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Abstract
This paper accompanies a new dataset of non-linear real arithmetic problems for the SMT-LIB benchmark
collection. The problems come from an automated proof procedure of Gerhold–Kauers, which is well
suited for solution by SMT. The problems of this type have not been tackled by SMT-solvers before. We
describe the proof technique and give one new such proof to illustrate it. We then describe the dataset
and the results of benchmarking. The benchmarks on the new dataset are quite different to the existing
ones. The benchmarking also brings forward some interesting debate on the use/inclusion of rational
functions and algebraic numbers in the SMT-LIB.
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1. Introduction

Satisfiability Modulo Theories (SMT) fuses powerful modern SAT solvers with software from
specialised theory domains to tackle satisfiability problems where the logical atoms are state-
ments in that domain. The SMT-LIB [2] defines a common language for SMT-solvers to use and
maintains a set of benchmarks organised according to the various theory domains.

In many cases, the algorithms for those domains have been traditionally implemented in
computer algebra systems (although as described in [1], such algorithms require adaptation
before they can be used efficiently within SMT). There is continuing progress in algorithms for
such domains, driven in part by the connections built between symbolic computation and the
satisfiability checking communities, by the SC-Square project [1] and others.

One of the SMT theory domains most closely aligned with symbolic computation, and the
domain we consider, is QF_NRA. In this case the solver seeks to answer a question on the existence
of real variables 𝑥1, . . . , 𝑥𝑘 to solve a logical formula in which each atom is a (potentially non-
linear) polynomial constraint. There is a significant number of benchmarks in the SMT-LIB for
this domain, however, there are relatively few sources of these examples, and vast majority
come from a single theorem-proving application. In this paper we describe a new collection of
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examples which we have contributed, originating from inductive proof of some inequalities.
We seek to (a) broaden the QF_NRA benchmark set to allow for better development of solvers;
and (b) encourage further additions from other new application domains by demonstrating how
well solvers can do on such problems.

1.1. SMT for QF_NRA

In the QF_NRA domain solvers tackle satisfiability problems whose atoms are of the form 𝑝𝜎0
where 𝑝 := 𝑝(𝑥1, 𝑥2, . . . , 𝑥𝑘) ∈ Q[𝑥1, 𝑥2, . . . , 𝑥𝑘] is a polynomial in variables 𝑥1, . . . , 𝑥𝑘 with
rational coefficients, and 𝜎 ∈ {>,<,≥,≤,=, ̸=}.

Such problems are usually tackled in the Lazy SMT paradigm where a SAT-solver proposes
solutions to the logical structure which are then checked for validity in the theory domain:
deciding whether the corresponding set of polynomials constraints can be satisfied together. In
other words, we check the following, where 𝑝𝑖 and 𝜎𝑖 are defined as above:

∃𝑥1, 𝑥2, . . . , 𝑥𝑘 (𝑝1𝜎10 ∧ 𝑝2𝜎20 ∧ 𝑝𝑛𝜎𝑛0). (1)

Note that this is fully conjunctive and will involve only a subset of the atoms in the original
formula. The answer will either be a set of assignments for the variables (𝑥1, . . . , 𝑥𝑘) to witness
the existence, or a confirmation that this is unsatisfiable. The unsatisfiable confirmation confirms
that there is no single point in R𝑘 space that could satisfy the relations.

There are many ways of tackling this conjunction. One expensive but well established method
is to calculate the Cylindrical Algebraic Decomposition (CAD) [3] of the variable space to be
sign-invariant for the polynomials 𝑝𝑖, and then check the regions for existence of such a point.
CAD was developed for the more general problem of Quantifier Elimination (QE) over the reals.
Such a heavy procedure is clearly far more work than required, at least when the problem is
satisfiable and we need find only a single point. An adaptation of CAD for this purpose was
presented in [4] to allow for early termination and repeated calls.

Another approach is to re-purpose the theory of CAD so that it better aligns to the satisfiability
methodology, of searching for a model and learning from conflict. This is the approach taken in
the Cylindrical Algebraic Covering method of [5] and the NLSAT algorithm of [6]. Both build
model solutions gradually variable by variable: the former learns by identifying that a model
cannot be extended and using CAD projection to rule out an interval around the top dimension
of the current model; the latter learns by building an entire CAD cell whose description defines
new atoms of the logical formula.

In addition to these CAD based methods there is a variety of incomplete methods implemented
which may will not always give a solution, but when they do are often far faster, e.g. Virtual
Term Substitution [7] or incremental linearization [8]. Although these techniques all root from
formal arguments, there is not a clear answer as to which method is best in general or on a
particular instance, and so there is a need for careful benchmarking. Also, different problems
sets have their own flavour, and so benchmarking on them individually is valuable too. This
set, rooting from mathematical inequalities, is internally diverse. Although the number of the
variables do not go beyond 6 at any time, the natural appearance of rational functions in some
problems and the degree of a single variable spiking in some other problems can be considered
as some different characteristics within this sample set.



1.2. Problems from inequalities

We will discuss a family of QF_NRA problems new to the SMT-LIB, and to the best of the authors’
knowledge, not tackled before using SMT.

In 2005, Gerhold and Kauers presented an algorithm that attempts induction proofs with
great success [9]. Their original formulation, and later Kauers’ ProveInequality function
in the Mathematica package SumCracker [10], uses CAD to make these proofs. This method
and the implementation has been used successfully applied in many works to automatically
prove combinatorics and special function related inequalities [9, 10, 11, 12, 13, 14, 15, 16].
These applications utilised computer algebra, but the underlying algorithm is actually asking a
sequence of satisfiability questions that terminates with a positive answer if it can be shown
that a logical structure of the form (1) is unsatisfiable.

Later in the paper we will sketch the main ideas behind this procedure by proving the following
result. Let 𝑘 and𝑛 be positive integers, and let𝑥1, 𝑥2, . . . 𝑥𝑛 ∈ R+. Then if𝑥1+𝑥2+· · ·+𝑥𝑛 = 𝑛,
we have that

𝑛∑︁
𝑖=1

𝑥𝑘𝑖
𝑥4𝑖 + 𝑥2𝑖 + 1

𝑥2𝑖 + 𝑥𝑖 + 1
≥ 𝑛

𝑛∏︁
𝑖=1

𝑥𝑖. (2)

This problem appeared as a generalization of a Monthly Problem in the American Mathematical
Monthly [17]. Until now the inequality (2) only had a human proof. That proof required using
an inequality on carrying positive exponents inside a finite sum, followed by an inequality of
Chebyshev, and then an inequality between arithmetic-geometric means. However, by following
the Gerhold–Kauers method, we will prove a stronger version of this inequality without any
prior knowledge and with minimal human interference.

1.3. New dataset

We have put together a dataset of 300 problems in the SMT-LIB language, derived from the
application of the Gerhold–Kauers method to examples given in [9, 10, 11, 13] and (2). These
have been submitted for inclusion in the 2022 release of the SMT-LIB.

Unlike other problem sets in the SMT-LIB, a quarter of these problems have constraints that
involve rational functions instead of purely polynomial constraints. This new characteristic also
calls into question how best to pre-process such objects. There are at least two ways of clearing
any non-constant denominators to get an equivalent expression with polynomial constraints,
and then there is the handling of zeros of any denominators. For every problem involving a
rational function, we generated two equivalent problems in polynomials, where we handled the
denominators in a different way. We will observe different solver behaviour depending on the
conversion method used.

1.4. Plan of the paper

The organization of this paper is as follows. In Section 2, we will briefly introduce the Gerhold–
Kauers method by using it on the new example. Then in Section 3 we will discuss different
ways of clearing denominators before presenting our dataset and some benchmarking results
for it in Sections 4 and 5. We finish with some conclusions.



2. The Gerhold–Kauers method to use CAD for Induction Proofs

2.1. General idea

A mathematical induction proof — at its core — is a finite set of initial conditions together with
the logical structure of the problem implying the correctness of the next step. We require a
discrete parameter, say 𝑛, for the indexing of the initial conditions. Let, our general claim, 𝜑 be
a logical formula (or a collection of logical formulae) in 𝑛 (without loss of generality 𝑛 ∈ Z+)
and possibly other variables. We would like to prove the correctness of 𝜑 by complete induction
of 𝑛. The construction of 𝜑 is done through a difference field construction: we will brush over
that and invite any interested readers to visit Gerhold and Kauers’ original paper [9].

It is not clear from which starting point and with how many (if any) initial conditions one
can gather satisfactory knowledge to prove the induction step. Hence one needs to start with
the selection of a 𝑡 and 𝑟 (both being most likely 1) and attempt to show

𝜓 ∧ (𝜑 ∧ 𝑠(𝜑) ∧ · · · ∧ 𝑠𝑟−1(𝜑)) ⇒ 𝑠𝑟(𝜑), (3)

where 𝜓 is a conjunction of all known assumptions on the parameters, and 𝑠𝑘(𝜑) is the 𝑘-th
shift (in 𝑛) of the original statement 𝜑. Let [𝜑]𝑘 be the explicit evaluation of 𝜑𝑛 at the instance
𝑘 ∈ Z≥0. If we can also confirm that each initial condition [𝜑]𝑘 for 𝑘 = 𝑡, . . . , 𝑡+ 𝑟 − 1 holds
together with (3) then we get an induction proof for all 𝑛 ≥ 𝑡.

In their paper [9], Gerhold and Kauers decide to attempt refuting (3) by instead attempting to
deduce that

𝜓 ∧ (𝜑 ∧ 𝑠(𝜑) ∧ · · · ∧ 𝑠𝑟−1(𝜑)) ∧ ¬𝑠𝑟(𝜑) (4)

would be false. Moreover, they do it in an efficient and iterative way by checking [𝜑]𝑛’s at each
step and extending 𝑟 if (4) is still satisfiable for some selection of variables. A possible variable
selection might be far away from the original problem, however, such an instance triggers the
algorithm to iterate (pick a larger 𝑟) and repeat the process.

2.2. A New Proof of (2)

As an initial step towards the proof of (2), let us start with the claim that, for 𝑥𝑖 > 0, 𝑖 = 1, . . . , 𝑛,
if
∑︀𝑛

𝑖=1 𝑥𝑖 = 𝑛, then
𝑛∏︁

𝑖=1

𝑥𝑖 ≤ 1. (5)

The case 𝑛 = 1 is obvious. The difference ring construction would define x in the place of
𝑥𝑛. Then we define another three variables 𝑋 , 𝑌 , and 𝑍 and their shifts in 𝑛: 𝑠(𝑋) = 𝑋 + 1,
𝑠(𝑌 ) = 𝑌 + 𝑠(𝑥), and 𝑠(𝑍) = 𝑍𝑠(𝑥), where 𝑠(·) is the shift of the variable inside (the next
element in the sequence) and 𝑠(𝑥) is kept as a new variable added to the problem. Here 𝑋
simulates 𝑛, 𝑌 simulates the sum

∑︀𝑛
𝑖=1 𝑥𝑖 and 𝑍 simulates the product

∏︀𝑛
𝑖=1 𝑥𝑖. Assuming

𝑡 = 𝑟 = 1, the logical statement we are trying to refute is(︀
𝑥 > 0 ∧ 𝑠(𝑥) > 0 ∧𝑋 = 𝑌 ∧ 𝑠(𝑋) = 𝑠(𝑌 )

)︀
∧ (𝑍 ≤ 1) ∧ ¬(𝑠(𝑍) ≤ 1) (6)

=
(︀
𝑥 > 0 ∧ 𝑠(𝑥) > 0 ∧𝑋 = 𝑌 ∧𝑋 + 1 = 𝑌 + 𝑠(𝑥)

)︀
∧ (𝑍 ≤ 1) ∧ (𝑍𝑠(𝑥) > 1),



together with the initial condition check [𝑍]1 = 1 ≤ 1. It is very easy to see that the first logical
sentence implies 𝑠(𝑥) = 1 and that together with the last two clauses yields a contradiction.
Therefore, confirming the claim for the initial conditions [𝑋]1, [𝑌 ]1 and [𝑍]1, the induction
step holds and our claim is true for generic 𝑛 ≥ 1.

Similarly, we can prove
𝑛∑︁

𝑖=1

𝑥4𝑖 + 𝑥2𝑖 + 1

𝑥2𝑖 + 𝑥𝑖 + 1
≥ 𝑛, (7)

under the assumptions 𝑥𝑖 > 0 for 𝑖 = 1, . . . , 𝑛 and
∑︀𝑛

𝑖=1 𝑥𝑖 = 𝑛. To simulate the sum
on the left-hand side of (7) and its iterations, is given as [�̂�]1 = 𝑥21 − 𝑥1 + 1 and 𝑠(�̂�) =
�̂� + (𝑠(𝑥)4 + 𝑠(𝑥)2 + 1)/(𝑠(𝑥)2 + 𝑠(𝑥) + 1). For the proof, one can put together the logical
formula to be refuted, similar to (6), with 𝑋 , 𝑌 and the new variable �̂� and easily show that to
be contradiction.

In the same vein, we can prove

𝑛∑︁
𝑖=1

(𝑥𝑖 − 1)
𝑥4𝑖 + 𝑥2𝑖 + 1

𝑥2𝑖 + 𝑥𝑖 + 1
≥ 0, (8)

following similar steps as above with the new variable �̃� , where 𝑠(�̃�) = �̃�+(𝑠(𝑥)−1)(𝑠(𝑥)4+
𝑠(𝑥)2 + 1)/(𝑠(𝑥)2 + 𝑠(𝑥) + 1).

The next step needed to prove (2) is to show

𝑛∑︁
𝑖=1

𝑥𝑗−1
𝑖 (𝑥𝑖 − 1)

𝑥4𝑖 + 𝑥2𝑖 + 1

𝑥2𝑖 + 𝑥𝑖 + 1
≥ 0, (9)

for any 𝑗 ≥ 1. For any fixed positive integer 𝑗 this can be done with a logical solver for QF_NRA.
In this example the logical formula to evaluate becomes

𝑥 > 0∧𝑠(𝑥) > 0∧𝑋 = 𝑌 ∧𝑋+1 = 𝑌 +𝑠(𝑥)∧𝑍 ≥ 0∧𝑍 > 𝑠(𝑥)𝑗(𝑠(𝑥)3−2𝑠(𝑥)2+2𝑠(𝑥)+1),

where 𝑍 simulates the sum on the left-hand side of (9). From the logical structure, we can
deduce that 𝑠(𝑥) = 1 and later conclude that (𝑍 ≥ 0) ∧ (𝑍 < 0) would yield a contradiction
and prove (9). However, this is only possible to achieve on a computer for explicitly chosen
positive integers 𝑗. Otherwise, since the input would not be a collection of polynomials/rational
functions, we could not apply CAD (or other QE methods).

This is where we need a human touch to prove (9) for arbitrary 𝑗 using (8). The case of all
𝑥𝑖 = 1 is trivially true. Otherwise, since

∑︀𝑛
𝑖=1 𝑥𝑖 = 𝑛, there exists at least one 𝑎 ∈ {1, 2, . . . , 𝑛}

such that 𝑥𝑎 > 1 and at least one 𝑏 ∈ {1, 2, . . . , 𝑛} such that 𝑥𝑏 < 1. Let𝐴 be the set of all such
indices between 1 and 𝑛 such that 𝑥𝑎 > 1. Similarly, let 𝐵 be the set of all indices of all 𝑥𝑏 such
that 0 < 𝑥𝑏 < 1. 𝐴 and 𝐵 are both finite sets since all the indices are chosen from 1 to 𝑛. For
non-empty 𝐴 and 𝐵, notice that 𝑥𝑗−1

𝑎 ≥ 𝑥𝑎 > 1 and 0 < 𝑥𝑗−1
𝑏 ≤ 𝑥𝑏 for any 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵.

So by multiplying the 𝑖-th summand of (8) with 𝑥𝑗−1
𝑖 , we either keep the summand the same (if

𝑗 = 1) or increase the contribution of the positive terms if 𝑖 ∈ 𝐴. Similarly, by multiplying the
𝑖-th summand of (8) with 𝑥𝑗−1

𝑖 , we either keep the summand the same (if 𝑗 = 1) or shrink the
contribution of the negative terms if 𝑖 ∈ 𝐵. Since (8) is assumed to hold and this modification



to the summands increases the positive contribution while decreasing the negative contribution
of the summands, the inequality (9) is holds for any positive integer 𝑗 as well.

If we sum (9) over 𝑗 = 1, . . . , 𝑘 we get

𝑛∑︁
𝑖=1

(𝑥𝑘𝑖 − 1)
𝑥4𝑖 + 𝑥2𝑖 + 1

𝑥2𝑖 + 𝑥𝑖 + 1
≥ 0.

Adding (7) to this yields
𝑛∑︁

𝑖=1

𝑥𝑘𝑖
𝑥4𝑖 + 𝑥2𝑖 + 1

𝑥2𝑖 + 𝑥𝑖 + 1
≥ 𝑛, (10)

under the same assumptions of the original problem (2): 𝑘, 𝑛 ∈ Z+, 𝑥𝑖 > 0 and 𝑥1+· · ·+𝑥𝑛 = 𝑛.
Finally, using inequality (5) on the right-hand side of (10), we prove (2). One highlight is that

we proved these inequalities without any prior knowledge of any mathematical inequalities.
Moreover, note that (10) is a sharper inequality than (2).

2.3. Implementation

An implementation of this method has been completed by Kauers: the ProveInequlity
procedure in the SumCracker Mathematica package [10] does the identification of the variables
to be included and their shifts automatically, and ships the statement to be refuted directly to
the CAD implementation of Mathematica. The proof of (8), in Mathematica, then turns into a
single command:

ProveInequality[SUM[(x[k]-1)(1+x[k]^2+(x[k])^4)/(1+x[k]+(x[k])^2),
{k,1,n}]>=0,Using->{x[n]>0,SUM[x[k],{k,1,n}]==n},Free->{x},Variable->n]

which terminates with an answer in milliseconds.

2.4. Suitability for SMT

A key-point to stress is that Gerhold–Kauers method actually generates and answers satisfiability
problems, in the form (1), with all the existential quantifiers hidden but there. At each attempt,
the Gerhold-Kauers method checks the initial conditions and it looks to see if the refuted
induction-step (4) is unsatisfiable. Furthermore, any known information about the pieces of
𝜑 can be tagged alongside of (4) and get fed to the CAD machinery to further restrict the
search space and get the desired unsatisfiable answer. Their implementation simply used the
CAD implementation of Mathematica to see in which regions (4) can be satisfied. However,
neither where this formulae is satisfied, nor the cylindrical structure of the decomposition to
refute satisfiability, is essential to the problem. Thus CAD could be safely replaced with any
SMT solver that can tackle QF_NRA and may benefit from the incremental data-structures their
internal machinery usually possess.



3. Appearance and Handling of Rational Functions

In the automated proof sketches of (7) and (8), we already saw the possibility of rational
functions arising. The shifts of the variables �̂� and �̃� , which were used to simulate the sum
and their shifts, introduced a rational function in the induction hypothesis clauses. In those
examples above, the rational function could be simplified to a polynomial expression, but this is
not true in general. We see that the satisfiability problems coming from this method naturally
introduces rational functions.

Rational functions inclusion and handling in satisfiability problems seems to be a somewhat
sensitive topic in the SMT community and there are discussions about whether and how best to
allow SMT-LIB to include rational functions in its language. While we leave that discussion for
later, we will mention some possible pre-processing ways that can help us remedy the situation
in a mathematically consistent way.

Assume that we are given a satisfiability problem where one of the clauses includes multi-
variate rational functions after simplifications. For example

𝑃 (x)

𝑄(x)
𝜎
𝐹 (x)

𝐺(x)

where 𝑃,𝑄, 𝐹,𝐺 ∈ Q[x]1, gcd(𝑃,𝑄) = gcd(𝐹,𝐺) = 1, and 𝜎 ∈ {>,<,≥,≤,=, ̸=}. We
can simplify this problem to 0, by subtraction followed by any simplifications which handle a
problem of the form

𝑓(x)

𝑔(x)
:=

𝑃 (x)𝐺(x)− 𝐹 (x)𝑄(x)

𝑄(x)𝐺(x)
𝜎 0, (11)

with gcd(𝑓(x), 𝑔(x)) = 1.
Handling rational functions in a mathematically consistent way is straightforward when the

relation is an equation or an inequation. If 𝜎 is = or ̸= we can simplify (11) as

𝑓(𝑥) 𝜎 0 ∧ 𝑔(𝑥) ̸= 0.

There are two equivalent formulations of (11) in the polynomial language when 𝜎 is an inequality.
One way is to avoid any sign considerations for the denominator polynomial 𝑔(x) and multiply
both sides of the relation (11) with its square. However, the poles of the original rational function
should not be forgotten and be reflected in the outcome. This way the equivalent formulation
of (11) is

𝑓(x)𝑔(x) 𝜎 0 ∧ 𝑔(x) ̸= 0. (12)

The disadvantage of this method is the likely rise in the degrees of the variables. When 𝑓(x)
and 𝑔(x) are multiplied together some variables can get out of reach of the degree dependent
QE techniques, such as virtual term substitutions [7].

Another possibility is to consider the sign of 𝑔(x) and split the problem into two pieces
driven by the guards 𝑔(x) > 0 and 𝑔(x) < 0. The statement we get using this approach is

(𝑔(x) > 0 ∧ 𝑓(x) 𝜎 0) ∨ (𝑔(x) < 0 ∧ 0 𝜎 𝑓(x)). (13)
1In this discussion, the rational field Q can be replaced by the reals R, but here we restrict ourselves to stay

within the limits of the SMT-LIB language.



Although this time the degrees of the variables stay lower, the size of the logical problem
has grown. If the satisfiability problem starts with 𝑛 clauses including rational functions this
problem would split it to a disjunction of 2𝑛 statements.

We suggest that the handling of rational functions be left to the SMT solvers. If users make
this choice they may inadvertently disadvantage a solver. We elaborate on this later in §5.4.

4. Dataset and Benchmarking

4.1. Dataset

We went through most examples given in [9, 10, 11, 13] and equations (5), (7), and (8) (the
parts of the proof of (2) which can be proven automatically) to describe them as non-linear
arithmetic satisfiability problems in the SMT-LIB language, creating a dataset of 300 new SMT-
LIB benchmarks. This was done by translating the original CAD calls of the ProveInequality
procedure to SMT-LIB using the SMTLIB package in Maple [18]. This package identifies the
existence of a rational function in a clause and adds the denominator-is-nonzero clause.

When problems involved a rational function in these calls then we also created two additional
equivalent formulations of the problem, by clearing out the denominators in the basic way
(12) and in the disjunctive way (13) as demonstrated above. The original examples with only
polynomials and these two later polynomial-made examples were submitted in the call for new
benchmarks for the 2022 SMT Competition2.

In one group of our problems (the SignPattern problems from [9]) the original problems
contains a

√
5. Mathematica’s CAD implementation could handle these, but algebraic numbers

are not permitted within the definition of QF_NRA in general. Thus we introduced the clauses
𝑦2 = 5 ∧ 𝑦 > 0 to bring the problem into QF_NRA. We note that the iteration of these clauses
created high exponents for the pseudo-variable 𝑦s: this was left for the solvers to handle.

4.2. Solvers

The SMT solvers used in this benchmarking are Z3 (v 4.8.8) [19] and Yices (v 2.6.4) [20], which
both utilise the NLSAT algorithm [6] for QF_NRA; and CVC5-Linux [21] (v 1.0.0) which uses the
Cylindrical Algebraic Coverings algorithm for QF_NRA [5]. These three were selected as the
strongest performers on QF_NRA in recent years.

We also evaluated some of the tools in Computer Algebra Systems, Maple and Mathe-
matica: the versions used are Maple 2022 and Mathematica 12.0.0. In Maple, we used the
RegularChains:-QuantifierElimination command [22] to eliminate the calls in (1) for-
mat. We also used the soon to be released Maple package QuantifierElimination [23].
The former utilises CAD constructed via triangular sets technology and the latter CAD with
Lazard projection interlaced with cubic virtual term substitutions. In Mathematica, we used
the CAD command [24], as was used by Kauers’ ProveInequality originally; the QE func-
tion Resolve which utilises also other QE methods such as virtual term substitution; and the
meta-solver Reduce which makes use of Mathematica’s other solving tools in addition.

2https://smt-comp.github.io/2022/

https://smt-comp.github.io/2022/


Besides Maple’s RegularChains implementation, all the other functions and solvers ac-
cepted inputs with rational functions.

4.3. Benchmarking Methodology

In general we followed the methodology explained in [25]. All benchmarks were undertaken
on a computer running openSUSE Leap 15.3 with 16GB of RAM and an Intel Xeon CPU E5-1650
v3 running at 3.50 GHz. All functions were given 20 minutes to attempt each of these problems.

We display our results visually using survival plots. To produce these we first solve each
problem 𝑞𝑖, noting the time 𝑡𝑖 (up to our chosen threshold of 1200 seconds). Then for each
solver we sort the 𝑡𝑖 into increasing order. discard the timed-out problems, and plot points
(𝑘,

∑︀𝑘
𝑖=1 𝑡𝑖). This approach does not guarantee that the same problems are returned with an

answer in the chosen threshold from different implementations. However, for the cumulative
problem set survival plots effectively encapsulate a lot of information about the success rate
and the total time taken to solve for the successful answers.

5. Analysis

5.1. Overall performance

Figures 1 and 2 show the survival plots on different scales of the solver time. It is clear that,
for this dataset, Z3 is superior: it timed-out only in one example. It is then followed by Yices
(timed out on 2 examples), then the various implementations in Mathematica (4, 7 and 9 time
outs for Resolve, Reduce and CAD respectively) followed by CVC5 (16 timeouts). The two
Maple functions performed far less well: RegularChains did not accept rational functions at

Figure 1: Survival plot of benchmarks with the time scale up to 8000 seconds.



Figure 2: Survival plot of benchmarks with the time scale up to 200 seconds.

all, and both functions took far longer amounts of time to reach their conclusions. We do note
that Maple has also available direct calls to Z3 via SMTLIB:-Satisfiable.

It is not surprising that the SMT-solvers excel on satisfiability problems compared to full
QE implementations using CAD. Satisfiability is a sub-problem of QE with lower complexity.
What is surprising is that Mathematica’s QE is competitive with the SMT-solvers. The local
projections used [26] may offer similar benefits to the model based SMT searches of [6], [5]; and
we also note Mathematica has access to sophisticated logical simplification routines [27]. The
DEWCAD project is working now to address the shortcoming’s in Maple by building in Maple
dedicated algorithms for satisfiability problems similar to those implemented in SMT [28].

5.2. Algebraic Number Substitutions

We suspect some timeout problems are due to a failure to substitute for algebraic numbers
in the problems described in the final paragraph of Section 4.1. In the SignPattern prob-
lems discussed there, the exponent of a variable 𝑦 (introduced to do bookkeeping of

√
5) in

polynomials gets very high. The difficulty of this problem lowers immensely if a system can
identify and at least utilize the second degree equational constraint 𝑦2 = 5. We believe Z3
does this substitution and lowers the cost of calculations immensely. We also believe that most
implementations would have been able to answer these questions in a matter of seconds if
they were to do this preprocessing before asking for the satisfiability. For example, the CAD
implementation of Mathematica can answer SignPattern\_Lemma4a-f examples from the
dataset in about half a minute to a minute each, but when the 𝑦2 = 5 is used and the degree of
𝑦 is reduced to a only linear powers, these numbers drop to under 10 seconds each. We note
that CVC5 performs particularly badly on these problems.



(a) Matematica’s CAD in comparison to its Resolve (b) Z3 in comparison to Yices

Figure 3: Scatter plots of noticeable time differences. Runtimes measured in seconds. Blue data points
are SAT examples and red are UNSAT.

5.3. Curiosities

On our examples, CVC5 is outperformed by Z3 and Yices overall, and it is outperformed by
Mathematica for large compute times (see Figure 1). This is somehow at odds with the SMT
Competition results of 20213. In addition to the algebraic numbers issue above, the poor
performance may also be down to the presence of rational functions. Although CVC5 accepts
rational functions in its input, we do not think that it does much preprocessing. The SMTLIB
Maple package that was used to translate these examples to SMT-LIB language adds clauses to
keep the denominators non-zero. Therefore, we never experience CVC5 encountering a division
by zero and quitting or throwing an exception. However, we observe that it takes a much longer
time, and even times-out on occasion for the problems with rationals where others do not.

Mathematica’s Resolve and Reduce solve slightly more problems that its CAD procedure.
But at one point CAD overtakes Reduce. I.e. sometimes the cost of the extra considerations
Reduce does hinders its success (see Figure 3a). This indicates that there is scope for a better
meta-algorithm to decide when Reduce resorts to CAD.

Another curious observation between front runners Z3 and Yices is that Z3 is actually slower
than Yices on the SAT problems. But since Z3 was much faster to identify that a problem is
unsatisfiable and there were more UNSAT problems in the dataset, it gained victory overall. See
Figure 3b. To the best of our knowledge Z3 and Yices both rely on NLSAT as the underlying
theory algorithms. So it suggests the difference is in either the heuristics inside that, or the
other incomplete methods tried first.

One can also observe from Figure 1 that QuantifierElimination Maple package is cu-

3https://smt-comp.github.io/2021/results.html
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mulatively slower than RegularChains:-QuantifierElimination on this problem set,
overtaking eventually it only due to its handling of rational functions. Nevertheless, even when
only considering examples with polynomial entries, QuantifierElimination is faster on
14% of the examples. These examples might be where the virtual term substitution can be
applied to make a significant difference.

5.4. Effects of Denominator Clearance

Finally, we observe that how we clear denominators affects conclusions about the best solver.
We focus our attention to the rational function calls with their denominators cleared using (12)
or (13). For polynomial calls acquired by (12), Z3 is still the best solver but the second best solver
changes hands from Yices to Mathematica’s Resolve function both in time and in the number
of problems solved. However, when we focus on rational call images under (13) denominator
clearance, we see that Mathematica Resolve solves one extra problem than Z3 and Yices.

6. Conclusions

Our first conclusion is that SMT solvers do very well on most of the examples in this problem
set, outperforming computer algebra systems designed to tackle broader QE problems (Section
5.1). We also observe that the solvers perform differently on this new dataset than they did on
the QF_NRA section of the SMT-LIB overall in the most recent competition. This shows us that
it offers some new characteristics, and they continue the much needed diversification of the
QF_NRA benchmarks. They also exposes some interesting strengths and weaknesses of solvers
that the developers may find interesting to study (Section 5.3).

Our second conclusion is that is a need for further work on the SMT-LIB language for QF_NRA
to decide how best to deal with rational functions. We observed that the choice of how we clear
denominators effects conclusions over the best solver (Section 5.4). At the moment, the SMT-LIB
seems to suggest the user should make this choice, but would it not be more appropriate for the
solver to do it? It clearly introduces a scope for new heuristics that researchers can explore.
The authors support that rational function calls be included in the SMT-LIB language, with
a semantics that implies the denominator be non-zero. But this must be defined so that the
meaning is mathematically consistent and avoid getting conflicting results from solvers.

Our third conclusion is in a similar vein: we suggest the SMT-LIB considers allowing the use
of algebraic numbers in the input (Section 5.2). There are 21 examples under the SignPattern
header, where we replaced

√
5 with a variable 𝑦 and two added clauses that 𝑦2 = 5 ∧ 𝑦 > 0.

Not only that, we let the iterations to grow the degree of 𝑦s and left the preprocessing to the
solvers. On this dataset the usually competitive CVC5 performed poorly. But if we exclude
this 21 problem subset, then among the polynomial calls CVC5 beats Mathematica methods in
cumulative time. Allowing algebraic numbers in the problem statement stretches the definition
of polynomial (usually assumed to have rational coefficients). But many of the theory algorithms
such as CAD can handle these and they can be encoded into actual polynomials. Having the
user do the encoding can make the problems artificially harder for solvers.
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