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Abstract

Background: This systematic review aims to ascertain how accurately 3D models can

be predicted from two‐dimensional (2D) imaging utilising statistical shape modelling.

Methods: A systematic search of published literature was conducted in September

2022. All papers which assessed the accuracy of 3D models predicted from 2D

imaging utilising statistical shape models and which validated the models against the

ground truth were eligible.

Results: 2127 papers were screened and a total of 34 studies were included for final

data extraction. The best overall achievable accuracy was 0.45 mm (root mean

square error) and 0.16 mm (average error).

Conclusion: Statistical shape modelling can predict detailed 3D anatomical models

from minimal 2D imaging. Future studies should report the intended application

domain of the model, the level of accuracy required, the underlying demographics of

subjects, and the method in which accuracy was calculated, with root mean square

error recommended if appropriate.
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1 | INTRODUCTION

Medical imaging plays a vital role in orthopaedic surgery and a more

recent development is the use of three‐dimensional (3D) imaging to

better appreciate anatomy, assist with surgical planning, guide as-

sistive technology such as robotics, and even to develop patient

specific implants.1,2

The current gold‐standard for producing 3D bone models is

through segmentation of images derived from Computed Tomography

(CT) or Magnetic Resonance Imaging (MRI) scans.3,4 CT is generally

preferred when focussing on bone shape as it displays a lower margin

of error when compared to MRI derived models, which tend to be

more accurate when focussing on soft tissue.4–6 Currently, CT‐based

models have been shown to have an average error of 0.15 mm and

MRI‐based models 0.23 mm, with both modalities displaying

extremely high 3D geometric accuracy.4 When applied to surgery,

Livyatan et al. suggest a model which displays reconstruction accuracy

of 1–1.5 mm is ‘desirable’ whereas 2–3 mm is considered ‘acceptable’.7

The widespread adoption of these imaging techniques has been

restricted due to cost and time implications, and for CT imaging there

is the issue of additional radiation exposure for the patient.8,9 Sta-

tistical Shape Models (SSMs) offer a potential solution to this
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problem—they can utilise common 2D imaging modalities such as

radiographs to predict 3D models of a patient, thus eliminating the

need for CT or MRI scans.10 The required accuracy of these SSMs will

depend on their clinical application, and for their potential use in

surgical planning or patient‐specific implants, the accuracy will need

to be within degrees (for surgical planning cuts/angles) and milli-

metres (in implant design, for example) of the currently accepted

gold‐standard. It follows that before the widespread adoption of

SSMs in clinical practice, their accuracy in reconstructing bone shape

must be evaluated.

Accuracy is assessed by comparing the SSM predicted bone

shape with a ground truth model. Two commonly employed numer-

ical methods exist to calculate these differences: root‐mean‐square‐
error (RMSE) and average error. RMSE is a quadratic scoring rule,

with the difference between each forecast and corresponding value

squared and then averaged between samples. The outcome is scale

dependent.11 Average error is a broad term describing the average

magnitude of errors between forecast and corresponding values.

Larger errors are given a higher weight in RMSE as the errors are

squared before they are averaged. In average error, the forecast and

its corresponding values can be found between points or between

points to the surface. As these differences are small, the methods in

which correspondence is calculated will not be considered in this

review.

This systematic review set‐out to assess whether SSMs designed

to predict 3D bone shape can deliver a level of accuracy suitable for

clinical application.

2 | MATERIAL AND METHODS

2.1 | Search strategy

An electronic Preferred Reporting Items for Systematic reviews and

Meta‐Analyses (PRISMA) compliant search was conducted in May

2021 and then repeated in September 2022.12 The search utilised a

combination of medical subject heading terms (MeSH) and key words

(Table 1). The databases searched included MEDLINE/PubMed,

EMBASE and The Cochrane Library—terms were modified to meet

each respective database criteria. Reference lists of included studies

were also reviewed for eligibility. Any duplicate manuscripts were

removed. For information which was replicated by authors in the

form of a paper alongside conference proceedings, the publication

with the most complete data set was retrieved.

2.2 | Selection criteria

Eligibility was confirmed where authors predicted a 3D bone model

through application of 2D radiological images using an SSM and

compared the predicted model to a ground truth model. Exclusion

criteria included studies which did not assess accuracy, paediatric

datasets, and non‐English language papers—full inclusion and exclu-

sion criteria are listed in Table 2. There were no date limits applied. In

titles where inclusion or exclusion was not obvious, the full text was

retrieved and reviewed.

TAB L E 1 Search strategy terms for literature search on MEDLINE (via OVID).

Population AND→ Intervention AND → Intervention/Comparison

Bone* SSM* Exp imaging, three‐dimensional

Joint exp. Joints Statistic* shape* model* Exp diagnostic imaging

Hip* OR acetabulum OR femur* or pelvi* Statistic* adj4 shape* Exp image processing, computer‐assisted

Knee* OR tibia OR fibula OR patella Exp tomography, X‐ray computed

Ankle* OR foot CT

Lower limb Computed tomography

Exp lower extremity Exp magnetic resonance imaging

Hand* OR wrist* or radius OR ulna Magnetic resonance imag*

Elbow* OR olecranon MRI

Shoulder* OR glenohumeral OR acromioclavicular Exp fluoroscopy

Clavicle OR humerus Exp X‐rays

Upper limb Radiograph*

Exp upper extremity X‐ray*

Spine OR spinal OR back OR vertebra* Exp absorptiometry, photon

Cervical OR thoracic OR lumbar Dual energy X‐ray absorptiometry

DEXA

DXA
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2.3 | Data extraction and critical appraisal

Search results were exported to a reference manager, Covidence

(Veritas Health Innovation Ltd.). Two independent reviewers (AP and

KK) analysed the titles and abstracts to identify studies meeting the

inclusion criteria. Any conflicts between author decisions were dis-

cussed at a consensus meeting. A third reviewer (GJ) was available if

an agreement could not be reached, however, there were no papers

to which this applied.

The same reviewers utilised a two‐part standardised form to

extract data based on the Critical Appraisal and Data Extraction

for Systematic Reviews of Prediction Modelling Studies (CHARMS)

tool.13 The first form identified general study characteristics such

as the publication year, study authors and anatomical area of in-

terest. Details of the SSM were also collected, including population

type (cadaver, human, plastic model), number of specimens, general

demographics of specimens and the type of 3D imaging. The sec-

ond form focussed on the validation experiment designed to assess

accuracy—population type, number of subjects the model was

tested on, method of 2D imaging, derivation of ground truth

model.

Finally, the numerical value of accuracy alongside the method

in which it was calculated was recorded. These were then classi-

fied as either ‘RMSE’ or ‘average error’, as described by the two

equations below (Figure 1). In studies where both methods were

tested, the best value was taken. Any conflicts were discussed at a

consensus meeting and a third reviewer (GJ) was available if an

agreement was not reached, however, there were no papers to

which this applied.

2.4 | Risk of bias

Risk of Bias of included studies was assessed by two independent

reviewers (AP and KK), utilising the Prediction model Risk of Bias

Assessment Tool (PROBAST) tool.14 PROBAST contains a total of 20

signalling questions, divided into four key domains relevant to pre-

diction models: Participants, Predictors, Outcomes, Analysis. Each

domain is rated for risk of bias (low, high or unclear) based on the

signalling questions. The applicability of these domains from each

model is also assessed in relation to the review question.

3 | RESULTS

3.1 | Search results, study and subject
characteristics

A total of 2127 citations were retrieved. After the initial screening of

abstracts, the full text of 75 records were analysed (Figure 2).

Following full‐text review, 34 studies were included for final data

extraction.15–48

The 34 studies originated from several countries, with the ma-

jority of authors based in Europe. A total of 2233 images were

utilised to develop 31 different SSMs—three study groups applied

the same model in two separate published papers; this work is

included as one model. 26 of these models (83.9%) used one scan

per subject whereas three models (9.7%) utilised contralateral scans

taken from the same subject. In two models it was unclear if each

scan was from separate subjects. Almost all models were developed

TAB L E 2 Inclusion and exclusion criteria.

Inclusion Exclusion

Population Human, adult (≥18 years) Paediatric population (<18 years)

Bone/group of bones Model unrelated to orthopaedics (e.g., chest wall, maxillofacial)

Isolated soft tissue models

Intervention 3D statistical shape model Segmentation technique (e.g., manual vs. automatic

segmentation)
Use of 2D imaging to derive predicted 3D model

Comparison 3D ground truth model Experiment dataset same as training dataset

Outcome Accuracy assessed through comparison of 3D predicted model to 3D

ground‐truth model using RMSE or average error

Other English language Review articles, letters to the editor, supplementary articles,

technique papers

Abbreviations: 2D, two dimensional; 3D, three dimensional; RMSE, root mean square error.

F I GUR E 1 Predictedi = 3D model predicted from SSM, Ground
truthi = 3D model derived from CT/MRI imaging. CT, computed

tomography; MRI, magnetic resonance imaging; SSM, statistical
shape model.
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using patients (58.1%) or cadaveric specimens (16.1%) or a combi-

nation of both (16.1%). A single study (3.2%) made use of dry bones

as well as patient images to develop their SSM (Table 3). In two

models (6.5%) it was unclear where images were obtained to

develop their model.

Fourteen models (45.1%) specified details the gender of subjects

included, with 573 males and 465 females. 14 models (45.1%) pro-

vided details of the underlying age and only one study (3.2%) com-

mented on ethnic background of the subjects used to develop the

SSM. The models described six different bone shapes: Scapula,

Lumbar Vertebra, Pelvis, Femur, Patella, Tibia (Table 3).

3.2 | Assessment of accuracy

Sample sizes for validation experiments varied between 1 and 180

subjects. In total, the models were validated on 740 subjects—these

consisted of patients, cadavers and artificial saw bones (Table 2). The

choice of 2D imaging applied to the models varied between plain

radiographs, fluoroscopy, DXA or digitally reconstructed radiographs

(DRRs). The ground‐truth models were derived solely from CT scans

in 30 (88.2%) studies. Two papers (5.9%) used a combination of CT

scan and laser‐scan reconstruction. The remaining two papers (5.9%)

utilised MRI scans (Table 4).

Based on Livyatan et al.'s criteria, 24 (77.4%) of the included

models demonstrated desirable accuracy and five (16.1%) demon-

strated acceptable accuracy.7 One study utilised an SSM which dis-

played desirable accuracy in femur reconstruction but acceptable

accuracy in the tibia.27 One study reported an unacceptable error of

3.2 mm.17 The three study groups which applied the same model in

different papers showed desirable accuracy in both publica-

tions.15,16,25,36,37,48 Overall, accuracy in studies using RMSE ranged

between 0.45 and 1.95 mm. Studies utilising mean errors ranged

between 0.16 and 3.2 mm (Table 5).

3.3 | Risk of bias (Table 6)

Risk of bias was generally low with regards to Participants and

Outcomes. Certain studies provided limited data on methods of

participant selection and therefore the risk of bias was unclear. There

was a high risk of bias in the Predictors and Analysis domains due to

minimal information being provided with regards to the de-

mographics of the training dataset, which is known to have a sub-

stantial effect on the accuracy of the SSM, as well as the use of small

sample sizes.49 Applicability of the models, due to the strict inclusion

and exclusion criteria, was generally marked as high where datasets

were complete.

F I GUR E 2 PRISMA diagram of articles
selected for review.
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TAB L E 4 Validation experiments of included studies.

Lead author, year Anatomical location

Validation experiment

Anatomical specimens (n) Population type 2D imaging Ground truth imaging

Mutsvanga, 201717 Scapula 1 Cadaver XR CT

Picazo, 201818 Lumbar spine 180 Adult (alive) DXA qCT

Whitmarsh, 201330 Lumbar spine 30 Adult (alive) DXA qCT

Zheng, 2010 (C)30 Lumbar spine 12 Cadaver Fluoroscopy CT

Zheng, 201134 Lumbar spine 4 Cadaver Fluoroscopy CT

Sadowsky, 200719 Pelvis 11 Adult (alive) DRR CT

Zheng, 2010 (B)32 Pelvis 14 Plastic Radiograph CT

Cadaver

Adult (alive)

Schumann, 201321 Femoral head 7 Cadaver Radiograph CT

Acetabulum

Klima, 201646 Femoral shaft 96 Adult (alive) DRR CT

Whitmarsh, 201029 Proximal femur 30 Cadaver DRR qCT

Hurvitz, 200845 Proximal femur 1 Cadaver DRR qCT

Vaanenen, 201526 Proximal femur 12 Adult (alive) DXA CT

Kurazume, 200947 Proximal femur 4 Adult (alive) Fluoroscopy CT

Dong, 200943 Proximal femur 5 Cadaver Radiograph CT

Spinelli, 201223 Proximal femur 2 Cadaver DXA qCT

Humbert, 201744 Proximal femur 157 Adult (alive) DXA qCT

Whitmarsh, 201128 Proximal femur 30 Adult (alive) DXA qCT

Zheng, 2009 (B)36 Proximal femur 23 Plastic Radiograph CT

Cadaver T‐scan (laser reconstruction)

Zheng, 2009 (A)33 Proximal femur 1 Plastic bone Radiograph CT

Zheng, 2010 (A)37 Proximal femur 11 Cadaver Fluoroscopy CT

T‐scan (laser reconstruction)

Grassi, 202140 Proximal femur 11 Cadaver DXA CT

Tang, 200524 Distal femur 2 Cadaver DRR CT

Zhu, 201139 Distal femur 10 Adult (alive) Fluoroscopy MRI

Cerveri, 201838 Distal femur 20 Adult (alive) DRR CT

Baka, 201116 Distal femur 2 Cadaver Radiograph CT

Baka, 201215 Distal femur 10 Adult (alive) Fluoroscopy CT

Wu, 202131 Distal femur 5 Adult (alive) Fluoroscopy CT

Schumann, 201620 Femur 36 Cadaver Radiograph CT

Tibia

Gajny, 202241 Femur 29 Cadaver DRR CT

Tibia

Baka, 201427 Distal femur 16 Cadaver adult (alive) Fluoroscopy CT

Proximal tibia

Proximal fibula

(Continues)
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T A B L E 4 (Continued)

Lead author, year Anatomical location

Validation experiment

Anatomical specimens (n) Population type 2D imaging Ground truth imaging

Li, 201448 Distal femur 3 Adult (alive) Fluoroscopy CT

Proximal tibia

Tsai, 201525 Distal femur 2 Adult (alive) Fluoroscopy CT

Proximal tibia

Patella

Lu, 202142 Distal femur 10 Adult (alive) Fluroscopy CT

Proximal tibia

Smoger, 201722 Patella 49 Cadaver Radiograph MRI

Abbreviations: CT, computerised tomogrophy; DRR, digitally reconstructed radiograph; DXA, dual‐energy x‐ray absorptiometry; MRI, magenetic

resonance imaging.

TAB L E 5 Best achievable accuracies categorised as root mean

square error (RMSE) or average error.

Study Anatomical location

Best accuracy

(mm ± SD or range)

RMSE

Wu, 202131 Distal femur 1.04 � 0.33

Proximal tibia 1.03 � 0.19

Klima, 201646 Femoral shaft 1.74

Li, 201448 Distal femur 1.16

Proximal tibia 1.4

Baka, 201427 Distal femur 1.18

Proximal tibia and fibula 1.56

Baka, 201215 Distal femur 1.48 � 0.41

Cerveri, 201838 Distal femur 0.75

Smoger, 201722 Patella 0.45 � 0.007

Baka, 201116 Distal femur 0.68

Zheng, 2009 (A)33 Proximal femur 1.3

Tang, 200524 Distal femur 1.71

Lu, 202142 Distal femur 0.64 � 0.084

Proximal tibia 0.69 � 0.069

Average error

Tsai, 201525 Distal femur 0.30 � 0.81

Proximal tibia 0.34 � 0.79

Patella 0.36 � 0.59

Gajny, 202241 Femur 1

Tibia 1.1

Schumann, 201321 Acetabulum 1.06 � 0.14

Femoral head 1.01 � 0.16

T A B L E 5 (Continued)

Study Anatomical location

Best accuracy

(mm ± SD or range)

Picazo, 201818 Lumbar vertebrae (L1–L4) 1.51

Humbert, 201744 Proximal femur 0.93

Mutsvanga, 201717 Scapula 3.2

Schumann, 201620 Proximal femur 1.12 � 0.89

Distal femur 1.13 � 0.84

Proximal tibia 0.88 � 0.63

Distal tibia 0.78 � 0.56

Zheng, 201134 Lumbar vertebrae 0.77

Zhu, 201139 Distal femur 0.16 � 1.16

Zheng, 2010 (B)37 Pelvis 1.6

Zheng, 2009 (B)36 Proximal femur 0.95 � 0.22

Zheng, 2010 (A)37 Proximal femur 1

Zheng, 2010 (C)35 Lumbar vertebrae 1

Sadowsky, 200719 Pelvis 1.42

Whitmarsh, 201330 Lumbar vertebrae–L2 1

Lumbar vertebrae–L3 0.93

Lumbar vertebrae–L4 1.34

Whitmarsh, 201029 Proximal femur 1.2

Hurvitz, 200845 Proximal femur 1.44

Vaanenen, 201526 Proximal femur 1.41

Kurazume, 200947 Proximal femur 0.8–1.1

Dong, 200943 Proximal femur 1.6

Spinelli, 201223 Proximal femur 1.2

Whitmarsh, 201130 Proximal femur 1.1

Grassi, 202140 Proximal femur 1.02
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TAB L E 6 Risk of bias (RoB) assessment using the PROBAST tool in order from low RoB to high RoB.

Lead Author, Year

Domain 1—Participants Domain 2—Predictors Domain 3—Outcome
Domain 4—

Analysis

Overall

Assessment

RoB App RoB App RoB App RoB
RoB App

DEV VAL DEV VAL DEV VAL DEV VAL DEV VAL DEV VAL DEV VAL

Picazo, 2018 • • • • • • • • • • • • • • • •

Whitmarsh, 2010 • • • • • • • • • • • • • • • •

Vaanenen, 2015 • • • • • • • • • • • • • • • •

Spinelli, 2012 • • • • • • • • • • • • • • • •

Humbert, 2017 • • • • • • • • • • • • • • • •

Whitmarsh, 2011 • • • • • • • • • • • • • • • •

Grassi, 2021 • • • • • • • • • • • • • • • •

Zhu, 2011 • • • • • • • • • • • • • • • •

Cerveri, 2017 • • • • • • • • • • • • • • • •

Baka, 2011 • • • • • • • • • • • • • • • •

Baka, 2012 • • • • • • • • • • • • • • • •

Baka, 2013 • • • • • • • • • • • • • • • •

Li, 2014 • • • • • • • • • • • • • • • •

Tsai, 2015 • • • • • • • • • • • • • • • •

Smoger, 2017 • • • • • • • • • • • • • • • •

Lu, 2021 • • • • • • • • • • • • • • • •

Whitmarsh, 2013 • • • • • • • • • • • • • • • •

Sadowsky, 2007 • • • • • • • • • • • • • • • •

Klima, 2016 • • • • • • • • • • • • • • • •

Zheng, 2009A • • • • • • • • • • • • • • • •

Hurvitz, 2008 • • • • • • • • • • • • • • • •

Zheng, 2008 • • • • • • • • • • • • • • • •

Zheng, 2009B • • • • • • • • • • • • • • • •

Mutsvanga, 2017 • • • • • • • • • • • • • • • •

Zheng, 2010B • • • • • • • • • • • • • • • •

Kurazume, 2009 • • • • • • • • • • • • • • • •

Tang, 2005 • • • • • • • • • • • • • • • •

Zheng, 2010A • • • • • • • • • • • • • • • •

Zheng, 2011 • • • • • • • • • • • • • • • •

Schumann, 2013 • • • • • • • • • • • • • • • •

Dong, 2009 • • • • • • • • • • • • • • • •

Schumann, 2016 • • • • • • • • • • • • • • • •

Jing, 2021 • • • • • • • • • • • • • • • •

Gajny, 2022 • • • • • • • • • • • • • • • •

Note: •, high RoB/high concern of applicability; •, unclear; •, low RoB/low concern of applicability.

Abbreviations: App, applicability; DEV, development; VAL, validation.
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4 | DISCUSSION

The results of this review provide evidence that accurate and vali-

dated 3D anatomical models suitable for clinical use have been

predicted from 2D imaging through statistical shape modelling

techniques. To our knowledge, this is the first piece of work to sys-

tematically review the accuracy of SSMs.

All measurements of accuracy were calculated by comparing a

reconstructed model to a ground‐truth model derived from CT or

MRI, which is the current gold‐standard in clinical practice.

Furthermore, all test subjects were independent to the training

dataset. The best achievable accuracies ranged between 0.45–

1.74 mm (RMSE) and 0.16–3.2 mm (Average Error). Based on

Livyatan et al.'s description of acceptable clinical accuracy, only one

model failed to meet the level required to be ‘desirable’ or accept-

able’.7 Currently, the gold standard methods of CT and MRI

demonstrate accuracy within 0.5 mm when predicting 3D bone

shape.4 The majority of SSMs included in our review do not exceed

this error margin.

The calculation of accuracy in this review was understood to be

the difference between the predicted 3D model and the ground‐truth

model, calculated as RMSE or Average Error. However, it must be

noted the target accuracy of a model will depend on its intended use,

and surface reconstruction error might not be the only valid measure

of prediction accuracy. For example, Zheng's research group assessed

the accuracy of their SSMs (based on a single AP radiograph to

reconstruct the 3D anatomy of the pelvis following total hip

replacement) by measuring the angular anteversion of the acetabular

cup. They concluded that their SSM method was more accurate than

a plain radiograph but inferior to CT‐based measurements.50–52

Whereas Nolte et al. evaluated the accuracy of their SSM femoral

bone model using a number of different metrics such as femoral head

radius, neck angle, bow angle, and angle between femoral mechanical

and anatomical axis, and then combined this with grey scale values to

compare the mechanical properties (stress and strain) of the bone

with the ground truth.53 Other examples of different outcome mea-

surements include kinematic studies where accuracy is measured in

terms of rotation or translation of a particular bone and implant

design where surface point accuracy is key.15,48,54 This highlights the

importance of acknowledging different measurements of accuracy

depending on the intended use of the prediction model, as well as the

need for standardisation of reporting measures wherever possible.

For example, a large bone (femur) or joint (hip) is likely to have a

larger acceptable margin of error than a smaller bone (carpal) or joint

(facet). A range of measurements which would define acceptable

accuracy depending on anatomical location and intended clinical use

could be derived from expert opinions and would be of significant

benefit to those developing these models.

It is noteworthy that the distal femur was a commonly modelled

bone, with 12 separate publications.15,16,20,24,25,27,31,38,39,41,42,48

A likely reason for this is the role of patient specific instrumentation

(PSI) in knee replacement (TKR) surgery. PSI is a technique designed

to improve overall surgical accuracy during prosthesis insertion.55

This innovation involves designing patient‐specific cutting blocks

from pre‐operative CT or MRI imaging alongside a full‐length

standing AP radiograph.55 Intra‐operatively these guides are

designed to fit the patient's own bones like a glove, and once secured,

guide the surgeon, via slots, to perform the bony cuts according to a

previously agreed 3D plan.38,55 If this could be achieved without the

need for CT or MRI, then this approach would become more efficient

and cost‐effective. Five of the studies describe sub‐millimetre accu-

racy of the distal femur SSI model, with one study (Tsai et al.)

reporting sub‐millimetre accuracy for the entire knee joint.25 These

results are promising and suggest SSMs may play a significant role in

future PSI work. Indeed, it is interesting to note that Zimmer Biomet

has recently introduced the world's first CE marked, x‐ray based PSI

for TKR surgery.56

4.1 | Limitations

Morphology of joints and bones are known to vary according to

ethnicity and gender.57,58 The underlying ethnicity of the study

participants was only mentioned in one of the included studies and

gender was only provided in 16 papers. This key information may

affect the model's accuracy depending on the patient cohort is it

being applied to and resulted in several papers being categorised as

‘at risk of bias’. It should be noted that one possible reason for not

providing demographics may be related to anonymous cadaveric

specimens being donated by medical facilities.17,36 However, it will be

important for future studies, particularly those using patients or

images from joint registries, to include this essential information to

ensure that applicability for all patient populations can be assessed.

Although all included measurements were a comparison between

the predicted 3D model and the ground‐truth model, a meta‐analysis

of model accuracy was not possible due to the inconsistent use of

RMSE and average error. Moreover, the average error was calculated

using varying methods across the studies, with some using medians

and others using means. This variation in reporting the overall ac-

curacy meant that direct statistical comparison between values is not

possible. Again, for future studies, it would be useful to standardise

the method of reporting to facilitate model comparisons, and a rec-

ommended set of reporting guidelines is proposed (Figure 3). All

papers aiming to validate a statistical shape model would ideally have

a standardised method of calculating accuracy, such as the RMSE of

average error, allowing for direct comparison. We recommend this be

reported alongside other commonly used clinical bone metrics, such

as neck/shaft angle, femoral mechanical and anatomical axis angle or

acetabular anteversion depending on the intended use.

Also of note were the number of studies which validated their

SSM using a small number of bone samples (<50) and had a predic-

tion error above 1 mm (n = 21), which makes interpretation difficult.

Another limitation to be aware of is that this review focussed on a

highly specific area of research which meant that several of the

included papers were from the same research groups, with a resul-

tant risk of publication bias.
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5 | CONCLUSION

This systematic review provides evidence that statistical shape

modelling has the potential to accurately reconstruct detailed 3D

anatomical models from standard 2D imaging. Prior to acceptance in

healthcare, clinical validation studies are required with sufficient

sample sizes and varying populations. A standard set of reporting

guidelines has been proposed, to facilitate the analysis and compar-

ison of SSMs in future studies, particularly with regards to the

detailed demographics of the training and validation sets, the

required variables necessary for the application, and the method of

reporting model accuracy.
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