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A B S T R A C T 

We use our cluster population model, cBHBd , to explore the mass distribution of merging black hole binaries formed dynamically 

in globular clusters. We include in our models the effect of mass growth through hierarchical mergers and compare the resulting 

distributions to those inferred from the third gravitational wave transient catalogue. We find that none of our models can 

reproduce the peak at m 1 ≃ 10 M ⊙ in the primary black hole mass distribution that is inferred from the data. This disfa v ours 

a scenario where most of the sources are formed in globular clusters. On the other hand, a globular cluster origin can account 

for the inferred secondary peak at m 1 ≃ 35 M ⊙, which requires that the most massive clusters form with half-mass densities 

ρh , 0 � 10 
4 M ⊙ pc −3 . Finally, we find that the lack of a high-mass cut-off in the inferred mass distribution can be explained by 

the repopulation of an initial mass gap through hierarchical mergers. Matching the inferred merger rate abo v e ≃ 50 M ⊙ requires 

both initial cluster densities ρh , 0 � 10 
4 M ⊙ pc −3 , and that black holes form with nearly zero spin. A hierarchical merger scenario 

makes specific predictions for the appearance and position of multiple peaks in the black hole mass distribution, which can be 

tested against future data. 

Key words: stars: kinematics and dynamics – galaxies: star clusters: general – globular clusters: general. 

1  I N T RO D U C T I O N  

The analysis of gravitational wave (GW) observations has identified 

structures in the mass distribution of the observed population (Ti- 

wari & Fairhurst 2021 ). Some of these structures already emerged 

from the analysis of the second gravitational wave transient catalogue 

(GWTC-2; Abbott 2021 ; Abbott et al. 2021c ). Ho we ver, thanks to 

the increased number of events in the new GWTC-3 (Abbott et al. 

2021a , b ), we are now more confident of their statistical significance. 

In particular, three important features in the underlining black hole 

(BH) mass distribution have been uncovered: (i) the distribution of 

primary BH masses has a strong peak at about ≃ 10 M ⊙; (ii) there is 

clear evidence for a secondary peak at ≃ 35 M ⊙; and (iii) there is no 

evidence for any mass gap abo v e ≈40–60 M ⊙, which is predicted by 

stellar evolution models due to pulsational pair-instability and pair- 

instability in massive stars (e.g. Spera & Mapelli 2017 ; Woosley 

2017 ; Olejak et al. 2022 ). In this article, we perform a large number 

of cluster simulations to understand whether (i), (ii), and (iii) can be 

explained by a globular cluster (GC) origin for the sources. 

The formation of BH binary mergers, including those with com- 

ponents abo v e the upper mass gap, might be explained by several 

formation pathways. These include binary stellar evolution (e.g. 

⋆ E-mail: antoninif@cardiff.ac.uk 

Dominik et al. 2012 ; Mink & Belczynski 2015 ; Mandel & De Mink 

2016 ; Farmer et al. 2020 ; Costa et al. 2021 ), multiple star interactions 

(e.g. Antonini, Toonen & Hamers 2017 ; Silsbee & Tremaine 2017 ; 

Fragione, Loeb & Rasio 2020 ; Hamers et al. 2021 ; Liu & Lai 2021 ; 

Stegmann et al. 2022 ), stellar collisions in open clusters (e.g. Di Carlo 

et al. 2020 ; Kremer et al. 2020 ; Banerjee 2021a ; Dall’Amico et al. 

2021 ; Chattopadhyay et al. 2022 ), primordial BHs (e.g. Ballesteros, 

Serpico & Taoso 2018 ; Gow et al. 2020 ; De Luca et al. 2021 ), 

and formation in active galactic nuclei (e.g. Bartos et al. 2016 ; 

Stone, Metzger & Haiman 2016 ; Yang et al. 2019 ; Tagawa et al. 

2021b ). One widely discussed scenario is formation through three 

body dynamical interactions in dense stellar environments such as 

nuclear star clusters (e.g. Miller & Lauburg 2009 ; O’Leary, Kocsis & 

Loeb 2009 ; Antonini & Rasio 2016 ; Antonini, Gieles & Gualandris 

2019 ; Fragione et al. 2022 ) and GCs (e.g. Kulkarni, Hut & McMillan 

1993 ; Sigurdsson & Hernquist 1993 ; Banerjee, Baumgardt & Kroupa 

2010 ; Rodriguez et al. 2015 ; Rodriguez, Chatterjee & Rasio 2016 ; 

Askar et al. 2017 ; Fragione & Kocsis 2018 ; Chattopadhyay et al. 

2022 ). 

The mass distribution of coalescing BH binaries produced in GCs 

has been investigated in several studies (e.g. Rodriguez et al. 2016 ; 

Askar et al. 2017 ; Park et al. 2017 ; Antonini & Gieles 2020a ; Mapelli 

et al. 2022 ; Zevin & Holz 2022 ). Previous work suggests that GCs 

are an environment where BH binaries can efficiently assemble and 

merge, providing one of the main formation channels of BH binary 
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coalescences in the Univ erse (Porte gies Zwart & McMillan 2000 ). 

In particular, it has been argued that due to the high escape velocities 

of GCs, BH mass growth can occur through consecutive mergers, 

populating any mass gap created by stellar processes (Rodriguez 

et al. 2018 , 2020 ; Doctor et al. 2020 ; Kimball et al. 2020 , 2021 ; 

Tagawa et al. 2021a ). In this scenario, a BH that is formed from 

a previous merger and is retained inside the cluster, sinks back 

to the cluster core where it dynamically couples with another BH 

and merges with it after a series of binary-single encounters. If this 

process repeats multiple times, significant mass growth can occur 

(Antonini & Rasio 2016 ; Fishbach, Holz & Farr 2017 ; Gerosa & Berti 

2017 ). A direct comparison of model predictions with data, ho we ver, 

are rare (Mould, Gerosa & Taylor 2022 ). It remains therefore an open 

question whether a GC origin provides a plausible explanation for 

the inconclusi ve e vidence for an upper mass gap in the GW data, 

and whether the other features of the inferred BH mass distribution 

can also be reproduced. A putative successful GC model will then 

provide useful constraints on the properties of GCs and their BHs at 

birth. 

In this work, we adopt our new fast method for the evolution 

of star clusters and their binary BHs, cBHBd (Antonini & Gieles 

2020b ), to study the mass distribution of BHs produced dynamically 

in GCs, including the effect of hierarchical mergers and a no v el 

recipe for sampling masses of the binary BH components and the 

interlopers. Our efficient approach allows us to address how model 

assumptions affect the final results, place error bars on merger rate 

estimates, compare to the distributions inferred from the new GW 

data catalogue GWTC-3, and, finally, asses a hierarchical merger 

origin for the formation of the most massive BHs detected by LIGO 

and Virgo. 

In Section 2 , we describe our methodology and approximations. In 

Section 3 , we describe our main results, and the importance of model 

assumptions. We conclude and summarise our results in Section 4 . 

2  CLUSTER  M O D E L S  WITH  H I E R A R C H I C A L  

M E R G E R S  

We simulate the evolution of BH binaries in star clusters using our 

code cBHBd , which we modify in order to include hierarchical 

mergers. We define here hierarchical mergers as binary mergers in 

which at least one of the two BH components is a BH remnant that 

was formed from a previous merger. 

Our method is based on H ́enon’s principle (H ́enon 1975 ), which 

states that the rate of heat generation in the core is a constant fraction 

of the total cluster energy per half-mass relaxation time. Thus, the 

energy production rate in the core, which we assume is produced 

by BH binaries, is regulated by the energy demand of the entire 

system (Breen & Heggie 2013 ). The lifetime and the merger rate of 

BHs in the cluster can be linked to the evolution of the cluster itself 

as described in details in Antonini & Gieles ( 2020b ). Then, three 

ingredients are needed in order to determine the formation of BH 

binaries, their merger rate, and their properties: (i) a model for the 

evolution of the cluster global properties; (ii) a model for binary BH 

dynamics; and (iii) a realistic set of initial BH masses. 

We start by sampling the masses of the stellar progenitors of 

BHs from a standard mass function, φ( m ⋆ ) ∝ m 
−2 . 3 
⋆ (Salpeter 1955 ; 

Kroupa 2001 ), with masses in the range 20–130 M ⊙. For a given 

cluster metallicity, Z , we evolve the stars to BHs using the Single 

Stellar Evolution ( SSE ) package (Hurley, Tout & Pols 2002 ), which 

we modified to include updated prescriptions for stellar winds and 

mass-loss (following Vink, de Koter & Lamers 2001 ), and for pair- 

instability in massive stars (following Spera & Mapelli 2017 ). We 

therefore evolve the BH progenitors as single stars, assuming a zero 

binary fraction initially. At the end of this phase, the total number 

of BHs in a cluster model is calculate by assuming a Kroupa ( 2001 ) 

initial mass function in the mass range 0.1–130 M ⊙. The value of 

the largest BH mass formed in the model depends on metallicity 

and varies between ≃ 25 M ⊙ for Z = 2 × 10 −2 and ≃ 55 M ⊙ for 

Z = 1 × 10 −4 . For each BH we compute a natal kick velocity from 

a Maxwellian distribution with dispersion 265 km s −1 (Hobbs et al. 

2005 ), lowered by the amount of mass that falls back into the forming 

compact object (Fryer et al. 2012 ). In most of our models, we start 

the BHs all with the same value of the spin angular momentum, χ , 

where � χ = � S / m 
2 is the dimensionless spin of the BH and � S is the 

spin angular momentum in units of m 
2 . In one model, the initial 

value of χ is sampled from a distribution that is consistent with that 

inferred from the GW data and is given by the median distribution 

shown in fig. 15 of Abbott et al. ( 2021b ). 

Then, we initialize and evolve the cluster model. The initial 

conditions are determined by three parameters: the cluster density, ρ

h, 0 ; the cluster mass, M 0 ; and the total mass in BHs, M BH, 0 . The latter 

is set equal to the total mass in BHs obtained with SSE , assuming 

a Kroupa initial mass function in the range 0.08–130 M ⊙ and taking 

into account that a fraction of the BHs are ejected from the cluster 

by a natal kick. The time evolution of the cluster properties is then 

obtained as in Antonini & Gieles ( 2020a ). Briefly, we integrate a 

set of first order differential equations which determine the time 

evolution of M , M BH , and the cluster half mass radius, r h . These 

models include simple prescriptions for mass-loss and expansion 

due to stellar evolution and cluster ‘evaporation’, whereas BHs are 

assumed to be lost through dynamical ejections. 

Finally, we dynamically evolve the BH binaries that form via 

three-body processes in the cluster core. Our treatment of binary BH 

formation and e volution follo ws closely Antonini & Gieles ( 2020b ). 

The first binary BH forms after the cluster core-collapse time 

τcc = 3 . 21 t rh , 0 (1) 

where t rh, 0 is the initial cluster half-mass relaxation time (for the 

definition, see equation 10 in Antonini & Gieles 2020b ). We assume 

that the binary is formed with a semimajor axis at the soft-hard 

boundary, a h ≃ G μ/ σ 2 , with μ = m 1 m 2 /( m 1 + m 2 ), where m 1 

and m 2 are the masses of the binary components, and m 1 > m 2 . 

The expression of a h above is only approximate, and valid under the 

assumption of equal mass components. Later in Appendix B , we 

introduce the quantity β and equipartition among BHs of different 

masses, then the definition is a h = 0.5 Gm 1 m 2 β. 

The pairing of BHs is done by sampling their masses from the set of 

BHs still left inside the cluster. We first draw two mass values from the 

power-law probability distributions p( m 1 ) ∝ m 
α1 
1 and p( q) = q α2 , 

with α1 = 8 + 2 α, α 2 = 3.5 + α, and q = m 2 / m 1 . Here α is the 

power law index of the BH mass function, which also evolves with 

time as the BH population is depleted. The two BH components are 

then selected by choosing the two BHs that have the mass closest to 

the values drawn from p ( m 1 ) and p ( q ) [or p ( m 2 )]. 

Once selected, the binary is evolved through a sequence of binary- 

single encounters. Similarly, we find the mass of the third BH 

interloper from the power-law distribution p( m 3 ) ∝ m 
α3 
3 with α3 = 

α + 1/2. The adopted expressions for p ( m 1 ), p ( q ), and p ( m 3 ) are 

moti v ated belo w in Appendix B . The po wer-la w e xponent, α, is 

obtained at the start of the integration for each cluster from a fit to 

the initial BH mass function after removing BHs that are ejected by 

natal kicks. The value of α as well as the lower and upper bound 

of the BH mass function are then recalculated after each time-step. 

Specifically, the lower bound of the BH mass function is set equal 
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to the mass of the lightest BH in the cluster, and the upper bound 

is the mass of the most massive BH. This procedure allows to take 

into account the evolution of the BH mass function with time due to 

ejections and the growth of BHs through hierarchical mergers. 

Following Samsing ( 2018 ), we divide each binary-single en- 

counter in a set of N rs = 20 resonant intermediate states and assume 

that the eccentricity of the binary after each state is sampled from a 

thermal distribution N ( < e ) ∝ e 2 . If 

√ 

1 − e 2 < h 

(

R S 

a 

)5 / 14 

(2) 

a merger occurs through a GW capture before the next intermediate 

binary-single state is formed, where R S = 2 G ( m 1 + m 2 )/ c 
2 and h is 

a constant of order unity. 

If the binary survives the 20 intermediate resonant states, we 

compute: (i) the new binary semimajor axis, assuming that its binding 

energy decreases by the fixed fraction 
 E / E = 0.2 (Samsing 2018 ); 

(ii) the recoil kick due to energy and angular momentum conservation 

experienced by the binary centre of mass (Antonini & Rasio 2016 ) 

v 2 bin = 0 . 2 G 
m 1 m 2 

m 1 + m 2 + m 3 
q 3 /a (3) 

with q 3 = m 3 /( m 1 + m 2 ); and (iii) the recoil kick experienced by the 

interloper: 

v 3 = v bin /q 3 . (4) 

If v bin > v esc , the binary is ejected from the cluster; if v 3 > v esc , the 

interloper is also ejected from the cluster. If the binary is ejected from 

the cluster, we compute its merger time-scale due to GW energy loss 

using the standard Peter’s formula (Peters 1964 ). 

If v bin < v esc , and the binary angular momentum at the end of the 

triple interaction is such that (Antonini & Gieles 2020b ) 

√ 

1 − e 2 < 1 . 3 

[

G 
4 ( m 1 m 2 ) 

2 ( m 1 + m 2 ) 

c 5 Ė bin 

]1 / 7 

a −5 / 7 , (5) 

then the BH binary merges before the next binary-single encounter 

takes place. Binaries that undergo this type of evolution are often 

named ‘in-cluster inspirals’ (Rodriguez et al. 2018 ; Samsing 2018 ). 

We then assign the new remnant BH a GW recoil kick, v GW , and 

compute its new spin and mass following Rezzolla et al. ( 2008 ). If 

v GW > v esc the remnant is ejected from the cluster, otherwise we 

compute the dynamical friction time-scale to sink back to the cluster 

core 

τdf ≃ 1 . 65 r 2 in 

σ

ln �Gm 
(6) 

where (Antonini et al. 2019 ) 

r in = r h 

√ 

v 4 esc 
(

v 2 esc − v 2 GW 

)2 
− 1 (7) 

and only allow the BH to form a new binary after this time. If v bin < 

v esc , but condition equation ( 5 ) is not satisfied, then a new interloper 

is sampled from the given distribution and the binary is evolved 

through a new binary-single interaction. 

Each binary is evolved through a sequence of binary-single 

encounters until either a merger occurs or it is ejected from the 

cluster. Then a new binary is formed. The cluster is assumed to live 

in a state of balanced evolution in which the binary disruption rate 

is equal to the binary formation rate. Under this assumption, the 

lifetime of a binary, or the time-scale until a new binary is formed, 

is simply 

τbin = 
m ej 

Ṁ BH 

, (8) 

where m ej is the total mass ejected by the binary, and Ṁ BH is the BH 

mass-loss rate given by the cluster model. 

We continue selecting new binaries and evolve them through 

binary-single encounters until either all BHs have been ejected from 

the cluster, or until a maximum integration time of t = 13 Gyr has 

passed. 

2.1 Cluster initial mass function, formation time, and 

metallicity 

In order to generate predictions for BH binary mergers, we need a 

GC initial mass function, and a model for how the formation rate 

and metallicity of clusters evolve with redshift. These ingredients of 

our models are described below. For this, we follow the approach of 

Antonini & Gieles ( 2020a ). 

The cluster initial mass function is obtained by fitting an evolved 

Schechter mass function to the observed GC mass function in the 

Milky Way today (Jord ́an et al. 2007 ) 

φcl = A ( M + 
 ) −2 exp 

(

−M + 
 

M c 

)

. (9) 

This gives the posterior distribution for the parameters M c and 
 . 

Adopting a simple model for cluster e v aporation and mass-loss due 

to stellar evolution, the corresponding initial GC mass function is 

given by: 

φcl , 0 = 2 AM 
−2 
0 exp 

(

− M 0 

2 M c 

)

. (10) 

The corresponding fractional mass-loss due to e v aporation and stellar 

evolution is 

K = 
ρGC0 

ρGC 
= 

∫ ∞ 
M lo 

φcl , 0 M 0 d M 0 
∫ ∞ 

M lo 
φcl Md M 

= 32 . 5 + 86 . 9 
−17 . 7 (90 per cent cred . intervals) . (11) 

The spread in K provides an estimate of the uncertainty in the 

fractional mass-loss from cluster until today, given the 156 Milky 

Way GC masses. The cluster mass formed per unit volume integrated 

o v er all times is (Antonini & Gieles 2020a ) 

ρGC0 = 2 . 4 + 2 . 3 
−1 . 2 × 10 16 M ⊙ Gpc −3 (90 per cent cred . intervals) . (12) 

The large error bars here imply that ρGC0 is uncertain by a factor of 

≃ 2. In the next sections, we include this uncertainty as well as the 

uncertainty on K in the predictions for the merger rate. 

We obtain the distribution of cluster formation times from the 

semi-analytical galaxy formation model of El-Badry et al. ( 2019 ). 

The resulting cluster formation history peaks at a redshift of ∼4, 

which is earlier than the peak in the cosmic star formation history 

(redshift ∼2, Madau & Dickinson 2014 ). We sample the formation 

redshift of our cluster models from the total cosmic cluster formation 

rate given by the fiducial model of El-Badry et al. ( 2019 ) and 

inte grated o v er all halo masses. This corresponds to the formation 

rate per comoving volume of their fig. 8 with their parameters βŴ = 1 

and β η = 1/3, where βŴ sets the dependence of the cluster formation 

efficiency on surface density, and β η the dependence of the star 

formation rate on the halo virial mass. Here, we renormalize the 

cluster formation rate, φ z ( z), such that 
∫ 0 

∞ φz d z = 1. Thus, we only 

sample the cluster formation time from El-Badry et al. ( 2019 ), and 

then rescale the cluster formation rate such to reproduce the total 

mass density given by our equation ( 12 ). We note that the cluster 

formation model has a negligible impact on the local merger rate and 

properties of the merging binaries. In Antonini & Gieles ( 2020a ), 
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we showed that unrealistic models where all clusters are assumed 

to form at the same time (e.g. z = 3) produce similar results than 

models in which the cluster formation rate is varied with redshift. 

For the cluster metallicity, we fit a quadratic polynomial to the ob- 

served age–metallicity relation for the Milky Way GCs (VandenBerg 

et al. 2013 ) to obtain the mean metallicity 

log ( Z mean /Z ⊙) ≃ 0 . 42 + 0 . 046 

(

t 

Gyr 

)

− 0 . 017 

(

t 

Gyr 

)2 

. (13) 

Given the cluster formation redshift, we then assume a log-normal 

distribution of metallicity around the mean 

φZ = 
log ( e) √ 
2 πσ 2 

exp 
{ 

− [ log ( Z/ Z ⊙) − Z mean ] 
2 

2 σ 2 

} 

, (14) 

with standard deviation σ = 0.25 dex. This takes into account the 

large spread found in the observed age–metallicity relation for the 

Milky Way GCs. 

2.2 Merger rates and their error bars 

Finally, we construct a library of cluster models o v er a three- 

dimensional grid of formation time, metallicity, and cluster mass. 

We sample the cluster formation redshift o v er the range z ∈ [10; 

0] with step-size 
z = 0.5; at a given redshift, the metallicity of the 

cluster is sampled in the range Z ∈ [10 −4 ; 0.02] with logarithmic step 

size 
 log Z = 0.1; finally, for a given formation time and metallicity, 

the initial mass of the cluster is varied in the range M 0 ∈ [10 2 ; 2 × 10 
7 ] M ⊙, with step size 
 log M 0 / M ⊙ = 0.1. The merger rate is then 

calculated o v er the grid of cluster models as: 

R ( τ ) = K ρGC 

∑ 

z 

∑ 

Z 

∑ 

M 0 

Ṅ ( τ ; z, Z, M 0 ) φz φZ φcl , 0 M 0 

∑ 

z 
φz 

∑ 

Z 
φZ 

∑ 

M 0 

φcl , 0 M 
2 
0 

, (15) 

where Ṅ ( τ ; M 0 , r h , 0 , Z) is the BH binary merger rate at a look-back 

time τ corresponding to a cluster with an initial mass M 0 , metallicity 

Z and that formed at a redshift z. 

In order to take into account the uncertainties in the initial cluster 

mass function, we sample 100 values o v er the posterior distributions 

of the parameters M c and 
 obtained from the MCMC fit to the Milky 

Way GC mass function. We also take into account the uncertainty 

on the mass density of GCs in the Universe, ρGC . We assume 

that the parameter ρGC follows a Gaussian distribution with mean 

7 . 3 × 10 14 M ⊙ Gpc −3 and dispersion σ = 2 . 6 × 10 14 M ⊙ Gpc −3 . We 

sample 100 values from this Gaussian distribution and for each of 

them we use equation ( 15 ) to determine a merger rate estimate for 

each of the [ M c , 
 ] values, and thus obtain a distribution of merger 

rate density values. Since in this work we are interested in the mass 

distribution of local BH binary mergers, we consider the differential 

merger rate in the local universe d R ( z = 0) / d m 1 and d R ( z = 0) / d q, 

which we compare to the distributions inferred from GWTC-3. 

3  R ESU LTS  

3.1 Primary BH mass and mass-ratio distributions 

In Antonini & Gieles ( 2020a ), we found good agreement between 

model predictions and the inferred distribution of primary BH masses 

within the range of values m 1 = 15–40 M ⊙. Outside this range, the 

binary BH merger rate was found to be several orders of magnitude 

smaller than inferred. The first question we address here is whether 

the inclusion of hierarchical mergers can reduce the discrepancy 

at m 1 � 40 M ⊙ between models and the inferred astrophysical 

distributions. 

In Fig. 1, we plot the distributions of m 1 and q for three different 

assumptions about the initial BH mass function. In the upper panels, 

we use the delayed supernova mechanism, in the middle panels the 

rapid supernova mechanism (Fryer et al. 2012 ), and in the lower 

panels we use the BH mass distribution from Belczynski et al. 

( 2008 ). These prescriptions produce somewhat different initial BH 

mass functions, and lead also to different natal kick values. In these 

models, all clusters are initialized with the same half-mass radius 

density of ρh , 0 = 10 5 M ⊙ pc −3 and the BHs are all started with zero 

dimensionless spin parameter, χ = 0. 

In the left-hand panel of Fig. 1 , we see that the new models 

produce mergers abo v e the ∼50 M ⊙ threshold. These mergers are 

produced by BHs that grow hierarchically through mergers − the 

vast majority of them are mergers between a first generation BH 

and a second generation BH. When we include these mergers in 

our calculation, we find good agreement between the models and 

the inferred distributions at m 1 � 50 M ⊙, in the sense that the 

models give a merger rate that is comparable with the inferred value. 

Ho we ver, we also note that a simple power-law profile abo v e this 

mass threshold is not a good representation of the model distributions. 

Abo v e m 1 ≃ 50 M ⊙, the model distributions are characterised by 

several peaks. Such higher mass peaks are related to peaks in the 

BH mass distribution at lower masses. From Fig. 1 , we see that 

the merger rate between first generation BHs peaks at ≃ 30 and 40 

M ⊙. Thus, mergers between first and second generation BHs lead to 

additional peaks at ≃ (30 + 30) M ⊙ = 60 M ⊙, (30 + 40) M ⊙ = 70 

M ⊙, and (40 + 40) M ⊙ = 80 M ⊙. The presence of peaks within the 

pair-instability mass gap and their relation to lower mass peaks in the 

BH mass distribution is a clear prediction of a hierarchical merger 

model for the origin of the binaries. 

The black histograms in the left-hand panel of Fig. 1 show 

the results from models in which any remnant BH formed from 

a previous merger is ejected from the cluster ‘by hand’. In these 

models, the distributions are sharply truncated at ∼50 M ⊙ since BHs 

cannot grow hierarchically abo v e this mass value. The merger rate 

at m 1 ≃ 10 M ⊙ derived from all models is about two orders of 

magnitude smaller than the inferred rate. This lower-mass peak can 

be explained, ho we ver, through other scenarios, including formation 

in the galactic field (e.g. Broekgaarden et al. 2022 ; van Son et al. 

2022 ) and formation in young and open star clusters because of 

their higher metallicity (e.g. Banerjee 2021b ; Chattopadhyay et al. 

2022 ). On the other hand, our models reproduce the inferred merger 

rate near m 1 ≃ 30 M ⊙, which can therefore be explained by a 

GC origin. This peak in the mass distribution is due to mergers 

involving first-generation BHs, and it is not related to hierarchical 

mergers. 

By comparing the results in Fig. 1 with the models in Antonini & 

Gieles ( 2020a ), we find that the latter generated a merger rate at 

m 1 � 20 M ⊙ higher by a factor � 2. The reason for this difference 

is due to the adopted new recipe for sampling the black hole binary 

components and the interloper masses. In Antonini & Gieles ( 2020a ), 

we had assumed that m 1 = m 2 = m 3 = m max , where m max is the 

mass of the most massive BH in the cluster. The distributions in 

Appendix B mean instead that in the current models 〈 m 3 〉 ≪ 〈 m 1 〉 
≃ 〈 m 2 〉 . Thus, each binary ejects more low-mass BH interloopers 

lowering the o v erall BH merger rate at low masses. 

In the right-hand panel of Fig. 1 , we consider the distribution of 

the mass-ratio q . The new models result in a significantly higher rate 

of merging binaries with small mass-ratio, q � 0.5, providing a better 

match to the inferred distribution than models without hierarchical 
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Figure 1. Local distributions of primary BH mass and mass-ratio for merging BH binaries in our best-case scenario where clusters start with high densities, 

ρh , 0 = 10 5 M ⊙ pc −3 , and the BHs are all initialized with zero dimensionless spin parameter χ = 0. Top, middle, and bottom panels correspond to the delayed 

supernova mechanism, the rapid supernova mechanism, and the BH mass distribution of Belczynski et al. ( 2008 ), respectively. Black lines show the corresponding 

distributions when hierarchical mergers are not included in the calculation, i.e. it is assumed that a BH formed from a previous merger is al w ays ejected from the 

cluster. Thick lines show median values of the merger rate value, and thin lines the corresponding 90 per cent confidence intervals. The green lines and hatched 

regions show the median and corresponding 90 per cent confidence regions inferred from the GWTC-3 (Abbott et al. 2021a ). 

mergers. Most of these additional low- q systems are mergers between 

a first generation BH and a BH that formed through a previous merger 

abo v e the pair-instability mass limit. At high values of q , instead, 

both models with and without hierarchical mergers produce a similar 

merger rate, which, at q � 0.8, is about one-order of magnitude 

smaller than inferred from the data. 

In Fig. 2 , we show the differential contribution to the local merger 

rate with respect to the initial cluster mass. This allows us to identify 

in which type of clusters most of the mergers are formed. The 

contribution to the total merger rate is nearly constant in log bins 

between M 0 = 5 × 10 4 M ⊙ and 5 × 10 6 M ⊙, whereas it decrease 

e xponentially abo v e this range because of the truncation of the initial 
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Figure 2. Differential local merger rate as a function of the initial cluster 

mass. We also show the initial cluster mass function (in arbitrary units) for our 

best fit value of Schechter mass, log M c / M ⊙ = 6.26. The delayed supernova 

mechanism has been adopted here. 

GC mass function at log M c / M ⊙ ≃ 6.26. We then show the same 

cluster mass distrib ution, b ut only considering mergers with m 1 ≥ 50 

M ⊙ (red histogram). These mergers, involving a primary BH abo v e 

the mass gap limit, are mostly produced in clusters with relatively 

large masses, between ∼2 × 10 5 and 5 × 10 6 M ⊙. The fraction of 

these higher mass mergers to the total number of mergers in each 

cluster mass bin increases with cluster mass. By comparing the blue 

and the red histograms in the figure, we see that at M 0 ∼ 10 7 M ⊙, 

between 10 per cent and 30 per cent of mergers have a primary with 

m 1 > 50 M ⊙. The percentage goes down to ∼ 1 per cent in clusters 

with an initial mass lower than ≃ 10 6 M ⊙. Finally, we show the M 0 

distributions for the most massive mergers produced in our models, 

m 1 ≥ 100 M ⊙. These BHs originate from at least two previous 

mergers since their mass is larger than twice the initial mass cut-off 

at ≃ 50 M ⊙. These systems are formed in the most massive GCs, 

with initial mass well abo v e the Schechter mass. 

Based on the models of Fig. 2 , we compute a local binary 

BH merger rate of 4 . 1 + 2 . 2 
−2 . 5 Gpc −3 yr −1 (delayed), 4 . 5 + 2 . 7 

−2 . 9 Gpc −3 yr −1 

(rapid), and 6 . 0 + 3 . 6 
−4 . 0 Gpc −3 yr −1 (BH mass distribution from Belczyn- 

ski et al. 2008 ), at 90 per cent confidence. The binary BH merger rate 

inferred from the gravitational wave data is estimated to be between 

17 . 9 and 44Gpc −3 yr −1 (Abbott et al. 2021a ), and it is therefore a 

factor of ≃ 2–20 larger than the rate computed from our models. 

3.2 Effect of initial cluster density, initial spins, and other 

model variations 

The number of heavier BHs produced by a cluster through hierar- 

chical mergers is affected by both the cluster density and the initial 

spin of the BHs. A larger cluster density means a larger merger rate 

and escape velocity, and therefore a larger probability that a remnant 

BH is retained inside the cluster following a recoil kick. Similarly, 

if the BHs have negligible spins, this translates into a smaller recoil 

velocity and higher retention probability. Although in the previous 

section, we have looked at a somewhat optimistic scenario in which 

clusters all form with high densities and the BHs have initially zero 

spins, in this section we vary these assumptions and investigate their 

effect on the BH binary merger rate and properties. We adopt here 

the delayed supernova mechanism, but similar results are obtained 

with the rapid supernova prescription and the Belczynski et al. ( 2008 ) 

mass distribution. 

In the upper panels of Fig. 3 , we vary the initial cluster half-mass 

density within the range ρh, 0 = 10 2 to 10 5 M ⊙ pc −3 , and assume that 

the BHs have zero spins initially. The results illustrate that although 

our models can in principle account for most mergers abo v e m 1 

� 20 M ⊙, this is only true under some specific conditions. As we 

lower the initial cluster half-mass density the merger rate goes down 

significantly at all values of mass and mass-ratio. The depletion is 

more significant at masses abo v e the cut-off mass of 50 M ⊙ and for 

q � 0.5. Thus, a scenario where most merging BH binaries with m 1 

� 20 M ⊙ form in GCs would imply a typical initial cluster density 

ρ0 � 10 4 M ⊙ pc −3 . It is important to note that this condition would 

ho we ver only apply to clusters with initial mass M 0 � 5 × 10 4 M ⊙, 

where most of the merging binaries are formed (see Fig. 2 ). 

In the lower panels of Fig. 3 , we sho w ho w the results change 

with changing the initial BH spins. In these models, we keep the 

initial density to the fixed value ρ0 = 10 5 M ⊙ pc −3 . We see that the 

merger rate density distributions are not affected significantly for m 1 

� 50 M ⊙ and q � 0.5. This is because the majority of these binaries 

are made of first generation BHs. Hence, their merger rate is not 

affected by the recoil kick velocity and by the initial choice of BH 

spin. On the other hand, the number of BHs formed via hierarchical 

mergers decreases significantly when higher initial spins are used 

due to the larger recoil kicks. This leads to a lower merger rate at m 1 

� 50 M ⊙ when χ is increased. Ev en relativ ely modest initial spins, 

χ = 0.1, lead to a distribution that does no longer match the inferred 

distribution. The constrains on χ seems therefore quite strong as a 

hierarchical origin for all mergers with m 1 � 50 M ⊙ would require 

that BHs are formed with nearly zero spin. 

Finally, we consider six additional model realisations. In one 

model, we assume that the BHs receive no kick at formation and that 

the initial density is the same for all clusters, ρh , 0 = 10 5 M ⊙ pc −3 . In 

another model, we assume that the cluster half-mass radius scales as 

log 

(

r h , 0 

pc 

)

= −3 . 56 + 0 . 615 log 

(

M 0 

M ⊙

)

. (16) 

This latter relation was derived by Gieles et al. ( 2010 ) from the results 

of Ha șegan et al. ( 2005 ) who fit this Faber–Jackson-like relation to 

ultra-compact dwarf galaxies and elliptical galaxies. Gieles et al. 

( 2010 ) derived the initial mass–radius relation correcting for mass- 

loss and expansion by stellar evolution and correcting radii for 

projection. We consider an additional model realisation where we 

did not include any prescription for pair instability so that the initial 

BH mass function has no upper gap and BHs can form abo v e 50 M ⊙. 

Moreo v er, we consider two models where the initial mass function 

abo v e 0.5 M ⊙ is assumed to scale as φ( m ⋆ ) ∝ m 
−2 
⋆ (top-heavy) and 

φ( m ⋆ ) ∝ m 
−2 . 6 
⋆ (bottom heavy), respectively . Finally , we evolve two 

additional models where our standard Wolf–Rayet winds based on 

Hamann & Koesterke ( 1998 ) and Vink & de Koter ( 2005 ) are 

multiplied by a factor f WR = 0.1 and f WR = 5 (e.g. Broekgaarden et al. 

2022 ). Unless otherwise specified, all the other model parameters 

are the same as before, i.e. delayed supernova mechanism, χ = 0, 

fallback kicks, etc. 

Fig. 4 shows that the mass properties of the BH binaries produced 

in the new models without birth kicks and with the new r h –M relation 

are similar to those found previously in Section 3.1 . The fact that 

adopting the mass-radius relation equation ( 16 ) does not change 
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Figure 3. Dependence of mass and mass-ratio distributions on initial cluster half-mass density, and initial BH spins. The delayed supernova model is assumed 

here. Top panels use χ = 0 and the half-mass density of the cluster is varied as indicated. In the bottom panel we take ρh , 0 = 10 5 M ⊙ pc −3 and change the initial 

value of χ ; the black histograms show the results for a model where the initial value of χ is sampled using the inferred distribution of BH spins shown in fig. 15 

of Abbott et al. ( 2021b ). In all the other models, the BHs all form with the same value of χ as indicated. 

significantly our results is not surprising. Clusters with an initial 

mass M 0 ∼ 10 6 M ⊙ contribute the most to the merger rate (see 

Fig. 2 ). The initial half-mass density of these clusters as derived 

from equation ( 16 ) is ρh , 0 ≃ 5 × 10 4 M ⊙ pc −3 . This is comparable 

with the constant density value of 10 5 M ⊙ pc −3 adopted previously. 

Interestingly, the results of models with no birth kicks show that 

assuming zero velocity kicks at birth increases slightly the merger 

rate at the lower mass end of the m 1 distribution and the number 

of merging binaries with asymmetric masses. On the other hand, 

the shape and normalisation of the distributions at masses higher 

than m 1 � 20 M ⊙ remain virtually the same as in the fallback kick 

model. 

The model without pair instability physics leads to a mass 

distribution which is significantly different from the other model 

realisations, sho wing ho w our results can depend on the assumptions 

about stellar evolution and the adopted prescriptions. In this case, the 

mass distribution still peaks at m 1 ∼ 30 M ⊙, whereas the other peak 

near 40 M ⊙ is no longer present. A secondary peak is found near 

70 M ⊙. For masses larger than this value, the merger rate drops 

and becomes much smaller than the rate inferred from the GW 

data. 

In the model with a top-heavy stellar mass function, the o v er- 

all merger rate is higher than for our standard models due to 

the larger number of BHs formed. On the other hand, for a 

bottom-heavy mass function the total merger rate is significantly 

reduced due to the fe wer massi ve stars formed. Our model with 

modified Wolf–Rayet wind mass-loss rate lead to results that are 

qualitatively similar to those obtained under our more standard 

assumptions. 

That our resulting mass distributions are sensitive to the initial 

BH mass function, and therefore to the uncertain stellar evolution 

prescriptions is expected. It is interesting, ho we ver, that most of our 

models share similar properties. Specifically: (i) the inferred peak 

in the merger rate at 10 M ⊙ is much lower than the one inferred 

from the data, and (ii) the distribution of m 1 presents a main peak 

at near 35 M ⊙. The main reason why there are so few mergers with 

small masses is because of the relatively low number of light BHs 

in the initial mass function. This is due to the low metallicity of 

GCs, which results in low wind mass-loss and large BH masses. 

The other reason why the mass distribution of merging binaries 

peaks at relatively high values is dynamics. The masses of the binary 

components tend to be sampled near the top end of the BH mass 

function, due to the high value of the power law exponents that appear 

in the density probability functions p 1 and p 2 (see Section B ). On 

the other hand, the flatter p 3 distribution means that the ejected 

BH interlopers will be on average lighter than the binary BH 

components. These lighter BHs are therefore no longer available for 

merging. 
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Figure 4. Results for six alternative models. Left-hand panel: blue histograms are for a model in which the initial cluster half-mass radius is assumed to scale 

with cluster mass as in equation ( 16 ); the blue histograms correspond to a model in which the BH birth kicks are zero; the red histograms correspond to a 

model where the recipes for pulsation pair instability were switched off. Right-hand panel: blue and black histograms are the results obtained assuming that 

the initial stellar mass function for massive stars scales as φ( m ⋆ ) ∝ m −2 
⋆ and φ( m ⋆ ) ∝ m −2 . 6 

⋆ , respectively. In the red and orange histograms we have multiplied 

our standard wind mass-loss rate on the Wolf–Rayet stage by a factor f WR = 0.1 and f WR = 5. We have used the delayed supernova mechanism, and, unless 

otherwise specified, all the other model parameters are the same as in Fig. 1 . 

4  C O N C L U S I O N S  

In this work we have used our fast cluster evolution code, cBHBd , 

to investigate the mass distribution of BH binaries produced dynam- 

ically in dense GCs. We compared our results with the astrophysical 

distribution of BH binary masses inferred from GWTC-3 to make 

inference about the astrophysical origin of the sources. For the first 

time, we have included hierarchical mergers in our models. This 

allowed us to address the question of whether a dynamical formation 

scenario is a feasible explanation for the detected BHs within the 

so called ‘upper mass gap’. Such a mass gap in the initial BH mass 

function is predicted by stellar evolution theories, and in our models 

is located at � 50 M ⊙. Because cBHBd is highly efficient compared 

wtih other techniques (e.g. Monte Carlo, N -body), we were able to 

systematically investigate the impact of model assumptions on or 

results. Our main conclusions are summarised below: 

(i) A purely GC formation scenario for the BH binaries detected 

by LIGO and Virgo is inconsistent with the ≃ 10 M ⊙ peak in the 

primary BH mass distribution that is inferred from the data. This 

likely excludes a scenario where the majority of the sources were 

formed in GCs. 

(ii) A GC origin can easily account for the secondary mass peak at 

m 1 ≃ 35 M ⊙ inferred from the data. This requires that clusters form 

with initial half-mass density � 10 4 M ⊙ pc −3 . Assumptions about 

the initial BH spins and the supernova mechanism have no effect on 

this conclusion. 

(iii) Dynamical formation in GCs can explain the inferred merger 

rate of all BH binaries with m 1 � 20 M ⊙ and q � 0.8, including 

binaries with component masses lying abo v e the assumed mass limit 

due to pair-instability. For this to be true we require that both the 

most massive GCs, M 0 � 10 5 M ⊙, form with half-mass density 

� 10 4 M ⊙ pc −3 , and that the birth spins of BHs are nearly zero. 

Even small deviations from this latter condition lead to a merger rate 

abo v e 50 M ⊙ that is orders of magnitude smaller than the inferred 

rate. 

(iv) A hierarchical merger scenario predicts the appearance of 

multiple peaks in the primary BH mass distribution and within the 

upper mass gap due to a pile-up of mergers between first and second 

generation BHs. Intergeneration mergers lead to a simple relation 

between the mass value of any of such peaks and that of peaks found 

at masses lower than the pair-instability limit. These features can be 

tested against future GW data to place constrains on a GC origin for 

the sources. 
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Additional constraints on the formation of BH mergers can be 

placed by exploring correlations between binary parameters, which 

we have not considered here, but plan to study in a future work. 

F or e xample, a BH formed from a previous merger will hav e a 

spin χ ≃ 0.7. We expect therefore a change in the value of the 

typical ef fecti ve and precession spin parameters of binaries with 

components within the upper mass gap (e.g. Baibhav et al. 2020 ; 

Tagawa et al. 2021a ) and an increase in spin magnitude for systems 

with more unequal mass-ratio. Binaries formed dynamically will also 

have larger eccentricities, which can lead to a positive correlation 

between eccentricity, spin and binary mass in the o v erall population. 

The analysis of the data from GWTC-3 has shown marginal evidence 

that the spin distribution broadens abo v e 30 M ⊙, and that the mass- 

ratio and spin are correlated in the sense that spins are larger for more 

asymmetric binaries (Abbott et al. 2021a ). The evidence for these 

correlations remain weak, but it suggests that future analysis based on 

larger data sets will soon be able to provide more stringent constrains. 

The residual eccentricity of a binary is by itself another potentially 

powerful tool for identifying sources formed in clusters. Romero- 

Sha w, Lask y & Thrane ( 2022 ) suggest that a significant fraction of the 

detected GW sources in GWTC-3 show support for eccentricity � 0.1 

at 10Hz. Their results indicate that densely populated star clusters 

may produce the majority of the observed mergers. 

Finally, it is worth noting that in our work we used the pair- 

instability prescriptions from Spera & Mapelli ( 2017 ). This gives 

an upper limit in the initial BH mass function of about 50 M ⊙. 

Ho we ver, there are se veral uncertainties in the modelling, and 

different assumptions can lead to significantly different values for 

the high-mass cut-off, generally in the range 40–70 M ⊙ (Giacobbo, 

Mapelli & Spera 2018 ; Farmer et al. 2020 ; Costa et al. 2021 ; 

Fryer, Olejak & Belczynski 2022 ). Exploring the effect of these 

uncertainties is beyond the scope of this paper, but should be 

considered in future work. 
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APPENDI X  A :  

Figure A1. PDFs for m 1 (left) and q (right) for different BH mass function upper masses ( m up ) and logarithmic slopes ( α). In all cases m lo = 5. The results 

discussed in the text [equations ( B4 ) and (B6 )] are shown as full lines, whereas the dots with errors bars show Monte Carlo realizations (as a check) obtained 

by drawing 10 6 pairs from p I ( m I ) [equation ( B3 )] and the black dashed lines show simple power-law approximations. 
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APPENDIX  B:  MASS  SAMPLING  RO UTINES  

B1 Masses of three-body binaries 

We are interested in the probability density functions (PDFs) of the 

masses of the two components of (BH) binaries that form in three- 

body interactions. Following Heggie ( 1975 ), the formation rate of 

hard binaries per unit of volume and energy is expressed as 

Ŵ 3b ( m I , m II , m III , x) = n I n II n III Q ( m I , m II , m III , x) , (B1) 

where n i = n ( m i ) is the number density of BHs with mass m i , m I 

and m II are the masses of the stars ending up in the binary, m III is 

the mass of the catalyst star and x is the (positive) binding energy 

of the binary. The rate function Q is given by equation 4.14 in 

Heggie ( 1975 ) and it is a function of the three masses, as well 

as their βi = ( m i σ
2 
i ) 

−1 , where σ i is the one-dimensional velocity 

dispersion of mass component i . Because binaries tend to form 

from the most massive objects, for which energy equipartition is 

established quickly, we assume β I = β II = β III = β. Integrating 

equation 4.14 from He ggie o v er all x , from the hard-soft boundary 

(i.e. x = β−1 ) to ∞ (i.e. all hard binaries), we find that the formation 

rate of hard binaries per unit of volume is 

Ŵ 3b ( m I , m II , m III ) ∝ n I n II n III 
( m I m II ) 

4 m 
5 / 2 
III √ 

( m I + m II + m III )( m I + m II ) 
β9 / 2 . 

(B2) 

For equal masses, this result reduces to the frequently used scaling 

Ŵ 3b ( m ) ∝ n 3 m 
5 σ−9 . Equation ( B2 ) is symmetric in m I and m II , so 

the PDF for the mass of one of them is found from 

p I ( m I ) = 

∫ m up 

m lo 

∫ m up 

m lo 

d m III d m II Ŵ 3b , (B3) 

and p II ( m II ) = p I ( m I ). Here, m lo and m up are the lower and upper 

bound of the mass distribution, respectively. 

We note here that equation ( B2 ) includes the assumption of 

equipartition and therefore takes into account the dependence of the 

velocity dispersion on mass. On the other hand, we do not consider 

the change in the BH mass function that is expected in the core due to 

mass se gre gation. Numerical simulations hav e shown that the mass 

function in the core has a logarithmic slope that is approximately 

only + 1 steeper than the global mass function (e.g. Portegies Zwart 

et al. 2007 ). Thus, we expect the effect of mass se gre gation on our 

results to be relatively small. 

We now adopt the convention that m 1 and m 2 are the most massive 

and least massive component, respectively, with corresponding PDFs 

p 1 ( m 1 ) and p 2 ( m 2 ). These correspond to the PDFs of the maximum 

and minimum v alue, respecti vely, when a sample of two values are 

drawn from p I ( m I ), and are given by 

p 1 ( m 1 ) = 2 P I ( m 1 ) p I ( m 1 ) , (B4) 

p 2 ( m 2 ) = 2 [ 1 − P I ( m 2 ) ] p I ( m 2 ) , (B5) 

where P I ( m I ) = 
∫ m I 

m lo 
d m 

′ 
I p I ( m 

′ 
I ) is the cumulative density function 

of p I ( m I ). 

The PDF of q is a ratio distribution and can be found from the joint 

distribution of the minimum and maximum values, which is given 

by p 12 ( m 1 , m 2 ) = 2 p 1 ( m 1 ) p 2 ( m 2 ) and 

p q ( q) = 

∫ m up 

m lo 

d m 2 p 12 ( qm 2 , m 2 ) . (B6) 

We then assume that the mass function is a power law such that 

n i ∝ m 
α
i between m lo and m up . A value of α = 0.5 provides a good 

approximation of the mass function of BHs at low metallicities ( Z 

� 0.05 Z ⊙, see fig. 4 of Antonini & Gieles 2020b ). In Fig. A1 , 

we show the resulting p 1 ( m 1 ) and p q ( q ) for m up = [10, 20, 50] and 

m lo = 5 and α = + 0.5 (approximate for metal-poor GCs) and α = 

−1.5 (approximate for metal-rich GCs). We find that these PDFs 

can be reasonably well approximated by power-laws of the form: 

p 1 ( m 1 ) ∝ m 
8 + 2 α
1 and p q ( q ) ∝ q 3.5 + α , for all values of m up and α. 

This approximation can be used to sample m 1 and m 2 (via q ). 

B2 Masses of interlopers 

Assume a binary BH with mass M 12 = m 1 + m 2 , moving in a field 

of BHs with number density n 3 . The rate of encounters between the 

BH binaries and field BHs is (Hills & Day 1976 ) 

Ṅ 3 = n 3 〈 �v〉 , (B7) 

where v is the relative velocity between the binary BH and another 

BH and � is the cross-section for an encounter, which in the 

gravitational focusing regime is (Hills & Day 1976 ) 

� ≃ 
2 πGaM 123 

v 2 
, (B8) 

where G is the gravitational constant, M 123 = M 12 + m 3 and a is the 

semimajor axis of the binary. We can find 〈 �v〉 from integrating over 

all velocities 

〈 � v〉 = 
4 l 3 

π1 / 2 

∫ ∞ 

0 

� ( v) v 3 exp ( −l 2 v 2 )d v, (B9) 

= 4 π1 / 2 GlM 123 a. (B10) 

Here, l 2 = β M 12 m 3 /(2 M 123 ) for our assumption of equipartition. 

The semimajor axis is a ∝ Gm 1 m 2 β such that the interaction rate 

scales with the masses as 

Ṅ 3 ∝ m 
α
3 

√ 
m 3 

√ 

M 12 M 123 m 1 m 2 (B11) 

So, interactions with more massive BHs are slightly fa v oured wrt 

random draws from the BH mass function. Because p 1 ( m 1 ) and 

p 2 ( m 2 ) are much steeper than this distribution, we find that to good 

approximation p 3 ( m 3 ) ∝ m 
α+ 1 / 2 
3 . It also means that exchanges are 

not very important, because these happen when the intruder is more 

massiv e than an y of the binary members. Here, we find for m up / m lo = 

10 and α = + 0.5 that 〈 m 1 〉 ≃ 0.91 m up ; 〈 m 2 〉 ≃ 0.76 m up and 〈 m 3 〉 
≃ 0.55 m up and exchange interactions should therefore not be very 

common. Once the width of the BH mass function has shrunk to m up / 

m lo ≃ 2, 〈 m 2 〉 ≃ 0.78, which is comparable with 〈 m 3 〉 ≃ 0.75 and 

exchange interactions (which we neglect) are more rele v ant. 

This paper has been typeset from a T E X/L A T E X file prepared by the author. 
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