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ABSTRACT

This study explores the use of a multi-feature Bayesian auditory
sound localisation model to classify non-individual head-related
transfer functions (HRTFs). Based on predicted sound localisa-
tion performance, these are grouped into ‘good’ and ‘bad’, and the
‘best’/‘worst’ is selected from each category. Firstly, we present a
greedy algorithm for automated individual calibration of the model
based on the individual sound localisation data. We then discuss data
analysis of predicted directional localisation errors and present an
algorithm for categorising the HRTFs based on the localisation error
distributions within a limited range of directions in front of the lis-
tener. Finally, we discuss the validity of the classification algorithm
when using averaged instead of individual model parameters. This
analysis of auditory modelling results aims to provide a perceptual
foundation for automated HRTF personalisation techniques for an
improved experience of binaural spatial audio technologies.

Index Terms— HRTF personalisation, auditory modelling, hu-
man sound localisation, Bayesian inference

1. INTRODUCTION

Binaural spatial audio technologies rely on what are known as head-
related transfer functions (HRTFs), which are convolved with mono-
phonic sound signals to render virtual spatial sound scenes for head-
phone use. The HRTFs contain spatial hearing cues arising from
the individual morphology of the outer ear, head, and torso, which
modify the sound reaching the ear canal. The human auditory sys-
tem learns to detect these unique spectral differences in the incoming
sound (known as monaural hearing cues) as well as differences be-
tween the sound coming to both ears (binaural hearing cues) to infer
the direction of the incoming sound [1].

For the best rendering results, individual HRTFs can be acousti-
cally measured in a laboratory environment; however, detailed mea-
surements for each individual on a mass scale are labour-intensive
and thus unfeasible. To retain a satisfactory spatialisation quality
when individual HRTFs are not available, various methods have been
proposed [2], some of which are based on selecting a non-individual
HRTF. The latter methods rely on a chosen HRTF similarity met-
ric, which can be qualitative (e.g. based on subjective human rat-
ings [3]) or quantitative (e.g. spectral distance [4], or geometric
pinnae matching based on notch frequency analysis [5, 6] or com-
puter vision techniques [7]). While the subjective tests are known to

This research is part of the SONICOM project (EU Horizon 2020 RIA
grant agreement ID: 101017743). RB is also supported by Dynamates (Aus-
trian Science Fund (FWF) project No. ZK 66). Finally, the authors want to
thank Piotr Majdak for giving access to the data used in this study.

produce inconsistent results, especially for naı̈ve listeners [8, 9], the
quantitative numerical similarity metrics lack the perceptual foun-
dations to describe the quality of the HRTF fit in a meaningful way
(they may be well suited for machine audition aiming for the ‘best
localisation’ but not necessarily a human one).

Machine learning has been used to develop a more perceptually
informed HRTF distance metric based on human sound localisation
data [10]. Other HRTF personalisation studies used machine learn-
ing techniques with psychoacoustic input in stages of, e.g. feature
generation [11] or dimensionality reduction [12]. Since the HRTF
selection problem is constrained by limited datasets and perceptual
complexities of the auditory system, domain knowledge can help de-
velop more efficient and precise automated HRTF fitting procedures.

A few quantitative non-individual HRTF selection studies have
used computational auditory models to evaluate the quality of spa-
tial processing without extensive listening tests [13, 14]. The human
sound localisation models used in these studies estimate the locali-
sation error, focusing on the sound direction along a sagittal plane,
where listener uncertainty is the most impactful [15, 16]. They rely
on the assumption that the auditory system has learned the mapping
between spatial features and sound direction [17]. This procedure,
known as template matching, enables the subject to estimate the
source direction from the observed spatial features. To account for
the variation across humans in distinguishing the sound localisation
cues, the models have a set of parameters, which can be tuned based
on individual sound localisation data to accurately predict individ-
ual localisation performance. Nevertheless, since collecting the in-
dividual localisation data is time-consuming, previous model-aided
HRTF selection studies relied on average non-individual model pa-
rameters [13, 18]. However, the impact of additional modelling un-
certainty due to such model simplification on an HRTF classification
task has not yet been addressed.

Emphasising the synergy between human (perceptual) and ma-
chine (numerical) approaches [19], we propose a set of automated
non-individual HRTF classification criteria based on the sound local-
isation performances simulated with an individually-calibrated com-
putational auditory model (Sec. 2 and 3). Due to the complexity of
sound localisation error distributions over different directions around
the listener, we implemented a novel methodology that accounts for
the error distributions within a range of directions in front of the
listener, rather than aggregated global error values, to classify non-
individual HRTFs as ‘good’ or ‘bad’ and select one ‘best’/‘worst’,
representing the extremes of the proposed metric (Sec. 4). In Sec. 5,
we discuss the validity of using the proposed selection methodology
with individual and non-individual (averaged) model parameters. Fi-
nally, we summarise the work and propose the potential use cases of
the methodology in Sec. 6.



2. THE COMPUTATIONAL MODEL

The auditory model used in this study (available as barumerli2022
from the Auditory Modelling Toolbox (AMT) [20]) is a Bayesian
model based on the template-matching procedure [21]. When pro-
vided with an incoming binaural sound as an input, the model uses
cross-correlation to extract interaural time difference (xitd), enve-
lope time-averaging to obtain interaural level difference (xild), and
gammatone filter bank to acquire spectral amplitudes of the direc-
tional transfer function (DTF) 1 for the left and the right ears, respec-
tively (xL,DTF and xR,DTF )2. The obtained input feature vector

t = [xitd, xild,xL,DTF ,xR,DTF ] + δ (1)

is compared with the stored internal template (T (φ)) of the sound
coming from all possible directions around the simulated listener to
infer the vertical and horizontal directions (φ) of the sound source.

The model adds multivariate Gaussian noise δ ∼ N (0,Σ) with
a diagonal covariance matrix Σ, controlled via three independent
parameters σitd, σild, and σmon, to the target vector to simulate
human performances when inferring the sound source direction. The
Maximum a-posteriori estimation (MAP) is then employed by the
model to determine the direction of the sound source:

φ̂ = argmax
φ

p (t|T (φ)) p (φ) +m, (2)

where the likelihood p (t|T (φ)) is weighted by a prior p (φ), mod-
elled uniformly across the azimuth but normally distributed for the
elevation (with zero mean and standard deviation σprior) to repre-
sent human localisation bias towards the eye level [22]. Addition-
ally, the estimate is corrupted by response noise m, representing the
uncertainty in the action of pointing towards a sound source during
a localisation test, which is modelled as a von Mises-Fisher distribu-
tion with a standard deviation of σmotor .

The quantities σitd, σild, σmon (corresponding to xL/R,DTF ),
σprior , and σmotor are tuned individually to produce accurate
human-like localisation responses. To account for the model
stochasticity and obtain stable estimates, each target direction is
iterated multiple times (300 repetitions were found to produce con-
verging results [21]).

2.1. Data and performance metrics

We used data from the AMT collected as part of two previous stud-
ies (6 subjects from [23] and 11 from [24]). The datasets contain
subjects’ individual HRTFs and their responses from a sound locali-
sation test using short broadband noise bursts in a virtual reality en-
vironment. In each simulation of the localisation test, the model was
supplied with the individual HRTF as the template and one of the
HRTFs as the target, both resampled from 1550 points to a uniform
grid of 1500 directions using spherical harmonic interpolation [25].

To separate the directions, dominated by the binaural vs monau-
ral cues, an interaural-polar coordinate system was used for locali-
sation data analysis [26]. It decouples the location on an imaginary
sphere around a listener φ = (θ, ϕ) into a lateral angle θ, which
represents the horizontal angle between the median plane and the
sagittal plane of interest, and a polar angle ϕ, defined anticlockwise
from the front along the sagittal plane. A graphical representation
can be found in [24].

1The DTF is obtained by removing the directionally independent part of
the HRTF, known as the Common Transfer Function (CTF) [4].

2Among the different feature vectors proposed by [21], we selected the
ones more consistent with past literature [17].

Algorithm 1 Greedy barumerli2022 calibration algorithm
σild = 1, σmon = 5, σmotor = 10 ▷ Initialise parameters
Calculate ϵLE , ϵPE , ϵQE(RAU) ▷ Quick model setup
while ϵQE(RAU) ≥ 0.2 do:

σmon −= sign ϵQE(RAU)
Calculate ϵLE , ϵPE , ϵQE(RAU) ▷ Quick setup
if σmon ≤ 2 or σmon ≥ 8 then break

while ϵPE ≥ 0.15 do:
σmotor −= sign ϵPE

Calculate ϵLE , ϵPE , ϵQE(RAU) ▷ Quick setup
if σmotor ≤ 5 or σmotor ≥ 25 then break

if ϵLE ≥ 0.1 then:
Check if ϵLE reduces with σild = 0.5 ▷ Quick setup
while ϵLE ≥ 0.1 do:

σmotor −= sign ϵLE

Calculate ϵLE , ϵPE , ϵQE(RAU) ▷ Quick setup
if σmotor ≤ 5 or σmotor ≥ 25 then break

Calculate ϵLE , ϵPE , ϵQE(RAU) to validate ▷ Full setup

In a localisation test with N trials, each target source direction
φi has an associated response direction φ̃i, where i = 1, 2, . . . , N .
Following the description of [26], we define a set of local responses
A =

{
i : wrap

∣∣∣ϕ̃i − ϕi

∣∣∣ < 90°
}

and three errors in the interaural-
polar coordinate system:

PE =

√√√√√ ∑
i∈A

(
wrap

(
ϕ̃i − ϕi

))2

|A| , (3)

QE =

(
1− |A|

N

)
× 100%, (4)

LE =

√√√√√ N∑
i=1

(
wrap

(
θ̃i − θi

))2

N
, (5)

where root-mean-square (rms) local polar error (PE) is the aggre-
gated error in the polar dimension for responses within 90° from the
target, quadrant error rate (QE) corresponds to the percentage of po-
lar errors larger than 90° and accounts for top-down and front-back
confusions, and LE is the rms lateral error. Angle differences are
wrapped to [−180°, 180°] range. To avoid highly distorted polar er-
rors on the far left and right sides of the listener, PE and QE are only
defined for targets within lateral angle |θ| ≤ 30°, while LE is defined
within |θ| ≤ 60° to avoid a ceiling effect [26].

3. MODEL CALIBRATION

The free model parameters were tuned based on the individual data
from the real localisation tests. The model parameters for the first
five subjects had already been reported in [21]. Following that cal-
ibration procedure, the model was fitted to additional eleven sub-
jects using the greedy algorithm, formalised in Alg. 1, which was
empirically developed to produce the most stable results [21]. For
each subject, the model was supplied with individual HRTFs as both
the template and the target, and relative differences between aggre-
gated real and simulated errors, ϵPE , ϵLE , and ϵQE(RAU), were
computed. For the calibration procedure only, QE percentage values
were transformed to a scale comparable to the other two angle-based
metrics using a rationalised arcsine transform (RAU) [27].
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Fig. 1. Violin plots of modelled error distributions for subject NH39 with different target HRTFs. Dashed lines indicate quartiles. Full
distributions across the listener sphere are plotted next to the distributions within a limited range of |ϕ| ≤ 11.5° in the front. The non-
individual HRTFs are categorised and arranged from left to right based on PE and QE values, respectively, according to the proposed
procedure (Sec. 4). The limited distributions for the ‘best’ and ‘worst’ HRTFs are plotted separately on the right.

The values of σitd = 0.569 and σprior = 11.5° were set based
on derivations from previous psycho-acoustics experiments [28, 22].
σmon, σmotor and σild were tuned in the specified order to reduce ϵ’s
below previously reported thresholds [21]. A quick model setup with
5 repetitions was used during the adjustment process to reduce com-
putational time, while a full setup (300 repetitions) was run at the
end to validate the calibration. Termination conditions were added
to keep the parameters within stable bounds, but none of the sub-
jects exceeded them. Once the automated calibration was finished,
the parameters were fine-tuned to one decimal place to reduce the ϵ’s
further by running the model manually (a more precise automated
calibtation procedure is subject to future research).

4. HRTF CLASSIFICATION PROCEDURE

Localisation errors were modelled for every subject using each of
the 16 HRTFs (1 individual and 15 non-individuals). Contrary to the
calibration procedure using global errors, the errors were aggregated
only over the 300 repetitions for each simulated direction, resulting
in 16 distributions per subject per error. Full sphere PE distributions
appeared to be multimodal for different areas around the listener, so
we limited the directions of interest to a section in front of the lis-
tener within ±11.5° polar angle, equivalent to σprior . In this range,
we expected a more direction-independent localisation performance
according to [22]. We hypothesised that a ‘good’ non-individual
HRTF would correspond to a normally distributed PE within this
frontal area. At the same time, skewed or multimodal distribution
would indicate that a modelled listener cannot effectively use the lo-
calisation cues embedded in the HRTF and might rely too much on
prior beliefs. Since LE shows less variability among non-individual
HRTFs [29], we focused on PE and QE. The classification was per-
formed in the following steps for each subject, separately:

1. divide target HRTFs into ‘good’ (p > 0.05) and ‘bad’ (p <
0.05) based on the Shapiro-Wilk test on the PE distributions
of the 15 simulated localisation tests;

2. ‘good’ HRTFs: order PE distributions of ‘good’ HRTFs by
rms of the distribution and their QE distributions by the 3rd

quartile, respectively;
3. ‘bad’ HRTFs: order QE distributions by the median.

The ‘best’ and the ‘worst’ non-individual HRTFs for each subject
were selected from the 15 available using the following criteria:

1. The ‘best’ HRTF: Look for a common HRTF in top n = 1
‘good’ PE and QE distributions. Increase n until the inter-
section is found.

2. The ‘worst’ HRTF: select the highest median QE; If multi-
ple HRTFs have the same highest median QE then base the
selection on the 3rd quartile, or rms PE value if QE distribu-
tions are identical.

Finally, we repeated the classification procedure for each subject us-
ing non-individual (median) model parameters to investigate how the
results are affected when individual model parameters are not used.

5. RESULTS AND DISCUSSION

Table 1 reports individual model parameters for 11 of the subjects
used in the study, obtained from the calibration procedure detailed
in Sec. 3. Median parameter values across all 16 subjects (including
5 from the previous study), used to test the selection methodology
with non-individual model parameters, are also presented.

Fig. 1 shows an example of modelled PE and QE distributions
across different target HRTFs for subject NH39, using individual
model parameters. The figure presents error distributions for all di-
rections (within |θ| ≤ 30° as per error definitions) and the limited



Table 1. Model parameters for 11 individual subjects, and median
parameter values across 16 subjects.

Subject Parameters

σild (dB) σmon (deg) σmotor (deg)

NH12, 15-18 available from [21]
NH39 1 5.4 11.8
NH43 1 2.2 20.5
NH46 1 3.2 13.8
NH53 1 2.4 11.1
NH55 0.5 5.1 17.5
NH58 0.5 3.1 9.2
NH62 1 7.2 13.5
NH64 0.5 4.7 13.2
NH68 0.5 7.5 13.4
NH71 0.5 4.5 13.6
NH72 1 6.9 11.1
Median 0.75 4.3 13.45

ones in the front, colour-coded based on the PE normality criterion.
It also includes distributions from the individual HRTF which, as ex-
pected, are generally smaller than from the non-individual HRTFs.

Generally, medians of direction-limited PE and QE distributions
for ‘good’ non-individual HRTFs are one of the smallest ones across
the simulated HRTFs. The imposed normality criteria may some-
times place HRTFs with median PE, similar to the ‘good’ HRTFs, in
the ‘bad’ category (e.g. NH16, NH53, or NH64). However, when
the full-sphere error distributions are considered, the ‘bad’ HRTFs
appear to be associated with higher overall QE rates. This could sug-
gest that the strong evidence of bimodality of the direction-limited
PE distribution may act as a good indicator for a higher QE in a full
localisation test with the particular target HRTF.

The error distributions of the ‘best’ and the ‘worst’ target HRTFs
for subject NH39 are also plotted separately in Fig. 1. The bimodal
nature of the PE distribution for NH62 is clearly visible in the violin
plot, while the evidence for the bimodality of the NH46 is not strong
enough for the normality hypothesis to be rejected. NH46 is also
associated with negligibly small QE, compared to NH62.

Fig. 2 summarises the classification results for all 16 subjects
using both individual and non-individual (median) model parame-
ters. The number of HRTFs classified as ‘good’ varies consider-
ably across subjects. For instance, when considering the individu-
alised predictions, 11 out of 15 non-individual HRTFs are classified
as ‘good’ for subject NH18, while none passed the normality crite-
rion for subject NH72. Although the results might be affected by
the limited HRTF selection pool, some subjects appear to be respon-
sive to a wider range of sound localisation cues than others. How-
ever, the phenomenon is not reciprocal, i.e. HRTF of a responsive
subject is not generally categorised as ‘good’ for other subjects. In
fact, NH18 is marked as the ‘worst’ for 3 of the subjects. The ad-
dition of noise across various stages of the auditory model makes
the classification non-commutative. This asymmetry is in line with
the outcomes from previous perceptual studies [3, 30]. On the other
hand, some HRTFs are often selected as the ‘worst’ (e.g. NH39 and
NH62). The repeated classification suggests that those HRTFs may
have less distinguishable spectral cues compared to the rest of the
dataset and could be discarded in a process of database optimisation
for non-individual HRTF selection (similarly to [13]).

When the non-individual model parameters are used, the result-
ing HRTF selection is affected, as indicated by the colour mismatch
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Fig. 2. Non-individual HRTF selection using individual (bottom left
half of the cells) and median (top right half) model parameters.

within each cell of Fig. 2. Generally, the selection methodology
for the ‘worst’ HRTF appears to be more robust to model param-
eter changes than the one for the ‘best’, indicating a relationship
between the parameters and the shape of the PE distributions. The
HRTF categorisation is also more robust to parameter changes for
some subjects. For example, the selection for NH16 does not de-
pend on the model parameters, while 8 HRTFs are misclassified for
NH68, including the ‘worst’ HRTF, which is considered ‘good’ if in-
dividual model parameters are used. A more systematic analysis of
the effect of the parameter change on the HRTF selection is required
in the future. Nevertheless, the results demonstrate that one must
take care when interpreting results from sound localisation models
without individually calibrated parameters.

6. CONCLUSION

Using the individually calibrated Bayesian sound localisation model,
this study presented non-individual HRTF classification criteria
based on distributions of predicted polar and quadrant localisation
errors within a limited directional range in front of the listener
(|θ| ≤ 30° and |ϕ| ≤ 11.5°). For 16 subjects, each of the 15 non-
individual HRTFs was classified into ‘good’ and ‘bad’ categories
and the ‘best’/‘worst’ was selected from each group. Misclassi-
fication of non-individual HRTFs when the same procedure was
performed with non-individual model parameters revealed the sen-
sitivity of the auditory model to parameter changes. Evaluations of
the selection methodology with listening tests are currently ongo-
ing. Once perceptually validated, this method could be used as a
metric in combination with other approaches, e.g. geometric pinnae
matching or HRTF selection based on a sparse, ‘low-quality’ HRTF,
measured from a few positions in uncontrolled conditions, allowing
to consistently and repeatedly select a perceptually well-matched
laboratory-measured HRTF.
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