
Interplay of viscosity and wettability controls fluid displacement in porous
media

Saideep Pavuluri,1 Ran Holtzman,2 Luqman Kazeem,1 Malyah

Mohammed,1 Thomas Daniel Seers,1 and Harris Sajjad Rabbani1, ∗

1Department of Petroleum Engineering, Texas A&M University at Qatar, Education City, Doha, Qatar
2Fluid and Complex Systems Research Centre,

Coventry University, Coventry, United Kingdom

Direct numerical simulations are used to elucidate the interplay of wettability and fluid viscosities
on immiscible fluid displacements in a heterogeneous porous medium. We classify the flow regimes
based using qualitative and quantitative analysis into viscous fingering (low M), compact displace-
ment (high M), and an intermediate transition regime (M ≈ 1). We use stability analysis to obtain
theoretical phase boundaries between these regimes, which agree well with our analyses. At the
macroscopic (sample) scale, we find that wettability strongly controls the threshold M (at which
the regimes change). At the pore scale, wettability alters the dominant pore-filling mechanism. At
very small M (viscous fingering regime), smaller pore spaces are preferentially invaded during imbi-
bition, with flow of films of invading fluid along the pore walls. In contrast, during drainage, bursts
result in filling of pores irrespective of their size. As M increases, the effect of wettability decreases
as cooperative filling becomes the dominant mechanism regardless of wettability. This suggest that
for imbibition at a given contact angle, decreasing M is associated with change in effective wetting
from neutral-wet (cooperative filling) to strong-wet (film flow).

Keywords: Multiphase flow, Displacement patterns, Direct Numerical Simulations, Viscosity ratio,
Wettability

I. INTRODUCTION

Fundamental understanding of immiscible fluid-fluid displacements in porous media is vital for the
safe and efficient operation of a large number of engineering applications. Examples include sequestra-
tion of carbon dioxide [1, 2], the fate of non-aqueous phase liquid contaminants (NAPLs) in ground-
water [3, 4] and their remediation [5], geothermal energy [6, 7] and extraction of hydrocarbons [8, 9].
The displacement patterns are controlled by the interplay of capillary, viscous, inertial and gravita-
tional forces, which in turn are controlled by a wide range of parameters, including flow rates, fluid
properties (viscosity, density, surface tension), wettability, and medium properties (pore sizes, shapes
and connectivity) [10].

The classical phase diagram of fluid displacement regimes predicts the transition between compact
displacements, viscous fingering and capillary fingering patterns considering the capillary number Ca
(ratio of viscous to capillary forces) and viscosity ratio M [11, 12]. These seminal works did not
consider however the effect of wettability—the affinity of one fluid relative to another to adhere to the
solid surface, measured via the contact angle θ. Instead, they considered only the extreme cases of
drainage and imibibition for perfect wetting, that is the displacement of a perfectly nonwetting and
wetting fluid, respectively. Recent works however expose the crucial impact of wettability, showing it
substantially affects the pore filling mechanisms and thus the displacement patterns [13–20].

To fill this gap, a few studies used numerical simulations to include the effect of wettability on
displacement morphology. Primkulov et al. [21] used dynamic pore network modelling to decipher
the interplay between wettability, viscosities and flow rates, extending the classical phase diagram
in [11]. The authors considered an idealized porous medium made of cylindrical pillars, for which
analytical expressions providing the advancement of the meniscus via various filling mechanisms can
be established [22]. Lattice Boltzmann (LB) simulations were used to study the impact of wettability
and viscosity on the displacement efficiency for viscous fingering, on a similar idealized medium [23]. A
more realistic 3-D pore geometry, extracted from from micro-CT images of sandstone, was used in LB
simulations to study how wettability and geometrical pore-scale heterogeneity affects the displacement,
for two different viscosity ratios, favorable and unfavorable (M >> 1 and M << 1, respectively) [24].
These works showed a transition from viscous fingering (VF) to compact displacement (CD) with
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increasing M , and the existence of an intermediate (VF/CD) regime, akin to the transition regime
between CF and CD found earlier at lower flow rates (lower Ca) by Hu et al. [18].

Here, we systematically explore the synergistic relationships between wettability and fluid viscosities
in a geologically realistic medium under viscous-dominated flow. We use Direct Numerical Simulations
(DNS), which allow consideration of the physics (solving the fundamental flow equations) for the
intricate pore geometry derived from a micro-CT image of a sand pack. The high spatial and temporal
resolution provided by DNS can capture sub-pore scale events such as interfacial readjustments [19, 25],
cooperative filling [26], flow of films along the solid surfaces [27], and non monotonic behaviour of the
capillary pressure [26, 28, 29]. This allows us to relate the large-scale features of invasion patterns
and displacement efficiency to the pore-scale mechanisms controlling it. Our simulations capture the
different displacement regimes (VF, CD and VF/CD) showing that the threshold M for the crossover
between the regimes increases with the wettability. We also establish the dependence of the dominant
pore filling mechanisms on the combination of M and wettability. In particular, we show that for
imbibition at a given contact angle, the effective wettability changes with viscosity: from neutral-
wetting (cooperative filling) to strongly-wetting (film flow) with decreasing M .

II. MATHEMATICAL MODEL

A. Governing equations

In DNS, the isothermal flow dynamics of immiscible and incompressible multiphase flow systems are
governed by the Navier-Stokes equations, solved for each fluid phase, where the fluid-fluid interfaces
boundary conditions that ensure continuity in the velocity field are set. The stress gradients can be
computed via the Young-Laplace equation [30]. Though this approach provides the interface dynamics,
it is computationally demanding as it requires solving for a complex moving boundary problem. The
Volume of Fluid (VOF) method simplifies the computations by considering the two fluid phases as a
single mixture [31]. This is done by defining a colour function α ∈ [0, 1] which indicates the volume
occupied by a specific fluid in a control volume: when α is equal to 0 or 1 the volume is occupied by
a single phase, whereas 1 > α > 0 indicates the co-existence of two fluids seperated by at least one
fluid-fluid interface. VOF then solves for conservation of both mass

∇ ·U = 0 (1)

and momentum

∂(ρU)

∂t
+∇ · (ρUU) = −∇p+∇ · µ(∇U +∇UT ) + Fbdy + Fcap. (2)

In Eqs. 1–2, U is the velocity, t is time, p is pressure, Fbdy and Fcap are the external body (for
example: gravity) and capillary forces, respectively. Superscript T denotes a transpose. Considering
a single mixture, its properties are assumed to be a linear combination of the two fluids comprising it;
for example, denoting the wetting phase by α = 1, the density ρ and the dynamic viscosity µ of the
mixture are

ρ = ρwα+ ρn(1− α),

µ = µwα+ µn(1− α).
(3)

The capillary forces are

Fcap = σknIδI (4)

where σ is the surface tension, k is the interface curvature, nI is the unit normal to the interface and
δI is a Dirac delta function, which is used to restrict the capillary forces to act only at the interface.
Various VOF formulations can be used to define how the normal to the interface nI and the Dirac delta
function δI are discretized, see Pavuluri et al. [32]. In this work we use the conventional Continuum
Surface Force (CSF) formulation [33], in which nIδI from Eq. (4) are approximated by the gradient
of the color function ∇α, providing

FCSFcap = σk∇α. (5)
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The interface curvature k is computed as,

k = −∇ · nI = −∇ · ∇α
|∇α|

. (6)

Closure to the system of equations is provided by the following advection equation for the color function:

∂α

∂t
+∇ · (Uα) = 0. (7)

B. Numerical Implementation

We use the VOF method implemented in OpenFOAM® (https://openfoam.org) with the inter-
Foam solver, where the domain is discritized in space using the finite volume method, using an Eulerian
mesh. The field variables such as velocity U, pressure p and color function α are stored at the cell
centers. Time is discritized by first order Euler scheme. The gradient terms are discritized using Gauss
linear scheme, of second order accuracy. The advection term in the Navier-Stokes equation (second
term in the left hand side of Eq. (2)) is solved using the limited linear difference scheme. As the color
function is required to be bounded, vanLeer scheme [34] is used for the advection of the color function
in Eq. (7). As many other numerical schemes, VOF suffers from numerical diffusion and smearing of
interfaces, that arises from solving the discretized advection equation of the color function. To reduce
this numerical artefact, an additional term α(1− α)Ur is added to Eq. (7), where the so-called com-
pression velocity is approximated as Ur = min[cαUcv,max(Ud)] [35]. cα is the compression coefficient
set to one based on the studies of Deshpande et al. [36], Hoang et al. [37], Ferrari and Lunati [38],
Ucv refers to the velocity in a specific control volume and max(Ud) refers to the maximum velocity
in the entire porous medium. The term α(1− α) restricts the compression velocity to act only at the
interfaces.

The pressure-velocity coupling in the Navier-Stokes equations are solved using the Pressure Implicit
with Splitting of Operators (PISO) algorithm [39]. To generate the discretized pore space for the
simulations, we first use a rectangular mesh with cell size of ∆x = ∆y = 13.5 µm, and then re-
meshed using the snappyHexMesh library of OpenFOAM®. The time step size is chosen based on the

Brackbill number tBk =
√
ρavg∆x

3/(πσ) where ρavg is the average density of fluids in the domain

and ∆x = 13.5 µm is the cell size [33]. To reduce computational runtime, we set the time step size
∆t ≈ 3tBk, which for our settings provides ∆t = 10 µs. The parameters describing the physical
properties are provided in Section II C.

C. Settings and parameter Values

We simulate displacement in a geologically-realistic medium, obtained from a 2-D cross section of
micro-CT image of a sand pack [40] Fig. 1. While our 2-D model geometry can represent sub-pore
pore filling mechanisms in the X−Y plane, such as film flow along solid surfaces of the particles (filling
the entire gap thickness in the Z direction), it cannot represent flows in the out-of-plane (Z) direction,
where only part of the gap is filled. Thus, our model excludes corner flows [41, 42] and wetting layer
formation along the top and bottom plates. These mechanisms become important for the invasion
of strongly wetting fluid (“strong imbibition”) and strongly non-wetting fluids (“strong drainage”, at
high Ca) at M << 1 [15, 21]. The simulated sample has a porosity of φ = 27.8% and dimensions
are 6.75 mm and 14.05 mm in the X and Y direction. It is discretized into 145000 cells using the
snappyHexMesh library of OpenFOAM®. The zoom-in shows the intricate nature of the geological
media, with highly nonuniform pore bodies and throats, and dead ends (Fig. 1b). The mesh contains
both Cartesian and non-Cartesian cells; non-Cartesian cells are used close to the boundaries with the
solid grains, to capture the orientation of the pore spaces.

The boundary conditions are fixed injection velocity of the invading fluid at the inlet face at Ui =
70 mm/s, fixed pressure p = 1 atm at the outlet, and no-flow at the other two (lateral) boundaries (Fig.
1a). The surfaces of solid grains are subjected to no-slip boundary conditions. The interface normal
nI pointing towards the invading phase orients the interface according to nI = nwcos(θ) + twsin(θ),
where nw is the normal to the solid grain surfaces, tw is the tangent to the solid grain surfaces and θ
is the equilibrium contact angle that the injected phase makes with the solid surfaces [33].

https://openfoam.org
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FIG. 1. (a) the simulated two-dimensional porous medium. The pore space and solid grains are shown in grey
and brown, respectively. (b) zoom-in showing the meshed pore space.

We vary the contact angle in the range of θ ∈ [0◦, 180◦] with θ = 20◦ increments. Here, θ refers
to the equilibrium contact angle that the injected fluid makes with the solid surfaces. Imbibition and
drainage refer to θ < 90◦ and θ > 90◦, respectively. At θ = 0◦ (“strong imbibition”), the injected
fluid perfectly wets the solid surfaces. At θ = 180◦ (“strong drainage”), the injected fluid is perfectly
nonwetting, such that it repels from the solid surfaces. The viscosity ratio, M = µi/µd, was varied
between 0.01 and 100, by setting the maximum viscosity of one fluid to µmax = 0.1 kg/ms and tuning
the viscosity of the other. Here µi and µd are the viscosities of the invading and defending fluids,
respectively. We set the density of both fluids to ρ = ρi = ρd = 1000 kg/m3, and the surface tension
to σ = 0.07 kg/s2. The capillary number, defined here as Ca = Uiµmax/σ was fixed at 10−3. We
chose this Ca value in order to focus on viscous-dominated flow, vs. the capillary-dominated flow at
Ca ≤ 1× 10−4 investigated elsewhere [11, 43, 44]. The total number of simulations were 90: 10 values
of θ and 9 values of M . Simulations were run using parallel computations with 16 Intel Xeon E5-2690
processors (clock speed 2.60 GHz). With that, simulating 1 physical second of flow requires runtime
of ∼3.5 hours.

D. Image processing for quantitative analysis of patterns

Quantitative analysis of the observed patterns at breakthrough is done using two characteristics: (i)
the displacement efficiency De, which is the volume of the displaced defending fluid normalized by the
total pore volume; and (ii) the fractal dimensions Df , an estimation of the roughness of the interface,
which we compute using the box-counting method [45]. The fractal dimensions in 2-D is bounded at
Df ∈ [1 − 2], where Df = 1 and Df = 2 represent the highest possible roughness and a completely
compact interfacial morphology, respectively. These computations are done on a binary format (white
for the injected fluid, black for everything else). Conversion of the invasion images into binary format
was done using Fiji software [46].
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III. RESULTS

A. Displacement Patterns

We begin with a qualitative analysis based on the visual appearance of the patterns, followed by
quantitative characterization using fractal dimension. Figure 2 shows the simulated patterns at break-
through for the 90 conditions (varying independently M and θ) considered here. The displacement
patterns change from viscous fingering (VF) to compact displacement (CD), with an intermediate
regime (VF/CD) exhibiting a mix of features from both. VF, characterized by long and narrow fin-
gers, emerges at M ≤ 0.01 irrespective of θ. This was also observed in [21], however at M < 0.5.
At M ≥ 10, the invading fluid fills most of the pore space leading to CD, again irrespective of θ. At
intermediate values of M ≈ 1, a transition between VF and CD occurs; the M value for the transition
among the regimes depends on θ. The fluid fingers in imbibition are slightly wider compared to those in
drainage, also observed in [23]. This is due to the increased tendency of the invading fluid to minimize
contact with the solid surfaces in drainage.

Supporting material provides three videos of the invasion processes occurring at θ = 60◦ forM = 0.01
(VF, Video 1), 1 (VF/CD, Video 2) and 100 (CD, Video 3). For M = 1, θ = 60◦ (Video 2), we notice
the developed fingers propagating ahead of the compact displacement front. This displacement pattern
eventually results in showcasing the traits of both VF (towards the outlet) and CD (towards the inlet).

Next, we analyze the patterns quantitatively, using (a) the displacement efficiency De; and (b) the
fractal dimensions Df . The more compact, less preferential invasion is characterized by larger De

and Df (Fig. 3). Consequently, as the invading fluid becomes more wetting i.e. as θ decreases, both
De and Df increase, in most cases regardless of M . Similarly, for a given θ, increasing M stabilizes
the displacement thus increasing De and Df . The efficiency increases from De < 30% at M = 0.01
and θ = 180◦ (drainage at non-favorable viscosity ratio, VF) to De > 80% at M = 100 and θ = 0◦

(imbibition at favorable viscosities, CD).
Combining the qualitative classification of the 90 simulated patterns (based on visual appearance,

cf. Fig. 2) with their Df values, allows us to establish the corresponding range of Df values for each
regime: Df < 1.6 for VF, Df = 1.6− 1.83 for intermediate (VF/CD) regime, and Df > 1.83 for CD;
our Df values agree well with published values for these regimes [47]. Plotting these in the form of a
phase diagram, provides a quantitative estimation of the phase boundaries between regimes (dashed
green line in Fig. 4). These phase boundaries (dashed green line) agree well with theoretical values
obtained using the classical stability analysis by Saffman and Taylor [48] (plotted as green dots in
Fig. 4); for derivation details see Appendix A. The value of M at the boundary between regimes
increases with θ, in particular for the crossover between VF and VF/CD (Fig. 4).

B. Pore Filling Mechanisms

The pore-scale mechanisms, controlling the manner by which pores are filled, eventually dictate the
larger, sample (macroscopic) scale patterns. Valuable information about these mechanisms is obtained
here by analysing the pore size distribution (PSD) of the invaded pores. The pore sizes are determined
using the distance transform watershed method, according to the maximum diameter of an inscribed
circle ps which fits in them [49]. We classify pores into 3 size groups: small for ps <= 0.1 mm,
medium for 0.1 mm > ps ≤ 0.2 mm and large for 0.2 mm > ps ≤ 0.3 mm. The number of invaded
pores (normalized by the total number of invaded pores) N∗

i for different pore size distributions and
for nine M, θ combinations is shown in Fig. 5. This demonstrates the strong effect of wettability at
small (unstable) viscosity ratio, M = 0.01 (VF; Fig. 5a). In contrast, it shows the small effect of θ in
stable, compact displacement, with M = 100 (CD; Fig. 5c). It is also interesting to examine the PSD
symmetry: the invaded PSD is relatively symmetric (and uniform) for M = 100, slightly skewed for
M = 1, and strongly skewed for M = 0.01 at strong imbibition (θ = 0◦) (Fig. 5). To explain this, we
further analyse the pore filling mechanisms during individual invasion events.

We investigate the pore filling mechanisms in a small region composed of a few pores both qualita-
tively (visually) and quantitatively through the evolution of the local capillary pressure pc. The local
capillary pressure, pc = pn − pw where pn and pw are the volume-average non-wetting and wetting

phase pressure, respectively, is computed as pi =
∑
piVc∑
Vc

where i ∈ (w, n) and Vc is the volumes of

the computational cells within the analyzed region. We track the evolution of the local pressure pc vs.
the local wetting phase saturation S∗

w. The latter is normalized by the maximum Sw attained as the
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FIG. 2. Fluid displacement patterns for different contact angles θ and viscosity ratios M . The invading fluid is
shown in red, defending fluid in black and solid grains in grey. The continuous green lines indicate transition
between flow regimes: viscous fingering (VF) to intermediate (VF/CD) and intermediate to compact (CD).

invading fluid reaches breakthrough on all four boundaries of the window of observation (red rectangle
in Fig. 6). In imbibition, we find that pores are filled primarily by two mechanisms: (i) film flow
and (ii) cooperative pore filling, depending on the viscosities (Fig. 6). At M = 0.01 (VF), the wetting
phase advances as thin films coating the solid surfaces [15] (Fig. 6b). With this mechanism, the
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invasion progresses predominantly through smaller pores, in accordance with the PSD analysis (Fig.
5a.) The evolution of pc shows a decreases in pc magnitude upon imbibition (i.e. increasing S∗

w), see
Fig. 6d, which can be due to the formation of wetting layers that eventually results in the formation
of smaller interfacial curvatures pc ∝ k. At moderately-high M of 1− 100, cooperative filling becomes
the dominant mechanism (Fig. 6c), resulting in a more stable, compact front. This mechanism fills
the various pore sizes more uniformly than at M = 0.01, as can be seen by comparing the PSD of
filled pores in Fig. 5b–c (moderately-high M) vs Fig. 6a (M = 0.01). The local pressure pc drops (by
∼ 500 Pa) until S∗

w ≈ 0.3 as the invading fluid reaches the entrances of the pore body. As the invasion
continues, several interfaces merge which increases pc at S∗

w = 0.4. Following that, cooperative pore
filling continues and pc reaches a steady value as the average menisci curvature during these events
does not change significantly.

For strong drainage (θ = 180◦), the two dominant pore filling mechanisms are (i) intermittent local
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FIG. 6. Pore filling mechanisms in strong imbibition (θ = 0◦). Focusing on small region containing several
pores (red rectangle in panel a), progression of invasion is shown as successive snapshots (injected fluid in
pink, defending fluids in black and solid in white), for unfavorable and favorable M , 0.01 and 100, respectively
(panels b, c). At M = 0.01, the injected fluid propagates in the form of wetting layers that coat the solid
surfaces (green arrow), invades smaller pores (b). At M = 100, cooperative pore filling (green arrows) is the
dominant mechanism, leading to more uniform invasion of both small and large pore (c). Panels d–e show the
evolution of the local capillary pressure with saturation of wetting fluid (S∗

w) for the two mechanisms (arrows
indicate direction of change in S∗

w with time).

jumps (“bursts”) and (ii) cooperative filling (Fig. 7). At M = 0.01, the pores are filled by a sequence
of localized bursts, leading to VF (Fig. 7b). As in this regime viscous forces dominate over capillary
forces, the location of invasion depends more on the global pressure gradients controlled by pore
connectivity and less on the local pore sizes. This is why the PSD in this case is relatively uniform
(Fig. 5a). The local pressure pc decreases as drainage progresses (decrease in S∗

w; Fig. 7d). This can
be explained due to the formation of menisci that remain stagnant due to interfacial readjustments and
the evolution of the curvatures of the invading fluid front. As M increases, cooperative filling becomes
dominant, making the displacement pattern more compact (Fig. 7d), and increasing the uniformity
of invaded pore sizes (5b–c). While the mechanism seems similar to that in imbibition at high M , in
drainage as the invading fluid is less wetting it does not completely displace the defending (wetting)
fluid which remains trapped in small pockets (Fig. 7c). Unlike cooperative filling in imbibition where
pc ≈ 0 as the interfaces reach entrance to the pore body, in drainage the tendency of the invading
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readjustments (blue arrow, panel b). At M = 100, cooperative pore filling (green arrows) is the dominant
mechanism; however, unlike in imbibition, as the invading fluid is nonwetting here it leaves small pockets of
trapped defencing fluid (green arrows; panel c). Both mechanisms lead to relatively uniform invasion in terms
of pore sizes. Panels d–e show the evolution of the local capillary pressure with saturation of wetting fluid
(S∗

w) for the two mechanism (arrows indicate direction of change in S∗
w with time).

fluid to repel from the solid surfaces and invade mainly the larger pores results in maintaining a finite
interfacial curvature at all times (vs. pc ≈ 0 in imibibition), cf. Fig. 7e. Here, pc decreases as the
invading fluid fills the pore bodies (S∗

w = 0.8− 0.5), with a very moderate rise after interfaces merge.

The presented analysis of pore filling mechanisms provides an interesting link between the effective
wettability conditions and the viscosities, M . Published simulations and experiments observed coop-
erative filling at intermediate wet conditions [15, 50, 51]. Our simulations suggest that M changes the
effective wettability, and thus the dominant mechanism: from cooperative filling at moderate and high
M to film flow (during imbibition) and bursts (during drainage) at low M .

IV. SUMMARY AND CONCLUSIONS

We leverage high-resolution Direct Numerical Simulation (DNS) to uncover the synergistic im-
pact of wettability and viscous forces in viscous-dominated multiphase flow through a heterogeneous
geologically-realistic porous media. We present a phase diagram classifying invasion patterns into
viscous fingering (VF), compact displacement (CD), and intermediate regime (CD/VF), with a transi-
tion from compact upstream to VF downstream. At the macroscopic (sample) scale, the wettability of
porous media plays a pivotal role in controlling the crossover between regimes. Our simulations indi-
cate an increase in threshold M (at which the crossover between regimes occurs) as wetting properties
vary from imbibition to drainage. Wettability was also found to affect the pore filling mechanisms.
For low M (VF), film flow dominated during imbibition and bursts during drainage. This strong effect
of wettability over the pore-filling behavior diminishes as M increases: cooperative filling was found
to be dominating in CD irrespective of wettability. This change in mechanisms indicates a change in
effective wettability conditions from neutral-wet to strong-wet, respectively. These intriguing effects
of viscosity on effective wettability should be considered in modeling multiphase fluids of similar vis-
cosities, which is of interest to applications such as non-aqueous phase liquid (NAPLs) contamination
and enhanced hydrocarbon recovery.
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Appendix A: Derivations of phase boundary from linear stability analysis

Here we describe the evaluation of the theoretical phase boundaries (green dots in Fig. 4) using the
linear stability analysis by Saffman and Taylor [48]. Considering the fluid flow potential φ = ∇U, the
continuity equation Eq. 1 for each individual phase i can be written as

∇ · ∇φi = ∇2φi = 0. (A1)

With this, force balance becomes [48]

[
Uε− αε

γ

]
µdef
kdef

−
[
Uε+

αε

γ

]
µinj
kinj

=
2σcos(θ)

r
(A2)

where ε represents the location of the perturbed displacement (finger) front relative to the base state—
the interface morphology before fingers develop. Here, α is the growth rate of the perturbations and γ
is the wavenumber indicating the number of periodic disturbances in the developed finger (see further
details in Saffman and Taylor [48], Rabbani et al. [52]). The effective permeability of the injected
fluid can be approximated as ki = 2φλrε/n where r is the pore radius, n are the total number of
pores in the considered porous medium [52]. n is determined from the number of pores occupied by
the invading fluid Ni in Fig. 5c at M = 100 (CD), using the distance transform watershed method
in Fiji software [49]. At θ = 0◦, ≈ 140 pores are invaded (see Fig. 5c) for efficiency De ≈ 82.5%
(see Fig. 3a); extrapolating De = 1 provides a representative value of n ≈ 170. λ in the expression
for ki is determined empirically to be λ = De[lfwf/lw][wf/w]. The product lfwf is the approximate
area occupied by a single finger, where lf and wf are the length and width of the finger, respectively.
We assume wf = 1 mm and lf = lpτ where lp is the length of the porous media over which the
fingers develop and τ is the effect of tortuosity [53]. For VF, as the fingers are of the size of the
entire domain length, we use lp = 14.05 mm. For VF/CD, as the fingers roughly exist over half the
length of the porous medium, we use lp = 7 mm. To account for the effect of tortuosity, we use
lf = 1.5lp. For VF, lf ≈ 20 mm and for VF/CD, lf ≈ 10 mm. We normalize lfwf by the area lw

(medium dimensions). Dewf/w is an empirical parameter used to determine λ such that M in Eq.

(A4) does not become negative. We obtain De ≈ 32.5% for VF, De ≈ 65% for VF/CD are the average
displacement efficiencies. Assuming a proportionality between the effective permeabilities of the two
fluids kd = Aki [54], we manipulate Eq. (A2) to obtain

− α

γ

[
1

A
+M

]
+ U

[
1

A
−M

]
=

4σcos(θ)φλ

µdefn
. (A3)

The crossover between flow regimes is expected to occur when α = 0 [52]. Substituting α = 0 in Eq.
A3 provides the following condition

M =
1

A
− 4φλcos(θ)

Ca · n
. (A4)

In the above equation, A is determined empirically. For VF, the invading fluid propagates through
the porous medium in the form of thin fingers. Therefore, most of the pores remain occupied by
the defending fluid. As the effective permeabilities ki are function of phase saturation Si [54], this
imply that the transition from VF to VF/CD occurs at A = kd(Sd)/ki(Si) > 1. For this case, we
assume A = 1

Deφ
≈ 10. While considering VF/CD to CD, more than half of the porous medium is

occupied by the invading fluid essentially making A < 1. For this case, we assume A = Deφ ≈ 0.2.
Substituting all the above variables in Eq. (A4) gives the threshold viscosity ratio (the boundary
between regimes) at which transition between flow regimes occur indicated by green circles in Fig. 4.
We note that the threshold M increases with θ, in particular for the crossover between VF and VF/CD
(Fig. 4). Interestingly, for the idealized geometry in Primkulov et al. [21] the transition from VF to
CD occurred at M ≈ 0.5 irrespective of the wettability, without an intermediate VF/CD regime which
could potentially be due to the relatively simplistic nature of the models used in PNM.
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