
Suppression of γ-Aminobutyric Acid (GABA)
Transaminases Induces Prominent GABA
Accumulation, Dwarfism and Infertility in the
Tomato (Solanum lycopersicum L.)

著者 Koike Satoshi, Matsukura Chiaki , Takayama 
Mariko, Asamizu  Erika, Ezura Hiroshi

journal or
publication title

Plant and cell physiology 

volume 54
number 5
page range 793-807
year 2013-02
権利 (C) The Author 2013. Published by Oxford

University Press on behalf of Japanese Society
of Plant Physiologists.This is a
pre-copyedited, author-produced PDF of an
article accepted for publication in Plant and
cell physiology following peer review. The
version of record Plant Cell Physiol (2013) 54
(5): 793-807 is  available online at:
http://pcp.oxfordjournals.org/content/early/20
13/04/12/pcp.pct035.

URL http://hdl.handle.net/2241/00122684
doi: 10.1093/pcp/pct035

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tsukuba Repository

https://core.ac.uk/display/56657187?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Running Title 
SlGABA-T1 is responsible for GABA metabolism 
 
Corresponding author 
Hiroshi Ezura 
 
Institution and address 
Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, 
Tsukuba, Ibaraki 305-8572, Japan 
 
Telephone and fax  
+81-29-853-7734 
 
E-mail 
ezura@gene.tsukuba.ac.jp 
 
Subject Areas 
(4) proteins, enzymes and metabolism 
 
Number of black and white figures, color figures and tables 
Seven black and white figures 
Three color figures 
One table 
  

1 
 



Title 
Suppression of  γ−aminobutyric acid (GABA) transaminases induces prominent GABA 
accumulation, dwarfism and infertility in the tomato (Solanum lycopersicum L.)  
 
Authors. Full names, institutions and addresses  
Satoshi Koike1, 2, Chiaki Matsukura1, Mariko Takayama1, Erika Asamizu1 and Hiroshi Ezura1 
 
1. Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, 
Tsukuba, Ibaraki 305-8572, Japan 
2. Research Fellow of the Japan Society for the Promotion of Science 
 
Abbreviations.  
CaMV: cauliflower mosaic virus, DAF: days after flowering, GABA: gamma-aminobutyric acid, 
GABA-T: GABA transaminase, GABA-TK: α-ketoglutarate-dependent GABA transaminase, 
GABA-TP: pyruvate-dependent GABA transaminase, GABA-TG: glyoxylate-dependent GABA 
transaminase, GABA-TP/TG: pyruvate- and glyoxylate-dependent GABA-T, GAD: glutamate 
decarboxylase, GHB: gamma-hydroxy butyric acid, MG: mature green, RNAi: RNA interference, 
RT-PCR: reverse transcription polymerase chain reaction, SSA: succinic semialdehyde, SSADH: 
succinic semialdehyde dehydrogenase, SSR: succinate semialdehyde reductase, TCA: tricarboxylic 
acid, WT: wild-type, Yell: yellow 
  

2 
 



Abstract 

Tomatoes accumulate gamma-aminobutyric acid (GABA) at high levels in the immature 

fruits. GABA is rapidly converted to succinate during fruit ripening through the activities of GABA 

transaminase (GABA-T) and succinate semialdehyde dehydrogenase (SSADH). Although three 

genes encoding GABA-T and both pyruvate- and α-ketoglutarate-dependent GABA-T activities 

have been detected in tomato fruits, the mechanism underlying the GABA-T-mediated conversion 

of GABA has not been fully understood. In this work, we conducted loss-of-function analyses 

utilising RNA interference (RNAi) transgenic plants with suppressed pyruvate- and 

glyoxylate-dependent GABA-T gene expression to clarify which GABA-T isoforms are essential 

for its function. The RNAi plants with suppressed SlGABA-T gene expression, particularly 

SlGABA-T1, showed severe dwarfism and infertility. SlGABA-T1 expression was inversely 

associated with GABA levels in the fruit at the red-ripe stage. The GABA contents in 

35S::SlGABA-T1RNAi lines were 1.3 to 2.0 times and 6.8 to 9.2 times higher in mature-green and 

red-ripe fruits, respectively, than the contents in WT fruits. In addition, SlGABA-T1 expression was 

strongly suppressed in the GABA-accumulating lines. These results indicate that pyruvate- and 

glyoxylate-dependent GABA-T is the essential isoform for GABA metabolism in tomato plants and 

that GABA-T1 primarily contributes to GABA reduction in the ripening fruits. 
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Introduction 

 Gamma-aminobutyric acid (GABA) is a four-carbon non-protein amino acid commonly 

found in bacteria, animals and plants. GABA is a major inhibitory neurotransmitter in vertebrates 

(Zhang and Jackson 1993) and has been identified as a functional component in reducing blood 

pressure in the human body (Takahashi et al. 1961, Inoue et al. 2003, Kajimoto et al. 2004). GABA 

is metabolised via a short pathway, called the “GABA shunt” (Fig. 1), which is a bypass of the 

tricarboxylic acid (TCA) cycle composed of three enzymes (Bouché and Fromm 2004, Shelp et al. 

1999). In this shunt, GABA is irreversibly synthesised from glutamate through glutamate 

decarboxylase (GAD) (Chung et al. 1992, Ling et al. 1994) and reversibly converted to succinic 

semialdehyde (SSA) through GABA transaminase (GABA-T) (Shelp et al. 1999, Van 

Cauwenberghe et al. 2002). Succinic semialdehyde is subsequently irreversibly reduced through 

succinate semialdehyde dehydrogenase (SSADH) and eventually flows back into the TCA cycle. 

 In plants, GABA was first described in potato tubers in 1949 (Steward et al. 1949). Early 

studies showed that various environmental or non-environmental stresses, such as drought, UV 

irradiation, mechanical damage, low temperature and low O2, promote GABA accumulation (Shelp 

et al. 1999, Snedden and Fromm 1999, Kinnersley and Turano 2000). Furthermore, GABA has 

been reported to function in the regulation of cytosolic pH (Bown and Shelp 1997), pollen tube 

growth (Palanivelu et al. 2003), the expression of nitrate transporter (Beuve et al. 2004) and cell 

elongation (Renault et al. 2011).  

 There have been many reports describing GABA synthesis, including the regulation and 

function of GAD, in various plant species (Chen et al. 1994, Rolin et al. 2000, Bouché et al. 2004, 

Akama et al. 2009). In contrast, in plants, knowledge on the conversion of GABA to succinate 

remains limited. Two isoforms of the GABA-T enzyme have been reported: pyruvate-dependent 

GABA-T (GABA-TP) and α-ketoglutarate-dependent GABA-T (GABA-TK) (Bouché and Fromm 

2004). These enzymes utilise pyruvate or α-ketoglutarate as amino acid acceptors to produce 

alanine or glutamate, respectively (Bouché and Fromm 2004). GABA-TP has also 
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glyoxylate-dependent GABA-T (GABA-TG) activity, and utilizes glyoxylate as amino acids 

acceptor to produces glycine (Clark et al., 2009a; Clark et al., 2009b). However, although the 

activities of both enzymes have been detected in plants, such as soybean, tobacco, potato and 

tomato (Shelp et al. 1995, Van Cauwenberghe and Shelp 1999, Satya-Narayan and Nair 1986, 

Akihiro et al. 2008), the GABA-TK gene has not been identified in plants (Bouché and Fromm 

2004). 

 The tomato accumulates high levels of GABA in its fruits (Matsumoto et al. 1997), 

reaching a maximum level at the mature green (MG) stage and rapidly decreasing after the breaker 

stage (Inaba et al. 1980, Rolin et al. 2000, Carrari and Fernie 2006). In a previous study, we 

reported a role for GABA in climacteric respiration during fruit ripening, and its reduction ratio 

during ripening was important for GABA levels in fruit (Akihiro et al. 2008, Saito et al. 2008, Yin 

et al. 2010). However, although GABA-TK activities were much higher than those of GABA-TP in 

ripening fruits, we could only isolate pyruvate- and glyoxylate-dependent GABA-T 

(GABA-TP/TG) genes, including SlGABA-T1, SlGABA-T2 and SlGABA-T3 (Akihiro et al. 2008). 

Clark et al. (2009b) showed that these proteins exhibited enzymatic activities and localized to the 

mitochondrion (SlGABA-T1), cytosol (SlGABA-T2) and plastid (SlGABA-T3). These results 

suggest that GABA-TP/TGs are major isoforms, even in ripening tomato fruits. Therefore, the aim 

of this study was to determine which GABA-T isoform is responsible for the conversion of GABA 

to SSA in fruit using RNA interference (RNAi) transgenic plants with suppressed GABA-TP/TG 

gene expression (SlGABA-TRNAi). The results show that SlGABA-T1 primarily contributes to the 

GABA conversion in ripening fruit. In addition, systemic GABA-T suppression caused GABA 

accumulation and affected vegetative and reproductive growth in tomato plants. These findings 

shed light on the physiological roles of GABA-T in the tomato. 

 

 

Results 
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The expression of SlGABA-T genes and GABA contents in the leaves and stems of 

35S::SlGABA-TRNAi transgenic lines 

First, to evaluate suppression of SlGABA-T gene expression through RNAi, quantitative 

reverse transcription-PCR (qRT-PCR) was performed using leaves (10 weeks after the transplanting) 

from wild-type (WT) and 35S promoter-driven SlGABA-TRNAi (35S:: SlGABA-TRNAi) lines (Fig. 2). 

The expression levels in each line were calculated relative to that of SlGABA-T1 gene in WT, which 

was established as 100 %. In WT leaves, the relative expression level of SlGABA-T2 and SlGABA-T3 

were 2.1 % and 169.4 % compared to SlGABA-T1 in the WT, respectively (Fig. S3). The expression 

of SlGABA-T1 and SlGABA-T3 genes in SlGABA-T1RNAi lines were mostly suppressed compared 

with that in WT, except for SlGABA-T1RNAi line No. 10 (Fig. 2A). The expression levels of the 

RNAi-targeted genes in the SlGABA-T1RNAi lines were 30.6 % (line No. 1), 20.7 % (line No. 2), 

5.1 % (line No. 23) and 3.9 % (line No. 28). SlGABA-T2 expression in the SlGABA-T1RNAi was 

decreased in lines No. 2 and 10; however, expression was increased in lines No. 23 and 28. In the 

SlGABA-T2RNAi and SlGABA-T3RNAi lines, the expression levels of SlGABA-T2 and SlGABA-T3 

genes were suppressed in all of the tested lines (Fig. 2B and C). The relative expression levels of the 

RNAi-targeted genes were 0.02 % (line No. 21), 0.003 % (line No. 22), 0.01 % (line No. 42), 0.32 % 

(line No. 48) and 0.52 % (line No. 57) in SlGABA-T2RNAi lines and 10.2 % (line No. 2), 0.2 % (line 

No. 5), 30.2 % (line No. 10), 4.7 % (line No. 20) and 48.9 % (line No. 21) in SlGABA-T3RNAi lines. 

The SlGABA-T1 expression was decreased in SlGABA-T2RNAi lines No. 22 and 42; however, the 

expression was similar or higher compared with that of the WT plants in other lines. The GABA 

content was measured in the leaves of the WT and 35S::SlGABA-TRNAi lines (Fig. 3A). The GABA 

content in the leaves of the 35S::SlGABA-TRNAi lines was higher than that in the WT plants. The 

GABA content was dramatically increased in 35S::SlGABA-T1RNAi lines No. 1 and 23, which 

corresponded to a 13.3- to 15.9-fold increase, respectively, over that in WT plants. The GABA 

content in 35S::SlGABA-T1RNAi line No. 2 and 35S::SlGABA-T2RNAi line No. 22 was 7.3 to 7.7 times 
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higher than that in the WT plants. The GABA content in the SlGABA-T2RNAi and SlGABA-T3RNAi 

lines, except for SlGABA-T2RNAi line No. 22, was 2.7- to 3.7-fold higher than that in WT. Glutamate 

content in leaves was also measured in WT and the 35S::SlGABA-TRNAi lines (Fig. 3B). The leaf 

glutamate levels were significantly lower in the 35S::SlGABA-TRNAi lines than that in the WT except 

for SlGABA-T1RNAi line No. 1. The content in 35S::SlGABA-T1RNAi line No. 2 and 

35S::SlGABA-T3RNAi line No. 10 corresponded to 52.3 % and 52.5 % compared to WT, respectively. 

In other 35S::SlGABA-TRNAi lines, it was suppressed to 20.5% to 32.5% compared to the WT. 

The GABA and glutamate contents were measured in WT and 35S::SlGABA-TRNAi lines 

(Fig. 3A and B). The GABA content in the stems of the 35S::SlGABA-TRNAi lines was also higher 

than that in the WT plants. The GABA content in 35S::SlGABA-T1RNAi lines No. 1, 2 and 23 

corresponded to a 10.1-, 8.0- and 11.7-fold increase, respectively, over that in WT plants (Fig. 3A). 

The GABA content in the SlGABA-T2RNAi and SlGABA-T3RNAi lines was 1.3 to 3.0 times higher than 

that in WT. The stem glutamate levels were almost constant in WT and all 35S::SlGABA-TRNAi lines, 

except for 35S::SlGABA-T3RNAi lines No. 5 and 21 (Fig. 3B). 

 

Vegetative growth and flower/fruit setting in the 35S::SlGABA-TRNAi lines 

The vegetative growth of the 10-week-old 35S::SlGABA-TRNAi lines was also evaluated 

(Fig.4). As shown in Figs. 4 and 5, transgenic plants with suppressed SlGABA-T gene expression 

showed severe dwarfism and infertility. The plant heights were 59.0 % (No. 1), 41.8 % (No. 2), 

61.2 % (No. 10), 68.7 % (No. 23) and 49.3 % (No. 28) suppressed in SlGABA-T1RNAi lines and 

61.2 % (No. 2), 43.3 % (No. 5), 73.1 % (No. 10), 61.9 % (No. 20) and 71.6 % (No. 21) in 

SlGABA-T3RNAi lines compared with the WT plants (Fig. 4D). However, there was no clear effect on 

the plant heights in the SlGABA-T2RNAi lines, although line No. 42 exhibited a level of dwarfism 

similar to that of the SlGABA-T1RNAi and SlGABA-T3RNAi lines. 

Although there were no visible morphological changes in the flowers in the transgenic 

plants, a marked flower abscission was observed in the SlGABA-T1RNAi lines (Fig. 5B). The 
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fruit-setting ratio in total flowering was decreased in most of the SlGABA-T1RNAi lines compared 

with that of the WT, by 27.5 % in line No. 1 and 40.4 % in line No. 28. Line No. 23 exhibited severe 

infertility and did not set any fruit (Fig. 5E). To confirm infertility in SlGABA-T1RNAi, additional 

tests were performed with SlGABA-T1RNAi plants (Fig. S5). The suppression of SlGABA-T1 gene 

expression was consistent with the decreased fruit-setting ratio in the additionally tested 

SlGABA-T1RNAi lines (Fig. S5A and B). The fruit-setting ratio was positively correlated with the 

SlGABA-T1 mRNA levels in SlGABA-T1RNAi plants (Fig. S5C). Flowering in the SlGABA-T2RNAi and 

SlGABA-T3RNAi lines was similar to that in the WT (Fig. 5A, C and D). Although the fruit-setting 

ratio was slightly or moderately decreased in lines No. 22 and 42 in SlGABA-T2RNAi and lines No. 5 

and 21 in SlGABA-T3RNAi, no correlation was observed between the fruit-setting ratio and the 

expression levels of SlGABA-T genes in the both lines (Figs. 2 and 5E).  

 

GABA contents and expression of SlGABA-T genes in the fruit of SlGABA-TRNAi lines 

To determine which isoform is important for GABA metabolism in ripening fruit, the 

GABA contents and gene expression of SlGABA-T genes were analysed in the RNAi lines (Fig. 

6-10). The GABA content in 35S::SlGABA-T1RNAi lines No. 2 and 28 and 35S::SlGABA-T2RNAi line 

No. 22 reached 11.5 to 18.1 µmol gFW-1 at the MG stage, 12.3 to 19.9 µmol gFW-1 at the yellow 

(Yell) stage and 10.3 to 14.0 µmol gFW-1 at the red (Red) stage, which correspond to 1.3- to 2.0-fold 

higher than the WT in the MG fruits, 2.0- to 3.3-fold higher in the Yell fruits and 6.8- to 9.2-fold 

higher in the Red fruits, respectively (Fig. 6). In addition, the reduction of the GABA ratio during 

ripening was changed in the GABA-accumulating lines. When the GABA content at the MG stage 

was set as 100 %, the ratio was 68.3 % at the Yell stage and 16.9 % at the Red stage in the WT fruits. 

In contrast, the ratios were 109.9 %, 91.9 % and 107.3 % at the Yell stage and 77.1 %, 74.4 % and 

89.8 % at the Red stage in 35S::SlGABA-T1RNAi lines No. 2 and 28 and 35S::SlGABA-T2RNAi line No. 

22, respectively. However, the GABA contents in the fruits of other RNAi lines were similar or 

lower than that in the WT. Although the GABA ratios at the Yell stage were different (37.6 – 
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83.1 %) among these lines, the ratios at the Red stage were 16.4 – 43.1 %, which was reduced 

compared with that in GABA-accumulating lines. The expression of SlGABA-T1 was strongly 

suppressed in the GABA-accumulating lines, at 3.6 % and 4.7 % in 35S::SlGABA-T1RNAi lines No. 2 

and No. 28 and 4.7 % in 35S::SlGABA-T2RNAi line No. 22 compared with that of the WT (Fig. 7A-C). 

However, the expression of the SlGABA-T1 gene in other lines was not changed, and the GABA 

content was not increased in those lines (Fig. 6 and Fig. 7A-C). The expression of SlGABA-T2 was 

significantly suppressed in most of the tested lines except 35S::SlGABA-T2RNAi line No. 57 and 

35S::SlGABA-T3RNAi line No. 10 (Fig. 7A-C). The expression of SlGABA-T3 was suppressed in 

35S::SlGABA-T1RNAi line No. 28 and 35S::SlGABA-T3RNAi lines No. 2 and 5. The expression of 

RNAi-targeted genes was effectively suppressed in 35S::SlGABA-T2RNAi line No. 21 and 

35S::SlGABA-T3RNAi lines No. 2 and 5, which corresponds to 14.0 %, 1.6 % and 1.7 % compared 

with those of the WT, respectively. However, these lines did not show an increase in GABA 

accumulation (Fig. 6). 

To avoid the negative effects of the systemic suppression of SlGABA-T genes through the 

35S promoter (see Figs. 4 and 5), we also generated SlGABA-T RNAi lines through the E8 promoter 

(E8::SlGABA-TRNAi), which is a strong inducible promoter specific to ripening tomato fruit 

(Deikman et al. 1998). Unlike the 35S::SlGABA-T1RNAi lines, the E8::SlGABA-T1RNAi lines showed 

a similar phenotype to WT plants and did not show dwarfism or infertility (data not shown). The 

fruit GABA content at the MG stage in E8::SlGABA-T1RNAi lines was 6.9 to 8.5 µmol gFW-1, a 

similar level to that observed in the WT plants (Fig. 8). However, the fruit GABA content rapidly 

dropped to approximately 2.2 µmol gFW-1 at the Red stage in the WT, E8::SlGABA-T2RNAi and 

E8::SlGABA-T3RNAi lines and remained between 4.4 and 5.8 µmol gFW-1 in the E8::SlGABA-T1RNAi 

lines, which was approximately 2.5-fold higher than in the WT and other RNAi lines (Fig.8). In WT 

fruits, the GABA ratio was 50.2 % at the Yell stage and 27.6 % at the Red stage compared with the 

GABA content at the MG stage. However, the ratios were 97.5 %, 87.3 % and 69.3 % at the Yell 

stage and 67.2 %, 68.7 % and 64.6 % at the Red stage in E8::SlGABA-T1RNAi lines No. 1, 8 and 27, 
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respectively. In the GABA-accumulating lines, SlGABA-T1 expression was suppressed (Fig. 9A), 

and its relative values were 5.1 % (line No.1), 6.1 % (line No.8) and 6.8 % (line No.27) compared 

with that in the WT plants. The suppression of the SlGABA-T1 gene was only observed in those lines. 

Although the expression of SlGABA-T2 and SlGABA-T3 was suppressed in some lines (No. 1 and 8 

of E8::SlGABA-T1RNAi, No. 5 and 39 of E8::SlGABA-T2RNAi and No. 7, 18 and 57 of 

E8::SlGABA-T3RNAi), there was no correlation between GABA accumulation and gene suppression 

(Fig. 8, Fig. 9A-C). 

Finally, correlations between the GABA contents and the mRNA levels of the SlGABA-T 

genes in SlGABA-TRNAi lines were analysed (Fig. 10). The SlGABA-T1 expression was clearly 

correlated with the fruit GABA contents in the 35S::SlGABA-TRNAi lines (Fig. 10A). In the 

E8::SlGABA-TRNAi lines, although the coefficient of determination was lower than that in 

35S::SlGABA-TRNAi, a correlation between SlGABA-T1 expression and the fruit GABA content was 

observed. In contrast, there were no correlations between the SlGABA-T2 and SlGABA-T3 expression 

in the 35S::SlGABA-TRNAi and E8::SlGABA-TRNAi lines (Fig. 10B and C). 

 

Amino acid contents in WT and 35S::SlGABA-TRNAi fruits 

        The profiles of major and minor amino acids in WT and 35S::SlGABA-TRNAi fruits were 

shown in Table 1 and Table S2, respectively. In WT fruit, GABA and glutamine accumulated at MG 

stage and decreased after breaker stage (Table 1). In contrast, aspartate contents in WT increased 

after breaker stage. In the GABA-accumulating 35S::SlGABA-T1RNAi lines such No. 2 and 28 and 

35S::SlGABA-T2RNAi line No. 22 (Fig. 6), the GABA ratio in total amino acids reached 57.7 %, 

54.3 % and 36.9 % at the MG stage, respectively (Table 1). Those did not rapidly decrease even after 

the breaker stage. On the other hand, the aspartate ratio in the GABA-accumulating lines was lower 

than that in the WT even after the breaker stage. There was a negative correlation between GABA 

and aspartate. Although GABA is converted to alanine and glycine by GABA-T reaction, alanine and 

glycine contents did not associate with GABA contents (Table 1). 

10 
 



Whereas total amino acid content in WT decreased at Yell stage compared with that of MG 

stage, it increased again at Red stage (Table 1). Total amino acid and total protein amino acid levels 

in MG stage of 35S::SlGABA-T2RNAi line No. 21 and 57 and, 35S::SlGABA-T3RNAi line No. 10 were 

lower than that of WT. GABA contents in these lines were also lower than that in WT. Total amino 

acids in Red stage were almost constant in WT and all 35S::SlGABA-TRNAi lines, except for 

35S::SlGABA-T3RNAi lines No. 2 and 10. 

 

 

Discussion 

 

The suppression of SlGABA-T gene expression induced the alteration of phenotypes 

To clarify the physiological function of SlGABA-T genes, we conducted loss-of-function 

analyses utilising RNAi transgenic lines with suppressed SlGABA-T gene expression. The transgenic 

plants showed severe abnormal phenotypes, such as dwarfism and infertility. The plant height in the 

35S::SlGABA-T1RNAi and SlGABA-T3RNAi lines was half or less than that in the WT plants (Fig. 4A, 

C and D). On the other hand, no remarkable changes were observed in the SlGABA-T2RNAi lines 

except for line No. 42, in which the expression of SlGABA-T1 and SlGABA-T3 were also suppressed 

(Fig. 2B). Actually, the trigger sequence of each SlGABA-TRNAi was designed in the region lying 

astride between 5’-UTR and ORF. However, the targeting region for SlGABA-T2RNAi was mostly 

included in ORF region and shared a high similarity to other two genes because there is not signal 

peptide in the N-terminus region (Table S1). This would cause the unexpected suppression on the 

other isoforms in 35S::SlGABA-T2RNAi lines. 

The abnormal phenotypes have also been reported in transgenic tobacco lines 

overexpressing the C-terminal-truncated GAD gene, which over-accumulated GABA (Baum et al. 

1996, Akama and Takaiwa 2007). In those transgenic plants, a decrease of glutamate associated with 

the GABA increase was observed. In this study, although the similar tendency was observed in 
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leaves of 35S::SlGABA-TRNAi lines in the glutamate and GABA contents, there was no quantitative 

correlation to the dwarfism (Figs. 3 and 4). In addition, whereas the GABA content was increased, 

the glutamate content was almost constant in stem of 35S::SlGABA-TRNAi lines compared with that 

in WT (Fig. 3). Renault et al. (2011) reported that excessive GABA accumulation negatively affected 

cell elongation in the hypocotyl through the down-regulation of cell-wall-related gene expression, 

such as the genes encoding arabinogalactan, expansin and tonoplast intrinsic proteins. The vertical 

cell size of stem cortex tissue in the 35S::SlGABA-T1RNAi and 35S::SlGABA-T3RNAi lines was 

obviously smaller than that of WT whereas it was almost similar in the 35S::SlGABA-T2RNAi line 

(Fig. S4). This tendency was consistent with the results in plant heights (Fig. 4), indicating the dwarf 

phenotype observed in the present research also result from defects in cell elongation and 

SlGABA-T2 would not be involved in this event. However, the plant heights were similar between 

35S::SlGABA-T1RNAi and 35S::SlGABA-T3RNAi individuals, although the GABA contents in 

35S::SlGABA-T3RNAi leaves were much lower than that in 35S::SlGABA-T1RNAi plants (Fig. 3 and 

Fig. 4D), suggesting that other factors are involved in the dwarf phenotype. 

A severe abscission of flowers was observed in the 35S::SlGABA-T1RNAi lines (Fig. 5B). 

Therefore, we compared the fruit-setting ratios between the WT and RNAi transgenic plants (Fig. 

5). The fruit-setting ratios in 35S::SlGABA-T1RNAi lines No. 1, 23 and 28 were markedly decreased 

compared with that of the WT (Fig. 5E). The lower fruit-setting ratio and positive correlation with 

the SlGABA-T1 mRNA levels were also confirmed in additionally tested SlGABA-T1RNAi plants 

(Fig. S5). Indeed, the subcellular localization was previously shown to be different for each 

SlGABA-T protein, with SlGABA-T1 localized in the mitochondria (Clark et al. 2009b). However, 

these phenomena were not observed in E8::SlGABA-T1RNAi plants in the present study (data not 

shown). The E8 promoter is a fruit-ripening-specific promoter in the tomato, and it does not control 

gene expression in flowers (He et al. 2008). The inhibition of pollen tube growth and a reduction of 

seed fertility have been reported in a GABA-TP/TG knockdown mutant/transgenic Arabidopsis 

plant, which also showed that GABA-TP/TG is localized in the mitochondria (Palanivelu et al. 
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2003, Mirabella et al. 2007, Renault et al. 2011, Clark et al. 2009a). These results indicate that 

impair of mitochondrial localized GABA-T1 would cause aberrant GABA accumulation in cytosol 

and result in aberrant plant development. 

 

Change of amino acid contents in tomato fruits in SlGABA-TRNAi lines 

GABA is most abundant amino acid in tomato fruits at MG stage, and the content 

associates with total amino acids by Yell stage (Rolin et al. 2000, Akihiro et al. 2008). In the 

present study, in the GABA-accumulating 35S::SlGABA-T1RNAi lines No. 2 and 28 and 

35S::SlGABA-T2RNAi line No. 22 (Fig. 6), the GABA ratio in total amino acids reached 57.7 %, 

54.3 % and 36.9 %, respectively, at the MG stage (Table 1), and the GABA content did not rapidly 

decrease, even after the breaker stage. However, the aspartate ratio in the GABA-accumulating 

lines was lower than that in the WT after the breaker stage (Table 1). Accumulations of glutamate 

and asparatate after breaker stage in tomato fruits have been reported in previous studies (Rolin et 

al. 2000, Roessner-Tunali et al. 2003, Mattoo et al. 2006, Mounet et al. 2007). In this study, there 

was a negative correlation between the accumulation of GABA and aspartate at Red stage (Table 1). 

However, total amino acids accumulated in the Red stage were almost identical between the WT 

and the GABA-accumulating lines. The reduced aspartate content has been reported in the 

GABA-rich tomato cultivar ‘DG03-9’ (Saito et al. 2008, Akihiro et al. 2008). These results suggest 

that both GABA and aspartate are synthesised from glutamate, and the accumulation of GABA 

after the ripening stage prevents aspartate accumulation. 

GABA was converted to alanine and glycine by GABA-T reaction (Clark et al., 2009a; 

Clark et al., 2009b). In this study, alanine and glycine contents in the GABA-accumulating lines 

were not changed compared with that of WT (Table 1). Because the absolute values of these amino 

acids were lower in the fruits of WT, those would be rapidly converted to other amino acids in 

tomato fruit. However, at the Yell stage, all of GABA, glutamine and total amino acid levels in WT 

decreased from MG stage. Our previous work showed GABA is converted to organic acids during 

13 
 



ripening (Yin et al. 2010). However, it has not been fully understood what are those amino acids 

converted to during Yell stage. It would be interesting to perform metabolome analyses focusing on 

the primary metabolites utelizing the SlGABA-TRNAi lines. 

 

 

The isoform responsible for GABA conversion in tomato plants 

It has been accepted that GABA is catabolised in the mitochondria (Bouchè and Fromm 

2004). However, Clark et al. (2009b) reported three GABA-T1-3 enzymes in tomato that were 

localized in the mitochondrion, cytosol and plastid, with each isoform predicted to have unique 

functions. 

In the present study, the leaf GABA contents in all 35S::SlGABA-TRNAi lines were higher 

than that in the WT plants (Fig. 3). The SlGABA-T1 expression was decreased in SlGABA-T1RNAi 

plants and SlGABA-T2RNAi lines No. 22 and 42 but not in SlGABA-T1RNAi line No. 10 (Fig. 2A-C). 

However, SlGABA-T1 expression was similar or higher compared with that of the WT plants in other 

lines. In those lines, the expression of SlGABA-T2 and SlGABA-T3 genes was suppressed (Fig. 2B 

and C). These results suggest that SlGABA-T2 or SlGABA-T3 is involved in GABA metabolism in 

tomato leaves. In tomato fruits, the GABA contents in 35S::SlGABA-T1RNAi lines No. 2 and 28 and 

SlGABA-T2RNAi line No. 22 were 1.3 to 2.0 times higher in MG fruit and 6.8 to 9.2 times higher in 

Red fruit, respectively, compared with that of the WT (Fig.6). In these lines, the expression of 

SlGABA-T1 and SlGABA-T2 genes was suppressed (Fig. 7A, B). However, excessive GABA 

accumulation was not observed in other SlGABA-T2 and SlGABA-T3 suppression lines (Fig. 6). A 

clear correlation between fruit GABA contents and SlGABA-T1 expression level was observed (Fig. 

10A), whereas there was almost no correlation with SlGABA-T2 and SlGABA- T3 genes (Fig. 10B 

and C). The same results were obtained through the analyses of E8-promoter-driven transgenic lines 

(Figs. 8, 9 and 10). Indeed, the enzymatic activity of SlGABA-T1 is highest among the three 

isoforms in the tomato (Clark et al. 2009b). These results clearly indicate that SlGABA-T1 is 

14 
 



primarily responsible for GABA metabolism in tomato fruits. Unexpectedly, GABA-TP/TG 

activities in fruit were not significantly different between the 35S::SlGABA-T1RNAi lines and WT 

(Fig. S6B) although fruit GABA contents in the RNAi lines clearly increased (Fig. S6A). Because 

the enzyme assay was performed utilizing crude protein extracted from fruits, the GABA-TP/TG 

activity corresponding to each isoform could not be separately evaluated. Considering the increase of 

SlGABA-T3 expression level in the 35S::SlGABA-T1RNAi lines No. 2 (Fig. 7), those results would be 

the outcome of masking by other isoforms. 

A previous study demonstrated that GABA-TP/TG was present in the cytosol and plastids 

(Clark et al. 2009b). Although the physiological functions of these genes are unclear, our results 

show that these genes function in vivo (Figs. 2 and 3). For example, the 35S::SlGABA-T3RNAi lines 

showed severe dwarfism (Fig.4). GABA reduction through SlGABA-T2 and SlGABA-T3 was 

observed in the tomato leaves (Figs. 2 and 3), but it was not observed in the fruits (Figs. 6, 7 and 10). 

The expression of SlGABA-T1 was correlated with the fruit-setting ratio and GABA accumulation in 

tomato fruits (Figs. 10A and S5). Thus, SlGABA-T1 is likely the predominant isoform in tomato 

flowers and fruits. These results suggest that the three GABA-T genes cooperatively function during 

the vegetative phase, and GABA reduction occurs through SlGABA-T1 in the reproductive phase. 

In previous work, we reported that SlGABA-T1 expressed in fruit at all developmental 

stage whereas those of SlGABA-T2 and SlGABA-T3 decreased in Red stage (Akihiro et al. 2008). 

However, Clark et al. (2009b) reported that the expression levels of all three GABA-T genes were 

low at MG stage, then only SlGABA-T1 expression significantly increased after breaker stage. In the 

present study, the accumulation of GABA in 35S::SlGABA-T1RNAi lines were observed at not only 

Yell and Red stages but MG stage (Fig. 6). The reduction ratio of GABA in those lines during 

ripening was also lower than that in WT although SlGADs has already down-regulated after the 

breaker stage (Akihiro et al. 2008). Those results suggest that the conversion of GABA by 

SlGABA-T1 has proceeded at least MG stage and increases during ripening. The expression pattern 

of SlGABA-T2 and SlGABA-T3 were not correlated with GABA accumulation during fruit 
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developmental stages (Akihiro et al. 2008). In the present study, from the point of view of 

transcription levels, an essential role of SlGABA-T1, but not SlGABA-T2 and SlGABA-T3, in fruit 

GABA level was demonstrated through the loss of function analyses (Fig. 6, 7 and 10). On the other 

hand, the expression level of SlGABA-T3 was higher than that of SlGABA-T1 in WT leaves (Fig. S3). 

It is likely that SlGABA-T3 is involved in the regulation of GABA level in leaf and stem tissues as 

well as SlGABA-T1. 

 

 

GABA-TP/TG plays an important role for GABA metabolism in tomato fruits 

In our previous work, we reported a negative correlation between GABA contents and 

GABA-TK activity in tomato fruits through a comparison between ordinary and GABA-rich 

cultivars (Akihiro et al. 2008). A recent study suggested that decreased GABA-TK activity causes 

GABA accumulation in tomatoes stored under low-O2 conditions (Mae et al. 2012). However, Clark 

et al. (2009b) reported that all three SlGABA-T-encoded proteins showed only GABA-TP/TG 

activities and pointed out a possibility that the above researches had detected artificial GABA-TK 

activity. Deewatthanawong et al. (2010) suggested that higher GABA concentrations in CO2-treated 

fruits were due to a decreased GABA-TP activity. In the present study, we demonstrated SlGABA-T1 

is important for GABA metabolism in the tomato fruit. Although we previously reported the 

importance of GABA-TK in the tomato fruit, the gene encoding this protein has not yet been 

identified in the tomato. Therefore, based on the loss-of-function experiments performed in the 

present study, we now conclude that GABA-TP/TG is an essential factor for GABA metabolism in 

tomato plants. 

In contrast to SlGABA-T1, the physiological functions of SlGABA-T2 and T3 remain 

unclear. In the tomato and other species, a possibility of alternative pathway for the breakdown of 

SSA via gamma-hydroxy butyric acid (GHB) production has been reported (Clark et al. 2009b). 

Although GABA-derived SSA is primarily reduced through SSADH activity in the mitochondria, 

16 
 



SSA is also converted to GHB through the activity of succinate semialdehyde reductase (SSR) 

(Bouché and Fromm 2004). In Arabidopsis, glyoxylate reductase, which is identical with SSR (Shelp 

et al. 2012), is localized in the cytosol and plastids (Hoover et al. 2007, Simpson et al. 2008). Two 

SlSSR genes have been isolated in the tomato (Akihiro et al. 2008); however, the localization of 

these genes has not been analysed. If SlSSR1 and -2 are localized to the cytosol and plastids, 

SlGABA-T2 and -T3 participate in an additional route for SSA metabolism (Fig. 1). However, further 

characterisation of the RNAi transgenic plants will be required to clarify SSA metabolism. 

In the present study, we successfully generated GABA-over-accumulating tomato plants 

through the suppression of GABA-T genes and demonstrated that SlGABA-T1 is the most essential 

isoform for GABA metabolism in tomato fruits. The results of this study will be available for 

screening GABA-rich mutants, which will be an excellent bioresource for breeding a new 

GABA-rich tomato cultivar. 

 

 

Materials and methods 

 

Plant materials and growth conditions 

The tomato (Solanum lycopersicum L.) cultivar Micro-Tom was used in this study. 

Germinated seedlings were transplanted into rockwool and grown in a culture room at 25 °C under 

16 h light / 8 h dark conditions. For SlGABA-TRNAi lines, the shoots derived from calli were 

transplanted. The plants were fed a standard nutrient solution (Otsuka House. No. 1 and 2, Otsuka 

Chemical CO, Japan). The plant height measurements and leaf samples were obtained at 10 weeks 

after transplantation. The fruit-setting ratio was calculated from the number of total fruits set and 

total flowering. The fruits were sampled at 24 to 27 days after flowering (DAF), 28 to 33 DAF and 

42 to 45 DAF to obtain three development stages: MG, Yell and Red, respectively. In this study, only 

the T0 generation plants were analysed because SlGABA-T suppression caused severe infertility in 
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transgenic plants. 

 

Vector construction and transformation 

The RNAi constructs used to suppress the mRNA expression of each SlGABA-T gene were 

created under the control of the constitutive cauliflower mosaic virus (CaMV) 35S promoter or the 

fruit-specific E8 promoter (Fig. S1). To create RNAi constructs targeted towards SlGABA-T1 

suppression, the RNAi-targeted region of SlGABA-T1 was amplified using gene-specific primers 

(shown in Table S1). The RNAi-targeted region of about 300 bp was designed at 5’ side of 

SlGABA-T gene, this one was contained untranslated region and open reading frame (Fig. S2). The 

PCR fragment was directly cloned into the entry vector pCR8/GW/TOPO (Invitrogen) and 

transferred into the Gateway vector pBI sense-antisense GW (Inplanta Innovations) using the 

Gateway LR Clonase enzyme (Invitrogen). This construct was designated SlGABA-T1RNAi. The same 

strategy was used to create RNAi constructs for the suppression of other SlGABA-T genes using 

specific primers (shown in Table S1). To create RNAi constructs under the control of the E8 

promoter, this region (accession number AF515784) was amplified using specific primers containing 

BlnⅠand XhoⅠsites. The fragment was cloned in place of the CaMV 35S promoter in the pBI 

sense-antisense GW vector. Subsequent procedures were performed using this same strategy. These 

constructs were then transformed into Agrobacterium tumefaciens GV2260 using the electroporation 

method. The constructs were transformed into WT ‘Micro-Tom’ using the agrobacterium method 

(Sun et al. 2006). The transgenic plants were selected on Murashige and Skoog (MS) agar plates 

containing kanamycin (100 mg l-1).  

 

Extraction and measurement of GABA and amino acid contents 

Approximately 50 mg of fresh sample was homogenised in liquid nitrogen using a mortar 

and pestle, and subsequently, 500 µl of 8 % (w/v) trichloroacetic acid was added. The samples were 

centrifuged at 10,000 ×g for 20 min at 4 °C. The supernatant was transferred into a fresh tube, 400 µl 
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of pure diethyl ether was added and the tube was mixed vigorously for 10 min. The samples were 

centrifuged again at 10,000 ×g for 10 min at 4 °C. The supernatant was removed, and 400 µl of 

diethyl ether was added. The samples were mixed vigorously for 10 min and centrifuged at 10,000 

×g for 10 min at 4 °C. The supernatant from this centrifuge step was removed and incubated under a 

draft of air for 30 min for the complete evaporation of diethyl ether. The samples for amino acid 

analysis were evaporated using an evaporator (CVE3100, TOKYO RIKAKIKAI), and 300 µl of 

water was added. This procedure was repeated twice. The samples were dissolved in 0.1 N HCl for 

the amino acid analysis (JLC-500/V2, Japan Electron Optics Laboratory). The ‘GABase’ assay for 

GABA was performed using the method described by Jakoby (1962) with slight modifications. In 

the ‘GABase’ assay, the reduction of NADP to NADPH was monitored spectrophotometrically at 

340 nm, pH 8.6 at 37 °C, as a function of time using GABA as a substrate. 

 

Quantitative expression analysis 

Total RNAs were extracted from tomato plants using the RNeasy Plant Mini kit (Qiagen) 

and digested using DNase I (NipponGene) according to the manufacturer’s instructions. 

Approximately 1 µg of total RNA was used to synthesise single-strand cDNA using the SuperScript 

VILO cDNA synthesis kit (Invitrogen). The mRNA expression of each SlGABA-T gene was 

analysed using qRT-PCR. The qRT-PCR experiments were performed using a Takara Thermal 

Cycler Dice Real-Time System with SYBR Premix Ex Taq II (Takara). The qRT-PCR was 

performed with gene-specific primers (supplementary Table S1). For the PCR amplification, the 

cDNA was denatured at 94 °C for 30 sec in the first cycle, followed by 45 cycles of denaturing for 5 

sec, primer annealing at 55 °C for 10 sec and extension at 72 °C for 15 sec. The mRNA levels of 

each SlGABA-T were determined relative to the control Ubiquitin (UBQ) (accession number 

X58253) mRNA according to the methods of Kim et al. (2010). 

 

Histological analysis 

19 
 



The plants grown from cuttings of T0 generation were used for histological analysis. 

Longitudinal sections of stem tissue were obtained by hand-cutting with razor blade. The sections 

were immediately stained with 0.1 % toluidine blue for 15 min and then rinsed with distilled water. 

The samples were mounted on a slide glass and observed by optical microscope (BX53, 

OLYMPUS). 

 

GABA-T enzymatic assay 

GABA-T enzymatic assay was performed according to the procedure described by Clark et 

al. (2009a, 2009b). Five g of fresh tomato fruit obtained from T0 35S::SlGABA-T1RNAi plants were 

homogenized with a mortar and pestle in a five-fold volume of ice-cold extraction buffer [50 mM 

Tris-HCl (pH 8.2), 3 mM dithiothreitol, 1.25 mM EDTA, 2.5 mM MgCl2, 10 % (v/v) glycerol, 6 

mM 3-((3-cholamidopropyl)dimethylammonio)-1-propanesulphonate, 1mM 

phenylmethylsulphonylfluoride, 2.5 µg ml-1 of leupeptin and pepstatin A, 2 % (w/v) 

polyvinylpyrrolidone and 2 µg ml-1 of pyridoxial-5-phosphate]. The homogenates were centrifuged 

at 10,000 x g for 15 min at 4 °C, and the pellet was discarded. The supernatant was concentrated 

using Amicon ultra-4 (10kDa, Millipore).The extract was desalted using PD-10 columns (GE 

healthcare) that were equilibrated in the extraction buffer before an use. GABA-TP and GABA-TG 

activity were measured as GABA-dependent alanine and glycine production, respectively. For the 

assay, 100 µl of the crude protein was used in total 500 µl reaction mixture [50 mM 

N-tris(hydroxymethyl)methyl-4-aminobutanesulphonic acid (TABS, pH 9.0), 1.5 mM dithiothreitol, 

0.625 mM EDTA, 0.1 mM pyridoxial-5-phosphate, 10 % (v/v) glycerol, 1 mM GABA and 1 mM 

pyruvate or glyoxylate]. The reaction solution was incubated at 30 °C for 6 hours and then 

terminated by the addition of ice-cold sulphosalicylic acid to a final concentration of 60 mM (Van 

Cauwenbergue and Shelp 1999). The supernatant was neutralized with NaOH and the resultant 

alanine and glycine were measured by the HPLC amino acid analyzer (JLC-500/V2, JEOL). 
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Table 1. Amino acid contents (µmol gFW-1) in WT and 35S::SlGABA-TRNAi fruits 

      
35S::SlGABA-T1RNAi

 
 

35S::SlGABA-T2RNAi
 

 
35S::SlGABA-T3RNAi

 

  
WT 

 
2 

 
10 

 
28 

 
21 

 
22 

 
57 

 
2 

 
5 

 
10 

MG 

Asp 1.01  ± 0.05  
 

1.26  ± 0.12  
 

1.09  ± 0.04  
 

0.93  ± 0.05  
 

0.40  ± 0.03  
 

1.55  ± 0.10  
 

0.58  ± 0.08  
 

0.88  ± 0.02  
 

1.12  ± 0.04  
 

0.70  ± 0.04  

Asn 3.03  ± 0.18  
 

2.12  ± 0.20  
 

2.71  ± 0.17  
 

1.74  ± 0.11  
 

0.74  ± 0.03  
 

4.72  ± 0.21  
 

1.29  ± 0.17  
 

3.44  ± 0.15  
 

5.83  ± 0.20  
 

2.32  ± 0.10  

Glu 1.20  ± 0.12  
 

1.10  ± 0.11  
 

1.06  ± 0.04  
 

1.05  ± 0.06  
 

0.63  ± 0.05  
 

1.76  ± 0.06  
 

0.78  ± 0.12  
 

1.26  ± 0.06  
 

1.39  ± 0.07  
 

0.96  ± 0.04  

Gln 5.49  ± 0.27  
 

5.22  ± 0.65  
 

3.61  ± 0.21  
 

4.06  ± 0.34  
 

1.51  ± 0.07  
 

12.63  ± 0.85  
 

3.29  ± 0.38  
 

7.50  ± 0.35  
 

8.67  ± 0.35  
 

3.89  ± 0.21  

Gly 0.14  ± 0.01  
 

0.14  ± 0.00  
 

0.08  ± 0.01  
 

0.13  ± 0.01  
 

0.05  ± 0.00  
 

0.18  ± 0.01  
 

0.06  ± 0.01  
 

0.11  ± 0.00  
 

0.14  ± 0.00  
 

0.08  ± 0.01  

Ala 0.28  ± 0.03  
 

0.22  ± 0.02  
 

0.29  ± 0.03  
 

0.22  ± 0.01  
 

0.16  ± 0.01  
 

0.29  ± 0.01  
 

0.17  ± 0.02  
 

0.29  ± 0.00  
 

0.30  ± 0.01  
 

0.21  ± 0.01  

GABA 6.77  ± 0.13  
 

17.29  ± 1.55  
 

6.17  ± 0.28  
 

12.52  ± 0.55  
 

5.34  ± 0.38  
 

14.95  ± 0.75  
 

2.91  ± 0.36  
 

5.98  ± 0.04  
 

6.05  ± 0.20  
 

4.18  ± 0.28  

total 20.13  ± 0.84  
 

29.95  ± 2.86  
 

16.83  ± 0.81  
 

23.03  ± 1.25  
 

9.64  ± 0.59  
 

40.48  ± 2.17  
 

10.23  ± 1.30  
 

21.25  ± 0.61  
 

26.68  ± 0.95  
 

13.86  ± 0.69  

total 

(-GABA) 
13.36  ± 0.71  

 
12.66  ± 1.31  

 
10.65  ± 0.53  

 
10.52  ± 0.70  

 
4.30  ± 0.22  

 
25.53  ± 1.42  

 
7.32  ± 0.94  

 
15.27  ± 0.57  

 
20.63  ± 0.75  

 
9.68  ± 0.41  

                                         

Yell 

Asp 5.29  ± 0.11  
 

1.65  ± 0.12  
 

5.19  ± 0.23  
 

3.83  ± 0.21  
 

1.55  ± 0.02  
 

1.56  ± 0.10  
 

7.02  ± 0.12  
 

3.35  ± 0.13  
 

3.53  ± 0.17  
 

1.14  ± 0.03  

Asn 1.22  ± 0.08  
 

2.34  ± 0.12  
 

1.78  ± 0.05  
 

1.60  ± 0.09  
 

0.79  ± 0.01  
 

1.23  ± 0.11  
 

1.85  ± 0.04  
 

2.50  ± 0.11  
 

1.67  ± 0.07  
 

2.79  ± 0.08  

Glu 0.75  ± 0.03  
 

0.88  ± 0.04  
 

0.81  ± 0.00  
 

0.66  ± 0.02  
 

0.56  ± 0.02  
 

0.63  ± 0.05  
 

1.12  ± 0.01  
 

0.96  ± 0.06  
 

0.86  ± 0.05  
 

0.96  ± 0.03  

Gln 3.04  ± 0.21  
 

3.73  ± 0.18  
 

2.58  ± 0.10  
 

2.84  ± 0.18  
 

1.37  ± 0.14  
 

3.05  ± 0.22  
 

4.43  ± 0.11  
 

5.81  ± 0.33  
 

3.50  ± 0.15  
 

4.50  ± 0.53  

Gly 0.06  ± 0.01  
 

0.08  ± 0.00  
 

0.05  ± 0.00  
 

0.06  ± 0.00  
 

0.04  ± 0.00  
 

0.05  ± 0.00  
 

0.05  ± 0.01  
 

0.07  ± 0.00  
 

0.04  ± 0.01  
 

0.07  ± 0.00  

Ala 0.20  ± 0.00  
 

0.20  ± 0.01  
 

0.14  ± 0.01  
 

0.10  ± 0.00  
 

0.16  ± 0.00  
 

0.17  ± 0.01  
 

0.13  ± 0.01  
 

0.20  ± 0.01  
 

0.13  ± 0.01  
 

0.20  ± 0.00  

GABA 4.58  ± 0.20  
 

20.91  ± 0.85  
 

3.59  ± 0.21  
 

12.94  ± 0.46  
 

4.20  ± 0.07  
 

14.77  ± 0.92  
 

1.91  ± 0.01  
 

1.91  ± 0.06  
 

2.72  ± 0.10  
 

3.00  ± 0.09  

total 16.01  ± 0.51  
 

31.60  ± 1.09  
 

15.12  ± 0.49  
 

23.06  ± 0.92  
 

9.35  ± 0.11  
 

22.28  ± 1.43  
 

17.57  ± 0.12  
 

15.91  ± 0.72  
 

13.30  ± 0.60  
 

13.89  ± 0.78  

total 

(-GABA) 
11.43  ± 0.31  

 
10.69  ± 0.23  

 
11.54  ± 0.28  

 
10.12  ± 0.47  

 
5.15  ± 0.04  

 
7.51  ± 0.51  

 
15.66  ± 0.11  

 
13.99  ± 0.66  

 
10.58  ± 0.50  

 
10.88  ± 0.70  

                                         

Red 

Asp 15.82  ± 0.80  
 

7.26  ± 0.45  
 

16.15  ± 0.78  
 

8.89  ± 0.18  
 

12.41  ± 0.95  
 

7.81  ± 1.03  
 

14.10  ± 0.22  
 

24.13  ± 0.89  
 

14.33  ± 1.05  
 

7.92  ± 0.65  

Asn 0.84  ± 0.04  
 

1.35  ± 0.11  
 

1.72  ± 0.08  
 

1.40  ± 0.03  
 

1.69  ± 0.13  
 

1.37  ± 0.20  
 

1.92  ± 0.03  
 

4.55  ± 0.18  
 

2.67  ± 0.18  
 

1.62  ± 0.13  

Glu 1.83  ± 0.01  
 

1.26  ± 0.04  
 

1.88  ± 0.07  
 

1.32  ± 0.03  
 

1.64  ± 0.09  
 

1.27  ± 0.18  
 

1.86  ± 0.02  
 

2.69  ± 0.07  
 

1.97  ± 0.13  
 

1.30  ± 0.10  

Gln 1.54  ± 0.10  
 

2.46  ± 0.16  
 

2.08  ± 0.09  
 

2.65  ± 0.02  
 

3.36  ± 0.25  
 

3.08  ± 0.42  
 

4.56  ± 0.06  
 

8.17  ± 0.20  
 

3.93  ± 0.30  
 

2.15  ± 0.07  

Gly 0.04  ± 0.00  
 

0.07  ± 0.00  
 

0.06  ± 0.00  
 

0.11  ± 0.00  
 

0.09  ± 0.00  
 

0.07  ± 0.01  
 

0.06  ± 0.01  
 

0.10  ± 0.01  
 

0.06  ± 0.01  
 

0.07  ± 0.01  

Ala 0.27  ± 0.01  
 

0.36  ± 0.01  
 

0.25  ± 0.00  
 

0.47  ± 0.04  
 

0.42  ± 0.03  
 

0.38  ± 0.05  
 

0.30  ± 0.01  
 

0.44  ± 0.02  
 

0.29  ± 0.02  
 

0.31  ± 0.03  

GABA 1.16  ± 0.22  
 

13.59  ± 0.36  
 

1.21  ± 0.04  
 

11.12  ± 0.18  
 

1.57  ± 0.11  
 

9.94  ± 1.30  
 

1.22  ± 0.06  
 

0.98  ± 0.03  
 

1.73  ± 0.16  
 

0.80  ± 0.14  

total 22.72  ± 0.77  
 

27.57  ± 1.14  
 

24.62  ± 1.12  
 

27.44  ± 0.31  
 

22.85  ± 1.67  
 

25.13  ± 3.32  
 

25.30  ± 0.17  
 

43.52  ± 1.47  
 

26.57  ± 1.95  
 

15.19  ± 1.03  

total 

(-GABA) 
21.56  ± 0.55    13.97  ± 0.79    23.41  ± 1.09    16.32  ± 0.13    21.28  ± 1.55    15.19  ± 2.01    24.07  ± 0.11    42.55  ± 1.44    24.83  ± 1.79    14.39  ± 0.89  

The labels above the horizontal axis indicate the genotypes of the transgenic lines. The values 
indicate the mean and standard deviation (n = 3). 
  

29 
 



Figure legends 

 

Fig. 1 GABA shunt metabolic pathway 

GDH: glutamate dehydrogenase; GAD: glutamate decarboxylase; GABA-TK: 

α-ketoglutarate-dependent GABA transaminase; GABA-T1, 2 and 3: pyruvate- and 

glyoxylate-dependent GABA transaminase; SSADH: succinic semialdehyde dehydrogenase; SSR: 

succinic semialdehyde reductase. The pathways presented by dotted lines indicate predicted 

pathways based on the localization of each enzyme reported in Arabidopsis (Hoover et al. 2007, 

Simpson et al. 2008). 

 

Fig. 2 Expression levels of SlGABA-T genes in SlGABA-TRNAi transgenic leaves 

(A) SlGABA-T1RNAi (open column), (B) SlGABA-T2RNAi (shaded column) and (C) SlGABA-T3RNAi 

(closed column). The expression of SlGABA-T1, SlGABA-T2 and SlGABA-T3 is shown from the top. 

The labels below the horizontal axis indicate genotypes of the transgenic lines. The values indicate 

the mean and standard deviation (n = 3). The level of significance compared with the WT was 

determined using Student’s t-test (*P<0.05, **P<0.01).  

 

Fig. 3 GABA and glutamate contents in leaves and stems in WT and 35S::SlGABA-TRNAi lines 

(A) GABA and (B) glutamate contents. The open and closed columns indicate the contents in leaves 

and stems, respectively. The labels below the horizontal axis indicate genotypes of the transgenic 

lines. The values indicate the mean and standard deviation (n = 3). The level of significance 

compared with WT was determined using Student’s t-test (*P<0.05, **P<0.01).  

 

Fig. 4 Vegetative growth of 10-week-old 35S::SlGABA-TRNAi plants  

(A) SlGABA-T1RNAi, (B) SlGABA-T2RNAi and (C) SlGABA-T3RNAi. The plants on the far left in each 

panel are WT. The bars = 5 cm. (D) The plant height of 10-week-old WT and RNAi transgenic lines. 
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The labels below the horizontal axis indicate the genotypes of the transgenic lines. 

 

Fig. 5 Flowering and fruit setting in 35S::SlGABA-TRNAi lines 

 (A) WT, (B) SlGABA-T1RNAi, (C) SlGABA-T2RNAi and (D) SlGABA-T3RNAi. Scale bars = 1 cm. (E) 

The fruit-setting ratio in the WT and 35S::SlGABA-TRNAi lines. The labels below the horizontal axis 

indicate the genotypes of the transgenic lines.  

 

Fig. 6 The GABA contents in the fruits of 35S::SlGABA-TRNAi lines 

The open, shaded and closed columns indicate the MG, Yell and Red stages, respectively. The labels 

below the horizontal axis indicate the genotypes of the transgenic lines. The values indicate the mean 

and standard deviation (n = 3). The level of significance compared with the WT at each stage was 

determined using Student’s t-test (*P<0.05, **P<0.01).  

 

Fig. 7 Expression levels of SlGABA-T genes in fruits of 35S::SlGABA-TRNAi lines  

(A) SlGABA-T1RNAi (open column), (B) SlGABA-T2RNAi (shaded column) and (C) SlGABA-T3RNAi 

(closed column). The expression of SlGABA-T1, SlGABA-T2 and SlGABA-T3 is shown from the top. 

The labels below the horizontal axis indicate the genotypes of the transgenic lines. The values 

indicate the mean and standard deviation (n = 3). The level of significance compared with the WT 

was determined using Student’s t-test (*P<0.05, **P<0.01).  

 

Fig. 8 The GABA contents in the fruits of E8::SlGABA-TRNAi lines 

The open, shaded and closed columns indicate the MG, Yell and Red stages, respectively. The labels 

below the horizontal axis indicate the genotypes of the transgenic lines. The values indicate the mean 

and standard deviation (n = 3). The level of significance compared with the WT at each stage was 

determined using Student’s t-test (*P<0.05, **P<0.01). 
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Fig. 9 Expression levels of SlGABA-T genes in fruits of E8::SlGABA-TRNAi lines 

(A) SlGABA-T1RNAi (open column), (B) SlGABA-T2RNAi (shaded column) and (C) SlGABA-T3RNAi 

(closed column). The expression of SlGABA-T1, SlGABA-T2 and SlGABA-T3 is shown from the top. 

The labels below the horizontal axis indicate the genotypes of the transgenic lines. The values 

indicate the mean and standard deviation (n = 3). The level of significance compared with the WT 

was determined using Student’s t-test (*P<0.05, **P<0.01).  

 

Fig. 10 Correlation between fruit GABA contents at the Red stage and SlGABA-T mRNA levels 

in SlGABA-TRNAi lines 

(A) SlGABA-T1, (B) SlGABA-T2 and (C) SlGABA-T3. The open, closed and shaded rhombuses 

indicate WT, 35S::SlGABA-TRNAi and E8::SlGABA-TRNAi lines, respectively. 
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