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Recent Advances of Deep Robotic Affordance

Learning: A Reinforcement Learning Perspective

Xintong Yang1, Ze Ji1, Jing Wu2, and Yu-Kun Lai2

Abstract—As a popular concept proposed in the field of
psychology, affordance has been regarded as one of the important
abilities that enable humans to understand and interact with the
environment. Briefly, it captures the possibilities and effects of the
actions of an agent applied to a specific object or, more generally,
a part of the environment. This paper provides a short review
of the recent developments of deep robotic affordance learning
(DRAL), which aims to develop data-driven methods that use
the concept of affordance to aid in robotic tasks. We first classify
these papers from a reinforcement learning (RL) perspective and
draw connections between RL and affordances. The technical
details of each category are discussed and their limitations
are identified. We further summarise them and identify future
challenges from the aspects of observations, actions, affordance
representation, data-collection and real-world deployment. A
final remark is given at the end to propose a promising future
direction of the RL-based affordance definition to include the
predictions of arbitrary action consequences.

I. INTRODUCTION

Humans interact with various objects in the environment in

a purposeful and meaningful way, because we have the ability

to understand affordances – the functionalities of objects, the

possibilities and effects of our actions and the relationship

between the two. As originally defined by Gibson [1], the

affordances of an object or a place in an environment provide

knowledge about what actions are possible and what the

consequences of these actions are with respect to a certain

agent (a human, an animal or a robot). In short, it indicates

possibilities and effects of the agent’s actions given an object

or a part (an image observation) of the environment. In the

field of robotics, affordances could serve with great potential to

bridge robot perception and action [2]. This has been actively

integrated and explored with machine learning techniques

in recent years [3]–[6]. Jamone et al. proposed a thorough

review and drew connections among the studies of affordances

in psychology, neuroscience and robotics [3]. Yamanobe et

al. summarised the use of affordances specifically in robotic

manipulation tasks [4]. Ardón et al. summarised and provided

guidance on design choices and how affordance relations can

be used to boost policy learning [5].
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However, as pointed out in [6], there is still a lack of

consensus for a formal definition of affordances, and many

previous works are limited to affordances in the form of object

functionalities [6]–[8]. A number of existing mathematical

formulations focus on statistical relationships between the

agent, its actions and its environment, but are not general

enough to be integrated into ANY main-stream robot control

frameworks to support both action inference and affordance

learning [3], [4], [9]. The main reason is the lack of a

rigorous mathematical connection between the concept of

affordances and robot control theory without assuming any

prior knowledge of high-level observation construction [7], [8],

be it learning-based or model-based. Recently, Khetarpal et al.

[10] proposed to define, learn and compute affordances based

on the reinforcement learning (RL) paradigm with Markov

decision processes (MDPs) of any kind, which is a classic

and increasingly important robot control paradigm [11], [12].

We propose in this paper to summarise and classify recent

publications (since 2015) in deep robotic affordance learning

(DRAL) following the RL-based definition in [10] for the

following motivations:

• The RL-based definition helps to unify and classify

DRAL works from a behavioural learning perspective,

providing new insights to understand and clarify the

different usages of affordances in the literature;

• The definition in [10] is the most general in the literature

as all concepts are defined over a generic MDP without

any assumption of the environmental or agent aspect. It

suits any kind of environmental affordances and agents

as long as they can be described by MDPs, which is

commonly achievable.

• As the primary aim of DRAL is to enable robots to infer

afforded actions, the RL community provides a rich body

of methods ready to be integrated with affordances;

• Understanding and analysing the concept based on a

mathematical framework helps to provide computation-

ally and practically valuable insights.

In practice, knowing the affordances means knowing the

desired effects of some actions and whether these effects can

be realised in some situations. With this in mind, Khetarpal et

al. introduced the notion of intents that captures the desired

outcome of an action based on the reinforcement learning (RL)

framework [10], [11]. For example, the intent of a moving

right action in a gridworld task is the agent being moved to

the cell on the right. The intent is not always satisfied, e.g.,

when the cell on the right is a wall. Thus, the definition of

affordance is a subset of the state-action space in which the



intent is indeed satisfied [10]. In order words, the moving right

action is afforded at every state where the moving right intent

is satisfied.

Notice that there are two levels of the topic: 1) the learning

and discovery of affordances and 2) the use of affordances.

Researchers have only recently started to study the first level,

e.g., option/subgoal discovery [13]. Most research focuses

on the use of the knowledge of affordances, meaning how

to estimate the action possibilities and/or infer the afforded

actions. These works are classified into three categories as

follows.

• For the majority of the DRAL works, the focus is to esti-

mate the action possibilities given an observation and then

infer afforded actions from it (Section III). These works

can be further classified into methods that model the

action possibilities as binary variables (subsection III-A)

[14]–[21] and continuous variables (subsection III-B)

[22]–[27];

• The second line of works proposes to generate afforded

actions from a set of object keypoints (Section IV) [28]–

[33]. The keypoints are used to geometrically constrain

the search space of action inference methods within the

set of afforded actions.

• The last part of the reviewed papers suggests learning a

partial dynamic model for only afforded actions, resulting

in faster model learning and motion planning (Section V)

[10], [34], [35].

The rest of this review is organised as follows. Section II

briefly recalls the definition of affordances in reinforcement

learning proposed by [10], classifies the reviewed works and

draws connections between RL and affordances. Sections III,

V and IV provide the main technical ideas and discuss the

pros and cons of the reviewed papers. Section VI summarises

these works and poses future challenges from the perspectives

of observations, actions, affordance representations, data col-

lection, and real-world deployment. Section VII concludes this

review.

II. AFFORDANCE DEFINITION IN MDPS

For the sake of clarity, we recall in this section the reinforce-

ment learning (RL) problem and the definition of affordance

based on the Markov Decision Processes (MDPs) [10].

An MDP is a tuple M = 〈S,A, r, P, γ〉, where S is the

set of states, A is the set of actions, r is the reward function,

P (s′|s, a) is the system transition dynamics and γ ∈ [0, 1]
is the discount factor [11]. The RL problem is in general to

find an optimal policy, π : S → A, which produces actions

that maximise the expected discounted future return Eπ[Gt] =
Eπ [

∑∞

t
γtrt]. The typical process of learning such a policy

loops over the procedures of data collection, policy evaluation

and policy improvement [11].

Given an action a ∈ A, an intent Ia(s) maps a state s ∈ S
to a state distribution that the action is intended to achieve.

The intent model can thus be seen as a partial dynamic model:

PI(s
′|s, a), which only captures the dynamics for a subset of

states where the action has a desired effect. Given the full

system dynamic model P (s′|s, a), an intent is satisfied (i.e.,

an action is affordable) at a state, to a degree ǫ, if and only

if:

d(PI(s
′|s, a), P (s′|s, a)) ≤ ǫ (1)

where d is a function that measures the difference between two

distributions and ǫ ∈ [0, 1] is a precision parameter. Given a

set of intents I = ∪a∈AIa, the affordance is then defined as

a relation AFI ⊆ S × A, such that ∀(s, a) ∈ AFI , Eq. 1

is satisfied. Accordingly, an affordance prediction model, or

an action possibility model, gives the probability of whether

a pair of state and action belongs to the set of affordance:

pAF (s, a) = p((s, a) ∈ AFI) (2)

Remark 1: Practically speaking, knowing the affordance

set means knowing the desired effects of a subset of actions

(intents, action effects) and the subset of states where these

effects can be achieved (states where the intents are satisfied,

action possibilities). Before inferring the afforded actions

or computing the action possibilities, one must know what

actions, or what effects, are concerned or to be used. This

logic implies that a robot must have learnt or been given

some prior knowledge of the concerned actions beforehand.

At the current stage of DRAL research, this knowledge was

given by researchers, who then focused on the estimation of

action possibilities and the inference of afforded actions. We

categorise and discuss these methods in three classes:

• works that tried to infer the afforded actions from the

estimated action possibilities p̂AF (section III);

• works that tried to infer the afforded actions of objects

in terms of keypoints (section IV);

• works that tried to infer afforded actions by planning with

p̂AF and a learnt partial dynamic model associated with

intents, P̂I(s
′|s, a) (section V).

In the following sections, especially Sections III and IV,

the readers shall see that most recent works using affordances

in robotics do not reside their methods in the RL framework,

although these methods can be explained from the RL per-

spective.

Remark 2: From the RL perspective, or a behavioural

learning perspective, the knowledge of affordances can help to

accelerate and improve almost every aspect of the RL process

by constraining the action space. These include 1) the learning

of a value function, a policy, or a world model, 2) the design

of an exploration strategy, and 3) the action inference process

(stochastic sampling, planning or value-based greedy actions).

For example, if an action possibility model is available,

one can integrate it into the exploration process of any RL

algorithm, such that it only collects experiences, where actions

do cause changes to the environment. Alternatively, one may

constrain the updates of a policy within the set of affordable

actions. Also, as demonstrated by [10], focusing on the set of

afforded actions simplifies the learning of a world model and

accelerates planning.

Either for data collection, policy learning, world-model

learning or action planning, the use of affordances in RL

may have its best potential in the hierarchical reinforcement



learning (HRL) framework, where an agent learns to use

a set of motion primitives (sub-policies, skills, temporally-

extended actions) to achieve different tasks [36]. Knowing the

possibilities and effects of the skills can accelerate learning

by 1) constraining and guiding the choices of exploring skills,

and 2) filtering out experiences with irrelevant or non-effective

actions. These will lead to shortened exploration time and

increased sample efficiency, as it is effectively shrinking the

size of the solution space (or the number of valid actions).

Remark 3: A further step to take in this regard is the

learning and discovery of affordances. Knowing the set of

affordances is promising and valuable in terms of accelerating

learning; however, enabling an agent to learn and discover

affordances makes the agent robust to potential changes in the

environment and the agent itself. This is closely related to the

popular topic of option/subgoal discovery in HRL [13]. Future

research topics in this regard include learning new skills,

adapting old skills, skill composition, action space design,

etc. One can envision a robot acquiring new skills in a new

environment or modifying old skills as its hardware wear and

tear.

III. MODELLING ACTION POSSIBILITIES

This section discusses recent papers on modelling and

learning action possibilities. This section examines two lines

of works that represents p̂AF in Eq.2 (the probabilities of an

action or a set of actions being affordable given an obser-

vation) as binary segmentation masks (III-A) and continuous

action success scores (III-B). We summarise these works and

discuss their limitations in Section III-C.

Based on the definition given in Section II, these methods

compute p̂AF for a set of actions given a state. The estimated

p̂AF can be used to infer desirable actions in various ways

based on its representations, such as taking the action with

the maximum possibility, i.e., computing argmax
a∈A p̂AF .

In practice, computing p̂AF is commonly based on sensory

observations, such as point clouds or images, instead of the

true system states. The observation representations, training

methods, deployment tasks and motion generation methods

adopted by these works are summarised in Table I.

A. Image/point cloud segmentation

Many works propose to model what actions are afforded

on which part of an object as an image or point cloud

segmentation problem [14]–[21]. In these works, a segmented

part of an object image or point cloud is labelled with one

or more affordable actions, i.e., a binary mask that indicates

whether an action can be applied to that part of the object.

The action possibilities are simplified into binary variables and

represented as pixel-level masks. For example, as shown in

Fig. 1, the pixels or points of the handle of a cup are labelled

as being graspable, while those of the hollow part of the cup

are labelled as containable. It is common for different parts of

an object to have different affordances. It is also common for

the same part of an object to have multiple affordances [18].

As a natural extension, these pixel-level or point-level

affordance predictions were used to provide the downstream

Fig. 1: Segmented images from [18]. Red parts afford grasp-

ing, orange afford supporting, deep blue afford containing,

blue afford wrap-grasping, and purple afford pounding.

manipulation policy with extra task information. The most

straightforward way in grasping tasks is to designate the centre

of the detected affordance masks as a grasping location [18]. A

more recent method treated the predicted segmentation masks

as an extra channel of the image observations. A manipulation

policy then processed this extended image to determine what

actions to take [19]. A self-supervised learning method was

proposed to learn to predict the pixel masks for gripper-object

interaction centres from human teleoperation demonstrations

of a table tidy-up task [21]. These pixel masks were then

used in the real world for a model-based policy to move

the gripper closer to the interaction point of an object and

a reinforcement learning policy to pick up the object. There

was also an attempt to learn a latent representation of object

affordances with Variational Auto-Encoders [20], [37]. It was

successfully trained using simulation data and transferred to a

real-world robotic system, aided by a domain randomisation

technique. They used the latent representation to generate

robot trajectories that move the gripper to a point above a

cup [20].

B. Action scores

Several works proposed to represent the action possibility

as a continuous variable that indicates how confident it is that

an action can be successfully executed (is affordable) [22]–

[27]. In contrast, the segmentation masks discussed in the last

subsection are binary variables.

Zeng et al. proposed to model the success probabilities of

four kinds of primitive grasping and suction actions given the

RGB-D observation of a cluttered scene [22]. The probability

distributions are defined as matrices whose entries represent

the success rates of executing actions at the pixel locations (see

Fig. 2). Similarly, Cai et al. proposed to predict graspability,

ungraspability and background affordances over image pixels,

achieving a grasping success rate of 93% on a set of household

items, 91% on a set of adversarial items and 87% in clutter

scenarios [23]. The network was trained with synthetic data

generated by an antipodal grasp heuristic in simulation in

a self-supervised fashion. Wu et al. extended such a 2D

affordance map defined in the pixel space into a 3D space,



TABLE I: Summary of papers focused on learning action possibilities. Cat.: category; IPS: image/point cloud segmentation;

AS: action scores; PCD: point cloud data; SL: supervised learning; SSL: self-supervised learning; Sim: simulation Real:

real-world; DoF: degree of freedom; PJG: parallel-jaw grasp; BOSM: binary object segmentation mask; RL: reinforcement

learning; Sim-to-Real: simulation to real-world transfer.

Paper Cat. Affordance (afforded actions) Input Method Deployment Task Motion

[14] IPS Created UMD dataset RGB-D SL None -
[15] IPS Grasp; Cut; Poke; Pound; Pour; Support PCD SL 3-Finger Dexterous grasp (Sim) Planning
[16] IPS Created IIT-AFF dataset RGB SL Dexterous grasp (Real) Planning
[17] IPS from IIT-AFF[16]; UMD[14] datasets RGB SL Dexterous grasp (Real) Planning
[18] IPS from UMD[14] dataset RGB-D SL 4DoF PJG; bean-scoop (Real) Planning
[19] IPS Dexterous grasp RGB-D SL Dexterous grasp (Sim) RL
[20] IPS from UMD[14] dataset RGB/RGB-D SL Cup-locate (Sim & Real) Planning
[21] IPS Grasp RGB-D SSL 4DoF PJG (Sim & Real) Primitive & RL

[22] AS Grasp; Suction RGB-D SL 3DoF PJG & suction (Real) Primitive
[23] AS Grasp RGB SSL 4DoF PJG (Sim & Real) Primitive
[24] AS Grasp; Push RGB SSL 4DoF PJG & push (Sim & Real) Primitive
[25] AS Grasp BOSM SSL 4DoF PJG (Sim-to-Real) Primitive & RL
[26] AS Push; Pull RGB-D & PCD SSL Push & pull (Sim) Primitive
[27] AS Pick; Move; Place; Go-to; Open/close drawer RGB SL/RL Kitchen tasks (Sim & Real) Primitive & SL/RL

(a) Action score prediction for four kinds of primitives [22].

(b) Grasping success score prediction [24].

Fig. 2: Examples of action score prediction.

estimating the graspability not only in different x-y positions,

but also in different grasping angles [24]. Another work

proposed to first train a neural network to predict object classes

and segmentation masks of a cluttered scene, and then train

a Deep Q-Network (DQN) to predict the grasping success

scores based only on the segmentation masks [25]. This work

successfully transferred the learnt grasping score prediction

system to the real world with domain randomisation. Recently,

Mo et al. proposed to predict action scores for a set of six

motion primitives based on RGB-D images or point clouds.

They designed a three-branch network architecture to 1) pre-

dict the actionability of a pixel or a point, 2) propose gripper

orientations and 3) estimate the success score of the primitive

action given the action pixel and orientation [26]. In another

interesting recent work [27], the authors proposed to represent

the action possibilities of a large number of pretrained motion

skills by the action value function in the RL framework based

on RGB observations. These papers are closely related to the

works in vision-based robotic grasping (VBRG), where many

works were not linked to the concept of affordance. For a

thorough review of VBRG, please refer to [38], [39].

C. Summary and limitations

To summarise, though some recent works tried to estimate

action possibilities for a variety of actions, most of them

focused on grasping tasks when deploying the learning system.

These works leveraged motions that are generated by a motion

planner or hand-crafted by humans. In terms of affordance

learning, they sought to estimate whether a planned motion

or primitive can be successfully performed at an image pixel

location or a point in the point cloud. The learnt affordance

model was used to infer a desired action by extracting a pixel

location or a point that is centred at the affordable region or

with the highest action possibility. There are several limitations

regarding the papers discussed in this section.

1) At the current research stage, the community lacks an

image segmentation dataset for object affordances at large

scale [5], when compared to datasets like COCO [40] or

ImageNet [41]. It is promising to build larger datasets, as

demonstrated by the ImageNet dataset for image classification,

though a vast amount of human labour is required. To reduce

such human labour, self-supervised learning techniques could

be employed, such as automatic labelling [21], [42] and

interactive labelling [43].

2) Though multi-affordance detection has drawn re-

searchers’ attention [17], [18], real-world manipulation ex-

periments using affordances are restricted to only one or

two categories (mostly grasping) [15]–[23], [25]. Not much

attention was given to other actions such as push and pull

[24], [26]. In addition, they are subject to fully or partially

hand-crafted motion primitives (e.g., top-down parallel-jaw

grasping), thus are limited to a very small set of object-action

relationships. For example, they cannot represent affordances

for 6DoF (Degree of Freedom) grasping actions or non-

primitive interactions. A recent work in coupling language

instructions and mobile robot motion skills made a pioneering

example on more complex action affordance learning and real-

world grounding [27].

3) These methods only predict action possibilities, ignoring

the knowledge about the effects of these actions. From a

human perspective, we tend to use affordance knowledge for



planning, which requires us to be aware of not only what

the possible actions are, but also what the results of these

actions are. The next section elaborates on recent attempts to

incorporate both action possibilities and effects.

4) These works exclude the dependencies between the

executions of multiple actions and the influences of different

manipulation objectives. For example, the possibilities of

grasping a cup at its handle would differ when the robot is

tasked to hang it up, place it on a table or hand it out to

another agent. This involves a planning process for different

final task objectives. We discuss more on this point in the next

section.

IV. KEYPOINT AFFORDANCE

In the last section, we discuss papers that sought to first

compute the action possibilities, p̂AF , and then infer the af-

forded actions from the action possibilities, for example, com-

puting a binary or continuous matrix that indicates whether a

gripper can pick up an object at each pixel location of an

RGB-D image. In these cases, a pixel in an image or a point

in a point cloud is associated with an action as a parameter of

a motion planner or a primitive.

In this section, we review works that proposed to generate

the afforded actions by predicting object keypoints, skipping

the computation process of the action possibility [28]–[33].

The keypoints were defined as the functional points of an

object. They were associated with affordance because they

could be used by some action inference methods (e.g., a

motion planner) to generate afforded actions. Keypoints pro-

vide the action inference method with a smaller search space

and easier-to-define task-relevant geometric constraints. From

the RL perspective, the keypoints can be seen as an abstract

observation that indicates the action space for a policy or value

function, or as a constrained action space that corresponds to

a set of affordable motion primitives. The latter one is adopted

by many previous works. Previously, keypoint methods with

non-deep learning techniques were limited to specific objects

of a particular shape and size [3]. In this review, we focus

on deep learning-based methods that are able to generalise

Fig. 3: Category-level keypoint detection from [28]. (a) De-

tected keypoints for different cups in planning; (b) keypoint

detection; (c) grasping; (d) hanging.

to unseen and novel objects [28]–[33]. A summary of the

observations, object types, training methods, deployment tasks

and motion generation methods of these works are given in

Table II.

Manuelli et al. proposed kPAM, which defined keypoints

for objects that belong to the same category (Fig. 3) and

supported grasping, placing and hanging actions to be inferred

from the keypoints, for example, three keypoints at the handle,

top and bottom for mugs. These keypoints were predicted

given a segmented RGB-D image and then used by a motion

planner to generate motions for picking and placing tasks. The

authors later formulated a feedback control framework with

the keypoint-based object and action representations, which

accomplished a peg-in-hole insertion task with a variety of

objects [29]. They also extended the method to include a shape

completion technique, named kPAM-SC, so that the gener-

ated motions can handle object collision [30]. Another work,

KETO, used a three-keypoint pattern, including a grasp point,

a function point and an effect point, to represent hammer-like

tools and infer hammering motions [31]. A generative network

was trained to produce keypoint candidates given an object

point cloud. An evaluation network was trained to predict the

manipulation success scores for these keypoints. The training

process was conducted in a self-supervised manner using

task completion signals. These keypoints, along with a set of

task keypoints within a simulation environment, were used

to generate motions by solving a Quadratic Programming

problem [31]. Turpin et al., proposed GIFT [32], which

predicted a set of representational keypoints for an object and

then selected from them a grasping point and an interaction

point. This procedure allowed the functional keypoint pattern

to be discovered instead of being specified by users. They

represented the functional keypoint proposal model as a Graph

Neural Network (GNN) over the representational keypoints.

They then computed a robot motion using model predictive

control and evaluated the task-specific return for the motion.

The functional keypoint proposal model was trained by opti-

mising a REINFORCE loss with the task-specific return.

Instead of predicting keypoints for a category of objects

as done in [28]–[32], Xu et al. proposed to define keypoints

for afforded actions on images [33]. They modified the af-

fordance image segmentation dataset UMD [14] by assigning

a set of five 2D keypoints to each affordance region. These

keypoints defined the position and direction information about

the afforded actions. They proposed a two-branch deep neural

network, AffKp, to learn affordance image segmentation and

keypoint detection in parallel via supervised learning. The

predicted keypoints were projected from the image plane to the

real-world frame and used to infer the corresponding afforded

actions.

Summary: To sum up, these works proposed to infer

afforded actions that manipulate an object from a set of

keypoints defined on the object. According to the affordance

definition introduced in Section II, they are classified as meth-

ods that compute the afforded actions, rather than compute

the action possibilities, for example, inferring various grasping

configurations from a predicted grasping point on a tool handle

[31] instead of a set of action possibilities [22]. Most of



TABLE II: Summary of papers focused on affordance keypoint prediction. PCD: point cloud data; SL: supervised learning;

SSL: self-supervised learning; Sim: simulation Real: real-world; DoF: degree of freedom; PJG: parallel-jaw grasp; MPC:

model predictive control.

Paper Object classes Affordance (afforded actions) Input Method Deployment Task Motion

[28] Shoes; Mugs 6DoF PJG, place & hang RGB-D SL Shoe-placing, mug-placing & mug-hanging (Real) Planning
[29] Erasers; Pegs; Holes 6DoF PJG, wipe, insert RGB-D SL Whiteborad wiping, peg-in-hole insertion (Real) Planning
[30] Shoes; Mugs 6DoF PJG, place & hang RGB-D SL Same as [28] with shape completion (Real) Planning
[31] Hammers 6DoF PJG, hammer, push, reach PCD SSL Object hammering, pushing & reaching (Sim) Planning
[32] Hammers 4DoF PJG, hammer, push, hook RGB-D SSL Object hooking, reaching, hammering (Sim) MPC
[33] UMD+GT dataset UMD+GT dataset RG-D SL PJG, pouring, arranging, cutting (Sim & Real) Planning

the works leveraged human knowledge to create a pattern of

keypoints and trained deep neural networks to predict them

for a category of objects [28]–[31], [33], while only one work,

GIFT, proposed to discover functional keypoints using task-

completion signals [32]. The main benefits of using keypoints

to infer afforded actions include but are not limited to:

• keypoints can capture the common properties of a cate-

gory of objects;

• keypoints can support the inference of various afforded

actions;

• keypoints can be used to reduce the search space of

afforded actions for the action inference processes.

Limitations: The primary limitation of keypoint-based

methods is that pre-defining a fixed pattern of keypoints

requires a relatively large amount of human prior. This eases

the keypoint prediction model from the difficulty of learning

from scratch but limits the generalisability of the learnt key-

point patterns. In reality, one specific pattern of keypoints is

unlikely to be sufficient and flexible enough for the diverse

manipulation tasks that may need to be performed on the

objects. The aforementioned papers have evaluated their meth-

ods on tasks with relatively simplified geometric constraints

and manipulation skills [28]–[31], [33]. For example, when a

robot could only reach a hammer’s head, it could not grasp the

head and use the handle as a hammering point if it can only

recognise the head as a hammering point. Learning to predict

keypoint patterns with free interactions and task-completion

signals is promising for reducing such human biases [32].

Secondly, sparse keypoint representation is not very com-

patible with tasks that are sensitive to object shapes and

sizes, when compared to a full point cloud representation.

For example, when manipulating a deformable object like

a soft plastic cup, keypoints are not enough for the robot

to determine the grasping force and track the deformation

of the cup [44]. In this regard, multi-modal representations

may be required, such as using keypoints along with a shape-

completion procedure [30]. In the future, other observation

modalities, such as tactile sensors, force sensors, etc., may be

incorporated with keypoints to better infer afforded actions in

real-world manipulation tasks.

Last but not least, the primary method to infer afforded

actions using keypoints, namely motion planning, is difficult

and expensive in environments with complex dynamics and

large action and state spaces. It poses two problems to classic

methods: 1) user-specified dynamic models have difficulties

representing highly stochastic and non-linear real-world sys-

tems and generalising to high-dimension inputs like images

and 2) planning over large action and state spaces is very

expensive and difficult. Researchers have proposed to address

them by learning a system dynamic model from data [12],

[45]–[48], though they did not explicitly consider the concept

of affordances. We elaborate in the next subsection on recent

works that propose to plan robot motions using a learnt

affordance-aware dynamic model.

V. MODELLING ACTION POSSIBILITIES AND EFFECTS

As defined in Section II, the effects of afforded actions can

be modelled by a partial dynamic model P̂I(s
′|s, a), which

predicts the next system states given a pair of state and

afforded action. The motivation for building a dynamic model

is to equip a robot with a safer and more efficient method to

generate motion plans or learn from imagined data. A dynamic

model releases the robot from expensive and potentially unsafe

interactions with the real world [12], [48]. Previous works on

action effect modelling have relied extensively on manually-

abstracted state representations and dynamics [49], [50], which

has a deep connection to the field of symbolic planning [51].

It is difficult, however, to handcraft dynamic models for real-

world systems with complex observations. Therefore, in recent

years researchers have proposed deep learning methods to rep-

resent and learn the dynamic model from data, demonstrating

the value of having access to a dynamic model over the space

of complex sensory observations [12], [48], [52], [53].

Among many recent advances of learnt world models,

Khetarpal et al. proposed to integrate the concept of af-

fordances in the model-based reinforcement learning (MRL)

paradigm (as rephrased in section II) [10]. They first learnt a

binary classification model to predict whether some actions

were afforded given an observation, which was essentially

estimating the action possibilities p̂AF as binary variables. Dif-

ferent from methods discussed in Section III, they did not infer

the afforded actions from the estimated action possibilities.

Rather, they proceeded to learn a dynamic model of the world

for only actions that were classified as possible or effective.

Data on non-effective actions are regarded as redundant and

ignored. The resultant model was a partial dynamic model

(PDM) of the system. During planning, the PDM is only

queried for effective actions according to p̂AF . In short, the

benefits of such a framework are twofold: 1) it accelerates

planning by only considering the afforded actions and 2) it

accelerates dynamic model learning by focusing on learning

part of the system dynamics concerning the afforded actions



of interests. They were demonstrated first in a continuous 2D

navigation task in [10] and later in unseen long horizon ma-

nipulation tasks in simulation with image inputs (Fig. 4) [34].

This affordance-aware model-based reinforcement learning

framework was later extended to develop temporally abstract

partial dynamic models, considering options (sub-policies) that

are only afforded in certain situations. The authors empirically

demonstrated the success of learning option affordances and

partial option models online, resulting in more efficient learn-

ing and planning in a 2D Taxi task [35].

Fig. 4: The multi-step tool-use task designed to evaluate the

Deep Affordance Foresight method proposed in [34]. The

robot needs to decide which end of the L-shape stick to grasp

for reaching the red block or push the blue block out of the

tube.

Limitations: As a relatively new direction, the first limita-

tion is the lack of evaluation in more realistic examples. Most

previous works are performed in simulation using synthetic

data. Tasks with image or point cloud observations from

real robots with longer time horizons would increase the

complexity considerably. More efforts are required to design

more realistic tasks.

Secondly, the predicted action effects in the proposed ex-

amples are more short-term or instant effects of single-step

action commands. In practice, planning is often more valuable

with macro actions that consist of a series of single-step

control commands, exhibiting a particular kind of skill, such

as pushing for a certain distance, approaching and grasping

an object, lifting up for a certain height, etc. This requires the

algorithm to reason about long-term action possibilities and

consequences. Though an attempt was made to incorporate

affordances with temporally abstract partial models for more

efficient planning at a more abstract level, it was only evaluated

in a 2D Taxi task [35]. More effort is needed to evaluate and

improve its performance on robotic tasks in the future.

Thirdly, the proposed method focuses on the affordances

of a given state, which is likely to be computationally ineffi-

cient for tasks with complex observations containing diverse

information irrelevant to the manipulation goal. From a human

perspective, we typically only attend to some parts of the

observation that are most relevant to the task of interest, saving

energy and improving planning efficiency and accuracy.

VI. DISCUSSIONS AND CHALLENGES

According to the reviewed papers, this section summarises

the limitations of deep robotic affordance learning (DRAL)

and identifies its bottlenecks at the current stage. We conduct

the discussion and pose future research challenges from the

following angles: observations, actions, affordance represen-

tations, data collection and real-world deployment.

A. Observation

For most tasks, especially real-world tasks, a robot relies

on sensors to perceive the environment without access to

the true system dynamics, such as the velocities of objects.

This is one of the most common assumptions adopted by

robotic researchers. Previous works have made efforts to

develop symbolic representations for the observations of the

system to simplify the mapping from sensory observations to

affordances [4], [54]. In recent DRAL literature, the types

of observations have become more complex, including ob-

ject states (normally in simulation), object point clouds, and

RGB/RGB-D images.

Another important assumption made by these works is that

the observation contains enough information to reason about

affordance. However, this does not always hold true. For exam-

ple, a heated plate may be detected as graspable from RGB-D

or point cloud observations though it may be actually too hot to

hold by a human. Some affordances may require information

about temperature, softness, transparency, reflection, etc., that

is difficult for (depth) cameras to capture. It is also worth

noting that languages are becoming more popular to provide

instructions or extra information about the desired tasks and

skills for affordance learning [27], [55], due to the rise of large

language models (LLMs). Information about the robot itself,

such as sensorimotor states, could also help to reason about

affordances like reachability. On the other hand, affordances

of occluded objects are difficult to detect from a fixed camera

viewpoint. Combining all these, a promising direction for

future research is to apply multi-modal and multi-viewpoint

observations for affordance detection [54], [56].

The third assumption about observations, especially for deep

learning-based methods, is that the mapping from inputs to

actions or action possibilities can be found through gradient

descent. However, given the large space of observations in the

real world, it is very challenging to find such a mapping even

if it does exist. Some works applied pre-processing methods

to help the robot focus on the most relevant information

for affordance learning or action inference, such as applying

object masks [25] or extracting object keypoints [28]. Such

ideas make computation more efficient by shrinking the size

of observation space, whereas more or less lose some degree of

generality due to human priors. In this regard, future research

could focus on representation design or learning, giving special

attention to the trade-off between generalisability and learning

efficiency (or computational cost) for affordance detection or

afforded action inference.

B. Action

Noticeably, researchers preferred motion primitives in recent

DRAL works, for example, grasping primitives that move a

gripper towards an identified grasping location and close the

fingers [24], [25], and placing primitives that move a gripper

with an object to a location and release the fingers [28], [30].

Note that these primitives can be motion planned by a planner

[24], [28], [30], [31] or parameterised motor skills [34]. These

primitives exhibit relatively simple motions, such as pick-

and-lift [18], [19], [23]–[25], pick-and-place [22], [28], [30],



pushing [34] and hammering [31]–[33]. The use of motion

primitives as actions exhibits a trend that the community is

more interested in the affordances of high-level skills, rather

than low-level control commands. To follow this trend, we

pose some challenges and future directions to consider.

The adaptability of the primitive motions considered by

recent works could be improved, as they were mostly designed

for open-loop control. For example, given a grasping point,

a grasping motion moves the gripper to the grasping point

and closes the fingers, without any adaptation in between.

However, the detected grasping affordance may be inaccurate

or changed during the execution of the motion due to occlu-

sion, human factors, collision with the robot arm or finger

slippery, etc. To cope with such challenges, one may consider

a feedback control style method for action inference [29],

[32]. Another interesting direction to consider is an algorithm

that is permitted to stop and re-select motion primitives. For

example, when an insertion motion changes from affordable to

unaffordable, the robot may select a re-position motion without

waiting for the insertion motion to reach its execution time

limit. The notion of interrupted options based on the option

framework [36] may serve as a good theoretic foundation.

Predefined primitive motions are very useful when the

manipulation task is in a rather structured environment without

unexpected factors. However, the real world is highly unstruc-

tured and uncertain. A robot needs to generalise its skills

to novel situations quickly or sometimes finds new skills to

manipulate an object. This means the robot may be required

to discover new afforded actions. To achieve this, the action

space needs to be general enough. One promising direction

is the study of option or subgoal discovery in hierarchical

reinforcement learning [13], in which skills (in the form of

sub-policies) are discovered instead of predefined.

C. Affordance Representations

According to Gibson [1], perceiving affordance does not

need information processing or any internal representations,

but only requires the extraction of fundamental physical

properties of the target object or environment. For example,

perceiving that a needle has a pointed end leads to the

perception that the needle affords to pierce. This reasoning

is theoretically sound [57], but is however practically limited

as, in practice, some forms of mathematical representations

of affordances are required to facilitate action inferences

[6]. Also, it is important to note that there are so far no

known widely-adopted benchmarking metrics for qualitative

or quantitative comparative studies of different representations

proposed in the field. What intermediate representations are

needed in the spectrum between end-to-end learning and

manually constructing everything is mostly specific to the

problem of interest.

As this review is inclined to the recent practical applications

of affordances in DL-powered RL and robotics, it is more

graspable and plausible from the practical standpoint to discuss

the representations of affordances in recent literature according

to how the action inference method works. Afforded actions are

inferred in mainly three manners: 1) from the action possibility

estimates, 2) by a direct mapping from the observations, and

3) by planning with a partial dynamic model. The first and

third classes require an explicit representation of the action

possibilities and effects, while the second one may need an

intermediate representation that constrains the action space,

such as object keypoints.

Action possibilities for primitive motions were often rep-

resented by an affordance map, which is typically a matrix

that has the same size as the observation image. Its entries

indicate the success rates or possibilities of executing cer-

tain primitive motions at the corresponding pixel locations

[22]–[25]. Segmentation masks can be regarded as a special

case with binary variables [14], [17]–[20]. It can also be

applied to point clouds in the 3D space [15], [26]. This

representation is efficient as it estimates the possibilities for

a set of actions simultaneously, but is limited to primitive

motions that operate over the discrete image pixels or object

points. It may not easily generalise to continuous observations

such as sensorimotor states, force feedback, etc. For actions

that are not parameterised on images or point clouds, one

may need to represent the action possibilities as a classifier

[10]. In order to scale to real-world tasks, it is promising

to develop methods to accelerate the learning of the action

possibility estimator with large and continuous action space,

such as learning from demonstrations [58].

Representing and predicting the effects of actions is another

difficult topic. Though an action possibility estimator helps to

reduce the learning data requirement and increase the planning

efficiency for dynamic models [10], [34], the difficulty of

reconstructing high dimensional observations (e.g., images or

point clouds) remains. Experiences and methods from other

fields could be considered, such as video prediction [59]. There

is also a large body of work devoted to the learning of dynamic

models [48]. Abstract representation for system observations

is another closely related topic [60]. Future research may

focus on applying general dynamic model learning methods

to partial dynamic models with an action possibility estimator.

Another challenge in the long term may be how the learning

of affordances affects the learnt representation of the world,

which is related to the topic of understanding the world

through interaction.

Another way to compute afforded actions in the literature

is through a direct mapping from observations to a set of

afforded actions. The crucial question is how to represent the

scene/object in a way that relates to their afforded actions. One

popular solution is to use object keypoints that geometrically

capture some functions of a category of objects, such as

grasping points of mugs [28]–[33], as discussed in Section IV.

From the keypoint methods, we can identify some criteria to

be satisfied when considering other types of representations.

These include: 1) intuitive or convenient for generating robot

motions; 2) able to generalise across robot hardware (grippers,

arms, etc.); 3) able to capture the common properties of

many objects. Notice that such a representation should be

designed as an abstraction of the observations of a scene or

an object that relates to the afforded actions. The keypoint-

based methods rely on motion planning or model predictive

control to generate the desired motions (see Table II), while



one may come out with representations that suit other motion

generation techniques (e.g., reinforcement learning, imitation

learning, etc.).

D. Data collection

Deep learning methods require a considerable amount of

data to achieve good generalisation performances [61]. Pre-

vious papers in DRAL have used supervised learning, self-

supervised learning and reinforcement learning as their core

training methods, each of which has a unique data collection

process.

Supervised learning methods rely fully on human prior to

collect and generate data, which is expensive for large datasets

(e.g., ImageNet [41]). Most papers use the UMD dataset

[14] for evaluation. However, it only provides segmentation

labels. To alleviate the difficulty of collecting manipulation-

specific data (e.g., grasping points, motion trajectories, etc.),

some papers adopt self-supervised learning to collect data

automatically through simulations [23]–[25], [31], [32]. Rein-

forcement learning (RL)-based methods generate training data

by interacting with the environment using a learnt policy with

some degree of randomness [11]. In addition, the performance

of the RL policy is evaluated directly on task return or

success rate, without intermediate metrics (e.g., the accuracy

of predicting segmentation masks or keypoints). However, off-

policy RL methods can benefit from data generated from other

sources, such as human demonstrations [58].

A limitation, at the current stage, is the lack of a consensus

on which benchmark should be used to generate the data and

evaluate the algorithms for DRAL. Ideally, such a benchmark

should provide handy Application Programming Interfaces

(APIs) and functions to support the data collection processes

for supervised, self-supervised and reinforcement learning.

Common functionalities, such as capturing RGB/RGB-D im-

ages and point clouds, classic planning algorithms, popular RL

baselines, etc. are also considered helpful. It could be more

valuable if tasks that feature multiple manipulation objectives

and multi-step manipulation are designed and built-in. There

are several open-source datasets, simulation environments and

benchmarks that may be extended for such purposes [26],

[62]–[64]. The community has not yet seen a large-scale

dataset for DRAL that covers the mentioned aspects.

E. Real-world deployment

For methods that use real-world data, the main difficulty

is primarily the expensive data-collection process, which was

covered in the last subsection. The main concern that arises

during the final deployment or evaluation is then the insuf-

ficient generalisation ability, which is largely caused by the

limited amount of training data.

1) Supervised learning methods are easier to be deployed in

the real world after being trained, though their performances

rely extensively on the quality of the dataset. In the past

few years, many datasets that support the learning of stable

grasping have been constructed [14], [22], [38], [39], [65],

[66]. However, very few are built for multiple manipulation

objectives or multi-step tasks [67], [68]. Consequently, more

efforts are needed to collect data that cover diverse background

textures, viewpoints, objects (in terms of types, shapes, dimen-

sions, etc), and manipulation skills (trajectories) in order for

supervised learning-based DRAL to work in the real world.

2) Reinforcement learning in the real world is even more

difficult due to the high risk of hardware damages during

exploration and a considerable amount of human labour for

resetting the environment [69].

3) Sim2real transfer is another stepping stone for success-

ful real-world deployment, as researchers have resolved the

simulation training to avoid the painful and impractical data-

collection process in the real world. Inevitably, deploying

models trained in simulation onto real-world systems will

have to face the simulation-to-reality gap. To cope with

such differences, researchers have proposed to use domain

randomisation to extend the distribution of training data [70]. It

can be applied to image textures [20], [25], [70], [71], camera

parameters [72] and physical properties [69]. Recent DRAL

works limit their real-world applications within a relatively

unchanged and structured environment. Long-horizon tasks

that require the reasoning of the long-term effects of diverse

skills or objects have mainly been studied in simulation. More

efforts are needed to evaluate and adapt existing methods to

real-world data.

VII. CONCLUSION

This review paper looks into the recent advances in the topic

of deep robotic affordance learning (DRAL). DRAL aims to

develop data-driven (deep learning) approaches to apply the

concept of affordance to robotic tasks. We suggest in this re-

view to summarise and analyse these works based on the rein-

forcement learning (RL)-based definition of affordances [10].

We briefly recall this definition in Section II, where we classify

recent DRAL papers and discuss the connections between RL

and affordances. Accordingly, they are categorised into three

classes of works:

• 1) infer afforded actions from the estimated action pos-

sibilities;

• 2) learn an abstract object/scene representation that re-

lates to the set of afforded actions;

• 3) generate afforded actions through planning with a

learnt partial dynamic model and an action possibility

classifier.

Advances and limitations of the three lines of works are

discussed in Sections III, IV and V, respectively. A more

general discussion of the field and its challenges are given

in Section VI.

Final remark: We further propose here a promising direc-

tion to extend the RL-based affordance definition. In [10], the

intent captures the desired resultant state of an action taken at

a system state. Subsequently, the corresponding affordance is

defined as a subset of state and action pairs, in which the intent

is satisfied. In [35], the definitions of intent and affordance are

extended to include multiple timestep predictions in the MDPs.

Here, we propose to extend the theory by generalising the def-

inition of intent to capture an arbitrary kind of consequence of

an action taken at a state, generalising beyond state prediction.



Such intents could be called general intent. For example, the

intent of a grasping action may include the desired success

rate, object dropping rate, the weight of the object that can

be held, etc. Subsequently, affordance is defined to include a

subset of state and action pairs, in which the intent is satisfied.

Such affordances may be called general affordances.

More importantly, this direction is promising, if a thor-

ough mathematical definition is developed based on the RL

framework. A set of new algorithms can be developed to

infer actions according to the predictions of arbitrary action

consequences, instead of simple system states. Similar to the

dynamics-based affordances, general affordances can help with

exploration, value function or policy learning, model learning

and planning by constraining the action space, but for arbitrary

action consequences, beyond state prediction. However, this

is outside of the scope of this review, and considerably more

future efforts are required to derive and experiment with the

theory.
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