
MAKING LINKED-DATA ACCESSIBLE: A REVIEW

Omar Mussa
School of Computer Science and Informatics

Cardiff University, UK
mussao@cardiff.ac.uk

Omer Rana
School of Computer Science and Informatics

Cardiff University, UK
ranaof@cardiff.ac.uk

Benoît Goossens
School of Biosciences
Cardiff University, UK

goossensbr@cardiff.ac.uk

Pablo Orozco-terWengel
School of Biosciences
Cardiff University, UK

orozco-terwengelpa@cardiff.ac.uk

Charith Perera
School of Computer Science and Informatics

Cardiff University, UK
pererac@cardiff.ac.uk

August 23, 2022

ABSTRACT

Linked-Data (LD) is a paradigm that utilises the RDF triplestore to describe numerous pieces of
knowledge linked together. When an entity is retrieved in LD, its associated data becomes instantly
obtainable. SPARQL is the query language that allows users to access LD. On the other hand,
SPARQL has a complicated syntax that necessitates previous knowledge. Thus, in order to encourage
the end-users to use LD, it is crucial to allow them to obtain the data efficiently, in addition to
improving their overall experience. Instead of manually constructing SPARQL queries, this paper
investigates and reviews existing methods in which LD can be accessed using various tools and
techniques, including query builders, visualisation approaches, and several LD applications. We then
identify gaps within the literature and highlight future research directions.

Keywords Linked-Data, Linked open data, Visual querying, SPARQL, Query builders, Visualization



A PREPRINT - AUGUST 23, 2022

1 Introduction

Since the introduction of Linked-Data (LD), competition has arisen between various organisations to publish data in a
widely adoptable machine-readable format, typically as Resource Description Framework (RDF)[34, 25]. An RDF
consists of triples that are structured as interlinked entities to make them both accessible and machine-readable. The
volume of published data has thus rapidly expanded to incorporate billions of triples, greatly increasing the difficulty of
navigating such data to extract useful information [34, 25, 63].

LD is also known as Linked Open Data (LOD) if data used comes from open sources. Many LOD are available
through SPARQL endpoints, which thus receive millions of SPARQL queries per day, both from humans and machine
[20, 105, 88]. Although LD makes data machine-readable, humans still constitute a considerable proportion of LD
consumers [88, 21]. SPARQL is the W3C recommended Query Language for accessing LD [59]. SPARQL is a
powerful and precise query language. This ensures that even though LD contains billions of triples and relationships,
the user can specify the exact relationship that matches their explicit patterns and constraints using SPARQL. However,
SPARQL is complex and creates a high cognitive load, and learning SPARQL can be very challenging, especially
initially [114, 63, 7]. Thus, mainstream users cannot access LD using SPARQL without direct assistance, though experts
find it less intimidating. Nevertheless, writing accurate SPARQL queries requires an understanding of the underlying
ontology, which reflects the scheme that defines the relationships and terms between distinct entities. This includes
names of the namespaces, vocabularies, and data, yet many SPARQL endpoints lack a “Unique name assumption” and
are not adequately documented; they may even not be documented at all [118, 29, 18]. As a result, developers may try
to guess at the appropriate ontology and hope to hit upon the correct names. Thus, even SPARQL experts may struggle
in creating SPARQL queries to retrieve data from an unfamiliar SPARQL endpoint [63].

Based on the complexity of SPARQL, why is it being used? The complexity of SPARQL arises mainly from the
complexity of the underlying data structure and the intended queries, as the language itself allows high expressivity, and
SPARQL is not the only language that can be used to query knowledge graphs. Languages such as Cypher or Gremlin
are also used for such queries; however, these languages are also not suitable for the Lay-users [5, 98, 59]. In addition,
in terms of querying RDF triplestores, SPARQL is the leading standard as endorsed by the W3C, and it also excels in
querying heterogeneous and distributed datasets that are semantically linked [5, 59].

The development of a user-friendly interface to assist users in creating SPARQL queries and exploring data effectively
is thus urgent. There have been numerous efforts to develop a SPARQL Query Builder (QB) Interface. These
SPARQL QBs are End-User Development (EUD) tools that aim to enable users to construct SPARQL queries freely by
manipulating graphical interface components [9, 15]. EUD tools are designed to overcome the difficulty by providing
an alternative that is crafted to fulfil the end-user requirements and skills [101]. However, many of these interfaces still
have steep learning curves and require an in-depth understanding of the ideas behind LD and the ways in which data is
connected [112, 78]. Some of these tools were created to enhance experiences within the Semantic Web community,
while other tools are focused on supporting experts and are thus domain-dependant. In contrast, many mainstream or
lay users have expressed a preference for tools to query LD that do not require previous experience with SPARQL or
Semantic Web. For the purposes of this study, users are divided into three main types:

• Lay-users: These users have no previous knowledge or understanding of SPARQL or Semantic Web.

• Tech-users: These users understand the Web Semantic domain and how LD works, and they may even be able
to read SPARQL and understand its meaning; however, they have not been directly involved previously in
manually creating SPARQL queries.

• Expert-users: These are familiar with SPARQL and can develop complex SPARQL queries. They have
previously worked with RDF and other Semantic Web technologies.

This paper thus explores techniques to allow access to LD for users with no SPARQL experience as a means of
improving user experience. The main focus is on using the user interface to generate SPARQL queries or to navigate
LD more efficiently. Thus, the ability to form a SELECT SPARQL query was essential for a tool to be chosen. While
some of the tools examined may not be able to generate other types of queries, such as CONSTRUCT and ASK, this is
not seen as a limitation for this study.

The rest of this paper is organised as follows: Section 2 explains the search methodology used, while Section 3 the
explores tools and approaches available that offer access to LD, as well as introducing SPARQL Query Builders. Section
4 then analyses and discusses some of the findings, allowing Section 5 to focus on the emergent research challenges and
limitations. Section 5 then concludes the work by offering some final thoughts.

2



A PREPRINT - AUGUST 23, 2022

2 Methodology

As the scope of this review paper can be relatively enormous, we have determined several stages and strategies to
identify the relevant work to shape the purpose of this paper. The initial step involves using Google Scholar to locate all
potentially relevant work and determine the primary keywords and data sources. Then, we conducted a manual search
on these sources. In addition, we have performed citation mining on all of the papers by doing backwards and forward
citation searches (snowballing). Figure 1 summarises the search stages as well as the selection technique.

Figure 1: Demonstration of the search stages with the selection strategy.

2.1 Search Strategy

Influenced by Kitchenham and Brereton [76] proposed strategy, the search strategy was divided into three stages. The
first step was dedicated to locating all potentially relevant papers. Initially, we were concerned only with the title to
filter out irrelevant papers. Then, we used the paper’s abstract to create the initial list of potentially relevant papers. We
started by identifying primary keywords that include “SPARQL”, “Semantic Web”, and “Linked-Data” to be combined
with words like “Query Formulation”, “Visual”, “Query Builder”, and “Natural Language”. We have used Google
Scholar to perform an automatic search on these keywords without focusing on any specific publisher.

Typically, the results of using single keywords were overwhelmingly large, mainly out of the research scope. Combining
the keywords using AND operator has helped lower the results into more relevant papers. In addition to identifying
potential papers, we have identified relevant sources to be used for manual search. Google Scholar was also used to
“forward snowballing” to find more candidate papers and identify more sources.

Then, we have manually searched the identified sources using the keywords combination. The identified sources
were journals or conference proceedings verified by experts such as “Semantic Web journal”, “International Working
Conference on Advanced Visual Interfaces”, and “International Conference on Semantic Systems”. For section 4, we
have reviewed 33 out of 145 paper that was published as in-use or resource during 2021 - 2015 in the International
Semantic Web Conference.

3



A PREPRINT - AUGUST 23, 2022

2.2 Selection Approach

We have identified relevant papers using only the title and abstract in the initial stage. Therefore, we had to read the
entire paper in the second stage to filter out the irrelevant papers. Thus, we have defined inclusion and exclusion criteria
that each paper must satisfy to stay on the list. First, we must check against the exclusion criteria to filter out all
matching cases. Then, if it passes, we will check if it satisfies at least one of the inclusion criteria to stay on the list.

2.2.1 Inclusion and Exclusion Criteria

The selection criteria were defined to ensure that the final list will fall within this paper domain. The exclusion criteria
were: (i) Papers not written in English. (ii) Requiring to type SPARQL manually. (iii) Not fully published paper (Only
abstract or a poster). (iv) Does not discuss LD. These criteria must be avoided to be qualified to the inclusion criteria.
The inclusion criteria were designed to ensure that the papers were of quality and relevant to this review. The inclusion
criteria were: (i) Introduce UI for querying LD (ii) discuss approaches for LD visualisation. (iii) Introduces a tool or a
solution to access LD. (iv) Facilitating the process of exploring LD. Satisfying one of the inclusion criteria means that
the paper is qualified as a selected paper.

2.3 Validation and Data Extraction

The third stage mainly compares the selected paper using the manual and automatic search with the known papers.
Also, this will include checking the references and performing backwards snowballing. Thus, we repeated the selection
approach for any new papers and updated the list of selected papers. Then, to extract the data efficiently, we have created
a list containing the paper ID, title, year, publication source, tool name (if available), categorisation, visualisation
approach, type of validation (if applicable) and validation sample size.

3 Accessing Linked Data

This section, explores the tools available to obtain data from SPARQL endpoints. Tool categorisation was based on
the visual approach of the data retrieval process (see Figure 2). The Visual Query Builders classification was inspired
by Grafkin et al. [50], Kuric et al. [78], Vargas et al. [112] to represent the visual interface based on its querying
approach. The other UIs’ categorisation was suggested by various different papers, which are mentioned separately in
each relevant section.

Figure 2: A diagram that illustrates the reviewed tools’ classification for obtaining data from SPARQL endpoints.

4



A PREPRINT - AUGUST 23, 2022

3.1 Query Builders

3.1.1 Form-based

The Konduit VQB [4] interface introduced an approach to formulate “CONSTRUCT”, or “SELECT” queries based
on “schema” or “instance”. It is a Form-Based interface designed for Expert-users and Tech-users that facilitates the
creation of SPARQL queries. The “Schema-based” interface takes advantage of the SPARQL’s tree-like structure to
simplify the underlying interface component, using a top-down structure with field indentation to reflect the parent-child
relationship. In contrast, the “Instance-based” interface adopts the RDF triple (Subject, Predicate and Object) structure,
allowing for more precise querying with less abstraction, which may be excessively obscure for Lay-users. In spite of
that, this interface was not evaluated.

The BioGateway Query Builder App [68] is a desktop application designed to query the BioGateway SPARQL endpoint.
The BioGateway App is similar to the Konduit VQB Schema-based interface in that it uses multiple drop-down lists in
a Form-based interface. However, the BioGateway App does not utilise the child-parent structure seen in Konduit VQB;
instead, each line represents an RDF triple that can be linked to the ensuing line using predefined variables (Set A, Set
B, etc.). A significant feature of the BioGateway App that is not found in Konduit VQB is its predefined examples. The
BioGateway App includes a set of predefined examples that promote learning by example. Despite that, the app is more
domain-specific and requires some understanding of the BioGateway ontology and SPARQL, and even Tech-users are
thus likely to face challenges using this tool.

Wikidata Query Service (WQS) 1 is the Wikidata official query tool to run SPARQL queries. The tool offers a query
builder known as “Query Helper” to assist users in creating or modifying SPARQL queries where they lack prior
familiarity with SPARQL [88] (see Figure 3). The Query Helper is a Form-Based interface that relies mainly on
drop-down lists. The idea is based on the “Filters” and “Show” interface. The interface will help the users to find an
item that must match the listed filters. In addition, users can add some optional matches using the “Show” section to be
presented when the data is retrieved. The right-hand side of the interface also displays the auto-generated SPARQL
query, which allows Tech-users and Expert-users to manually modify the SPARQL query and get it reflected on the
Query Helper. For Lay-users, however, this feature is not desirable and might be seen as overwhelming for some users
[78].

Figure 3: An example of using the Query Helper interface in Wikidata Query Service to generate SPARQL to extract all
of the “Italian Volcanoes with its coordinates if exist”. (1) Clicking on the button to show Query Helper. (2) Clicking
on Filter. (3) Writing “Volcano” as the wanted entity and select “instance of” as the subject. (4) Then, adding Italy
which by default will select country as its subject. (5) Finally, clicking on “Show” to add “coordinate location” as an
optional property.

VizQuery 2 is an elementary query builder that relies on matching the rules, which are RDF triple patterns. The interface
assists the user in finding those items that match the selected rules. For example, if a user wants to find all “Cats” in
the dataset, they must select the property “instance of” and the item “house cat” (see Figure 4). Unlike WQS, this

1https://query.wikidata.org/
2https://hay.toolforge.org/vizquery/

5

https://query.wikidata.org/
https://hay.toolforge.org/vizquery/


A PREPRINT - AUGUST 23, 2022

tool offers no way to add some optional patterns or create a more complex structure. However, as with WQS, the tool
supports auto-complete and provides a predefined example to enhance the user experience.

Figure 4: An example of using the VizQuery interface to find all indoor Cats in Wikidata dataset by selecting the
property “instance of” and the item “house cat”.

One of the highly interactive query builders is SparqlFilterFlow [56], which is based on the idea of FILTER/FLOW
MODEL that was introduced in 1993 as an SQL query builder. The interface is Form-based with graph representation,
making it more intuitive and allowing users to understand the relationships between the entities. The user adds some
entity as a starting point, then creates some filters to narrow down the results [54]. Coloured links occur between
all of the interface components to support the top-down flow of data, and the links between the graph entities reflect
the amount of data present by varying in thickness. The author conducted a user study to examine the interface, and
all participants were able to solve all of the tasks. The most interesting thing about this study was that participants
could also comprehend and fix their mistakes to achieve the correct output. One of the great features that helped the
participants adjust their input was the path thickness, which helped them understand the amount of data they were
getting and to respond accordingly. The original prototype presented by Haag et al. [55] was a desktop application, but
the authors have created a web-based demo 3 for the same approach with limited features (see Figure 5).

Simplod [71] is a tool that aims to assist the user in extracting data in bulk from LOD as a CSV file. The tool relies on
the LOD schema being loaded as RDF Turtle into the tool in order to construct the query. The Dataset schema view is
represented on the left side of the interface, and the entities are given in the form of a UML Class diagram to describe
the relationships. The schema list view, on the right side of the interface, displays the schema as a list with checkboxes
indicating whether these are included in the search or not. Simplod can only generate SELECT SPARQL queries, and it
has no customisation or filtration capabilities. As a result of this limitation, Simplod is only useful for investigating the
LOD and downloading the results in bulk. During their evaluation, the SUS score for this tool was 63.125 for users with
no experience with RDF, which is below the average of 68. However, experienced users have scored 72.5, suggesting
that this tool requires training and is thus most suitable for Tech-users.

Konduit VQB, BioGateway App, WQS, VizQuery and SparqlFilterFlow are all similar in that they rely on the
visualisation of the RDF triple structure based on the use of prefilled drop lists. The user must thus select an item
and add some results filtration. While Konduit VQB and BioGateway App require some SPARQL knowledge, WQS,
VizQuery, and SparqlFilterFlow present more straightforward designs. VizQuery can also be considered to be a simpler
version of WQS design as VizQuery rules follows the same filter scheme (see Table 1).

Tabular Query Builders To take advantage of user familiarity with spreadsheets, Tabular Query Builders will usually
present the LD in abular format that allows the user to add some filters and constraints to narrow down the results in a
similar manner to spreadsheet software. Examples of such query builders include Linked Data Query Wizard (LDQW)
[63], and ExConQuer [7].

3http://sparql.visualdataweb.org/sparqlfilterflow.php

6

http://sparql.visualdataweb.org/sparqlfilterflow.php


A PREPRINT - AUGUST 23, 2022

Figure 5: An example of using SparqlFilterFlow’s online demo to get all of the entities that is Food and also Halal. The
thickness of the lines reflect the results size.

Table 1: Reviewed Form-based SPARQL Query Builders

To
ol

U
se

rT
yp

e
a

E
nv

ir
on

m
en

tb

Is
E

va
lu

at
ed

?

SP
A

R
Q

L
c

Konduit VQB [4] E,T Desktop 7 3
SPARQLViz [26] E,T Desktop 7 3
PepeSearch [61] T,L Web 3 7
GPB [12] E,T Web 7 7
BioGateway App [68] E Desktop 7 3
WQS [78] E,T Web 3 3
VizQuery All Web 7 7
SparqlFilterFlow [56] All Desktop/Web 3 7
Simplod [71] T Web 3 3

LDQW [63] All Web 3 3
ExConQuer [7] E,T Web 7 3
Falcons Explorer [31] E,T Web 7 7

a E: Expert-users, T: Tech-users, L: Lay-users, All: All users.
b Desktop: Desktop-App, Web: Web-based App.
c Does the tool allow the user to view SPARQL query?

Linked Data Query Wizard (LDQW) is a SPARQL query builder that utilises user familiarity with search engines and
spreadsheet software to flatten its learning curve and increase the user abstraction from the LD concept. The LDQW
asks the user to start with a keyword, as with any search engine, then takes the user to another page showing some
initial results in a tabular format. The user can then begin digging into the data by applying filters based on the available
properties. The user can add new columns into the table to represent some of the available hidden data. Additionally,
the user can represent the data in a mind map format or visualise it using predefined charts. LDQW also grants users
the option to review the generated SPARQL queries with some statistics about the run time, which is an outstanding
feature for Experts and Tech-users. In general, the conducted usability study results were encouraging, though they did
indicate several design vulnerabilities that can be improved.

7



A PREPRINT - AUGUST 23, 2022

ExConQuer is another SPARQL query builder that uses the tabular format to help the user to become familiar with
the interface. However, rather than displaying a table with some initial results as in LDQW, ExConQuer displays the
selected subject’s properties and allows the user to choose from these properties to add some data filters and narrow
down the results. ExConQuer thus relies on the Faceted-Browsing concept as a way to not overwhelm the users, splitting
the interface into three main steps. The initial step involves selecting the data source; the user is then asked to pick
a single subject which is called a concept. Finally, users will get all the data about that subject, although they may
pick further properties to be matched when querying the data. Before running the query, a text box that contains the
auto-generated SPARQL appears, making it possible to modify the SPARQL before running it manually. According to
the authors, the purpose of this feature is to help users learn about and familiarise themselves with SPARQL and RDF,
in addition to enhancing the experts’ use experience. The tool was examined by Experts and Tech-users in comparison
with manually creating SPARQL queries. These users were asked to perform the same task with and without the tool
and to rate their experiences in both scenarios. The results showed that the tools were beneficial for all users, especially
those with less experience with SPARQL.

Falcons Explorer [31] is a LD Browser built on top of “Falcons Object Search” with a built-in query builder. This tool
is a less clear fit for this section, as it resembles a regular LD browser that supports faceted browsing. However, the tool
has some similarities with LDQW. Users must begin by typing an entity name into the search box. The results can be
represented in a tabular format, where the users can pick a specific entity that will take them to the entity page with
all the properties and information linked with that entity. The table of results is similar to a spreadsheet, supporting
several methods of filtering results and managing the table columns. In addition to the tabular format, the tool supports
presenting data in a relational format similar to a relational database design. This relational design allows the user to use
some typical relational operations such as Projection and Joins. The interface is very complicated due to the existence
of multiple ways to access the data and retrieve the desired results, making it potentially confusing for Lay-users.

3.1.2 Graph-based

From the initiation of LD, data have been visualised in some graphical formats. Students have also been taught to think
of an RDF triple as a node with an arrow pointing to another node. The first node represents the “Subject”, the second
node will present the “Object”, while the arrow itself is the “Predicate” (see Figure 6). Therefore, many of the published
SPARQL Query Builders attempted to follow this principle as a way to simplify the idea of the LD it describes. For the
purposes of this paper, these types of query builders are described as Graph-Based Query Builders.

Figure 6: An example of RDF basic triple pattern.

One of the earliest attempts to create SPARQL Query Builder is the Graphical Query Language (GQL) Tool [18]. The
authors have followed “Ontology Definition Metamodel”4 to present the query in the form of UML class diagrams. The
tool is a desktop application that allows the user to manually select a class from a list of the available classes generated
from the LD ontology; these classes are then linked together. The user can filter the results by adding predefined
properties, such as setting a class property to be less than a certain numeric value or to match a specific string. The
authors thus claim that the tool can be used to create very complex queries.

Rather than representing RDF in UML class diagrams as seen in the GQL Tool, Hogenboom et al. [67] have introduced
a unique graphical representation called RDF-GL. The authors have explained the symbolic notation used in terms
of how it simplifies the SPARQL query visualisation. They also introduced a tool called SPARQLinG, a Java-based
desktop application that creates SPARQL queries using RDF-GL. The tool provides a wide area to users that they can
use to drag and drop any RDF-GL components they wish to construct the required graph that will restore the required
data. The current tool only converts RDF-GL to SPARQL, and does not operate the other way around. SPARQLinG
may thus be easier for Experts, and Tech-users than GQL Tool, as the graphical representation in RDF-GL is more
intuitive than that in UML.

SPARQLING [17] is another tool that aims to produce SPARQL queries intuitively, and it should be noted that while
the name is similar to SPARQLinG, they are different tools. SPARQLING is a platform to construct SPARQL queries
by drawing them over the interface. What distinguishes SPARQLING from similar tools is that it uses GRAPHOL
ontologies [33]. GRAPHOL is a visual representation of the OWL 2 ontologies that represent the data as an ER-Diagram
[80]. The tool is a web-based application with three main sections. The left-hand side, which is the most significant

4https://www.omg.org/odm/

8

https://www.omg.org/odm/


A PREPRINT - AUGUST 23, 2022

part, is dedicated to the GRAPHOL view, while the right-hand side is divided into the SPARQL view and SPARQL
visualisation view. SPARQLING was not evaluated in this work and was customised to query the ’Ontology-based Data
Management’[81] systems.

One of the most well-known query builders is the OpenLink interactive SPARQL Query Builder (iSPARQL) 5. iSPARQL
is a powerful tool that can autogenerate SPARQL from graphical representations, though it also supports the manual
creation of SPARQL. iSPARQL relies on the RDF triple graph, which it uses to generate SPARQL. The tool can also
be used to browse results within the interactive interface in tabular format. In addition, users can use it to query any
standard SPARQL endpoint. Lay-users must understand the LD fundamentals, such as variables must start with ’?’, and
a specific entity must begin with its prefix like ’sioct:Weblog’. Furthermore, Experts and Tech-users must familiarise
themselves with the required SPARQL endpoint [108].

NITELIGHT[102] is a stand-alone client-side Web application built entirely using JavaScript. As with iSPARQL,
NITELIGHT is a SPARQL query builder that relies on the RDF basic triple pattern, making each graph entity either
a Subject or an Object connected using a Predicate. INITELIGHT and iSPARQL have many similarities, including
allowing the user to perform complex SPARQL queries. However, in comparison to iSPARQL, NITELIGHT has
additional novel features, such as allowing the user to browse the ontology in a tree-like structure, as well as offering a
more realistic and attractive graphical representation [108]. The text-based SPARQL query produced is tightly coupled
to the graphical view, which means that any change in the graph will immediately be reflected in the textual format.
However, NITELIGHT still expects the user to be familiar with SPARQL and the endpoint’s ontology.

ViziQuer [118] is a Graph Query Builder that was created to facilitate exploring unfamiliar SPARQL endpoints. The
user can drag entity boxes around and draw paths between them. Then, the user can define each entity by choosing
the class it represents from a drop-down list. The user can also click on a link between the classes and use “Connect
Classes” to get the suggested predicate. For example, if the first node is ’Patient’ and the second node is ’Physician’,
one of the suggested predicates will be ’familyDoctor’, which forms a link between these two entities. Compared to the
previously discussed Graph Query Builders, this is a straightforward interface that requires little prior knowledge about
SPARQL. Each entity encapsulates all of its own data, and thus by right-clicking on each entity, users can select the
appropriate options, such as displaying attributes and applying filters. Finally, users can choose to execute SPARQL
from the graph directly or to generate the SPARQL and then manually review it. Figure 7 demonstrate using the tool to
extract the names of all male patients with a family doctor. This figure also exposes a potential issue with the generated
SPARQL with regard to a duplicate for the gender triple existing (one was declared as OPTIONAL). This may disclose
some bugs when generating the queries from the diagrams. The tool is web-based and publicly available 6.

Figure 7: An example of using ViziQuer to generate SPARQL query that will extract the names of all male patients
who have a family doctor.

QueryVOWL [57] is one of the simplest graph query builders with a visual representation that is based on an intuitive
graphical notation known as Visual Notation for OWL Ontologies (VOWL)[57]. WebVOWL [84, 85] was an early
attempt to visualise ontologies using VOWL, and QueryVOWL uses a similar interface to visualise the ontology while
adding additional features to construct the query. The user can construct a query by typing and by selecting properties

5https://virtuoso-catalogue.d4science.org/isparql/
6https://viziquer.lumii.lv

9

https://virtuoso-catalogue.d4science.org/isparql/
https://viziquer.lumii.lv


A PREPRINT - AUGUST 23, 2022

from the text box. Each of the selected properties is rendered as a single circle labelled with the property name. The user
can draw a line between these circles to represent the matching relationship (the predicate). The potential predicates are
then given as a list of options, and the user must select the most appropriate. On selecting each node, multiple options
on the side menu appear, including options to add filters or change the node.

Each node has a numerical value that shows the possible objects (results) that match the current query. Typically, when
adding more and more relationships and filters, the results will narrow, which means this number will decrease. The
user can then click on “Show Query” to view the generated SPARQL query, which will exactly match the graphical
representation. The tool thus provides a high level of abstraction for users, who can use it without any previous
knowledge about SPARQL or the endpoint ontology. However, they must become familiar with VOWL and the tool
itself. In addition, constructing SPARQL in QueryVOWL appears to be more time-consuming than manually creating a
query or using other tools such as WQS [78].

OptiqueVQS [109] is a visual SPARQL query builder built for users with minimal IT skills. The interface is based on
widgets, and it consists of three primary widgets: the list widget on the left-hand side, the diagram widget on the top
and the form widget on the right-hand side. Users must begin by using the list widget to choose a concept as the starting
node. A node will then be displayed in the diagram widget, and the form widget will be activated to manipulate the
node details, such as adding filters and displaying the node variables. The authors divided the interface into three simple
sections to be used in conjunction to simplify the query construction process. At the same time, they have focused on
the industrial domain by generating two use cases for industrial users [109]. The usability study showed promising
outcomes when this builder was used in the industrial field; however, constructing SPARQL is limited to a tree-like
query pattern, omitting any other query patterns [109, 78].

RDF Explorer [112] is a query builder created for Lay-users with no expertise with SPARQL or LD. Its visualisations
focus on the graphical representation of the query rather than the RDF triple pattern. The authors used WQS as the
baseline system for comparison, and the demo thus generates a SPARQL query that must be used with Wikidata to be
tested. RDF Explorer is a drag-and-drop interface where the user must begin by typing the resource name and drag
the one that matches its query. Then, the user has to create a variable and link it with another node to perform a query
pattern. There is no control over variable appearance in the query. The generated SPARQL is then placed within an
editable text area, though any SPARQL manual alteration will not affect the tool, which may confuse the user.

The user study showed that RDF Explorer generally obtains better results eventually. While at first, users seem to
struggle, the more complex the query, the better they perform in comparison to when using WQS[112], suggesting
that any difficulty using the tool initially tends to decrease over time. All of the participants were undergraduate
Computer Science students with no experience with SPARQL, though they were more likely to have advanced computer
knowledge. They were generally slower in three of the five tasks. Furthermore, the RDF Explorer does not support
exploring the results directly from the interface, which is unfortunate, as displaying results has been previously proven
to be a suitable approach to assist users in constructing the correct queries [55].

Generally, most of the efforts in creating SPARQL Query Builders are focused on Graph-based visualisation, as this
reflects the most natural behaviour when thinking about LD. The majority of these visualisations are based on the
RDF triple pattern, due to the actual structure of the data, as in iSPARQL, NITELIGHT, ViziQuer, RDF Explorer, and
OptiqueVQS. Other tools have proposed alternative visualisations in order to increase the abstraction and simplify the
design. For example, the GQL tool uses UML, while SPARQLinG has created a custom visualisation called RDF-GL.
While the use of the RDF triple may seem natural for Expert-users, greater abstraction seems to encourage Lay-users
engagement. Table 2 summarises the reviewed graph-based query builders.

3.1.3 Natural Language-Based

For Lay-users, nothing is more comfortable than using the natural language. Multiple tools have thus tried to use natural
language to generate SPARQL. Most of these attempts have focused on creating a questions answering system that will
output a YES/NO or a single statement response in each case. This section, however, presents only those tools that will
either generate SPARQL queries or allow the user to retrieve multiple results.

Querix [73] is an NL-Based SPARQL Query Builder that resolves ambiguities by asking users for intent clarification.
Querix requires users to start their questions with an interrogative word or a verb to help construct the query skeleton,
which is then used to classify RDF triple pattern in the sentence. To improve the query results, users should also specify
the domain county and ontology. If there are too many possible queries with high scores emerge, a list with all potential
user intents is displayed, and the user is asked to choose one. Thus, Querix achieves a high accuracy rate in comparison
to other NL tools [72].

NLP-Reduce [74] is an NL-Based tool for users with no experience with SPARQL. The tool allows users to type in full
questions to be converted to SPARQL. The question will be cleaned and reduced into tokens that are then used over

10



A PREPRINT - AUGUST 23, 2022

Table 2: Reviewed Graph-based SPARQL Query Builders

To
ol

M
et

ap
ho

ra

U
se

rT
yp

e
b

E
nv

ir
on

m
en

t

Is
E

va
lu

at
ed

?

SP
A

R
Q

L
d

GQL tool [18] UML E,T Desktop 7 7
SPARQLinG [67] RDF-GL E,T Desktop 7 3
SPARQLING [17] GRAPHOL E Web 7 3
iSPARQL RDF-Triple E Web 7 3
NITELIGHT [102] RDF-Triple E,T Web 7 3
ViziQuer [118] RDF-Triple E,T Web 7 3
VQS [53] RDF-Triple E,T Web 7 3
QueryVOWL [57] VOWL All Web 3 3
RDF Explorer [112] RDF-Triple All Web 3 3
OptiqueVQS [109] RDF-Triple All* Web 3 3

a The used graphical metaphor for the user interface.
b E: Experts, T: Tech-users, L: Lay-users, All: All users.
d Does the tool allow the user to view SPARQL query?
* Only users with industrial background.

three distinct rounds to generate SPARQL queries. Ultimately, the highest-scoring query will be displayed to the user.
Thus, users can also use non-complete sentences or even keywords [74]. NLP-Reduce has been proven to act as a rapid
query-building tool, particularly in comparison to certain similar tools [72]. However, there are some limitations to
the type of questions NLP-Reduce can answer. Users can not ask questions that require comparisons or ask questions
with groupings such as “Who is the best football player in each team?” [2]. Therefore, the tool may not allow users to
generate queries that fully express their needs.

While most of the keywords NL-based query builders lack the expressivity to capture the user intention, QUICK [116]
is an NL-based tool that specifically aims to provide users with a more satisfying query construction experience. The
user types keywords in the search area; then, the tool displays all of the possible queries on the right-hand side. The
queries are represented as text but with a graphical illustration to help aid understanding. Users must then choose the
most appropriate query. If none of the options on the right matches the user intention, the tool provides a list with
“Construction Options” on the left as a means of changing the query perspective. Once the user chooses any of these
options, the possible queries on the right will change to match the user selection. QUICK thus incrementally supports
the user to construct more accurate queries. However, this can cause the query options list to become lengthy and
tedious to work through, while Lay-users may become overwhelmed by the graphical notation. QUICK also cannot
construct ’cyclic graph’ queries, being limited to ’acyclic graph’ query patterns [116].

SPARKLIS [46] is an NL-Based Query Builder that converts complete sentences into SPARQL queries. The user can
clearly understand the generated SPARQL query by looking into the constructed sentence. SPARKLIS initially offers
the user three boxes: Entities, Concepts and Modifiers. The user must select options from these boxes to start building
the sentence. The listed options then change to match the user selections, making forming a sentence in SPARKLIS a
guided process based on selection and related suggestions. Therefore, the user cannot create uncompleted sentences,
which is beneficial for Lay-users. However, due to these restrictions, user freedom is decreased [2]. Accordingly, the
user will require more time to create queries than when using other tools [78, 2]. The tool also showed some loading
difficulties due to the frequent updates in the suggestions boxes [78].

onIQ [39] is a tool that translates queries in natural language into SPARQL. Unlike Querix and QUICK, onIQ does not
use Stanford Parser. Instead, it uses spaCy library 7 which the author assumes to gain a better performance over the
other solutions. onIQ was not evaluated, so this assumption may not be valid. The tool is limited to questions beginning
with interrogative words that are also formally structured. Currently, the tool is most suitable for Tech-users, as it
expects users to form the queries correctly to generate accurate results.

7https://spacy.io/

11



A PREPRINT - AUGUST 23, 2022

Table 3: Reviewed Natural Language-Based SPARQL Query
Builders

To
ol

Se
ar

ch
Ty

pe
a

U
se

rT
yp

e
b

E
nv

ir
on

m
en

tc

Is
E

va
lu

at
ed

?

SP
A

R
Q

L
d

Querix [73] Keyword T, L Desktop 3 3
NLP-Reduce [74] Keyword T, L Desktop 3 3
QUICK [116] Keyword All Web 3 7
SPARKLIS [46] Sentence All Web 3 3
onIQ [39] Keyword T Web 7 3

a The tool search scheme.
b E: Experts, T: Tech-users, L: Lay-users, All: All users.
c Desktop: Desktop App, Web: Web-based App.
d Does the tool allow the user to view SPARQL query?

3.2 Other User Interfaces

This section explores several tools that will facilitate access to LD that differ from SPARQL query builders by not
focusing directly on constructing the queries. Instead, it focuses on browsing the data and finding an exact answer. The
section will include SPARQL Assistants, LD Browsers and Question Answering Systems. Then, it concluded with a
discussion about SPARQL to Natural Language tools.

3.2.1 SPARQL Assistants

Assuming the user has experience with SPARQL, query editing interfaces provide more flexibility and enable precise
querying. These tools can help experts become familiar with the SPARQL endpoint by offering suggestions and
autocomplete features. Examples of such tools include SPARQL Assist [89], YASGUI [100], and WQS [88].

SPARQL Assist is a web-based SPARQL query editor intended for less experienced SPARQL endpoint consumers.
The tool assists users by showing all possible options that match the user’s cursor position in a query. For example,
if the user type ’Ca’ as a ’Subject’, it will display a list of subjects that start with ’Ca’. The list will also include a
description for each item where possible. Thus, constructing a manual SPARQL query becomes a guided process that
does not require any previous knowledge about the ontology. Furthermore, the tool also supports multi-language terms
by examining resource labels to find any possible matches.

YASGUI and WQS are similar to SPARQL Assist, with fewer restrictions and fewer guiding features, making them
more suitable for experienced users. YASGUI is a general-purpose SPARQL editor created to be used as an endpoint
editor, while WQS acts as an editor only for Wikidata. Unlike SPARQL Assist, neither tool supports multi-language
terms. However, as discussed in the previous section, WQS offers a form-based SPARQL query builder that is tightly
coupled with the text editor, reflecting most of the user input. In contrast, YASGUI provides a comprehensive variety of
methods to explore the results.

3.2.2 Linked-Data Browsers

The massive number of relationships a single resource may have in LD makes the data visualisation and navigation
appear to be complicated. Thus, many efforts have been made to encounter this challenge using LD Browsers. LD
Browsers allow the user to navigate and explore LD in a similar manner to browsing the web such as in Tabulator [22],
Humboldt [77], Ozone browser [28], Parallax [69], gFacet [62] and Rhizomer [27].

As LD Browsers are generally concerned with data visualisation and navigation, they lack ability to form specific
queries. Thus, answering questions from a knowledge graph that has millions of triples is tedious and time-consuming.
However, some LD browsers offer advanced querying features as in Falcons Explorer (discussed in section 3.1.1).

12



A PREPRINT - AUGUST 23, 2022

3.2.3 Semantic Keyword-Based Search

Searching for items or entities by matching terms and their contextual meanings is known as Semantic keyword-based
search. As a result of using traditional web search engines, many users are now accustomed to keyword searching. One
popular approach is to use Apache Lucene 8 as the core search engine. Lopz et al. [87] merged several data sources to
generate heterogeneous data and enabled the user to navigate them using their interface. The data was represented in
tabular format [86]. Then, the user was able to perform keyword searches to generate full-text searches on the dataset
using Apache Lucene. Results will not include only a dataset matching the keyword; a Lexical chain will be used to
identify more relevant results. Therefore, the user could find related datasets by identifying a topic associated with
more than one dataset. For example, the user can find a dataset with the same content, such as two entities from two
datasets linked using owl:sameAs, or finding datasets with similar entity namings.

Dub-STAR SMS Client [35] also uses Lucene to retrieve traffic data, which was crowd-sourced using social media,
based on the user’s SMS text messages. This type of search is highly effective and provides high accuracy. However, it
is only limited to finding relevant entities rather than constructing complex queries that contain matching relationships
and applying filters [52]. Thus, it is suitable for only particular search applications that require basic text searches [30].

3.2.4 Question Answering

Question Answering systems will interpret the user’s question in natural language and return the appropriate answer
in the same natural language [66]. The user’s primary interest is obtaining the correct answer. Thus, the user is not
expected to understand the underlying structure of data nor the query language [111]. For example, if the user wants to
know ’What is the capital of England?’, the system will evaluate the question and return ’London’ as the answer.

Freitas and Curry [47] introduced a natural language interface using the distributional semantic model to allow the
Lay-users to write questions (querying the data) using natural language without the need to learn or understand anything
about LD or SPARQL query language. The query processing is vocabulary-independent, which means that the user is
not limited to the exact word. Instead, the algorithm compares the query term with all of the relationships (predicates)
related to the main subject to weigh up the best match. Thus, for a ’Subject’ representing a human, the user could
use a word such as “son” in a place of “child” to answer the same question. A quantitative evaluation of the proposed
question answering system was made using the “Question Answering over Linked Data 2011” (QALD-1) dataset to
evaluate the interface over DBpedia. The results were outstanding, with the system exceeding all the previous systems.
Various other efforts have been made to achieve the same purpose, such as in Aqqu [19], NLQ/A [117], BELA [106],
and SINA [107].

The RDF Data Cube Vocabulary 9 is used to represent statistical data-cubes which is multi-dimensional values in LD
[64]. Answering questions over statistical data using this type of vocabulary has not been appropriately explored [37].
For example, what was the average monthly income for a UK football player in 2019? CubeQA [65], and QA3 [11]
both tried to address this issue. The overall evaluation of both tools shows that QA3 has a 9% higher F-score. In
addition, unlike QA3, CubeQA does not support SPARQL subqueries.

3.2.5 SPARQL to Natural Language

It can be challenging for a Lay-user to interpret what a particular SPARQL query means or fulfils. As discussed earlier,
it is unrealistic to expect all users to be familiar with SPARQL. So, a more practical step is to convert queries to the
user’s natural language, allowing the user to comprehend the query efficiently. These tools can lower the cognitive load
for understanding SPARQL queries even for experienced users [95, 114]. SPARQL2NL [94] and SPARTIQULATION
[42] are examples of SPARQL to Natural Language translators.

SPARQL2NL can translate SPARQL queries to Natural Language based on the selected SPARQL endpoint. In addition,
it allows the user to run the query and retrieve the results. Then, the tool explains the results in Natural Language.
Thus, the user does not have to understand RDF or how resources are connected as the tool will explain it in a written
format [94]. In contrast, SPARTIQULATION attempts to translate SPARQL into Natural Language using ’Document
Structuring’ by converting the entire query into a graph representation and then translating it into Natural Language.
SPARTIQULATION thus lacks the flexibility to make changes based on the data structure, as some messages are
hard-coded. Both tools have shown encouraging results despite requiring further improvements [94, 42].

8https://lucene.apache.org/
9https://www.w3.org/TR/vocab-data-cube/

13



A PREPRINT - AUGUST 23, 2022

4 Semantic Web Solutions

This section explores the current semantic web solutions by reviewing papers published as an in-use resource or
application. The goal was to broaden the scope of the search in order to uncover new areas and prospective answers and
ideas.

4.1 Virtual Assistants

Conversational AI and Virtual Assistants (VA) provide alternative ways for end-users to interact with the system
naturally. Users are not anticipated to grasp any query languages or even apprehend the data structure.

Mihindukulasooriya et al. [91] proposed the Dynamic Faceted Search (DFS) system that uses faceted search through
Virtual Assistants in the IT technical support domain. Users must begin by conducting a keyword search for their
issues. Then, the Virtual Assistant offers a list of options that will guide them through the process of identifying the
problem. The list is dynamically generated using a faceted search algorithm by extracting the taxonomy from Wikidata
to determine the user intent. The list knowledge induction process is an unsupervised learning approach in which
the user is not restricted to any expected input, such as a brand or category. The authors claim that the system is
domain-independent as it was also used in different domains.

The simplicity of this proposed Virtual Assistant is noteworthy, as the use of LD to dynamically create user choices
lowers the need for expert input to build the system, which speeds up system production. Therefore, the options are
unique and relevant to each user’s questions. The user experience is completely guided through the faceted search
process.

To evaluate the system, the authors used two real datasets. The first dataset was TechQA, a publicly available dataset
with 610 question-answer pairs, while the second is a private dataset with 50 question-answer pairs. Both datasets
were related to the IT technical support domain. They conducted three types of experiments that include Quantitative,
Qualitative and Subject Matter Experts (SMEs) Evaluation. In the quantitative experiment, all matrices outperformed
ElasticSearch (the baseline). For the qualitative testing, they used the human-in-the-loop technique to examine randomly
chosen queries manually. The results showed that, on average, 60% of the autogenerated options were helpful. However,
in the SMEs evaluation, the options relevancy was assessed at only 50%. Two experts have evaluated the options
with significant variance in their decisions affecting the final results. Thus, more expert users must be included in the
evaluation to lower such variation to improve the overall test quality.

Barisevičius et al. [14] introduced the Babylon Chatbot to provide patients with general health information or to triage
them based on the urgency of their health conditions if they needed medical assistance. The authors have created
significant LD by integrating data from multiple data sources. Then, they created a KB-Explorer, which is a LD browser
for exploring and debugging. The browser also provides text annotation if needed as a debugging feature. However,
only Babylon Chatbot was meant for the end-user. The chatbot conversation is guided through the options the patient
will receive, which increases the system accuracy, but the user cannot proceed faster by describing their condition in a
single message. In terms of evaluation, the given data was insufficient and not clearly explained, though the precision
was 0.967 and recall was 0.799, which is encouraging.

Farah et al. [43] created a reasoning engine for a telecom company as a way to review all of the company’s historical
data regarding device maintenance to suggest a solution to issues, such as rebooting the device or following a specific
procedure. The data model was trained using three months of data, which consisted of about 61 million error code
records and 3.6 million entries. The data were modelled as a Knowledge Graph to make them semantically available.
Then, they created a Voice-based chatbot as the end-user interface. The chatbot was intended to seek to understand
the customer’s problem and propose a solution. Therefore, the chatbot will iteratively take the customer into a
question/answer loop until it reaches a conclusion.

The authors conducted a quantitative experiment with 5,000 problems where the result was only deemed relevant if the
correct answer was one of the first five suggestions. The accuracy was 0.58, while the Precision, Recall, and F1 Score
were 0.69, 0.58, and 0.60, respectively. They also discovered that the dataset might suffer from missing information
affecting the results. Thus, they created a system to recommend alternative solutions to unresolved issues. After a
second experiment using the revised system, the Accuracy, Precision, Recall and F1 scores were 0.82, 0.84, 0.82, and
0.83, respectively, showing excellent improvement in results.

The use of Chatbots and Conversational AI offers a natural way of retrieving knowledge. On the other hand, the current
usage is solely concerned with diagnosing the issues and reaching a conclusion.

14



A PREPRINT - AUGUST 23, 2022

4.2 Microdata and RDFs Authoring Tools

While a knowledge graph must be created and edited by Semantic Web experts, they are not necessarily specialists in
the related knowledge domain. Similarly, domain knowledge experts are not necessarily semantic web experts. For
example, creating medical ontology requires some involvement from medical field specialists. Therefore, assistive tools
must be implemented to motivate these Lay-users to verify and modify their domain knowledge ontology appropriately.

Manually annotating web textual content using Microdata [1] requires high levels of technical knowledge of semantic
web annotation. The Seed [41] tool aims to fill the gap between semantic web annotation and mainstream users. The
tool does not require any experience with semantic annotation as it will display the web content as a WYSIWYG editor.
Users can thus annotate any word or a phrase as a Location, Organization, Person or Other by simply highlighting
the target and linking it to the related entity. Additionally, the tool supports data facet browsing either by using the
annotated information pane or the entity summary pane. The tool is thus generally intuitive and easy to use. However, it
does not support RDF annotation, limiting it to Microdata annotation.

Controlled Crowd-sourcing is an attractive approach that involves the community in ontology curation. Gil et al.
[49] introduced Linked Earth Platform (LEP), where users can propose new terms as part of the crowd ontology
that, if approved, become part of the core ontology for the LEP. The LEP is, in turn, equipped with a dedicated
annotation interface that displays the dataset ontology, including both missing and crowd properties. The platform
keeps participants motivated by giving them credit for their contributions, as well as supports supporting community
discussions and making decisions by voting. The annotated data can be visualised in a map-based view.

As RDFs are constructed in triples, writing these manually to create a LD resource and all of its corresponding data
can be time-consuming. RDFWebEditor4Humanities [79] is an RDF annotating tool that is intended to assist the
user by offering suggestions using case-based reasoning, to develop suggestions relevant to the context that are sorted
accordingly. The tool has four versions, which share an interface with a variant in the associated suggestions. The
interface is distributed into three text fields that express the RDF triples (subject, predicate, and objects). The use of the
interface thus requires some Knowledge about RDF and LD.

The evaluation of the RDFWebEditor4Humanities involved human and automatic evaluation. The first experiment
required each user to create 10 randomly chosen resources from a list of 30 items. Participants then completed a survey
to give feedback about each version, using the Likert scale [3] to rate the suggestion relevance, where 0 was the lowest
and 7 was the highest. The overall results for the Basic, Deductive, Cased-based, and Combination editors were 3.4, 5.7,
5.3 and 7, respectively. The first experiment proved that the Cased-based editor did not improve the suggestions while
the Combination editor was influential. The second experiment offered performance analysis based on analysing the
suggestion list and comparing it to the expected value to assign a ranking. The lower the rank, the better the suggestion.
By far, the Case-based editor and Combination editor performed much better. Both versions have achieved almost the
same results.

Schema.org has become the standard schema to create ontologies for LD. Schema.org contains a generic vocabulary
covering various domains, including numerous unrelated vocabularies. Customising Schema.org to precisely fit a
specific domain is challenging as it requires the removal of unrelated properties and types. In addition, it requires
defining the local properties and constraints. The Domain Specification Editor [119] is a tool intended to help the
user to generate domain-specific custom annotation. The tool allows the user to manually create the annotations by
selecting a ’Domain Specification’ from the list or automatically generates the annotation by fetching a web page URL.
The tool is thus only meant for Experts to assist in building and validating custom ontologies that follow Schema.org
specifications.

The evaluation of the Domain Specification Editor included a usability study and usage survey. A System Usability Scale
(SUS) [13] was used with Likert scale [3] response categories across 37 participants, distributed as eight experienced
users and 29 mainstream users. In general, the usability results were ’good’, with 75% of the experienced users finding
the tool to be excellent. However, the inexperienced users found using the tool more difficult, with only 20% rating it as
excellent. The second experiment involved 14 participants with experience in creating annotation with schema.org.
They were asked to create annotations with and without the tool domain-specific patterns. Then, they had to answer
some related questions. The results showed that 78.6% of the participants found the domain-specific patterns to be
simple to use. Moreover, all participants reported that it was helpful. Half of the participants stated that it facilitated the
process, saved their time, and assisted them in discovering new properties.

Another successful annotator is Smart Topic Miner (STM) [97], an automated classification tool used to support the
Springer Nature editors. STM parses publications metadata to display the annotated topics alongside relevant papers,
classification labels, and useful analytical information about such papers within the proceedings book. The editor can
then decide whether or not to check and modify any annotations manually before submitting them. The use of STM
enhances the general findability and accessibility of the resources. The STM has shown promising results in terms of

15



A PREPRINT - AUGUST 23, 2022

usability, with a SUS score of 76.6. However, it is only limited to the computer science field. Also, STM can only
analyse the metadata rather than analysing full-text publications. In addition, the inferences behind STM suggestions
are hidden, leaving no clear verification approach to build user trust.

Smart Topic Minor 2 (STM2) [104] is the second version of STM. This version addresses some of the first version
issues based on the editors’ feedback. The search approach has been modified to offer the user an explanation for the
tool suggestions. Besides, the UI has been overhauled to be more dynamic. In addition, STM2 also considers the
historical data for the earlier editions of the same conference proceedings. As STM2 is integrated with the Computer
Science Ontology Portal [103], it is still restricted to Computer Science research. STM2 SUS score was 93, which is an
excellent score. This evaluation shows a dramatic change in terms of usability compared to the old version.

CodeOntology [8] is a tool that enables the parsing of Java source code to generate RDF triples. It also links the code
comments with suitable DBpedia resources. The idea is to allow the user to query the source code through the produced
ontology using SPARQL. Thus, the software elements become semantically accessible. The authors have also deployed
a QA system called AskCO [10] to examine the source code querying for the generated ontology. AskCO thus handles
the user queries in natural language and interprets them by calling the most suitable function. However, CodeOntology
is limited to use on Java code.

4.3 Mobile Applications

Nutrition and maintaining a healthy diet is one of the LD applications. Dragoni et al. [40] introduced PerKApp, which
is a mobile application to monitor the user’s diet and activity to promote healthier lifestyles. The application tries to
send persuasive messages to the user based on their collected data. The application uses Rule-Based Reasoning that was
placed by experts such as physicians and dietitians to detect any violations of user behaviour (i.e., not consuming the
right amount of calories on breakfast). User data are inserted into the LD and validated against the rules immediately,
with daily and weekly validation to detect any missed violations.

Donadello and Dragoni [38] extended the work on PerKApp by empowering LD with AI and linking it with the user’s
personal health records to monitor the diet habits and predict any nutritional diseases that might be linked with the
user’s diet. Users can use the mobile application to track their diet by taking pictures of their food. Then, the system
will classify the image to identify the food category. The application is the only means for the end-user to connect to the
LOD. The end-user food consumption habits are then visualised as a progress bar to promote healthy food consumption.
Generally, the application is intuitive and provides higher data abstraction with no direct engagement with the LD.

Dragoni et al. [40] generated a performance analysis based on real data collected from 49 users who used the application
regularly for 45 days. The results showed that the daily reasoning time on average was 1 second, as compared to the
weekly reasoning time of 14 seconds on average. Thus, the reasoner time was also correlated with the number of
violations. An SUS questionnaire was then used to examine the experts’ opinions on the usability of the setup process
and to define rules. The average score was 81.5, which is excellent as per Bangor et al. [13] proposed scale.

Additionally, Donadello and Dragoni [38] conducted a quantitative experiment to examine their classifier and two
qualitative experiments to judge the usefulness of their mobile application. When tested, their initial single-based
classifier failed to classify some food content creating a domino effect that damaged the system’s suggestions and
undermined its primary purpose. Therefore, they switched to multi-label classification using a new labelled dataset. As
a result, the classification was significantly improved. In addition, the usability test result for their application was 83,
which is rated as excellent. Then, to assess the impact of the mobile application’s motivational messages, users were
split into two groups, with 92 in the first group receiving such messages and 28 in the second group (control group)
receiving no messages. The results showed that users from the first group were less likely to violate the diet guidance.

4.4 Entity Centric Dashboards

Leskinen et al. [82] presented the Actor Ontology from a Finland Finnish World War II dataset in an intense Spatio-
temporal model in the WarSampo portal 10. The data was shown from four main viewpoints: Persons, Military Units,
Articles and Photographs. The first perspective reflects “Person” information by allowing the user to search for a
person’s name and thus access all of the information linked to that entity. Similarly, users can use the second viewpoint
to search for the Military Units, listing all the information related to the given unit, such as photos, personnel and battles,
including a map displaying the unit location with an interactive timeline. The third viewpoint is an archive of “Kansa
Taisteli Magazine” articles that allows users to filter articles using information such as author name and issue date. The
final viewpoint is of photographs organised as an image gallery, where the user can search for an image by specifying
the period, location, military unit, and photographer. These web interfaces were not evaluated [82].

10https://www.sotasampo.fi/en/

16



A PREPRINT - AUGUST 23, 2022

Different viewpoints may be connected by the shared entities. For example, when exploring a person, the user can
navigate to the person’s military unit and then explore related images. This facilitates smooth data browsing by allowing
users to begin with any desired viewpoint to find the required data. However, the web interface mainly focuses on
’Faceted Search’ and thus does not support the inclusion of two or more unrelated entities in searches. For example,
users can not find articles written by either author A or author B in a single search.

One of the useful applications of semantic web technologies is knowledge extraction as used to track illegal activities.
Kejriwal and Szekely [75] created an intelligent search engine to assist investigators of Human Trafficking. The
engine uses NLP and Information Retrieval techniques to extract knowledge from millions of web posts to build the
Domain-specific Insight Graph (DIG). A DIG GUI is then used to pass the query to the engine and display the results.
The investigator must enter the required search terms, and the results are then displayed in a ranked entity list, sorted in
descending order. Thus, the user can browse each entity on an entity-centric visualisation or narrow down the results
using the faceted search options.

The evaluation of [75] was not published due to the confidentiality of the data. However, the authors shared the
techniques alongside some of the results. They have evaluated their GUI by performing controlled usability testing on
8 SMEs. The participants came from four different states in the USA, and each participant was asked to spend two
hours daily for one week answering eight ’lead generations’ and eight ’lead investigation’ questions, in addition to a
45-minute training session. They used System Usability Scale (SUS) questionnaire to measure their GUI usability and
scored above 70, which is recognised as above average.

Fernàndez-Cañellas et al. [44] created a system to extract the current media news from various sources and languages
with the aim of identifying trends and similar articles. The user can then access these findings through a web dashboard
that presents the revealed topic alongside the related “when, where, and who” answers, as well as displaying all media
that mention the same topic, with related tags linking the topic to other related topics. The interface is simple and well
structured from a journalistic perspective.

The system has two main components, News Event Detection and Dynamic Entity Linking. The first is responsible for
discovering and classifying topics so that similar topics can be identified and grouped, while the second models the
semantic relations between the events. Keywords can then be detected and linked to the related entities allowing the
user to identify all events related to a specific tag or person. The authors also conducted a quantitative evaluation for
each component separately to compute the ’Classification Evaluation Metrics’ such as accuracy and precision in order
to identify any deficiencies within each system component; however, the dashboard was not evaluated.

4.5 Web APIs

Web developers primarily rely on Web Application Programming Interfaces (APIs) to consume Web Services and
retrieve data [115]. Each API act as a translator between two applications, allowing them to communicate. Therefore,
for a web developer to connect a web application to the LD, they can either use the relevant LD SPARQL-endpoints or
create a specific Web API [90]. The first option involves sending SPARQL queries to the endpoint and retrieving data
as RDF triples in a format such as JSON, CSV or as supported by that API. The data is then analysed and presented
in HTML format. This approach requires the developer to have experience with SPARQL, RDF, and Knowledge
Graphs. The second option is to use a Web API by requesting a distinct URL that represents a resource or a service,
possibly, with predefined parameters, with the data received as an HTTP response. The Web API should either have the
OpenAPI Specification (OAS)11 description, which offers documentation for both humans and machines or at least has
the traditional documentation so the client knows which services are offered by that API. The format of the transferred
data can be a Web-friendly format such as JSON, JSON-LD 12, or XML. With the second option, the developer must be
familiar with the technology and be able to access LD in a straightforward approach.

However, creating a Web API requires regular maintenance. Web APIs lack standardisation and act in a “Blackbox”
manner, keeping all the querying behind the scenes [115, 90]. Therefore, Meroño-Peñuela and Hoekstra [90] introduced
grlc 13, a tool that dynamically generates well-standardised RESTful APIs by transforming SPARQL queries. The user
must store the SPARQL queries in a GitHub repository, and the tool then uses these as the source for constructing the
API. This allows web developers without experience in SPARQL to efficiently access LD. Despite that, grlc does not
support customising the API results, as it returns only these formats support by the endpoint. Thus, consuming the LD
results may still be a challenge.

11https://www.openapis.org
12https://json-ld.org/
13https://grlc.io/

17



A PREPRINT - AUGUST 23, 2022

Lisena et al. [83] addressed this issue by introducing SPARQL Transformer, a tool that allows users to write SPARQL
queries in JSON in the form they wish to see the final result. The tool accepts SPARQL queries as plain JSON or
JSON-LD and then returns the results with a matching JSON structure. The most remarkable feature of this tool is
that it can be integrated with grlc to allow web developers to customise their API output. SPARQL Transformer lacks
expressivity and is currently limited to SELECT queries.

Alternatively, Garijo and Osorio [48] have introduced an Ontology-Based APIs (OBA) framework that extends the work
done by tools like grlc, allowing automatic creation of an OAS from the selected ontology. Then, generate APIs to
access the LD that follows the same OAS, with the returned results in a JSON format that matches the OAS. Thus, the
involvement of the knowledge graph experts is reduced, and fewer efforts are required to process the results. In addition
to supporting SELECT expressions in SPARQL, OBA supports INSERT, UPDATE, DELETE, and CONSTRUCT
expressions. In terms of limitations, OBA is affected by ontology modification, which will produce a new API version.
Also, enormous ontologies will also create massive APIs that may be slow to access.

The evaluation of grlc included a qualitative evaluation by presenting the users’ feedback on in-use projects. A
quantitative evaluation was also conducted to test the speed and performance of the tool. As expected, the performance
of grlc was almost constant, as it introduces a steady overhead between the application and the endpoint, so its
performance is not affected by the size of the dataset. During the experiments, response time never exceeded 187.9 ms,
which was deemed adequate.

In addition, the SPARQL Transformer was quantitatively evaluated to test its performance as a stand-alone tool without
integration with grlc. The results showed that using SPARQL Transformer was slightly slower than direct SPARQL
endpoint querying, but that this delay was less than 100 ms, which was seen as acceptable. A questionnaire was also
conducted to reflect user opinions regarding the data representation and the JSON format in comparison to the direct
endpoint querying. The results suggested that users generally prefer the tool but that their decisions were not affected
by the level of data nesting, despite the authors’ assumptions.

The authors of OBA also implemented performance analysis to measure the time taken to render the results into
JSON and to assess its performance across a different range of requests. The first analysis showed that overall,
OBA had overhead that averaged below 150ms and never exceeded 200ms. In the second experiment, when using
proxy caching, the 60 queries per second were handled in less than 200ms. However, without proxy caching, the
performance dramatically diminished in cases where ten requests or more were received, exceeding 5 seconds, which
was considerably worse.

5 Evaluation and Research Validation

5.1 User Study

Evaluation is an essential part of any proposed tool or interface, as it is needed to determine the usefulness of the
introduced design or technique. Part of the reviewing process of this paper thus dedicated to exploring the evaluation
design of each paper. Table 4 summarises the evaluation techniques and tools used by each paper. The evaluation
methodologies ranged across quantitative, qualitative, and mixed methods [51]. According to the ISO 9241-11, the
quantitative usability evaluation has to achieve satisfaction, efficiency and effectiveness with measurable characteristics
[24]. Most of the reviewed work used a System Usability Scale (SUS) questionnaire to measure user satisfaction, with
this score interpreted using a Likert Scale [3]. The SUS score was occasionally normalised using the Percentile Rank 14

to give a percentage or a grade. Likert Scale was also integrated with various surveys to allow comparison of two or
more platforms based on users’ opinions.

The NASA-Task Load Index (NASA-TLX) [60] is another evaluation tool that distinguishes between multiple platforms
using the user-perceived workload. As with SUS, NASA-TLX is used to measure user satisfaction, but the latter is
distributed to evaluate workload in a manner that includes frustration, difficulty, mental effort, physical effort, temporal
effort, and performance, so that lower scores are better.

The effectiveness of the system was usually measured by means of user ability to complete the required task successfully.
In addition, Subject Matter Experts (SMEs) were used to verify output to determine system accuracy. Alternatively,
Kuric et al. [78] have employed the number of hints which was given to the user to accomplish the task as a method of
evaluating the accuracy. Efficiency was usually determined by the amount of time the user spends to complete the task,
though performance metrics, such as f-measure, recall, and precision, were also used to measure the effectiveness of the
information retrieval process.

14https://measuringu.com/interpret-sus-score/

18



A PREPRINT - AUGUST 23, 2022

The qualitative evaluation methods combined a variety of tools to capture user observations and feedback. The most
common approach was to create a controlled experiment, followed by open questions about the system. Usually, these
open questions were given as part of the questionnaire completed by participants. However, sometimes they took the
form of an interview. These questions are typically preceded by assessment questions targeted at user background
details such as the user years of experience. The “think-aloud protocol” was also used to collect the user observations
while using the system, followed by a debrief session to verify their input.

In terms of participant quantity, numbers ranged from 1 to 120 participants. The most frequent sample sizes were 6, 8,
10, 14, 15, 48, and 120 participants. According to Nielsen and Landauer [96], the optimal sample sizes for small and
medium-large projects are 7 and 15, respectively.

5.2 SPARQL Query Evaluation

The majority of the reviewed tools focused on the user study to demonstrate their usefulness, while the correctness and
validity of the generated queries were not explicitly stated. Most of the Question Answering tools relied on QALD

Table 4: Evaluation techniques used by each paper.
Quantitative Qualitative

To
ol

Sa
m

pl
e

Si
ze

SU
S

L
ik

er
tS

ca
le

N
A

SA
-T

L
X

SM
E

U
se

rE
va

lu
at

io
n

Ta
sk

C
om

pl
et

io
n

Pe
rf

or
m

an
ce

M
et

ri
cs

To
p-

N
M

et
ri

cs

Ti
m

e

T
hi

nk
-a

lo
ud

E
va

lu
at

or
s’

A
ss

es
sm

en
t

O
pe

n
Q

ue
st

io
ns

H
IT

L

Mihindukulasooriya et al. [91] 2 SME 3 3 3

Barisevičius et al. [14] N/A 3

Farah et al. [43] N/A 3

Donadello and Dragoni [38] 120 3 3 3

Dragoni et al. [40] 49 3 3

Fernàndez-Cañellas et al. [44] N/A 3

Lisena et al. [83] 55 3 3 3

Meroño-Peñuela and Hoekstra [90] 6 3 3

Garijo and Osorio [48] N/A 3

Kejriwal and Szekely [75] 8 SME 3 3 3 3

Lasolle et al. [79] 1 SME 3 3 3

Şimşek et al. [119] 51 3 3 3 3

Eldesouky et al. [41] 120 3 3 3 3 3

Osborne et al. [97] 8 SME 3 3 3 3

Thanapalasingam et al. [110] 14 SME 3 3 3 3

Salatino et al. [104] 9 SME 3 3 3 3 3

Beschi et al. [23] 21 3 3 3 3 3

Vega-Gorgojo et al. [113] 15 3 3 3 3

Kuric et al. [78] 15 3 3 3 3 3

Haag et al. [55] 10 3 3 3

Hoefler et al. [63] 14 3 3 3 3 3

Haag et al. [58] 6 3 3 3

Vargas et al. [112] 28 3 3 3 3 3 3

Soylu et al. [109] 10 3 3 3 3 3

Kaufmann et al. [73, 74] 48 3 3 3 3 3 3

Zenz et al. [116] - 3 3

Ferré [45] 26 3 3 3 3 3

19



A PREPRINT - AUGUST 23, 2022

challenge to measure performance metrics, such as precision and recall rather than question matching the SPARQL
query [99]. Other reviewed work appeared to depend on users offering satisfaction feedback about the queries.

Evaluating tools by matching the autogenerated SPARQL query with the ideal SPARQL query is known as the “black-
box” approach [32]. The black-box approach examines only the system input and output to evaluate the system [93].
The idea is that, as two equivalent queries may be structured differently, these queries should be matched using the
produced results [32, 6]. If the LD is periodically updated, an exact match for the output is impossible, as even the
same query will produce different results. A “grey-box” approach is thus required, in which the query is semantically
evaluated by checking for the existence of specific triples with the help of domain experts [32, 6]. However, the majority
of the reviewed tools did not specify whether or not the resulting queries was examined as part of their evaluation.

It is difficult to evaluate these tools independently in terms of the generated queries, as the systems are generally
inaccessible or configured to query only a specific SPARQL endpoint. For example, out of the reviewed Form-based
QBs, only three allow the user to query Wikidata, while one does not support exposing the SPARQL query, making the
evaluation of generated queries infeasible.

6 Findings and Discussion

This survey reviewed a wide range of available tools for accessing LD, with a focus on generating SPARQL, as this is
the W3C recommended query language for LD. Most of these tools address a variety of users, yet many have some
weaknesses in supporting certain user types, most commonly Lay-users. Experienced users are familiar with RDF and
can understand most interfaces’ metaphors clearly, while Lay-users struggle to deal with some of these tools as they
require prior RDF knowledge [34, 36, 112, 2, 63, 78, 47]. Figure 8 summarises the main pros and cons of the key types
of SPARQL QBs covered.

Figure 8: The summarisation of the findings by listing the Pros (+) and Cons (-) of the main types of SPARQL query
builders.

User-Friendly. The NL-Based Query Builders are most user-friendly interfaces, as these offer greater levels of
abstraction than other tools, and thus do not require the user to have any previous knowledge about the LD or SPARQL.
These tools are meant for Lay-users and thus aim to remove the barriers to accessing LD. As a result, however, some
expressiveness in terms of constructing the query is lost. QUICK thus adds an additional layer to recognise user
intention to improve accuracy, while SPARKLIS eliminates arbitrary keyword searches by limiting sentence contraction
to the available option boxes. However, constructing complex queries takes more time with these tools, making them
more suitable for exploring data content and creating simple queries.

Contrarily, Several tools convert SPARQL queries and their retrieved results into a more human-readable formats, and
these tools explain in detail what a particular SPARQL query does. In addition, they can convert seemingly meaningless
URI into something more readable. However, they do not support converting such natural language texts back into
SPARQL.

Wider Usability. Form-based Query Builders are suitable for a wider variety of users, as well as allowing more
detailed querying of the data region of interest. Some of these interfaces rely on the structure of the RDF triple pattern
to reduce data abstraction, though most such tools offer an auto-filling option to speed up the learning curve, as seen in
WQS and VizQuery. To take advantage of users’ familiarity with spreadsheets, tools such as LDQW, ExConQuer, and

20



A PREPRINT - AUGUST 23, 2022

Falcons Explorer show their initial results in a tabular format, allowing users to shape the retrieved results using filters
to match their specific needs. Both Experts and Lay-users thus benefit from using these types of query builders.

Visualisation and Detailed Querying. Graph-based Query Builders require tremendous cognitive load and prior
knowledge of SPARQL, making them unsuitable for Lay-users. These query builders excel in visualising queries
to reflect their LD structures, allowing the full expressiveness of SPARQL to be displayed, and thus even experts
may not be sufficiently familiar with the data structure. Some tools have tried to overcome this unfamiliarity issue
by offering a toolbox with a fixed set of draggable objects such as ViziQuer, QueryVOWL, OptiqueVQS, and RDF
Explorer. However, for non-experts, constructing the query path remains difficult, based on a need for understanding of
the connections between objects.

7 Research Challenges and Future Directions

Although the reviewed works and solutions have covered a wide range of domains, there are still some common gaps
and areas that were not addressed. In addition, several researched tools were not evaluated or tested in terms of usability,
necessitating further investigation into the usefulness of the proposed solutions. In terms of wider usability, none of the
investigated tools supports the combination of basic/advanced UIs to lower barriers for Lay-users as a way to accelerate
their interface adaptation while still supporting advanced querying for Experts. In addition, NL-Based Query Builders
do not support the conversion of SPARQL to NL. For example, tools such as SPARQL2NL allow the user to convert
SPARQL to NL, which is not supported by NL-Based QBs. Supporting such a feature can assist Lay-users in evaluating
the generated SPARQL. Thus, this issue must be examined to determine whether such capability might improve the tool
evaluation results.

Supporting Web of Things (WoT) and Spatial Data. The development of Smart homes and cities and the extension
of WoT domains have introduced new concepts to traditional LD, including sensors, observations, and spatial data.
Most of the reviewed query formulation tools were only concerned with extracting general knowledge from traditional
LD. Even though these tools are designed to work with general LOD, they lack the simple concepts to access and
explore LD that follows, for example, the specifications of “Sensor, Observation, Sample, and Actuator (SOSA)”[70]
ontology. Reapplying with some of the reviewed techniques or considering a new visualisation approach to this type of
LD is essential to the end-user.

Traditional LD will involve a simple RDF pattern such as ’Adam is Human’. However, when it comes to Smart
buildings, the information is retrieved differently. For example, a thermal sensor may be positioned in an area where
many other sensors exist, obtaining readings on a regular basis for various measurements. The sensor’s readings will
thus reveal a many-to-one relationship that connects numerous records to a single sensor. Despite these relationships
being described in the ontology, the visualisation and relationships are more condensed and complicated. So, in terms
of data querying to obtain information related to the building condition, the sensor is thus of more interest than the
readings. For example, the users are not interested in a single reading corresponding to a simple RDF pattern; instead,
they require the ability to query all data linked to a single sensor while filtering out undesired readings by matching a
specific pattern.

Results Perception During Query Construction. Form-based QB seems to be the least intimidating interface among
the other QBs for novel users; however, it requires improvement in terms of usability. FILTER/FLOW MODEL has
shown that providing preliminary results during query construction helps users build accurate queries. None of the other
query builders has supported such a feature with respect to reflecting the possible results during the query construction,
so the use of this technique needs further investigation.

This is important due to the fact that, as we previously discussed, even experts might have ambiguity in their views
about the expected results that may affect the query construction. Thus, offering some insight to the user about the
potential result during construction might improve their overall experience. For example, showing the size of the results
by increasing the visual model’s thickness to symbolise increased result size might be helpful in terms of determining
the usefulness of any used filters. Alternatively, the density of the result could also be represented by using darker
colours to reflect the intensity of the data. If the results incorporate geospatial data, a map might also be a good means
of visualisation, significantly influencing the user’s perception of the data. In addition, when users visually select an
entity, displaying all the associated entities might improve the query construction approach as compared to the user
having to guess the entities. Therefore, the perception of the results is an important factor that may positively impact
usability.

21



A PREPRINT - AUGUST 23, 2022

Supporting Conversational AI. NL and Keyword-based approaches are concerned with extracting knowledge from
LD using a sentence or keywords. Thus, there was no potential strategy to detect the user intent and thus return feedback
to improve their query construction. In contrast, a Virtual Assistant (VA) is an EUD tool that was not reviewed in the
context of accessing LD. Barricelli et al. [16] discussed the possibility of using VA and Conversational AI in the domain
of IoT to enable end-users to manage their IoT environment more easily. VA can be used to capture the user intent
more accurately and present the results in the users’ natural language. The current use of VAs is limited to finding
a conclusion or using predefined SPARQL templates, which requires querying by replacing the entity values like in
Mishra et al. [92] paper; however, no support for accessing the data using any adaptive or scalable approaches has been
found.

Improving Usability by Integrating Multiple Tools. Each of the reviewed tools and visualisation approaches has
pros and cons. Regardless, these tools did not examine the effectiveness of combining multiple approaches to address
known flaws and improve tool usability. As an example, it is thus unknown whether combining Form-based tools with
Graph-based tools would minimise the cognitive load seen in solely graph-based instances while improving expressivity,
which is limited in the form-based approach. Similarly, it may be that merging the NL with a Form-based approach
might improve the speed of query construction. Integrating multiple visualisation paradigms should be carefully tested
to avoid overwhelming the user by increasing the tool’s complexity, however, suggesting that additional functionality
should be introduced as an assistive tool or an alternative visualisation that is tightly coupled to reflect the same query.

8 Conclusion

The Linked-Data (LD) paradigm has demonstrated remarkable potential of representing information and delivering
human and machine-readable formats. However, its potential is being confined by the fact that its users are expected
to have a prior understanding of the complex SPARQL query language to access the data. This paper has reviewed
various tools and approaches to access LD, including analysing alternatives to manually writing SPARQL. We have
categorised the tools based on the UI querying approach. In addition, the paper investigates the current solutions and
their research validation techniques. The results showed weaknesses and a lack of adequately supporting a wide range
of users, especially Lay-users.

22



A PREPRINT - AUGUST 23, 2022

References
[1] HTML Standard - Microdata, 2022. URL https://html.spec.whatwg.org/multipage/microdata.html.

[2] K. Affolter, K. Stockinger, and A. Bernstein. A comparative survey of recent natural language interfaces for
databases. VLDB Journal, 28(5):793–819, 2019. ISSN 0949877X. doi: 10.1007/s00778-019-00567-8.

[3] I. E. Allen and C. A. Seaman. Likert scales and data analyses. Quality Progress, 40(7):64–65, 2007. ISSN
0033524X.

[4] O. Ambrus, K. Möller, and S. Handschuh. Konduit VQB: A visual query builder for SPARQL on the social
semantic desktop. CEUR Workshop Proceedings, 565, 2010. ISSN 16130073.

[5] R. Angles, M. Arenas, P. Barceló, A. Hogan, J. Reutter, and D. Vrgoč. Foundations of Modern Query Languages
for Graph Databases. ACM Comput. Surv., 50(5), sep 2017. ISSN 0360-0300. doi: 10.1145/3104031.

[6] T. Asakura, J.-D. Kim, Y. Yamamoto, Y. Tateisi, and T. Takagi. A Quantitative Evaluation of Natural Language
Question Interpretation for Question Answering Systems. In R. Ichise, F. Lecue, T. Kawamura, D. Zhao,
S. Muggleton, and K. Kozaki, editors, Semantic Technology, pages 215–231, Cham, 2018. Springer International
Publishing. ISBN 978-3-030-04284-4.

[7] J. Attard, F. Orlandi, and S. Auer. ExConQuer: Lowering barriers to RDF and Linked Data re-use. Semantic
Web, 9(2):241–255, 2018. ISSN 22104968. doi: 10.3233/SW-170260.

[8] M. Atzeni and M. Atzori. CodeOntology: RDF-ization of Source Code. In C. D’Amato, M. Fernandez,
V. Tamma, F. Lecue, P. Cudré-Mauroux, J. Sequeda, C. Lange, and J. Heflin, editors, The Semantic Web –
ISWC 2017, pages 20–28, Cham, 2017. Springer International Publishing. ISBN 978-3-319-68204-4. doi:
10.1007/978-3-319-68204-4_2.

[9] M. Atzeni and M. Atzori. Towards semantic approaches for general-purpose end-user development. In
Proceedings - 2nd IEEE International Conference on Robotic Computing, IRC 2018, volume 2018-Janua, pages
369–376. IEEE, 2018. ISBN 9781538646519. doi: 10.1109/IRC.2018.00077.

[10] M. Atzeni and M. Atzori. AskCO: A multi-language and extensible smart virtual assistant. In Proceedings -
IEEE 2nd International Conference on Artificial Intelligence and Knowledge Engineering, AIKE 2019, pages
111–112, 2019. ISBN 9781728114880. doi: 10.1109/AIKE.2019.00028.

[11] M. Atzori, G. M. Mazzeo, and C. Zaniolo. QA 3: A natural language approach to question answering over RDF
data cubes. Semantic Web, 10(3):587–604, 2019. ISSN 22104968. doi: 10.3233/SW-180328.

[12] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. DBpedia: A Nucleus for a Web
of Open Data. In K. Aberer, K.-S. Choi, N. Noy, D. Allemang, K.-I. Lee, L. Nixon, J. Golbeck, P. Mika,
D. Maynard, R. Mizoguchi, G. Schreiber, and P. Cudré-Mauroux, editors, The Semantic Web, pages 722–735,
Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. ISBN 3540762973. doi: 10.1007/978-3-540-76298-0_52.

[13] A. Bangor, P. Kortum, and J. Miller. Determining What Individual SUS Scores Mean: Adding an Adjective
Rating Scale. J. Usability Studies, 4(3):114–123, may 2009. ISSN 1931-3357.

[14] G. Barisevičius, M. Coste, D. Geleta, D. Juric, M. Khodadadi, G. Stoilos, and I. Zaihrayeu. Supporting Digital
Healthcare Services Using Semantic Web Technologies. In M. Arenas, O. Corcho, E. Simperl, M. Strohmaier,
M. D’Aquin, K. Srinivas, P. Groth, M. Dumontier, J. Heflin, K. Thirunarayan, K. Thirunarayan, and S. Staab,
editors, Lecture Notes in Computer Science, volume 9366 of Lecture Notes in Computer Science, pages 291–306,
Cham, 2018. Springer International Publishing. ISBN 9783030006686. doi: 10.1007/978-3-030-00668-6_18.

[15] B. R. Barricelli and S. Valtolina. A visual language and interactive system for end-user development of internet
of things ecosystems. In Journal of Visual Languages & Computing, volume 40, pages 1–19. Elsevier Ltd, 2017.
doi: 10.1016/j.jvlc.2017.01.004.

[16] B. R. Barricelli, E. Casiraghi, and S. Valtolina. Virtual Assistants for End-User Development in the Internet of
Things. In A. Malizia, S. Valtolina, A. Morch, A. Serrano, and A. Stratton, editors, End-User Development,
pages 209–216, Cham, 2019. Springer International Publishing. ISBN 978-3-030-24781-2. doi: 10.1007/
978-3-030-24781-2_17.

[17] S. D. Bartolomeo, G. Pepe, V. Santarelli, and D. F. Savo. Sparqling: Painlessly drawing SPARQL queries over
GRAPHOL ontologies. CEUR Workshop Proceedings, 2187(January 2018):70–77, 2018. ISSN 16130073.

23

https://html.spec.whatwg.org/multipage/microdata.html


A PREPRINT - AUGUST 23, 2022

[18] G. Barzdins, S. Rikacovs, and M. Zviedris. Graphical query language as SPARQL frontend. In Local Proceedings
of 13th East-European Conference (ADBIS 2009), pages 93–107, 2009.

[19] H. Bast and E. Haussmann. More accurate question answering on freebase. International Conference on
Information and Knowledge Management, Proceedings, 19-23-Oct-:1431–1440, 2015. doi: 10.1145/2806416.
2806472.

[20] P. Bellini, P. Nesi, and A. Venturi. Linked open graph: Browsing multiple SPARQL entry points to build your
own LOD views. Journal of Visual Languages & Computing, 25(6):703–716, 2014. ISSN 1045926X. doi:
10.1016/j.jvlc.2014.10.003.

[21] T. Berners-Lee. Linked Data, 2006. URL https://www.w3.org/DesignIssues/LinkedData.html.

[22] T. Berners-lee, Y. Chen, L. Chilton, D. Connolly, R. Dhanaraj, J. Hollenbach, A. Lerer, and D. Sheets. Tabulator:
Exploring and Analyzing linked data on the Semantic Web. In The 3rd International Semantic Web User
Interaction Workshop (SWUI06), page 16, 2006.

[23] S. Beschi, D. Fogli, and F. Tampalini. CAPIRCI: A Multi-modal System for Collaborative Robot Programming.
In A. Malizia, S. Valtolina, A. Morch, A. Serrano, and A. Stratton, editors, End-User Development, pages 51–66,
Cham, 2019. Springer International Publishing. ISBN 978-3-030-24781-2. doi: 10.1007/978-3-030-24781-2_4.

[24] N. Bevan, J. Carter, and S. Harker. ISO 9241-11 Revised: What Have We Learnt About Usability Since 1998? In
M. Kurosu, editor, Human-Computer Interaction: Design and Evaluation, pages 143–151, Cham, 2015. Springer
International Publishing. ISBN 978-3-319-20901-2.

[25] N. Bikakis and T. Sellis. Exploration and visualization in the web of big linked data: A survey of the state of the
art. CEUR Workshop Proceedings, 1558, 2016. ISSN 16130073.

[26] J. Borsje and H. Embregts. Graphical Query Composition and Natural Language. Processing in an RDF
Visualization Interface, 2006.

[27] J. Brunetti, R. García, and S. Auer. From Overview to Facets and Pivoting for Interactive Exploration of
Semantic Web Data. International journal on Semantic Web and information systems, 9:1–20, 2013. doi:
10.4018/jswis.2013010101.

[28] G. Burel, A. E. Cano, and V. Lanfranchi. Ozone browser: Augmenting the web with semantic overlays. CEUR
Workshop Proceedings, 449:3–4, 2009. ISSN 16130073.

[29] K. Cerans, J. Ovcinnikova, and M. Zviedris. SPARQL Aggregate Queries Made Easy with Diagrammatic Query
Language ViziQuer. In ISWC 2015 Posters & Demonstrations Track, CEUR Workshop Proceedings, volume
1486, pages 1–4, 2015.

[30] A. Chapman, E. Simperl, L. Koesten, G. Konstantinidis, L. D. Ibáñez, E. Kacprzak, and P. Groth. Dataset search:
a survey. VLDB Journal, 29(1):251–272, 2020. ISSN 0949877X. doi: 10.1007/s00778-019-00564-x.

[31] G. Cheng, H. Wu, S. Gong, W. Ge, and Y. Qu. Falcons Explorer: Tabular and Relational End-user Programming
for the Web of Data. Semantic Web Challenge 2010, (c), 2010.

[32] K. B. Cohen and J.-D. Kim. Evaluation of SPARQL query generation from natural language questions. Pro-
ceedings of the conference. Association for Computational Linguistics. Meeting, 2013:3–7, sep 2013. ISSN
0736-587X.

[33] M. Console, D. Lembo, V. Santarelli, and D. F. Savo. Graphol: Ontology representation through diagrams. In
CEUR Workshop Proceedings, volume 1193, pages 483–495, 2014. doi: 10.13140/2.1.3838.3363.

[34] A.-S. Dadzie and M. Rowe. Approaches to visualising Linked Data: A survey. International Journal on Semantic
Web and Information Systems, 2(2):89–124, 2011. ISSN 15700844. doi: 10.3233/SW-2011-0037.

[35] E. M. Daly, F. Lecue, and V. Bicer. Westland row why so slow? Fusing social media and linked data sources for
understanding real-time traffic conditions. International Conference on Intelligent User Interfaces, Proceedings
IUI, pages 203–212, 2013. doi: 10.1145/2449396.2449423.

[36] A. De Santo and A. Holzer. Interacting with Linked Data: A Survey from the SIGCHI Perspective. pages 1–12,
2020. doi: 10.1145/3334480.3382909.

24

https://www.w3.org/DesignIssues/LinkedData.html


A PREPRINT - AUGUST 23, 2022

[37] D. Diefenbach, V. Lopez, K. Singh, and P. Maret. Core techniques of question answering systems over
knowledge bases: a survey. Knowledge and Information Systems, 55(3):529–569, 2018. ISSN 02193116. doi:
10.1007/s10115-017-1100-y.

[38] I. Donadello and M. Dragoni. An End-to-End Semantic Platform for Nutritional Diseases Management. In
C. Ghidini, O. Hartig, M. Maleshkova, V. Svátek, I. Cruz, A. Hogan, J. Song, M. Lefrançois, and F. Gandon,
editors, The Semantic Web – ISWC 2019, pages 363–381, Cham, 2019. Springer International Publishing. ISBN
978-3-030-30796-7.

[39] I. C. Dorobăţ and V. Posea. onIQ: An Ontology-Independent Natural Language Interface for Building SPARQL
Queries. In 2020 IEEE 16th International Conference on Intelligent Computer Communication and Processing
(ICCP), pages 139–144, 2020. doi: 10.1109/ICCP51029.2020.9266272.

[40] M. Dragoni, M. Rospocher, T. Bailoni, R. Maimone, and C. Eccher. Semantic Technologies for Healthy Lifestyle
Monitoring. In D. Vrandečić, K. Bontcheva, M. C. Suárez-Figueroa, V. Presutti, I. Celino, M. Sabou, L.-A.
Kaffee, and E. Simperl, editors, The Semantic Web – ISWC 2018, pages 307–324, Cham, 2018. Springer
International Publishing. ISBN 978-3-030-00668-6.

[41] B. Eldesouky, M. Bakry, H. Maus, and A. Dengel. Seed, an End-User Text Composition Tool for the Semantic
Web. In P. Groth, E. Simperl, A. Gray, M. Sabou, M. Krötzsch, F. Lecue, F. Flöck, and Y. Gil, editors, The
Semantic Web – ISWC 2016, pages 218–233, Cham, 2016. Springer International Publishing. ISBN 978-3-319-
46523-4. doi: 10.1007/978-3-319-46523-4_14.

[42] B. Ell, D. Vrandečić, and E. Simperl. SPARTIQULATION: Verbalizing SPARQL queries. Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
7540:117–131, 2015. ISSN 16113349. doi: 10.1007/978-3-662-46641-4_9.

[43] R. Farah, S. Hallé, J. Li, F. Lécué, B. Abeloos, D. Perron, J. Mattioli, P.-L. Gregoire, S. Laroche, M. Mercier, and
P. Cocaud. Reasoning Engine for Support Maintenance. In Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 12507 LNCS, pages
515–530. Springer International Publishing, 2020. ISBN 9783030624651. doi: 10.1007/978-3-030-62466-8_32.

[44] D. Fernàndez-Cañellas, J. Espadaler, D. Rodriguez, B. Garolera, G. Canet, A. Colom, J. M. Rimmek, X. Giro-i
Nieto, E. Bou, and J. C. Riveiro. VLX-Stories: Building an Online Event Knowledge Base with Emerging Entity
Detection. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), volume 11779 LNCS, pages 382–399. 2019. ISBN 9783030307950. doi:
10.1007/978-3-030-30796-7_24.

[45] S. Ferré. Expressive and Scalable Query-Based Faceted Search over SPARQL Endpoints. In P. Mika, T. Tu-
dorache, A. Bernstein, C. Welty, C. Knoblock, D. Vrandečić, P. Groth, N. Noy, K. Janowicz, and C. Goble,
editors, The Semantic Web – ISWC 2014, pages 438–453, Cham, 2014. Springer International Publishing. ISBN
978-3-319-11915-1.

[46] S. Ferré. Sparklis: An expressive query builder for SPARQL endpoints with guidance in natural language.
Semantic Web, 8(3):405–418, 2017. ISSN 22104968. doi: 10.3233/SW-150208.

[47] A. Freitas and E. Curry. Natural language queries over heterogeneous linked data graphs: A distributional-
compositional semantics approach. International Conference on Intelligent User Interfaces, Proceedings IUI,
pages 279–288, 2014. doi: 10.1145/2557500.2557534.

[48] D. Garijo and M. Osorio. OBA: An Ontology-Based Framework for Creating REST APIs for Knowledge
Graphs. In J. Z. Pan, V. Tamma, C. D’Amato, K. Janowicz, B. Fu, A. Polleres, O. Seneviratne, and L. Kagal,
editors, The Semantic Web – ISWC 2020, pages 48–64, Cham, 2020. Springer International Publishing. ISBN
978-3-030-62466-8.

[49] Y. Gil, D. Garijo, V. Ratnakar, D. Khider, J. Emile-Geay, and N. McKay. A Controlled Crowdsourcing Approach
for Practical Ontology Extensions and Metadata Annotations. In C. D’Amato, M. Fernandez, V. Tamma, F. Lecue,
P. Cudré-Mauroux, J. Sequeda, C. Lange, and J. Heflin, editors, The Semantic Web – ISWC 2017, pages 231–246,
Cham, 2017. Springer International Publishing. ISBN 978-3-319-68204-4.

[50] P. Grafkin, M. Mironov, M. Fellmann, B. Lantow, K. Sandkuhl, and A. V. Smirnov. SPARQL Query Builders
: Overview and Comparison. In BIR Workshops, volume 1684 of CEUR Workshop Proceedings, pages 1–12.
University of Rostock, Germany, CEUR-WS, 2016.

25



A PREPRINT - AUGUST 23, 2022

[51] J. C. Greene, V. J. Carcelli, and W. F. Graham. Toward a Conceptual Framework for Mixed-Method Evaluation
Designs. Educationl Evaluation and Policy Analysis, 11(3):255–274, 1989.

[52] K. Gregory, P. Groth, H. Cousijn, A. Scharnhorst, and S. Wyatt. Searching Data: A Review of Observational Data
Retrieval Practices in Selected Disciplines. Journal of the Association for Information Science and Technology,
70(5):419–432, may 2019. ISSN 2330-1635. doi: 10.1002/asi.24165.

[53] J. Groppe, S. Groppe, and A. Schleifer. Visual query system for analyzing social semantic web. Proceedings
of the 20th International Conference Companion on World Wide Web, WWW 2011, pages 217–220, 2011. doi:
10.1145/1963192.1963293.

[54] F. Haag, S. Lohmann, and T. Ertl. Simplifying filter/flow graphs by subgraph substitution. Proceedings of
IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC, pages 145–148, 2012. ISSN
19436092. doi: 10.1109/VLHCC.2012.6344501.

[55] F. Haag, S. Lohmann, S. Bold, and T. Ertl. Visual SPARQL Querying Based on Extended Filter/Flow Graphs.
In Proceedings of the 2014 International Working Conference on Advanced Visual Interfaces, AVI ’14, pages
305–312, New York, NY, USA, 2014. Association for Computing Machinery. ISBN 9781450327756. doi:
10.1145/2598153.2598185.

[56] F. Haag, S. Lohmann, and T. Ertl. SparqlFilterFlow: SPARQL Query Composition for Everyone. In V. Presutti,
E. Blomqvist, R. Troncy, H. Sack, I. Papadakis, and A. Tordai, editors, The Semantic Web: ESWC 2014
Satellite Events, pages 362–367, Cham, 2014. Springer International Publishing. ISBN 978-3-319-11955-7. doi:
10.1007/978-3-319-11955-7_49.

[57] F. Haag, S. Lohmann, S. Siek, and T. Ertl. QueryVOWL: Visual composition of SPARQL queries. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 9341:62–66, 2015. ISSN 16113349. doi: 10.1007/978-3-319-25639-9_12.

[58] F. Haag, S. Lohmann, S. Siek, and T. Ertl. QueryVOWL: A Visual Query Notation for Linked Data. In The
Semantic Web: ESWC 2015 Satellite Events, volume 9341, pages 387–402, 2015. ISBN 9783319256382. doi:
10.1007/978-3-319-25639-9_51.

[59] S. Harris and A. Seaborne. SPARQL 1.1 Query Language. Technical report, World Wide Web Consortium (W3C),
2013. URL https://www.w3.org/TR/2013/REC-sparql11-query-20130321/.

[60] S. G. Hart and L. E. Staveland. Development of NASA-TLX (Task Load Index): Results of Empirical and
Theoretical Research. In P. A. Hancock and N. Meshkati, editors, Human Mental Workload, volume 52 of
Advances in Psychology, pages 139–183. North-Holland, 1988. doi: 10.1016/S0166-4115(08)62386-9.

[61] S. Heggestøyl, G. Vega-Gorgojo, and M. Giese. Visual Query Formulation for Linked Open Data: The Norwegian
Entity Registry Case Simen Heggestøyl. Norsk Informatikkonferanse (NIK), 2014.

[62] P. Heim and J. Ziegler. Faceted Visual Exploration of Semantic Data. In A. Ebert, A. Dix, N. D. Gershon,
and M. Pohl, editors, Human Aspects of Visualization, pages 58–75, Berlin, Heidelberg, 2011. Springer Berlin
Heidelberg. ISBN 978-3-642-19641-6.

[63] P. Hoefler, M. Granitzer, E. Veas, and C. Seifert. Linked data query wizard: A novel interface for accessing
sparql endpoints. CEUR Workshop Proceedings, 1184(January), 2014. ISSN 16130073.

[64] K. Höffner and J. Lehmann. Towards Question Answering on Statistical Linked Data. In Proceedings of the 10th
International Conference on Semantic Systems, SEM ’14, pages 61–64, New York, NY, USA, 2014. Association
for Computing Machinery. ISBN 9781450329279. doi: 10.1145/2660517.2660521.

[65] K. Höffner, J. Lehmann, and R. Usbeck. CubeQA—Question Answering on RDF Data Cubes. In The Semantic
Web – ISWC 2016, volume 9981 of Lecture Notes in Computer Science, pages 325–340, Cham, 2016. Springer
International Publishing. ISBN 978-3-319-46522-7. doi: 10.1007/978-3-319-46523-4_20.

[66] K. Höffner, S. Walter, E. Marx, R. Usbeck, J. Lehmann, and A. C. Ngonga Ngomo. Survey on challenges
of Question Answering in the Semantic Web. Semantic Web, 8(6):895–920, 2017. ISSN 22104968. doi:
10.3233/SW-160247.

[67] F. Hogenboom, V. Milea, F. Frasincar, and U. Kaymak. RDF-GL: A SPARQL-based graphical query language
for RDF. Advanced Information and Knowledge Processing, 53:87–116, 2010. ISSN 21978441. doi: 10.1007/
978-1-84996-074-8_4.

26

https://www.w3.org/TR/2013/REC-sparql11-query-20130321/


A PREPRINT - AUGUST 23, 2022

[68] S. Holmås, R. R. Puig, M. L. Acencio, V. Mironov, and M. Kuiper. The cytoscape BioGateway app: Explorative
network building from an RDF store. Bioinformatics, 36(6):1966–1967, 2020. ISSN 14602059. doi: 10.1093/
bioinformatics/btz835.

[69] D. Huynh and D. Karger. Parallax and Companion: Set-based Browsing for the Data Web. In IW3C2, 2009.
ISBN 9781595936547.

[70] K. Janowicz, A. Haller, S. J. D. Cox, D. Le Phuoc, and M. Lefrançois. SOSA: A lightweight ontology for
sensors, observations, samples, and actuators. Journal of Web Semantics, 56:1–10, 2019. ISSN 1570-8268.
doi: https://doi.org/10.1016/j.websem.2018.06.003. URL https://www.sciencedirect.com/science/
article/pii/S1570826818300295.

[71] A. Jares and J. Klimek. Simplod: Simple SPARQL Query Builder for Rapid Export of Linked Open Data in the
Form of CSV Files, pages 415–418. Association for Computing Machinery, New York, NY, USA, 2021. ISBN
9781450395564.

[72] E. Kaufmann and A. Bernstein. How useful are natural language interfaces to the semantic Web for casual end-
users? Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 4825 LNCS:281–294, 2007. ISSN 03029743. doi: 10.1007/978-3-540-76298-0_21.

[73] E. Kaufmann, A. Bernstein, and R. Zumstein. Querix: A Natural Language Interface to Query Ontologies Based
on Clarification Dialogs. 5th International Semantic Web Conference (ISWC 2006), (November):980–981, 2006.

[74] E. Kaufmann, A. Bernstein, and L. Fischer. NLP-Reduce: A "naïve" but Domain-independent Natural Language
Interface for Querying Ontologies. 4th European Semantic Web Conference (ESWC 2007), pages 1–2, 2007.

[75] M. Kejriwal and P. Szekely. An Investigative Search Engine for the Human Trafficking Domain. In C. D’Amato,
M. Fernandez, V. Tamma, F. Lecue, P. Cudré-Mauroux, J. Sequeda, C. Lange, and J. Heflin, editors, The Semantic
Web – ISWC 2017, volume 10588 LNCS, pages 247–262, Cham, 2017. Springer International Publishing. ISBN
978-3-319-68204-4. doi: 10.1007/978-3-319-68204-4_25.

[76] B. Kitchenham and P. Brereton. A systematic review of systematic review process research in software
engineering. Information and Software Technology, 55(12):2049–2075, 2013. ISSN 0950-5849. doi: 10.1016/j.
infsof.2013.07.010.

[77] G. Kobilarov and I. Dickinson. Humboldt: Exploring linked data. In CEUR Workshop Proceedings, volume 369,
2008.

[78] E. Kuric, J. D. Fernández, and O. Drozd. Knowledge Graph Exploration: A Usability Evaluation of
Query Builders for Laypeople. In Semantic Systems. The Power of AI and Knowledge Graphs, volume
11702 LNCS, pages 326–342, Cham, 2019. Springer International Publishing. ISBN 9783030332198. doi:
10.1007/978-3-030-33220-4_24.

[79] N. Lasolle, O. Bruneau, J. Lieber, E. Nauer, and S. Pavlova. Assisting the RDF Annotation of a Digital Humanities
Corpus Using Case-Based Reasoning. In Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 12507 LNCS, pages 617–633. Springer
International Publishing, 2020. ISBN 9783030624651. doi: 10.1007/978-3-030-62466-8_38.

[80] D. Lembo, D. Pantaleone, V. Santarelli, and D. F. Savo. Easy OWL Drawing with the Graphol Visual Ontology
Language. In Proceedings of the Fifteenth International Conference on Principles of Knowledge Representation
and Reasoning, KR’16, pages 573–576. AAAI Press, 2016.

[81] M. Lenzerini. Ontology-Based Data Management. In Proceedings of the 20th ACM International Conference on
Information and Knowledge Management, CIKM ’11, pages 5–6, New York, NY, USA, 2011. Association for
Computing Machinery. ISBN 9781450307178. doi: 10.1145/2063576.2063582.

[82] P. Leskinen, M. Koho, E. Heino, M. Tamper, E. Ikkala, J. Tuominen, E. Mäkelä, and E. Hyvönen. Modeling and
Using an Actor Ontology of Second World War Military Units and Personnel. In C. D’Amato, M. Fernandez,
V. Tamma, F. Lecue, P. Cudré-Mauroux, J. Sequeda, C. Lange, and J. Heflin, editors, The Semantic Web – ISWC
2017, pages 280–296, Cham, 2017. Springer International Publishing. ISBN 978-3-319-68204-4.

[83] P. Lisena, A. Meroño-Peñuela, T. Kuhn, and R. Troncy. Easy Web API Development with SPARQL Transformer.
In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), volume 11779 LNCS, pages 454–470. Springer International Publishing, 2019. ISBN
9783030307950. doi: 10.1007/978-3-030-30796-7_28.

27

https://www.sciencedirect.com/science/article/pii/S1570826818300295
https://www.sciencedirect.com/science/article/pii/S1570826818300295


A PREPRINT - AUGUST 23, 2022

[84] S. Lohmann, V. Link, E. Marbach, and S. Negru. WebVOWL: Web-based Visualization of Ontologies. In
P. Lambrix, E. Hyvönen, E. Blomqvist, V. Presutti, G. Qi, U. Sattler, Y. Ding, and C. Ghidini, editors, Knowledge
Engineering and Knowledge Management, pages 154–158, Cham, 2015. Springer International Publishing. ISBN
978-3-319-17966-7.

[85] S. Lohmann, S. Negru, F. Haag, and T. Ertl. Visualizing ontologies with VOWL. Semantic Web, 7(4):399–419,
2016. ISSN 22104968. doi: 10.3233/SW-150200.

[86] V. Lopez, S. Kotoulas, M. L. Sbodio, and R. Lloyd. Guided Exploration and Integration of Urban Data. In
Proceedings of the 24th ACM Conference on Hypertext and Social Media, HT ’13, pages 242–247, New York,
NY, USA, 2013. Association for Computing Machinery. ISBN 9781450319676. doi: 10.1145/2481492.2481524.

[87] V. Lopz, M. Stephenson, S. Kotoulas, and P. Tommasi. Finding mr and mrs entity in the city of knowledge. HT
2014 - Proceedings of the 25th ACM Conference on Hypertext and Social Media, pages 261–266, 2014. doi:
10.1145/2631775.2631817.

[88] S. Malyshev, M. Krötzsch, L. González, J. Gonsior, and A. Bielefeldt. Getting the Most Out of Wikidata:
Semantic Technology Usage in Wikipedia’s Knowledge Graph. In 17th International Semantic Web Conference,
volume 11137 LNCS, pages 376–394, 2018. ISBN 9783030006679. doi: 10.1007/978-3-030-00668-6_23.

[89] L. McCarthy, B. Vandervalk, and M. Wilkinson. SPARQL assist language-neutral query composer. BMC
bioinformatics, 13 Suppl 1(Suppl 1):S2, 2012. ISSN 14712105. doi: 10.1186/1471-2105-13-s1-s2.

[90] A. Meroño-Peñuela and R. Hoekstra. Automatic query-centric API for routine access to linked data. In
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), volume 10588 LNCS, pages 334–349, 2017. ISBN 9783319682037. doi: 10.1007/
978-3-319-68204-4_30.

[91] N. Mihindukulasooriya, R. Mahindru, M. F. M. Chowdhury, Y. Deng, N. R. Fauceglia, G. Rossiello, S. Dash,
A. Gliozzo, and S. Tao. Dynamic Faceted Search for Technical Support Exploiting Induced Knowledge. pages
683–699. Springer International Publishing, 2020. ISBN 9783030624668. doi: 10.1007/978-3-030-62466-8_42.

[92] D. S. Mishra, A. Agarwal, B. P. Swathi, and K. C. Akshay. Natural language query formalization to SPARQL
for querying knowledge bases using Rasa. Progress in Artificial Intelligence, 2021. ISSN 2192-6360. doi:
10.1007/s13748-021-00271-1.

[93] R. Mulero, V. Urosevic, A. Almeida, and C. Tatsiopoulos. Towards ambient assisted cities using linked data
and data analysis. Journal of Ambient Intelligence and Humanized Computing, 9(5):1573–1591, 2018. ISSN
1868-5145. doi: 10.1007/s12652-018-0916-y.

[94] A.-C. N. Ngomo, L. Bühmann, C. Unger, J. Lehmann, and D. Gerber. SPARQL2NL-Verbalizing SPARQL
queries. In Proceedings of the 22nd International Conference on World Wide Web - WWW ’13 Companion, New
York, New York, USA, 2013. ACM Press. ISBN 9781450320382.

[95] A. C. Ngonga, L. Bühmann, C. Unger, J. Lehmann, and D. Gerber. Sorry, i don’t speak SPARQL - Translating
SPARQL queries into natural language. WWW 2013 - Proceedings of the 22nd International Conference on
World Wide Web, pages 977–987, 2013.

[96] J. Nielsen and T. K. Landauer. A Mathematical Model of the Finding of Usability Problems. In Proceedings of the
INTERACT ’93 and CHI ’93 Conference on Human Factors in Computing Systems, CHI ’93, pages 206–213, New
York, NY, USA, 1993. Association for Computing Machinery. ISBN 0897915755. doi: 10.1145/169059.169166.

[97] F. Osborne, A. Salatino, A. Birukou, and E. Motta. Automatic classification of springer nature proceedings
with smart topic miner. In The Semantic Web - ISWC 2016, pages 383–399, 2016. ISBN 9783319465463. doi:
10.1007/978-3-319-46547-0_33.

[98] T. Pankowski. Ontological databases with faceted queries. The VLDB Journal, 2022. ISSN 0949-877X. doi:
10.1007/s00778-022-00735-3.

[99] G. M. R. I. Rasiq, A. A. Sefat, T. Hossain, M. I.-E.-H. Munna, J. J. Jisha, and M. M. Hoque. Question
Answering System over Linked Data: A Detailed Survey. ABC Research Alert, 8(1):32–47, 2020. doi:
10.18034/abcra.v8i1.449.

28



A PREPRINT - AUGUST 23, 2022

[100] L. Rietveld and R. Hoekstra. The YASGUI family of SPARQL clients 1. Semantic Web, 8(3):373–383, 2017.
ISSN 22104968. doi: 10.3233/SW-150197.

[101] D. Rough and A. Quigley. Challenges of Traditional Usability Evaluation in End-User Development. In
A. Malizia, S. Valtolina, A. Morch, A. Serrano, and A. Stratton, editors, End-User Development, pages 1–17,
Cham, 2019. Springer International Publishing. ISBN 978-3-030-24781-2.

[102] A. Russell and P. R. Smart. NITELIGHT: A graphical editor for SPARQL queries. CEUR Workshop Proceedings,
401:2–3, 2008. ISSN 16130073.

[103] A. A. Salatino, T. Thanapalasingam, A. Mannocci, F. Osborne, and E. Motta. The Computer Science Ontology:
A Large-Scale Taxonomy of Research Areas. In D. Vrandečić, K. Bontcheva, M. C. Suárez-Figueroa, V. Presutti,
I. Celino, M. Sabou, L.-A. Kaffee, and E. Simperl, editors, The Semantic Web - ISWC 2018, pages 187–205,
Cham, 2018. Springer International Publishing. ISBN 978-3-030-00668-6. doi: 10.1007/978-3-030-00668-6_12.

[104] A. A. Salatino, F. Osborne, A. Birukou, and E. Motta. Improving Editorial Workflow and Metadata Quality at
Springer Nature. In The Semantic Web - ISWC 2019, pages 507–525. Springer International Publishing, 2019.
ISBN 9783030307950. doi: 10.1007/978-3-030-30796-7_31.

[105] M. Saleem, M. I. Ali, A. Hogan, Q. Mehmood, and A.-C. N. Ngomo. LSQ: The Linked SPARQL Queries
Dataset. In The Semantic Web - ISWC 2015, volume 9367, pages 261–269, 2015. ISBN 9783319250090. doi:
10.1007/978-3-319-25010-6.

[106] W. Sebastian, U. Christina, C. Philipp, and B. Daniel. Evaluation of a Layered Approach to Question Answering
over Linked Data. The Semantic Web – ISWC 2012, 7650(00):362–374, 2012. doi: 10.1007/978-3-642-35173-0.

[107] S. Shekarpour and S. Auer. SINA: semantic interpretation of user queries for question answering on interlinked
data. ACM SIGWEB Newsletter, (Summer):1–1, 2014. ISSN 1931-1745. doi: 10.1145/2641730.2641733.

[108] P. R. Smart, A. Russell, D. Braines, Y. Kalfoglou, J. Bao, and N. R. Shadbolt. A visual approach to semantic
query design using a web-based graphical query designer. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5268 LNAI:275–291,
2008. ISSN 16113349. doi: 10.1007/978-3-540-87696-0_25.

[109] A. Soylu, E. Kharlamov, D. Zheleznyakov, E. Jimenez-Ruiz, M. Giese, M. G. Skjæveland, D. Hovland,
R. Schlatte, S. Brandt, H. Lie, and I. Horrocks. OptiqueVQS: A visual query system over ontologies for
industry. Semantic Web, 9(5):627–660, 2018. ISSN 15700844. doi: 10.3233/sw-180293.

[110] T. Thanapalasingam, F. Osborne, A. Birukou, and E. Motta. Ontology-based recommendation of editorial
products. In The Semantic Web - ISWC 2018, pages 341–358, 2018. ISBN 9783030006679. doi: 10.1007/
978-3-030-00668-6_21.

[111] C. Unger, A. Freitas, and P. Cimiano. An introduction to question answering over linked data. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 8714:100–140, 2014. ISSN 16113349. doi: 10.1007/978-3-319-10587-1_2.

[112] H. Vargas, C. Buil-Aranda, A. Hogan, and C. López. RDF Explorer: A Visual SPARQL Query Builder. In
The Semantic Web – ISWC 2019, volume 11778 LNCS, pages 647–663, Cham, 2019. Springer International
Publishing. ISBN 9783030307929. doi: 10.1007/978-3-030-30793-6_37.

[113] G. Vega-Gorgojo, L. Slaughter, M. Giese, S. Heggestøyl, A. Soylu, and A. Waaler. Visual query interfaces for
semantic datasets: An evaluation study. Journal of Web Semantics, 39:81–96, 2016. ISSN 1570-8268. doi:
10.1016/j.websem.2016.01.002.

[114] P. Warren and P. Mulholland. A Comparison of the Cognitive Difficulties Posed by SPARQL Query Constructs.
In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), volume 12387 LNAI, pages 3–19. Springer International Publishing, 2020. ISBN
9783030612436. doi: 10.1007/978-3-030-61244-3_1.

[115] E. Wittern, A. T. T. Ying, Y. Zheng, J. Dolby, and J. A. Laredo. Statically Checking Web API Requests in
JavaScript. In 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE), pages 244–254,
2017. doi: 10.1109/ICSE.2017.30.

29



A PREPRINT - AUGUST 23, 2022

[116] G. Zenz, X. Zhou, E. Minack, W. Siberski, and W. Nejdl. From keywords to semantic queries—Incremental
query construction on the semantic web. Web Semantics: Science, Services and Agents on the World Wide Web, 7
(3):166–176, 2009. ISSN 15708268. doi: 10.1016/j.websem.2009.07.005.

[117] W. Zheng, H. Cheng, L. Zou, J. X. Yu, and K. Zhao. Natural language question/answering: Let users talk with
the knowledge graph. International Conference on Information and Knowledge Management, Proceedings, Part
F1318:217–226, 2017. doi: 10.1145/3132847.3132977.

[118] M. Zviedris and G. Barzdins. ViziQuer: A Tool to Explore and Query SPARQL Endpoints. In G. Antoniou,
M. Grobelnik, E. Simperl, B. Parsia, D. Plexousakis, P. De Leenheer, and J. Pan, editors, The Semanic Web:
Research and Applications, pages 441–445, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. ISBN
978-3-642-21064-8. doi: 10.1007/978-3-642-21064-8_31.

[119] U. Şimşek, K. Angele, E. Kärle, O. Panasiuk, and D. Fensel. Domain-Specific Customization of Schema.org
Based on SHACL. volume 12507 of Lecture Notes in Computer Science, pages 585–600, Cham, 2020. Springer
International Publishing. ISBN 978-3-030-62466-8. doi: 10.1007/978-3-030-62466-8_36.

30


	Introduction
	Methodology
	Search Strategy
	Selection Approach
	Inclusion and Exclusion Criteria

	Validation and Data Extraction

	Accessing Linked Data
	Query Builders
	Form-based
	Graph-based
	Natural Language-Based

	Other User Interfaces
	SPARQL Assistants
	Linked-Data Browsers
	Semantic Keyword-Based Search
	Question Answering
	SPARQL to Natural Language


	Semantic Web Solutions
	Virtual Assistants
	Microdata and RDFs Authoring Tools
	Mobile Applications
	Entity Centric Dashboards
	Web APIs

	Evaluation and Research Validation
	User Study
	SPARQL Query Evaluation

	Findings and Discussion
	Research Challenges and Future Directions
	Conclusion

