywhere except for the norm computation for check-

ing convergence. For the preconditioned methods, quadruple-precision arithmetic is

used everywhere except for the norm computation and the preconditioning process.

Quadruple-precision floating-point arithmetic is performed using DD arithmetic.

The details are shown in Chapter 2 and the implementation of the DD arithmetic

and subroutines using DD arithmetic are the same as in Chapter 2. One DD value is

stored using a “double2” type value which is a vector type consisting of two double-

precision values defined in CUDA. DD scalar value computations on the CPU side

are performed using the QD library [12].
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4.3.2 Implementation of CG and BiCGStab Methods on

GPUs

Vector operations are performed on GPUs, and scalar operations are performed on

CPUs. I implemented SpMV (y = Ax), DOT (r = 〈x, y〉), AXPY (y = αx + y)

and XPAY (y = x + αy). The BiCGStab method additionally requires AXPYZ

(z = αx + y). I used the Compressed Row Storage (CRS) format for storing

sparse matrices. Among the kernels implemented, SpMV is generally the most

time-consuming operation. I used the SpMV algorithm and optimization techniques

described in Chapter 3. This implementation however does not utilize the symmetric

properties of matrices for storing symmetric matrices.

For some double-precision subroutines, vendor provided libraries such as CUBLAS

[34] and cuSPARSE [22] are available. However, in order to measure the performance

impact of the different precisions accurately, I implemented from scratch all vector

operation subroutines that require both double and quadruple-precision versions.

Doing so ensures that the algorithms for both the quadruple and double-precision

versions are completely the same, including the number of threads used for GPU

kernel functions. The norm computation for checking convergence is performed us-

ing double-precision for both versions, and thus was implemented using the DNRM2

subroutine of CUBLAS.

The preconditioned methods use an incomplete-LU preconditioner as known as

ILU(0), one of the most popular preconditioners for Krylov subspace methods. The

ILU(0) preconditioning performs incomplete-LU factorization which approximates

A ≈M = LU , where L and U are the lower and upper triangular matrices, respec-

tively. On the incomplete-LU factorization, the preconditioning matrix M keeps

the non-zero pattern of the original coefficient matrix A. Therefore, Ax = b can be

solved as (M−1A)x = M−1b using sparse triangular solvers. The double-precision

subroutines for the ILU(0) preconditioning are provided by the cuSPARSE library.

My implementation uses them for both double- and quadruple-precision versions

and the preconditioning matrix is stored in the double-precision format. In other

words, on the preconditioned methods, quadruple-precision arithmetic is used ev-

erywhere except for the norm computation and the preconditioning process. In the

iterative portion, the cuSPARSE subroutine cusparseDcsrsv solve() is executed

two and four times on the CG and BiCGStab methods, respectively. The subroutine

solves a sparse lower or upper triangular system with either forward or backward

substitutions using double-precision.
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Table 4.1: Evaluation environment

CPU Intel Xeon E5-2609 (2.40GHz, 4 cores)

RAM 16 GB (DDR3)

GPU NVIDIA Tesla K20

VRAM 5GB (GDDR5, ECC-enabled)

OS CentOS 6.3

CUDA CUDA 5.0

Compiler gcc 4.4.6 (-O3), nvcc 5.0 (-O3 -arch sm 35)

4.4 Experimental Results

This section compares the performance of the quadruple-precision versions with the

double-precision versions.

The input matrices are from the University of Florida Sparse Matrix Collection

[21]. In order to make the matrices used suitable for execution on GPUs, I used

relatively large real square matrices where the number of non-zero elements (Nonze-

ros) is greater than 1,000,000. There are a total of 154 symmetric matrices and 102

asymmetric matrices in the collection that meet these criteria.

Table 4.1 shows the evaluation environment. I evaluated the execution time

of only the iterative portion of the CG and BiCGStab methods. The CG and

BiCGStab methods are used for symmetric and asymmetric matrices, respectively.

The following conditions are the same for both the double- and quadruple-precision

versions: b = (1, 1, ..., 1)T and the initial vector of x is x0 = 0. The stopping criterion

is ε = 10−8 or ε = 10−12 on ||r||2/||r0||2 ≤ ε and the maximum number of iterations

is 30,000.

4.4.1 Unpreconditioned Methods

Table 4.2 shows the number of problems which were solved with the quadruple-

precision versions with the stopping criterion (||r||2/||r0||2 ≤ ε) and satisfying the

true relative residual (TRR): ||b−Ax||2/||b||2 ≤ ε. Among these, the cases were QP

is preferable to DP are: “solved by both QP & DP and QP is faster” and “solved

by QP but not solved by DP”. A smaller ε occurs in cases satisfying the stopping

criterion but not satisfying the accuracy criterion, TRR. Here I will focus on the

cases where ε = 10−8.
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Table 4.2: The number of problems which could be solved using quadruple-precision

(QP) versions with stopping criterion: ||r||2/||r0||2 ≤ ε and satisfying the true rela-

tive residual: ||b− Ax||2/||b||2 ≤ ε

(a) CG for symmetric matrices (154 matrices)

ε = 10−12 ε = 10−8

solved by both QP & DP 8 47

solved by both QP & DP and QP is faster 0 2

solved by QP but not solved by DP 15 12

(b) BiCGStab for asymmetric matrices (102 matrices)

ε = 10−12 ε = 10−8

solved by both QP & DP 9 18

solved by both QP & DP and QP is faster 0 2

solved by QP but not solved by DP 7 7

Solved by both QP & DP and QP is faster

Using quadruple-precision arithmetic reduces the execution time for 4 (2 symmetric

and 2 asymmetric) of the 65 matrices (47 symmetric and 18 asymmetric) which were

solvable by both double- and quadruple-precision versions where ε = 10−8. Table

4.3 shows these 4 cases. (a) shows the matrix properties, (b) and (c) show the

results for the double- and quadruple-precision versions respectively, and (d) shows

the ratios of the number of iterations, time per iteration, and the total execution

time for quadruple-precision versions compared to the double-precision versions. “#

iter” means the number of iterations until convergence. “1 iter time” represents the

execution time of one iteration. “Total time” means the total execution time until

convergence. For example, “rajat31”, the use of quadruple-precision arithmetic

requires approximately 1.84 times more execution time than that of the double-

precision version for one iteration. However, the number of iterations decreases to

approximately 38 % of the double-precision version by using quadruple-precision

arithmetic. As a result, the use of quadruple-precision arithmetic reduces the total

time until convergence to approximately 69 % of the double-precision version.

Solved by QP but not solved by DP

19 matrices can be solved using quadruple-precision, but not with double-precision

when ε = 10−8. 3 of these 19 matrices do not converge within the maximum itera-
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Table 4.3: Cases which can be solved using both quadruple-precision (QP) and

double-precision (DP) versions with stopping criterion: ||r||2/||r0||2 ≤ 10−8 and

satisfying the true relative residual (TRR): ||b−Ax||2/||b||2 ≤ 10−8 but QP versions

are faster

(a) Matrix properties

Matrix Rows Nonzeros Structure Application

rajat31 4690002 20316253 asym circuit simulation problem

venkat01 62424 1717792 asym computational fluid dynamics

problem sequence

crankseg 2 63838 14148858 sym structural problem

c-73b 169422 1279274 sym subsequent optimization problem

(b) Double-precision (DP)

Matrix # iter 1 iter time [sec] Total time [sec] TRR

rajat31 11618 0.0182 211 9.94E-09

venkat01 20761 1.33E-03 27.7 9.61E-09

crankseg 2 4915 1.59E-03 7.83 9.44E-09

c-73b 19857 3.04E-03 60.4 9.95E-09

(c) Quadruple-precision (QP)

Matrix # iter 1 iter time [sec] Total time [sec] TRR

rajat31 4380 0.0334 146 8.68E-09

venkat01 15858 1.72E-03 27.2 9.85E-09

crankseg 2 3961 1.95E-03 7.71 9.81E-09

c-73b 8916 6.70E-03 59.7 6.61E-09

(d) Ratio of QP/DP

Matrix # iter 1 iter time Total time

rajat31 0.38 1.84 0.69

venkat01 0.76 1.29 0.98

crankseg 2 0.81 1.22 0.98

c-73b 0.45 2.20 0.99

tions, 30,000, when using double-precision. Table 4.4 shows these 3 matrices. These

cases could potentially be solved using double-precision by increasing the maximum

number of iterations, however, using quadruple-precision arithmetic may be still

faster. For instance, in “gyro” the quadruple-precision version is already faster after
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Table 4.4: Cases which can be solved using quadruple-precision (QP) versions with

stopping criterion: ||r||2/||r0||2 ≤ 10−8 and satisfying the true relative residual

(TRR): ||b − Ax||2/||b||2 ≤ 10−8 but which do not converge when using double-

precision (DP) versions with the stopping criterion within the maximum number of

iterations of 30,000

(a) Matrix properties

Matrix Rows Nonzeros Structure Application

gyro 17361 1021159 sym model reduction problem

human gene2 14340 18068388 sym undirected weighted graph

CoupCons3D 416800 17277420 asym structural problem

(b) Double-precision (DP)

Matrix # iter 1 iter time [sec] Total time [sec] TRR

gyro 30000 3.25E-04 9.75 2.54E-08

human gene2 30000 1.95E-03 58.6 4.96E-01

CoupCons3D 30000 6.82E-03 205 3.32E-06

(c) Quadruple-precision (QP)

Matrix # iter 1 iter time [sec] Total time [sec] TRR

gyro 17381 4.44E-03 7.72 9.96E-09

human gene2 29804 2.66E-03 79.1 9.88E-09

CoupCons3D 26931 0.0125 337 9.44E-09

(d) Ratio of QP/DP

Matrix # iter 1 iter time Total time

gyro 0.58 1.37 0.79

human gene2 0.99 1.36 1.35

CoupCons3D 0.90 1.83 1.65

30,000 iterations.

On the other hand, 12 of the 19 matrices also converged when using double-

precision with the stopping criterion (||r||2/||r0||2 ≤ 10−8) but did not satisfy the

TRR: ||b − Ax||2/||b||2 ≤ 10−8. Table 4.5 shows 4 of these 12 cases, which include

the 2 best and the 2 worst QP/DP total execution time ratio. In these cases,

using quadruple-precision arithmetic improves the accuracy of the TRR with a small

increase in the execution time: quadruple-precision versions require approximately

1.02 to 1.70 times more execution time than that of the double-precision versions
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Table 4.5: Cases which can be solved using quadruple-precision (QP) versions and

converged by double-precision (DP) versions with stopping criterion: ||r||2/||r0||2 ≤
10−8 but not satisfying the true relative residual (TRR): ||b − Ax||2/||b||2 ≤ 10−8

when using DP versions

(a) Matrix properties

Matrix Rows Nonzeros Structure Application

bone010 986703 47851783 sym model reduction problem

nd6k 18000 6897316 sym 2D/3D problem

... ... ... ... ...

thermal2 1228045 8580313 sym thermal problem

apache2 715176 4817870 sym structural problem

(b) Double-precision (DP)

Matrix # iter 1 iter time [sec] Total time [sec] TRR

bone010 16684 9.03E-03 151 7.07E-08

nd6k 8053 8.54E-04 6.87 2.19E-08

... ... ... ... ...

thermal2 5509 2.79E-03 15.4 1.27E-08

apache2 4787 1.61E-03 7.71 1.07E-08

(c) Quadruple-precision (QP)

Matrix # iter 1 iter time [sec] Total time [sec] TRR

bone010 10805 0.0143 154 9.79E-09

nd6k 7775 9.47E-04 7.37 9.16E-09

... ... ... ... ...

thermal2 5494 4.71E-03 25.9 9.96E-09

apache2 4787 2.73E-03 13.1 9.94E-09

(d) Ratio of QP/DP

Matrix # iter 1 iter time Total time

bone010 0.65 1.58 1.02

nd6k 0.97 1.11 1.07

... ... ... ...

thermal2 1.00 1.69 1.68

apache2 1.00 1.70 1.70

71



4.4. EXPERIMENTAL RESULTS

Table 4.6: The 2 largest and 2 smallest relative execution times per iteration

(QP/DP ratio)

(a) Matrix properties and execution time of one iteration (QP/DP ratio)

Matrix Properties 1 iter time

Rows Nonzeros Structure [QP/DP]

nd6k 18000 6897316 sym 1.11

crankseg 2 63838 14148858 sym 1.22

rajat31 4690002 20316253 asym 1.84

c-73b 169422 1279274 sym 2.20

(b) Performance of SpMV, percent of a single iteration spent calculating SpMV,

and relative execution time of SpMV (QP/DP ratio)

Matrix DP QP Exec time

GFlops [%] GDDFlops [%] [QP/DP]

nd6k 20.99 77.0 18.90 77.0 1.11

crankseg 2 20.73 85.7 17.24 84.3 1.20

rajat31 8.04 55.7 4.87 50.0 1.65

c-73b 0.94 89.5 0.42 92.0 2.26

for one iteration.

Cost of quadruple-precision arithmetic

For the unpreconditioned methods, in the 11 cases shown in Tables 4.3 – 4.5, the

execution time of one iteration of the methods using quadruple-precision arithmetic

is approximately 1.11 – 2.20 times more than the double-precision versions. Table

4.6 shows the performance of SpMV, percent of a single iteration spent calculating

SpMV, and the relative execution time of SpMV (QP/DP ratio) for cases with the

2 largest and 2 smallest relative execution times per iteration (QP/DP).

For “nd6k” and “crankseg 2”, the relative execution time (QP/DP ratio) of one

iteration is close to 1.0 and SpMV occupies more than 77 % of the execution time per

iteration of both the double- and quadruple-precision versions. Thus, the relative ex-

ecution time (QP/DP ratio) of one iteration strongly depends on the QP/DP ratio of

SpMV. I theorize that the performance of the SpMV is memory bound on quadruple-

precision versions on the GPU as evidenced by the Bytes/Flop and Bytes/DDFlop

as well, as shown in Chapter 2. When the number of nonzero elements is NNZ
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and the number of rows is N , the SpMV is approximately (8 + 4)×NNZ [Bytes]

/ (2×NNZ) [DDFlop] = 6.0 [Bytes/DDFlop], where NNZ � N. Note that for the

quadruple-precision versions, the input matrix on the SpMV using DD arithmetic

is given in the double-precision format. On the other hand, the Tesla K20 GPU has

64 double-precision FPUs which can perform double-precision multiply-add opera-

tions in one cycle with a theoretical peak bandwidth is 208 GB/s. DD arithmetic

requires 20 times as many cycles (i.e. execution time) as double-precision arithmetic

as shown in Chapter 2. Therefore, the theoretical peak performance of the DD arith-

metic is 706[MHz] × 13[SMX] × 64[CUDACore(DP)] × (2[DDFlop]/20[cycle]) ≈=

58.7[GDDFlops] and the GPU has a Bytes/DDFlop ratio of: 208/58.7 ≈ 3.5. Thus,

it can be predicted that the performance of SpMV using DD arithmetic is memory

bound on this GPU. In addition, SpMV has precision-independent costs such as in-

direct memory accesses using index arrays. As a result, we can conjecture that the

execution times of SpMV using the double-precision and that of DD arithmetic are

close to the same because the input matrix is given in the double-precision format.

On the other hand for “rajat31” and “c-73b”, the relative execution time (QP/DP

ratio) of one iteration and SpMV is close to 2.0 and the Flops and DDFlops values

are relatively small compared to that of the top 2 cases. One of the reasons for

this might be that the memory access is not well coalesced and therefore the per-

formance may not be limited by memory-bandwidth, but instead by memory access

latency. Since quadruple-precision operations may access memory almost twice as

often as double-precision, this limitation can significantly impact the performance

of the quadruple-precision version. In addition for “rajat31”, the percentage of one

iteration spent inside SpMV relatively small compared to the other cases, and all

the other vector operations except SpMV perform DD arithmetic in the quadruple-

precision format. Therefore, we can conjecture that in such cases the execution

time of one iteration of the quadruple-precision versions is close to twice that of the

double-precision versions.

4.4.2 Cases with Preconditioning

Table 4.7 shows the number of problems which can be solved using preconditioned

quadruple-precision versions with stopping criterion (||r||2/||r0||2 ≤ ε) and satisfying

the TRR: ||b − Ax||2/||b||2 ≤ ε. When ε = 1E-08, using quadruple-precision arith-

metic reduces the execution time for 13 (10 symmetric and 3 asymmetric) of the 71

matrices (48 symmetric and 23 asymmetric) which were solvable by both double-

and quadruple-precision versions.
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Table 4.7: The number of problems which can be solved using preconditioned

quadruple-precision (QP) versions with stopping criterion: ||r||2/||r0||2 ≤ ε and

satisfying the true relative residual (TRR): ||b− Ax||2/||b||2 ≤ ε

(a) preconditioned CG for symmetric matrices (154 matrices)

ε = 10−12 ε = 10−8

solved by both QP & DP 10 48

solved by both QP & DP and QP is faster 2 10

solved by QP but not solved by DP 11 14

(b) preconditioned BiCGStab for asymmetric matrices (102 matrices)

ε = 10−12 ε = 10−8

solved by both QP & DP 15 23

solved by both QP & DP and QP is faster 2 3

solved by QP but not solved by DP 6 1

Solved by both QP & DP and QP is faster

Table 4.8 shows 5 of the 13 cases which can be solved using both double- and

quadruple-precision versions with the stopping criterion (||r||2/||r0||2 ≤ 10−8) and

satisfying the TRR: ||b − Ax||2/||b||2 ≤ 10−8 but quadruple-precision versions are

faster. On the table, “Precond [%]” means the percentage of the execution time of

one iteration spent preconditioning. These 5 cases have the highest speedup when

using quadruple-precision arithmetic.

On the other hand, 15 matrices satisfy the stopping criterion but do not satisfy

the criterion of accuracy, TRR, when using the double-precision versions. Table 4.9

shows 4 of these 15 cases, which include the highest and the lowest 2 cases of the

value of the QP/DP ratio of the total time. The cases shown in the table are for

the CG method as the cases with the best and worst speedup were all symmetric.

All the asymmetric matrices, which use the BiCGStab method, fell between these

two extremes.

Cost of quadruple-precision arithmetic

For the preconditioned methods, the execution time of one iteration for the precondi-

tioning process takes an extremely long time on the GPU as “Precond [%]” shown in

Tables 4.8 and 4.9. The preconditioning process is performed using double-precision

for both the double- and quadruple-precision versions. Therefore, the execution
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Table 4.8: Cases with preconditioning which can be solved using both quadruple-

precision (QP) and double-precision (DP) versions with stopping criterion:

||r||2/||r0||2 ≤ 10−8 and satisfying the true relative residual (TRR): ||b −
Ax||2/||b||2 ≤ 10−8 but QP versions are faster

(a) Matrix properties

Matrix Rows Nonzeros Structure Application

CO 221119 7666057 sym theoretical/quantum

chemistry problem

GaAsH6 61349 3381809 sym theoretical/quantum

chemistry problem

Ga3As3H12 61349 5970947 sym theoretical/quantum

chemistry problem

raefsky3 21200 1488768 asym computational fluid

dynamics problem

Lin 256000 1766400 sym structural problem

(b) Double-precision (DP)

Matrix # iter 1 iter time [sec] Precond [%] Total time [sec] TRR

CO 461 1.65 99.9 762 8.11E-09

GaAsH6 364 0.494 99.9 180 8.78E-09

Ga3As3H12 730 0.578 99.8 422 8.63E-09

raefsky3 146 0.0384 98.0 5.61 1.33E-09

Lin 488 6.51E-03 89.3 3.18 9.81E-09

(c) Quadruple-precision (QP)

Matrix # iter 1 iter time [sec] Precond [%] Total time [sec] TRR

CO 388 1.66 99.8 643 7.97E-09

GaAsH6 318 0.495 99.8 157 7.44E-09

Ga3As3H12 646 0.578 99.8 373 8.81E-09

raefsky3 135 0.0386 97.3 5.22 3.31E-09

Lin 425 6.97E-03 83.7 2.96 9.59E-09

(d) Ratio of QP/DP

Matrix # iter 1 iter time Total time

CO 0.84 1.00 0.84

GaAsH6 0.87 1.00 0.88

Ga3As3H12 0.88 1.00 0.89

raefsky3 0.92 1.01 0.93

Lin 0.87 1.07 0.93
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Table 4.9: Cases with preconditioning which can be solved using quadruple-precision

(QP) versions and converged by double-precision (DP) versions with stopping cri-

terion: ||r||2/||r0||2 ≤ 10−8 but not satisfying the true relative residual (TRR):

||b− Ax||2/||b||2 ≤ 10−8 when using DP versions

(a) Matrix properties

Matrix Rows Nonzeros Structure Application

msc10848 10848 1229776 sym structural problem

bmwcra 1 148770 10641602 sym structural problem

... ... ... ... ...

thermal2 1228045 8580313 sym thermal problem

c-73 169422 1279274 sym optimization problem sequence

(b) Double-precision (DP)

Matrix # iter 1 iter time [sec] Precond [%] Total time [sec] TRR

msc10848 3994 0.0121 97.4 48.3 1.18E-08

bmwcra 1 1379 0.0199 92.5 27.4 2.09E-08

... ... ... ... ... ...

thermal2 2287 0.0348 91.5 74.7 1.12E-08

c-73 9452 6.23E-03 51.2 58.8 1.02E-07

(c) Quadruple-precision (QP)

Matrix # iter 1 iter time [sec] Precond [%] Total time [sec] TRR

msc10848 3508 0.0122 96.9 42.8 9.54E-09

bmwcra 1 1162 0.0209 88.6 24.3 9.64E-09

... ... ... ... ... ...

thermal2 2289 0.0348 86.5 79.6 9.90E-09

c-73 9143 9.87E-03 32.1 90.3 9.11E-09

(d) Ratio of QP/DP

Matrix # iter 1 iter time Total time

msc10848 0.88 1.01 0.89

bmwcra 1 0.84 1.05 0.89

... ... ... ...

thermal2 1.00 1.06 1.07

c-73 0.97 1.59 1.53
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time of one iteration is almost the same for both versions. In such cases, using

quadruple-precision arithmetic to decrease the number of iterations by even a small

amount leads to a speedup.

4.5 Conclusion

In this chapter, I have shown implementations of the CG and BiCGStab methods

using quadruple-precision floating-point arithmetic on GPUs and compared the per-

formance to standard double-precision versions on a Tesla K20 Kepler architecture

GPU. My goal was to improve the convergence of the methods to solve sparse linear

systems Ax = b. Quadruple-precision arithmetic was used everywhere in place of

double-precision arithmetic everywhere except for the norm computations and the

preconditioning process. For the implementations using quadruple-precision arith-

metic, the input data: the coefficient matrix A and the vector b are given in the

double-precision format.

I have shown the relative time cost of the use of quadruple-precision arithmetic

in the CG and BiCGStab methods. On unpreconditioned methods, the use of

quadruple-precision arithmetic required approximately 1.11–2.20 times more execu-

tion time than that of the double-precision versions for one iteration. On the other

hand, the quadruple-precision iteration time for methods with double-precision in-

complete LU preconditioning is only slightly more than that of double-precision.

Quadruple-precision versions can solve the problem faster than the double-precision

versions in cases where the use of quadruple-precision arithmetic reduces the number

of required iterations enough to compensate for the increased time required for one

iteration. I showed cases where the quadruple-precision version can reach a solu-

tion faster than the double-precision version even when the double-precision version

converged within the maximum number of iterations, although such cases were rare.

I have shown that the use of quadruple-precision arithmetic is not costly in the

CG and BiCGStab methods on the GPU. Therefore, the use of quadruple-precision

arithmetic, along with the use of preconditioning may be an effective method for

accelerating the computation of Krylov subspace methods on GPUs. In general, the

preconditioning process is difficult to parallelize, and it is not effective on massively

parallel architectures such as GPU clusters. Thus, the use of quadruple-precision

arithmetic may be an effective alternative to preconditioning on such environments.

Obviously the effectiveness of the use of quadruple-precision arithmetic needs to

be further investigated. The performance of Krylov subspace methods is affected

by many factors such as the solver algorithm, the preconditioning methods, and
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the sparse matrix storage format. The optimal choice for those factors depends

on the problem characteristics and the computation environment including the ar-

chitecture and parallelism. In addition, the matrices of the University of Florida

Sparse Matrix Collection are not necessarily distributed evenly over such properties

as size, nonzero pattern, application, and mathematical properties. Therefore, the

results in this chapter do not necessarily show a statistical significance of the use

of quadruple-precision arithmetic. Further research is necessary to determine under

which conditions the number of iterations decreases when using quadruple-precision

arithmetic.
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Conclusion

I have shown the implementation and the performance of linear algebraic operations

using extended precision floating-point arithmetic on GPUs. This chapter summa-

rizes this thesis and describes areas for future research.

5.1 Summary

Floating-point operations have rounding errors and these errors may become a crit-

ical issue for some applications, therefore, the usual precision of hardware floating-

point operations is insufficient in some cases and extension of accuracy and precision

is required. I mainly focused on triple- and quadruple-precision operations by soft-

ware and has shown the implementation and evaluation of linear algebraic operations

using that on GPUs.

In Chapter 2, I have shown the implementation and performance of triple- and

quadruple-precision BLAS subroutines on the NVIDIA Tesla M2050 Fermi archi-

tecture GPU. For quadruple-precision subroutines, DD arithmetic was used. I have

implemented three BLAS subroutines: AXPY, GEMV and GEMM as the represen-

tatives of vector-vector, matrix-vector and matrix-matrix operations, respectively.

For the BLAS subroutines on the GPU, DD arithmetic requires 20 times the ex-

ecution time of double-precision arithmetic in theory. However, the performances

of double- and quadruple-precision AXPY and GEMV are memory-bound on the

GPU; therefore, the execution time of the quadruple-precision subroutines is approx-

imately twice that of the double-precision subroutines. On GEMM, the performance

is computationally bound and the execution time for the quadruple-precision sub-

routine is close to 14 times that of the double-precision subroutine because of the

low execution efficiency of the double-precision subroutine. The use of DD arith-
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metic increases the density of arithmetic instructions per memory access, so as a

result, higher execution efficiency was achieved. On the other hand, I have pro-

posed two methods to store triple-precision floating-point values and a method to

compute triple-precision floating-point arithmetic operations that are based on DD

arithmetic. Although I was not able to realize the faster triple-precision arithmetic

operations rather than DD arithmetic, the proposed triple-precision floating-point

formats are effective for linear algebra operations when the performance of which is

memory-bound. In comparison with a quadruple-precision format, triple-precision

formats can save the limited memory space on GPUs and reduce data translation

time to 3/4 times. On AXPY and GEMV, the performance of the triple-precision

subroutines is memory-bound, and therefore, the execution times are close to 3/4

times that of the quadruple-precision subroutines. Therefore, triple-precision oper-

ations are effective for memory-bound operations in cases where double-precision is

insufficient and quadruple-precision is not required, but triple-precision is sufficient.

Furthermore, I have shown the application of using quadruple-precision arith-

metic for sparse linear algebra on GPUs. To implement fast sparse matrix operations

on GPUs, in Chapter 3, I have presented optimization techniques of sparse matrix-

vector multiplication (SpMV) for the CRS format on NVIDIA Kepler architecture

GPUs. The proposal implementation is based on the existing method proposed for

Fermi architecture, an earlier generation of Kepler architecture, and takes advantage

of three new features of the latter: a 48KB read-only data cache, shuffle instructions

and expansion of the MaxGridDimX. On the Tesla K20 Kepler architecture GPU

on double-precision operations, the proposal implementation achieved speedups over

the implementation for the earlier generation of Kepler architecture GPUs. Further-

more, the thesis has shown that the implementation outperforms the SpMV routine

for the CRS format of the cuSPARSE 5.0 for 174 of the 200 matrices.

In Chapter 4, I showed the application of quadruple-precision floating-point

arithmetic on GPUs for sparse iterative methods. The convergence of the Krylov

subspace methods, which are iterative methods for solving linear systems, is signifi-

cantly affected by rounding errors, and there are cases wherein reduction in rounding

errors with quadruple-precision arithmetic causes the algorithm to converge more

quickly. I implemented the CG and BiCGStab methods, which are Krylov sub-

space methods, using quadruple-precision floating-point arithmetic and compared

the performance to the standard double-precision implementations on the Tesla K20

GPU. On unpreconditioned methods, the use of quadruple-precision arithmetic re-

quired approximately 1.11–2.20 times more execution time than that of the double-

precision versions for one iteration. On the other hand, the quadruple-precision

iteration time for methods with double-precision incomplete LU preconditioning is
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only slightly more than that of double-precision. I have shown cases in which a

quadruple-precision versions can solve the problem faster than the double-precision

versions in cases where the use of quadruple-precision arithmetic reduces the num-

ber of required iterations enough to compensate for the increased time required for

one iteration.

Throughout this research, it is postulated that the use of quadruple-precision

arithmetic by software using DD arithmetic is not costly for some memory-intensive

operations on GPUs. This is because recent GPUs have tremendous floating-point

performance compared to memory performance: the Bytes/Flop ratio of the GPU

is relatively low compared to that of the quadruple-precision subroutines. Nowa-

days, floating-point performance of processors has rapidly increased compared to

the performance increase of data access time of, for example, a memory, a bus,

and a network. In other words, the Bytes/Flop ratio of processors and systems is

becoming smaller, and it is predicted that memory bandwidth bottlenecks will be

tight in exascale computing [43]. In fact, particularly on GPU-equipped supercom-

puter systems, the PCIe and network bandwidth are insufficient compared to the

memory bandwidth and its floating-point performance. In such environments, many

operations are becoming memory-bound rather than compute-bound. As a result,

extended precision floating-point operations by software may be getting cost effec-

tive. In some cases, triple-precision operations may be becoming the cost-effective

alternative for quadruple-precision operations. Triple- and quadruple-precision can

also be utilized in a mixed precision approach.

Furthermore, I showed the application of quadruple-precision floating-point arith-

metic to Krylov subspace methods on GPUs in Chapter 4 as for a case study. To

improve the convergence of Krylov subspace methods, preconditioning is often used

and using quadruple-precision arithmetic is also effective. I showed cases where the

implementation using quadruple-precision arithmetic can solve the problem faster

than the double-precision versions. In general, the preconditioning process is diffi-

cult to parallelize, and it is not effective on massively parallel architectures such as

GPU clusters. Therefore, the use of quadruple-precision arithmetic, along with the

use of preconditioning may be an effective method for accelerating the computation

of Krylov subspace methods on GPUs. As well as the cases in the CG and BiCGStab

methods on the GPU, on massively parallel architectures, existing algorithms are

not always effective and the use of extended precision arithmetic may become an

effective alternative for the existing method. Utilizing extended precision arithmetic

operations on other actual applications can be expected.
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5.2 Future Work

Here describes areas for future research.

I showed cases on a single GPU, but recent HPC applications are performed

on multiple GPUs or multiple-node systems. Therefore, performance evaluation on

such practical environments is required. There is a difference in the performance

model between a single GPU and multiple-GPU-equipped systems, such as GPU

clusters. One of the biggest differences is the existence of data translation via PCIe

bus. Therefore, application performance tends to be limited by the bandwidth of

the bus. In addition, although, I have shown only the performance on basic linear

algebra operations, the performance on actual applications that require extended

precision operations should be shown in the future. Furthermore, performance,

implementation and effectiveness of linear algebra operations using extended preci-

sion arithmetic should also be discussed on other processors. Quadruple-precision

arithmetic is implemented also on Field-Programmable Gate Array (FPGA) devices

[24] [64]. For example, the performance evaluation on Intel Many Integrated Core

Architecture (MIC) is also desired.

Although I showed the application of quadruple-precision arithmetic on GPUs

for iterative methods for solving sparse linear systems, obviously the effectiveness

of the use of quadruple-precision arithmetic needs to be further investigated. The

performance of sparse iterative solvers is affected by many factors such as the solver

algorithm, the preconditioning methods, and the sparse matrix storage format and

the optimal choice for those factors depends on the problem characteristics and

the computation environment including the architecture and parallelism. Further

research is necessary to determine under which conditions the number of iterations

decreases when using quadruple-precision arithmetic. The application of triple-

precision operations is also desired.

In this research, I used the same algorithms of DD arithmetic in the QD library

[12], but some other algorithms for DD arithmetic are also proposed. For exam-

ple, Nagai et al. noted two types of DD multiplication algorithms in their papers

[65] [66]. They investigated HITACHI Optimizing C Compiler’s quadruple-precision

multiplication software processing on a SR11000/J2 and then slightly modified the

HITACHI’s algorithm to decrease the number of instructions for multiply-add op-

erations by utilizing FMA operations [67]. Using the algorithm, the relative cost of

quadruple-precision operations on computationally bound operations will decrease.

I proposed the triple-precision formats for memory-bound operations by focusing on

the effects of reducing the data size compared to the quadruple-precision format.

Similarly, half-precision may be effective compared to single-precision in some cases.
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In addition, a double-precision floating-point value can be stored in a 32-bit integer

value with the same exponent bits of the double-precision value by using the same

method as the D+I-type format for example. The performance of memory-bound

operations may be improved by focusing on the precision of the data and the storage

format.

For widely practical use of extended precision on linear algebra operations on

GPUs, well-optimized implementation of linear algebra libraries such as BLAS, for

example GotoBLAS [68] for single- and double-precision operations, are desired.

However, most current linear algebra libraries support only single- and double-

precision floating-point arithmetic. There are few linear algebra libraries that sup-

port extended precision floating-point arithmetic. MPACK [40] is the only LA-

PACK implementation that supports multiple-precision arithmetic including DD

arithmetic, but MBLAS is implemented as a reference implementation and is not

well optimized. Autotuning technology is one of the most important for developing

linear algebra libraries that support multiple precisions. Automatically Tuned Lin-

ear Algebra Software (ATLAS) [69] is one of the most well-known implementations

of BLAS using autotuning technology. It is unrealistic to implement and optimize

various subroutines by hand, especially for various precisions: for example, single-

, double-, triple- and quadruple- for real and complex operations. For instance,

Kurzak et al. showed the performance improvement in the GEMM subroutines on

GPUs by utilizing a heuristic autotuning [70]. For future work, all set of BLAS

subroutines should be implemented by using such auto-tuning technique.
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