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A B S T R A C T   

This work expands on the use of plasmonic based fibre optic sensors as an in-situ diagnostic sensor inside Li-ion 
NMC111 pouch cells, with the sensors positioned adjacent to both the negative and the positive electrodes. Via 
incremental capacity analysis (IC) of the full cell, of individual electrodes utilising a reference electrode and 
cyclic voltammetry (CV) techniques, the electrode state changes are identified and the relationship to the 
plasmonic optical signal is observed. We report identification of electrode phase transitions via electrochemical 
methods and the corresponding response of in-situ plasmonic based fibre optic sensors.   

1. Introduction 

The growth of the battery market is well documented, driven by 
numerous industries including automotive, grid storage and portable 
electronic devices, industries which predominantly utilise Li-ion batte-
ries [1–3]. Within the category of li-ion cells, layered intercalation 
compounds (LIC) play a significant role due to the relatively high 
volumetric and gravimetric energy densities, high operating voltages 
and good electric conductivity. NMC type (such as LiN1/3M1/3C1/3O2 – 
NMC) is a particularly utilised LIC chemistry in electric vehicles (EV’s) 
and energy storage, other LIC chemistries are also utilised such as NCA 
(i.e. LiNi0.85Co0.1Al0.05O2) which is found in EV’s and energy storage 
and LCO (i.e. LiCoO2) which is common in power electronics [1,4]. The 
phospho-olivine chemistry LFP (LiFePO4) is also an increasingly com-
mon chemistry used in EV’s, with benefits including more abundant and 
affordable materials, relatively flat voltage charge profile and improved 
safety [5]. 

With the growing uptake and complexity of Li-ion battery systems, 
superior diagnostics can have a range of benefits including research 
insights, improved safety, battery use optimisation and supporting ap-
plications such as second life uses and the ‘battery passport’ concept [6]. 
Fibre optic based sensing techniques have demonstrated significant 
value as in-situ and in-operando battery diagnostic techniques and 
continue to be an area of significant research and development [7,8]. 
Fibre Bragg Gratings (FBG’s) and Tilted Fibre Bragg Gratings (TFBG’s) 
are utilised for temperature and strain measurements [9–12], 

identifying phase changes and diffusion rates through strain measure-
ments [13,14], SEI layer formation detection [15] and even State of 
Charge estimation via strain measurement [16]. Fibre optic evanescent 
wave sensor (FOEWS) techniques, also known as attenuated total 
reflection (ATR), have demonstrated optical signal correlation to cell 
charge and discharge [17–19] and graphite lithiation [20]. FOEWS and 
Fourier-transform infrared spectroscopy (FTIR) techniques have also 
demonstrated lithium ion concentration measurements [21]. Addition-
ally, electrode strain measurements have been obtained via fibre optic 
sensors with Rayleigh scattering [22]. 

The use of plasmonic based fibre optic sensors has recently been 
demonstrated in li-ion pouch cells [3] and to measure lithium ion con-
centration in aqueous battery electrolyte [23]. In this study, we 
demonstrate the potential value of this diagnostic technique for cell 
characterisation, by identification of phase changes in Li-ion NMC111 
cells during cycling utilising the plasmonic fibre optical signal. NMC111 
is a transition metal oxide layered intercalation cathode that stores 
lithium ions between the lattice layers [24,25]. During deintercalation 
of lithium ions, when charging the cell, the charge compensation 
mechanism is understood to be oxidation of the Ni2+ ions to Ni3+ and 
Ni4+ [26–28]. As the transition metal elements are oxidised during cell 
charging the Jahn-Teller effect leads to distortion of the octahedral 
structures within the lattice [29]. The graphite anode also undergoes 
structural changes during charge as lithium ions intercalates into it, 
from unlithiated carbon through to fully lithiated LiC6 [30–35]. 

This paper details the use of plasmonic based fibre optic sensors and 
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the signals obtained from both the cathode and anode in li-ion NMC 
pouch cells. Cyclic voltammetry and slow galvanostatic cycling followed 
by incremental capacity (IC) analysis is utilised to identify phase tran-
sitions in the cell. A lithium reference electrode is also utilised to carry 
out IC analysis on the cathode and anode separately. Analysis of the 
simultaneously collected optical data shows corresponding detection of 
the phase transitions in the cell via peaks in the differentiated optical 
signal. These results can potentially provide further insight into 
NMC111 phase transition events and further demonstrate the potential 
of plasmonic based fibre optic sensing to identify processes occurring 
within lithium-ion cells. 

2. Methodology 

The cells used for this experimentation are multi-layer pouch cells 
weighing 29.4 g ± 0.2 g when dry (no electrolyte), with lithium nickel 
manganese cobalt oxide (LiNi1/3Mn1/3Co1/3O2, NMC 111) cathode and 
graphite anode at a loading of 2 mAh cm− 2. The cell dimensions are 
shown in Fig. 1. The cells are filled with 1 M LiPF6 in EC/EMC (3/7 v/v) 
electrolyte and have a capacity of 1400 mAh. All cells were formed with 
two cycles of constant current charge at C/20 to 4.2 V, with constant 
voltage charge to a current limit of C/100 and subsequent discharge to 
2.5 V at C/20. 

In the case of the cells with fibre optic sensors, two plasmonic based 
fibre sensors are placed in the cell prior to the initial pouch sealing. One 
sensor is placed adjacent to a cathode and one sensor adjacent to an 
anode, allowing simultaneous measurement of both electrodes. The cell 
is made up of 21 electrode layers (11 anode and 10 cathode), the sensors 
are placed adjacent to the 3rd electrode (anode) and 4th electrode 
(cathode) from the edge. Further details around the cell manufacturing 
process can be found in a previous publication [3]. A cell with a lithium 
metal reference electrode is also prepared to allow separate cathode and 
anode voltage measurements, which was then cycled according to the 
same galvanostatic cycling conditions as the other cells to allow a direct 
comparison of the results and IC analysis of the individual electrodes as 
well as the full cell. 

In order to analyse cell phase changes two electrochemical analysis 

techniques have been utilised, incremental capacity and cyclic voltam-
metry. Incremental capacity analysis, also known as differential capacity 
analysis, allows identification of phase transitions via peaks in the plot 
which correspond to voltage plateaus in the charge voltage profile [36]. 
Cyclic voltammetry displays peaks during electrode oxidation or 
reduction processes [37,38]. The cycling regimes of the test are detailed 
in Table 1. 

The optical measurements in the experimentation are carried out 
utilising plasmonic sensor fibres (silica fibres with gold coated sensing 
region, protected by polymer coatings) and an M8: 8 Channel Analyser 
optical unit transmitter and receiver device, including software for 
control of the optical unit settings and data capture, provided by 
Insplorion AB (Göteborg, Sweden). The plasmonic fibre sensor function 
couples the evanescent wave generated by the internally reflected light 
in the fibre with the surface of the gold coating to generate a surface 
plasmon wave (SPW) of oscillating electrons along the surface of the 
gold film. The light signal in the optical fibre is attenuated at the fre-
quency of the surface plasmon wave, while a change in the refractive 
index of the adjacent analyte changes the resonant frequency of the SPW 

76.7mm

51.9mm

Fig. 1. Optical unit, potentiostat and cell with sensors schematic sketch (including cell dimensions, not to scale).  

Table 1 
Cell test programs.  

Cells tested Test type Cycle steps Current/ 
voltage 
input 

Until 
limit 

Reference cells, cells 
with fibre sensors 
and cell with 
reference 
electrode 

Incremental 
capacity 
analysis 

Constant 
current (CC) 
charge 

70 mA 
(capacity 
(C)/20) 

4.2 V 

Constant 
voltage (CV) 
charge 

4.2 V, 
variable 
current 

First of 
C/100 
or 4 h. 

Constant 
current 
discharge 

70 mA (C/ 
20) 

2.5 V 

Cell with fibre 
sensors on anode 
and cathode 

Cyclic 
voltammetry 

Voltage 
sweep 

0.05 mVs− 1 4.2 V 

Voltage 
sweep 

0.05 mVs− 1 2.5 V  
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and subsequent frequency of light signal attenuation; in this way a 
change in analyte refractive index leads to a change in fibre light signal 
attenuation which can be measured from the output of the light signal 
passing through the fibre. The plasmonic sensor has a sensing depth of 
approximately 1000 nm, with exponentially decreasing sensitivity 
throughout this sensing region. Further details around the sensor design 
and the light interrogation mechanisms at work can be found in a pre-
vious publication and other literature [3,39]. 

The integration time and number of measurement averages taken per 
measurement are selected to ensure an accurate reading without satu-
rating the optical receiver. The sampling rate was set at 30s intervals for 
this experimentation, to ensure sufficient time resolution. The fibre optic 
cables (Thorlabs) and ‘pigtails’ (SQS) connecting the sensor to the op-
tical unit have low hydroxyl multimode Ø105 μm silica fibre cores. A 
sketch of the equipment setup can be seen in Fig. 1. The cells with fibre 
sensors are placed in a temperature controlled oven (Binder GmbH, 
Tuttlingen, Germany), maintained at 25 ◦C for these experiments. Here 
it is also noted that previous studies indicate the presence of the fibre 
sensor has a negligible impact on the cell performance [3]. 

The data has been processed in Matlab 2021a for data analysis and 
graph plotting. In the IC plots in Fig. 2, the constant voltage and rest 
steps at the extremes of the cycles have been excluded. The optical signal 
recorded is the light intensity at the 725 nm wavelength, previously 
identified as the most attuned to the analyte change of interest [3]. In 
the optical signal differential analysis a Savitzky-Golay filter has been 
used to remove noise from the signal and help to isolate the large dif-
ferential responses. 

3. Results and discussion 

Full cell and individual electrode voltage profiles for a full charge 
and discharge cycle are shown in Fig. 2. The associated IC plots are also 
shown, for which the total cell charge has been differentiated with 
respect to the respective voltages. The CV and rest portions of the cycle 
have been trimmed from the IC plots, and a Savitzky-Golay filter has 
been applied to smooth the signal without distorting the profile. 

The full cell IC plot in Fig. 2b has two clear peaks on the charge and 
the discharge cycles, indicating two reversible phase transitions. This 
profile is closely matched by that of the cathode IC plot in Fig. 2d, 
indicating that the phase changes are being measured at the cathode and 
that the cathode is the dominant influencing electrode on overall cell 

voltage change during cycling. A third smaller peak can be seen on the 
charge cycle but not the discharge cycle, this suggests an irreversible 
process and has in other studies been attributed to SEI layer formation 
[40,41]. The cyclic voltammetry plot shown in Fig. 3 similarly indicates 
the presence of two reversible phase transition events via two major 
peaks, but does not detect the SEI layer formation as the IC analysis does. 

Full cell IC plots obtained here match existing literature on cells with 
NMC111 cathodes and graphite electrodes, with the same distinctive 
double peak on the charge and discharge cycles [40,42]. In some liter-
ature the first peak is identified as lithium intercalation into the graphite 
anode (C6 → LiCx) and the second peak as the phase transition from a 
hexagonal to a monoclinic (H1 → M) lattice of the NMC [40–42]. This 
identification is supported further by studies on NMC111 vs lithium half 
cells in which only one clear CV peak [43–45] was identified. However, 
the IC plots shown by Noh et al. [44] and diffusion coefficient during 
cycling as reported by Fröhlich et al. [43] do indicate existence of two 
peaks even in the case of such half cells, with a smaller shoulder peak 
within a larger second peak. Furthermore, theoretical studies have 

Fig. 2. Time-Voltage (T-V) and IC plots (solid blue line is charge, dotted red line is discharge) on NMC111 cell with graphite anode and Lithium reference electrode 
cycles at 240 mA (C/5); a) Full T-V plot, b) Full cell IC plot, c) Cathode Time-Voltage plot, d) Cathode IC Plot, e) Anode T-V Plot, f) Anode IC Plot. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Cyclic voltammetry plot of NMC111 cell with graphite electrode, scan 
rate of 0.05mVs− 1. 
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reported Ni2+/Ni3+ and Ni3+/Ni4+ charge compensation mechanisms as 
lithium leaves the metal oxide structure during charging [27,28,46] 
(with other models suggesting cobalt oxidation could play a role [46]), 
while material analysis studies also report the presence of Ni3+ and Ni4+

ions during NMC111 charge [26], significantly two stages of oxidation 
also imply two phase change steps. 

The observation of the cathode IC in this paper (Fig. 2d) coupled with 
the above discussed literature suggest that the two measured peaks 
could represent a two stage process of phase transition in the NMC 
through the Ni2+ → Ni3+ and Ni3+ → Ni4+ oxidation steps. Factors that 
could influence this process and lead to variation in reported literature 
observations include rate of charge, material of counter electrode and 
particle size of the working electrode. The reference electrode data 
identifies both of these peaks as predominant on the cathode IC plot, as 
shown in Fig. 2d, which can be expected due to the greater contribution 
of the cathode to the cell voltage change. This could indicate that both of 
the significant and reversible phase transition events identified on the 
full cell IC plot (Fig. 2b) are due to cathodic phase transition events. 

The anode IC plot in Fig. 2f indicates multiple peaks, in line with 
lithium intercalation stages at the graphite electrode. There are four 
distinct peak features, which is consistent with the literature listing 
broader major LiC12 and LiC6 intercalation compounds during cell 
charge and within that five phases and four transition events. Studies 
have shown that the graphite phase transition process is not symmetri-
cally reversible [30–35], which is also reflected in the asymmetric IC 
curves for the anode from charge to discharge in Fig. 2f. 

Considering the measured optical data, both the anode and cathode 
side sensors seem to respond in to the phase transition events identified 
by the two large full cell IC peaks, as shown in Figs. 4 and 5; an inter-
esting finding for this diagnostic method as it showcases capability to 
detect this internal cell event in real time. There seems to be a clear 
optical response when the cell charging starts, at the full cell phase 
transition IC peaks and the SEI layer formation peak. While these 

responses are visible there are also other smaller features within the 
optical signal, which could correlate to other cell events such as anodic 
phase transitions (which can be seen in the Fig. 2f reference electrode 
data but are not visible across the full cell IC plot in Fig. 2b), micro 
events in the localised region of the sensor and some noise factor 
induced by other variables such as strain, temperature and vibration. 

Previous studies have hypothesised that the plasmonic based fibre 
optic sensors are measuring lithium ion concentration at the surface of 
the adjacent electrode [3]. A study which uses plasmonic sensing to 
measure the ion concentration in an aqueous battery electrolyte sup-
ports the proposal that the sensors are sensitive to lithium ion concen-
tration in batteries [23]. ATR has also been demonstrated to measure 
concentration changes in a liquid electrolyte in a lithium metal anode 
half-cell [21]. As noted previously, studies have observed that the 
lithium ion diffusion coefficient of the NMC metal oxide electrode 
changes during phase transition events [43]. The proposed hypothesis is 
therefore that the change in diffusion coefficient results in an accelera-
tion/deceleration of the lithium ions concentration change adjacent to 
the electrode surface, which is then detected by the plasmonic based 
fibre optic sensor. The sensing depth of the plasmonic sensor is such that 
the measured region of the electrode should primarily be the boundary 
layer in this case, implying that diffusion of lithium within the solid 
phase is the rate determining step. 

As well as lithium ion concentration, other variables such as strain 
and temperature also have to be considered. In terms of strain, the 
relationship between cell charge and electrode expansion is well docu-
mented, explained by intercalation of lithium ions and corresponding 
changes in the electrode lattice structures [14]. Numerous fibre optic 
based sensor studies, utilising techniques such as FBG’s [13,16,47,48] 
and Rayleigh Scattering [49] have demonstrated the relationship be-
tween cell cycling and strain. In this case the fibre is not mechanically 
adhered to the electrode so is unlikely to be responding to direct strain. 
Also it has been demonstrated that optical signal responds most strongly 

a) 

b) 

c) 

Rest period a�er 
previous cycle 

Start of 
charging a�er 
rest 

Fig. 4. a) Cell voltage and anode side sensor optical response (lux) over time, b) Full cell IC plot and differentiated optical signal plot during charge, c) Full cell IC 
plot and differentiated optical signal plot during discharge. 
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to cathodic phase transition, if anode expansion where being measured 
then there should be a stronger response to anodic events, for example 
anode expansion during charging has been measured at 6.1 % by Stage 2 
(LiC12) and 13.2 % by stage 1 (LiC6) [35,50], while NMC111 cathode 
volume change during cycling is typically ~1 % [51]. Temperature ef-
fects are also minimal, due to the slow rate of cycling and controlled 

oven temperature. As such it can be assumed strain and temperature are 
not dominant measurands. 

Fig. 6 shows the anode sensor and cathode sensor optical signal 
strength at the 725 nm wavelength during cycling. Both signals 
demonstrate a qualitative correlation with cell voltage state during 
charge and discharge. Notable differences include the anode side optical 

Fig. 5. a) Cell voltage and cathode side sensor optical response (lux) over time, b) Full cell IC plot and differentiated optical signal plot during charge, c) Full cell IC 
plot and differentiated optical signal plot during discharge. 

Fig. 6. 23 cycles of NMC111 cell with plasmonic fibre sensors adjacent to an anode and cathode electrode-graph shows voltage and optical signal of sensor at anode 
and cathode over time. 
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signal more closely following the profile of the voltage, while also 
exhibiting greater light extinction over time. Greater anode side 
extinction could be explained by SEI layer growth, or the fibre protective 
coating failing between the sensor and anode causing lithiation of the 
gold sensing region or silica fibre at low electrode voltages. The fact the 
sensor signal extinction is not as significant on the cathode side indicates 
that it is not just a consequence of sensor integrity deterioration due to 
the corrosive environment of the cell. 

4. Conclusions 

In this study we demonstrate for the first time the detection of 
lithium-ion cell phase transitions via in-situ plasmonic based fibre optic 
sensors. The optical sensors are successfully implemented inside multi- 
layered NMC and graphite pouch cells, with sensors adjacent to both 
the anode and cathode providing correlating data. 

Electrode phase transitions identified by the optical cell data are 
confirmed across the full cell and on individual electrodes via IC 
methods and a reference electrode. The IC data obtained on individual 
electrode is used to support the identification of the observed phe-
nomena and suggests both full cell IC peaks could be cathodic events. 
The optical signal data correlation to the phase transition events is 
hypothesised to be due to the secondary effect of the change in the rate 
of lithium diffusion, leading to lithium ion concentration rate changes at 
the electrode surface that is detected by the sensor. 

This work further demonstrates the potential of plasmonic based 
fibre optic sensors as an in-situ battery diagnostic technique capable of 
detecting internal cell processes in real time. Systemic testing should be 
carried out to prove the hypothesis that the plasmonic sensor is sensitive 
to changes in the electrode boundary layer. Additionally further work 
can continue to build on the use of this sensor, including the response to 
failure modes such as lithium plating, behaviour in more varied cell 
cycling profiles, multi-sensored cells to deconvolute temperature and 
strain effects and experimentation and analysis to further explore and 
quantify the relationship to State of Charge and State of Health. 
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