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Abstract

The presence of granulated lymphocytes in the human uterine mucosa,
known as decidua during pregnancy, or endometrium otherwise, was first
noted in the nineteenth century, but it was not until 1990 that these cells
were identified as a type of natural killer (NK) cell. From the outset, uterine
NK (uNK) cells were found to be less cytotoxic than their circulating coun-
terparts, peripheral NK (pNK) cells. Recently, unbiased approaches have
defined three subpopulations of uNK cells, all of which cluster separately
from pNK cells. Here, we review the history of research into uNK cells, in-
cluding their ability to interact with placental extravillous trophoblast cells
and their potential role in regulating placental implantation. We go on to
review more recent advances that focus on uNK cell development and het-
erogeneity and their potential to defend against infection and to mediate
memory effects. Finally, we consider how a better understanding of these
cells could be leveraged in the future to improve outcomes of pregnancy for
mothers and babies.
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THE UTERINE MUCOSA DURING THE MENSTRUAL CYCLE
AND PREGNANCY

The mucosal lining of the uterus, known as endometrium in the nonpregnant state, is trans-
formed into decidua if pregnancy occurs. Like other mucosal surfaces, the endometrium must
possess immune defense mechanisms against pathogens. Immune responses can occur in the en-
dometrium, for example T cell–mediated formation of granulomas in systemic tuberculosis (1)
and endometritis, which is the only situation in which plasma cells are found at this mucosal site
(2).

There are, however, many unique aspects of the physiology of this mucosal lining. It is com-
posed of a stratum basalis, or basal layer, where lymphoid aggregates composed of T cells and a
few B cells are located, and a stratum functionalis, or functional layer, that is constantly chang-
ing throughout the menstrual cycle, during pregnancy, and after menopause. At menstruation,
the stratum functionalis is shed, and during the first 14 days of the menstrual cycle, stromal cells,
glands, and vascular cells proliferate to regenerate the functionalis: This is therefore called the
proliferative phase of the cycle. At the end of the proliferative phase, high levels of estrogen trig-
ger the release of luteinizing hormone from the pituitary gland, and this stimulates ovulation.After
ovulation, the ovarian follicle from which the egg was released forms the corpus luteum, which se-
cretes progesterone. Under the influence of progesterone, proliferation of the glands and stromal
cells ceases and they differentiate. The stromal cells enlarge and the glands produce glycogen-
rich secretions: This is therefore called the secretory phase of the cycle (3). If pregnancy does not
occur, the corpus luteum involutes, and the loss of progesterone causes the stratum functionalis
to be shed (Figure 1). Outside reproductive life, before menarche and after menopause, when
hormones secreted from the ovarian follicle and subsequently the corpus luteum are lacking, the
mucosa is inert (4).

If fertilization occurs, human chorionic gonadotropin produced by the embryo maintains the
corpus luteum, and the progesterone it produces allows the stromal and glandular epithelial cells
to be maintained, so that the endometrium is transformed into decidua. The embryo moves down
the fallopian tube to the uterine cavity, and the blastocyst implants into the decidua approximately
7 days after ovulation. In the following week, the blastocyst, which is surrounded by trophecto-
derm, is quickly embedded in the mucosa. The attachment to the epithelium leads to syncytial
formation of the trophectoderm, so the conceptus is then surrounded by this primary syncytium
with an inner layer of cytotrophoblast (5). In the following weeks the inner cytotrophoblast pushes
in columns through the syncytial layer to form a shell around the conceptus. These columns (the
primary villi) are subsequently filled with extraembryonic mesenchymal cells and then vessels, to
form the villous tree of the placenta. The villi are covered in an inner layer of mononuclear vil-
lous cytotrophoblast cells that fuse to form an outer layer of syncytiotrophoblast. From the villi
in contact with the decidua (anchoring villi), invasive extravillous trophoblast (EVT) cells move
into the decidual stroma and migrate toward the spiral arteries. This interstitial EVT encircles the
spiral arteries and destroys the media, resulting in an inability to vasoconstrict.When the cytotro-
phoblast shell overlies the opening of the arteries, the trophoblast moves down to form a plug.
These endovascular plugs prevent blood from reaching the intervillous space early in pregnancy,
until the arteries have been modified to reduce the flow at 8–10 weeks (5) (Figure 2). Before the
onset of the full hemochorial connection, the conceptus receives nourishment from the secretions
of the endometrial glands—histotrophic nutrition (6, 7).

The degree of trophoblast invasion correlates with the extent of decidualization in different
species, pointing to the importance of interactions between maternal decidual cells and fetal
trophoblast in regulating placentation (8). When implantation occurs in the absence of decidua,
either in an ectopic location such as the fallopian tube or in the uterus over a previous caesarean
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Figure 1

Kinetics of uterine NK (uNK) cells over the menstrual cycle and pregnancy. The menstrual cycle begins on
the first day of menstruation. Subsequently, glands and stromal cells in the endometrium proliferate under
the influence of progesterone, during the proliferative phase. Following ovulation, stromal cells expand and
endometrial glands become secretory. This is called the secretory phase, and it involves decidualization of
the mucosa in advance of pregnancy. If fertilization does not occur, the corpus luteum involutes and
progesterone declines, triggering menstruation. If fertilization occurs, human chorionic gonadotropin from
the conceptus maintains the corpus luteum, and the endometrium, now called the decidua, continues into
the first trimester of pregnancy. uNK cells expand rapidly as the endometrium decidualizes in the secretory
phase of the menstrual cycle and are most prominent in the first trimester of pregnancy, declining in the
second and third trimesters. uNK cells are now known to consist of three subsets, uNK1, uNK2, and uNK3,
with uNK1 and uNK2 cells peaking at around the time of implantation and uNK3 cells remaining relatively
stable throughout the menstrual cycle and pregnancy.

section scar, the trophoblast penetrates deeply and can lead to rupture of the tube or uterus
(9). All this evidence points to a crucial role of decidual-trophoblast interactions in defining the
correct boundary between the placenta and the uterus.

DISCOVERY OF UTERINE NK CELLS

A unique feature of the endometrium, only during reproductive life, is the presence of granulated
lymphocytes.Granulated cells with an eccentric nucleus and acidophilic cytoplasmic granules were
noted in first-trimester decidua in the nineteenth century (10) and were thought to be a type of
lymphoid cell (11). They were subsequently identified in nonpregnant endometrium (12) and
have been variously called endometrial granulocytes, Kornchenzellen or K cells (13), globular
leukocytes (14), and specific endometrial granular cells (15). Several of these reports noted the
apparent hormonal dependence of endometrial granulocytes, as they were particularly prominent
in the week before menstruation and were abundant in decidua until early in the second trimester,
but cells with the typical granules were absent by term. In ovariectomized women, endometrial
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Figure 2

Anatomy of the maternofetal interface in the first trimester. The outer layer of the placental villi are covered by the
syncytiotrophoblast, with an underlying layer of mononuclear cytotrophoblast cells. The inner layer of the cytotrophoblast grows out
of the villi to anchor the placenta to the maternal decidua. The cytotrophoblast differentiates to the extravillous trophoblast (EVT),
which moves into the decidua and migrates toward the spiral arteries, destroying the media and thus preventing the arteries from
constricting, a process known as spiral artery transformation. Where the EVT overlies the opening of the arteries, it moves down,
forming a plug that limits maternal blood from entering the intervillous space before the spiral arteries have been fully transformed,
which occurs at between eight and ten weeks of pregnancy. Before this time, the conceptus is mainly nourished by secretions from the
endometrial glands. After approximately ten weeks of gestation, the trophoblast plugs are effaced, allowing maternal blood to bathe the
placental villi at high conductance and low pressure. The EVT expresses HLA-C, HLA-E, and HLA-G, which are major ligands for
NK cells and macrophages: The immune cells present in the decidua while this process of implantation occurs are uterine NK (uNK)
cells (approximately 70% of all immune cells), macrophages (20%), and T cells (10%).

granulocytes were only seen in those treated with estrogen and progesterone. Estrogen alone was
insufficient for these cells to appear (13). Clearly their presence and function are under hormonal
control.

Following on from studies in rodents (16–18), these cells were identified as CD45+ leukocytes
that expressed some lineage markers suggestive of T cells (CD2 and CD38) but not CD3, CD4,
CD8, or CD5 (19–22). Around 1990 they were finally identified by immunohistochemistry and
flow cytometry as a type of natural killer (NK) cell with a distinctive phenotype, CD56bright, but
lacking the other NK cell markers used at the time, CD16 and CD57 (22–25).
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UTERINE NK CELLS ARE NOT CYTOTOXIC BUT HAVE
UNUSUAL GRANULES

It was clear from the outset that the cytolytic ability of human uterine NK (uNK) cells against
classical targets such as K562 is reduced compared to peripheral NK (pNK) cells (24, 26, 27). uNK
cell granules do contain cytotoxic mediators, such as perforin and granzyme (28, 29) so this may
be due to a failure to polarize the granules to form the synapse (30). Cytotoxicity to classical NK
cell targets is increased after exposure in vitro to IL-2 or IL-15, but uNK cells do not kill the EVT
cells that invade the decidua after implantation unless they are activated with IL-2 (but not IL-15)
(29, 31, 32). The other commonly used readout for circulating NK cells, IFN-γ, is uninformative,
as only low levels are secreted by uNK cells without preactivation (33–35).

The cytoplasmic granules of uNK cells also have features that distinguish them from those of
pNK cells. One of the characteristics leading to their identification was the acidophilic staining
of the cytoplasmic granules with phloxine tartrazine (14). In mice, the features of the granules are
also unusual, as they stain strongly with the lectin DBA (36, 37). The granules of uNK cells are
larger than those of pNK cells (38). NK cells with larger granules are better cytokine producers
(39), so this might explain why uNK cells are weakly cytolytic. There are also points of similarity
between uNK cells and pNK cells from patients with Chediak-Higashi syndrome that have large
granules but fail to polarize toward NK cell target cells (40, 41) and are still efficient cytokine
producers (42).Mutations in the lysosomal trafficking protein LYST are responsible for Chediak-
Higashi syndrome and the equivalent beige syndrome in mice (that reproduce normally), and
LYST mRNA levels are low in uNK cells compared to pNK cells (43). These clear points of
difference from pNK granules raise the question of whether uNK granules contain additional
mediators that are important for uNK cell–specific functions. A first step to answering this will be
to fully define granule contents of uNK cells.

UTERINE NK CELLS EXPRESS RECEPTORS ALLOWING THEM
TO RECOGNIZE THE EXTRAVILLOUS TROPHOBLAST

The presence of NK cells in the uterus at the time of placental implantation naturally led to inves-
tigations of whether they could recognize the EVT cells that invade the decidua early in pregnancy
and are of fetal origin. Because of the role of polymorphic HLAmolecules in immune recognition
of allogeneic cells, an obvious question was which HLA molecules trophoblast cells express.

The major ligands for T cell receptors (TCRs), HLA-A and HLA-B molecules, have never
been shown to be expressed by any human trophoblast subsets (44, 45). The presence of a non-
polymorphic HLA class I molecule with a lower-molecular-weight (39 kDa) heavy chain than
classical HLA class I molecules (45 kDa) expressed by choriocarcinoma lines and term placentae
was the first hint that trophoblast cells expressed an unusual array of HLA class I molecules (46–
48). This molecule, named HLA-G, was later found in the EVT in first-trimester pregnancies as
well as the noninvasive trophoblast layer of the chorion laeve (49, 50).

The presence of another HLA class I molecule with a conventional heavy chain of 45 kDa
was first reported on the choriocarcinoma line BeWo (44, 48). This was subsequently identified in
nonmalignant first-trimester EVT cells and shown to be HLA-C (49, 51–53). HLA-E reaches the
cell surface if there is a peptide derived from the leader sequence of another class I molecule, such
as HLA-C, so it was unsurprising that this was also expressed (52, 54, 55). The peptide derived
from the HLA-G leader sequence is preferentially presented by HLA-E (56).

Uterine NK Cell Receptors for HLA-C

A pivotal role for HLA-C expressed by the EVT emerged when the NK cell receptors
that recognize human MHC-I molecules were defined in the mid-1990s (57, 58). Killer cell

www.annualreviews.org • NK Cells in the Human Uterine Mucosa 131

A
nn

u.
 R

ev
. I

m
m

un
ol

. 2
02

3.
41

:1
27

-1
51

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
2a

00
:2

3c
8:

18
15

:c
c0

1:
46

e5
:1

7f
f:

fe
a5

:4
ec

 o
n 

05
/1

8/
23

. S
ee

 c
op

yr
ig

ht
 f

or
 a

pp
ro

ve
d 

us
e.

 



immunoglobulin-like receptors (KIRs) are a closely related family of immunoglobulin superfamily
molecules situated in the leukocyte receptor complex on chromosome 19, a region of the human
genome that also has many genes devoted to reproduction (59, 60). Uterine NK cells express a
higher proportion of the KIRs that bind to HLA-C allotypes than pNK cells from the same in-
dividuals (61, 62). HLA-C and KIR tetramers bind to primary uNK and EVT cells, respectively,
demonstrating that these interactions occur at the time of placentation (61).

KIRs bind to four epitopes on HLA class I molecules: HLA-Bw4, HLA-A2/11, and all
HLA-C allotypes distinguished by a dimorphism at position 80 of the α1 domain into two groups,
C1+HLA-C and C2+HLA-C (60). Because the EVT does not express HLA-A or HLA-B,
the C1 and C2 epitopes of HLA-C are the main polymorphic features detected by uNK cells.
KIRs are either inhibitory or activating, depending on the length of the cytoplasmic tail. The
KIRs that bind to C1+HLA-C are inhibitory KIR2DL2/3. For C2+HLA-C allotypes there are
both inhibitory, KIR2DL1, and activating, KIR2DS1. There are two main KIR haplotypes, A
and B, that differ both in the number of KIR genes and in allelic variation at each locus. The
KIR A haplotype has seven genes that are inhibitory, apart from KIR2DS4, which is frequently
nonfunctional. The KIR B haplotype has a variable number of additional, mostly activating, KIR
and can have up to 14 genes (63).

Uterine NK Cell Receptors for HLA-E

CD94/NKG2 is an NK cell lectin-like receptor that binds to HLA-E (64–67). This heterodimer
can be inhibitory (CD94/NKG2A) or activating (CD94/NKG2C). More than 95% of uNK cells
express CD94/NKG2A, with a smaller subset expressing CD94/NKG2C (52, 68–70). When
HLA-E is bound to the leader peptide of HLA-G, the affinity for the activating CD94/NKG2C is
much higher than for any otherHLA-derived peptide or even for peptides derived from pathogens
like HCMV (56, 71, 72). This means that in the decidua basalis, the site where EVT cells invade
the uterine lining, there will be a different signal to uNK cells from the EVT than from surround-
ing maternal stromal cells and macrophages that do not express HLA-G: The functional effects
of this are still unknown.

Uterine NK Cell Receptors for HLA-G

Unlike classical class I HLAmolecules, which are found in the same region of the genome, there is
limited polymorphism of HLA-G, with one allele, HLA-G∗0101, predominating and highly con-
served at the protein level (73). Uniquely, HLA-G has a truncated cytoplasmic tail that influences
trafficking and the repertoire of peptides presented, resulting in an extended surface half-life (74–
76). Controversy has surrounded many aspects of the biology and possible functions of HLA-G
(77). However, there is no dispute that there is intense expression by both endovascular and in-
terstitial EVT cells, which increases as they move deeper into the decidua to form placental bed
giant cells (47, 78, 79).

HLA-G associates with TAP and is expressed at the cell surface in association with β2 mi-
croglobulin (β2m) and peptide (78, 80, 81). It can also exist as a dimer of two HLA-G molecules,
each of which consists of a heavy chain, β2m, and peptide (82, 83) linked by a disulfide bond be-
tween extracellular cysteines at position 42 in the heavy-chain α1 domain: This moiety is unique
to HLA-G and allows conservation of the conventional HLA class I heterotrimeric complex
in the dimers (84). These HLA-G dimers can be immunoprecipitated from the surface of pri-
mary first-trimester EVT cells and provide a high-affinity ligand for members of the LILR family
that, like KIRs, are located on chromosome 19q13.4 and have both inhibitory and activating forms
depending on the cytoplasmic tail (85, 86).
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LILRB1 has a long tail with ITIMs (immunoreceptor tyrosine-based motifs) characteristic of
inhibitory receptors and binds to HLA-G dimers, as confirmed by crystal structure and by using
a LILRB1-Fc fusion protein LILRB1 to immunoprecipitate HLA-G dimers from the surface of
primary trophoblast cells (86–89). LILRB1 is expressed both by a subset of uNK cells and by de-
cidual myeloid cells, macrophages, and DCs (90–92). The binding of EVT cells to the myeloid
cells results in tolerogenic rather than immunogenic adaptive responses, clearly an important func-
tion at the maternofetal interface (86, 93, 94). The function of LILRB1 on uNK cells is less clear.
In one study, coculture of uNK cells with transfectants expressing either the monomeric or the
dimeric forms of HLA-G did not result in degranulation or IFN-γ production, but other groups
have suggested that uNK cells may be either activated or inhibited by recognition of EVT cells
via LILRB1, and no consensus has yet emerged (68, 86, 90, 91, 95).

KIR2DL4 is a framework KIR gene present in all individuals, with one transcript lacking the
transmembrane domain present in most populations (96, 97). The cytoplasmic tail contains an
ITIM as well as an arginine residue, initially leading to confusion over whether KIR2DL4 is
inhibitory or activating (98). KIR2DL4 has been reported to bind to HLA-G, although binding
of KIR2DL4-Fc proteins to HLA-G-expressing cells has revealed inconsistent results, perhaps
because appropriate controls have not always been included (83, 99–101). Structural analysis
has also suggested that KIR2DL4 does not bind to HLA-G monomers or dimers (102, 103).
There is also conflicting evidence about KIR2DL4 expression in pNK cells and uNK cells, and
surface expression is difficult to detect (100, 104, 105). One explanation that could account for
these controversies is that HLA-G is endocytosed and KIR2DL4 is expressed in the endosomes
where binding occurs (105): This might account for the difficulty both in detecting KIR2DL4
at the surface and in defining its ability to bind to HLA-G, since endosome-specific conditions
may be required. In pNK cells, this endosomal binding is reported to result in proinflammatory
and proangiogenic responses (106). If uNK cells do bind to HLA-G expressed by EVT cells,
this is unlikely to be the functional outcome, as inflammation is not a feature of the decidua
basalis during placentation and the increased blood flow is mediated not by angiogenesis but by
destruction of the media (107). Therefore, the question of whether KIR2DL4 binds to HLA-G
and the functional outcome of any such binding remains to be resolved.

UTERINE NK CELLS ARE A HETEROGENEOUS POPULATION

It has long been appreciated that uNK cells do not form a uniform population: As in pNK cells,
there is cell-to-cell variation in the precise combination of NK cell receptors that are expressed
(38, 61, 62, 108–112). Recently, however, new single-cell RNA sequencing (scRNA-seq) tech-
niques have enabled an unbiased approach to these cells, and three major subpopulations were
identified in first-trimester decidua, originally called dNK1, dNK2, and dNK3 cells (43). A smaller
subset of proliferating uNK cells, designated dNKp cells, was identified by its expression of cell
cycle genes. Another study that also examined first-trimester decidua using scRNA-seq identified
two uNK cell clusters, one of which aligns with dNKp cells and one of which contains dNK1,
dNK2, and dNK3 cells (113). More recently, equivalent subsets have been identified in nonpreg-
nant endometrium (114, 115): In recognition of the finding that these subsets are found in the
nonpregnant endometrium as well as the decidua, here we designate them uNK1, uNK2, and
uNK3. Although one study has identified uNK1–3 cells in second- and third-trimester decidua
using clustering and gating strategies developed with first-trimester tissue (115), where unbiased
approaches to defining uNK subsets in the third trimester have been used, the three uNK subsets
have not been identified (115–117). This suggests there may be transcriptional features of uNK
cells late in pregnancy that mask the expression signatures of the subsets that can be identified
earlier.
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Table 1 Phenotypes and functions of uNK1, uNK2, and uNK3 cellsa

Stage of pregnancy uNK1 uNK2 uNK3
First trimester (43) � CD49a+CD9+

� CD39+ CD103−ITGB1−
� Large, granular
� Most GZMA,GZMB,GNLY,
PRF1

� High KIR, LILRB1,NKG2A/C
� High expression of glycolysis

genes

� CD49a+CD9+
� CD39−CD103−ITGB1+
� Medium size and granularity
� Medium GZMA,GZMB,
GNLY, PRF1

� Low KIR, LILRB1
� High NKG2A/C
� Low expression of glycolysis

genes

� CD49a+CD9+
� CD39−CD103+ITGB1+
� Small, agranular
� Least GZMA,GZMB,GNLY,
PRF1

� Low KIR, LILRB1,NKG2A/C
� Low expression of glycolysis

genes

First trimester (38) � TbetloEomeshiAhrint
� Little CD107a, GM-CSF,

IFN-γ, MIP1a, MIP1b,
XCL1

� Higher Ki67

� TbetintEomeshiAhrint
� Intermediate CD107a,

GM-CSF, IFN-γ, MIP1a,
MIP1b, XCL1

� Lower Ki67

� TbethiEomesintAhrint
� High CD107a, GM-CSF,

IFN-γ, MIP1a, MIP1b, XCL1
� Lower Ki67

First trimester (119) � Highest expression of PBX1 � Intermediate expression of
PBX1

� Lowest expression of PBX1

First trimester (118) � Down in RPL
� Enriched for angiogenesis-

related molecules
� Make little IFN-γ
� Express more LILRB1

� Up in RPL
� Enriched for

cytokine-mediated signaling
� Make more IFN-γ
� Express less LILRB1

� Up in RPL
� Enriched for

cytokine-mediated signaling
� Make more IFN-γ
� Express less LILRB1

First trimester (120) � Highest KIR
� Highest GNLY,GZMA,
GZMB,GZMK, PRF1

� Lower GZMH,GZMM
� Reduced in RPL

� Intermediate KIR
� Lower GNLY,GZMA,GZMB,
GZMK, PRF1

� Higher GZMH,GZMM
� Increased in RPL

� Lowest KIR
� Lower GNLY,GZMA,GZMB,
GZMK, PRF1

� Higher GZMH,GZMM
� About the same in RPL

Endometrium and first
trimester (122)

� Most metabolically active
� GO for angiogenesis highest
� Proliferation lowest
� IFNG, CCL4, CCL3 lowest
� Granzyme A, perforin, and

degranulation highest
� Galectin 9 highest

� Less metabolically active
� GO for angiogenesis

intermediate
� Proliferation intermediate
� IFNG, CCL4, CCL3

intermediate
� Granzyme A, perforin, and

degranulation intermediate
� Galectin 9 intermediate

� Less metabolically active
� GO for angiogenesis lowest
� Proliferation highest
� IFNG, CCL4, CCL3 highest
� Granzyme A, perforin, and

degranulation lowest
� Galectin 9 lowest

Endometrium (114) � CD69+CD16−
� Higher expression of KIRs

� CD69+CD16−
� Lower expression of KIRs

� CD69+CD16−
� Lower expression of KIRs

Endometrium and first and
third trimesters (115)

� KIRs highest
� LILRB1 higher
� CD94 higher

� KIRs intermediate
� LILRB1 lower
� CD94 lower

� KIRs lowest
� LILRB1 lower
� CD94 lower

Abbreviations: GO, gene ontogeny analysis; KIR, killer cell immunoglobulin-like receptor; RPL, recurrent pregnancy loss; uNK1, type 1 uterine natural
killer.
aTwo further studies (116, 117) that were not able to distinguish between uNK1, uNK2, and uNK3 cells at term are not included in this table but are
discussed in the text.

In contrast to pNK cells, all three of the major uNK subpopulations express the tissue-
residence marker CD49a and can be distinguished from each other by their expression of CD39,
integrin β1, and CD103 (43). This method of classifying uNK cells has now been used in several
recent reports (38, 114, 115, 118–121). Another strategy that can be included, or used instead, is to
subdivide uNK cells on the basis of the spectrum of KIR expression. Because uNK1 cells express
the most and uNK3 cells the least KIRs, where this approach has been taken it is still broadly pos-
sible to map the findings onto the uNK1–3 classification (38, 43, 118, 120, 122). The phenotypic
features of the uNK subsets are described in Table 1.

Of the three subsets, uNK1 cells express KIRs and LILRB1 at the highest frequency (38, 43,
115, 118, 120), meaning that they are particularly adapted to recognize EVT cells and therefore
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regulate placentation (43). In support of this hypothesis, uNK1 cells are only present before
menopause (122), their number and activity peak at the time of implantation (115, 122), and
they are found in proximity to EVT cells (123). A subset identified as being uNK1-like by its
expression of the transcription factor PBX1 is required for successful implantation in a mouse
model (119). Reports that uNK1 cells are reduced in the failing decidua following miscarriage,
compared to deciduae collected from ongoing pregnancies, have given rise to a similar claim
(118–121). However, a major limitation of these studies is that they compare healthy pregnancies
to those where the fetus has already died and associated inflammatory changes have already
occurred. An alternative explanation for this observation is that uNK1 cells are more sensitive to
the inevitable tissue destruction seen before the decidua is finally shed.

In contrast, uNK3 cells resemble intraepithelial group 1 innate lymphoid cells (ILC1s): They
produce IFN-γ as well as expressing CD103, CD69, and CD161 (38). The uNK3 subset remains
relatively stable throughout the menstrual cycle and pregnancy (115), and uNK3 are localized
farther from EVT cells (123), suggesting their major role is not specifically in implantation. They
seem likely to be more involved in conventional immune responses, including immune defense.
Finally, uNK2 cells occupy a phenotypic and functional space between those of uNK1 and uNK3
cells, which could suggest that they are a developmental intermediate between the two (38, 43).

The relatively recent discovery of the three uNK subsets means that there are still a number of
questions to be answered about the behavior of each subset. The kinetics and receptor expression
of the subsets suggest that uNK1, and perhaps also uNK2, cells are most likely to be involved in
implantation, with a homeostatic or immune role more likely for uNK3 cells, but this is still to be
definitively determined (38, 43, 115).

ROLE OF UTERINE NK CELLS IN IMPLANTATION

The temporal and spatial association of uNK cells with invading EVT cells, together with their
ability to recognize these cells and their relative inability to mediate conventional NK cell func-
tions, led to the hypothesis that themajor role for uNK cells is inmediating placental implantation.
In support of this, granulated lymphoid cells are only seen in the uterus in species in which tro-
phoblast cells breach the surface epithelium and infiltrate deep into the mucosa, allowing villi to
be bathed in maternal blood (mice, rats, guinea pigs, simian primates): hemochorial placentation
(124). As a result, a number of approaches have been taken to investigate the extent to which uNK
cells influence placental implantation.

Immunogenetics

Because of the extreme polymorphism of both the maternal NK KIR genes and their fetal lig-
and, HLA-C, and convincing evidence that KIRs are expressed and bind trophoblast HLA-C
molecules, immunogenetic studies were performed to detect if certain KIR/HLA-C combina-
tions are associated with disorders of placentation, known as the Great Obstetrical Syndromes
(125). The most studied of these is pre-eclampsia because there is a well-recognized international
definition (126) and because of the heterogeneity in the causes of other disorders that can also
result from defective placentation (fetal growth restriction, preterm labor, and stillbirth).

Results from cohorts in Europe and sub-Saharan Africa (Uganda and Ethiopia) show that
women with two KIR A haplotypes are more at risk of pre-eclampsia when the fetus has a
C2+HLA-C group allele (127–129). The KIR A haplotype contains seven genes that are all
inhibitory, apart from the activating KIR2DS4, which is frequently nonfunctional. Of these,
KIR2DL1, located on the centromeric arm of the KIR A haplotype, encodes a protein that binds
C2+HLA-C, and this receptor-ligand interaction is therefore most likely to be responsible for the
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association. Of the four main KIR2DL1 alleles in Europeans, KIR2DL1∗003 is particularly associ-
ated with pre-eclampsia (130). It seems likely that specific C2+HLA-C alleles are also particularly
risky, but this has not yet been formally addressed.

The activating receptor encoded by the KIR B haplotype that recognizes C2+HLA-C is
KIR2DS1, and this not only provides protection against pre-eclampsia but also is increased in
frequency in women who have large babies (131–134). In Ugandans, the frequency of KIR2DS1 is
low and it does not seem to confer protection. Instead, another activating KIR, KIR2DS5, which
is located on the centromeric end of the KIR B haplotype in individuals with African ancestry,
provides protection and can bind to C2+HLA-C allotypes (128, 135). In contrast, KIR2DS5 in
Europeans is nonfunctional and located on the telomeric end of the KIR B haplotype (135).

Taken together, these studies find that combinations of maternal KIRs and fetal HLA-C vari-
ants that result in inhibition of uNK cells by the EVT are associated with pre-eclampsia: The
important implication is that the interaction between uNK cells and the EVT regulates placen-
tal implantation, and that activating signals seem to protect against defective placentation but are
associated with larger birth weights.

Although it is more difficult to collect clinically well-characterized cohorts of subjects with
other Great Obstetrical Syndromes, there are hints that the same KIR/HLA-C combinations
are found in fetal growth restriction and recurrent pregnancy loss. There have been many stud-
ies looking at maternal KIR genotypes in women with more than two to three early pregnancy
losses, or those undergoing fertility treatment, but without consistent results (136–147). Other
studies have also not reproduced the immunogenetic findings in pre-eclampsia (148, 149). One
report merely used the population frequency of KIR and C2+HLA-C alleles in Japanese people
without any genotyping where there was<50% power to detect any significant difference in small
cohorts (150, 151). There are several potential reasons for the disparities in all these studies: the
difficulty of determining fetal HLA-C following pregnancy loss; the cohorts are too small, lack
statistical power, and are ethnically diverse; there is no validation of the KIR typing using the
UCLA exchange; there is no explanation of how KIR A and B haplotypes are assigned; and often
results deviate from the Hardy-Weinberg equilibrium (152, 153).

Effect of Uterine NK Cells on Trophoblast Migration

Following the first immunogenetic evidence that activation of uNK cells was associated with lower
risk of pre-eclampsia, a number of groups examined the ability of uNK cells tomediate trophoblast
invasion experimentally. First-trimester uNK cells promoted the invasion of primary EVT cells
into a Matrigel plug in mice, or across a transwell insert (95), while uNK supernatants promoted
the invasion of trophoblast explants in vitro (154, 155). EVT cells express the receptors needed to
respond to IL-8, and invasion could be partially reversed by anti-IL-8, suggesting this might be
a key cytokine mediating EVT invasion (95, 154). However, when examined by intracellular flow
cytometry, unstimulated uNK cells make only small amounts of IL-8, with decidual macrophages
the major IL-8-producing population (115, 156).

Recently, other uNK cell–derived factors have been suggested as potentially mediating tro-
phoblast invasion. Many cytokines and chemokines are produced by uNK cells, especially
GM-CSF, CSF1, CCL2, CCL3, CCL4, and XCL1, and which uNK subsets produce these de-
pends on the in vitro stimulation used, whether they are freshly isolated, and how pure the uNK
cell isolates are (38, 43, 115, 118, 122, 131, 157). GM-CSF attracts trophoblast cells in a microflu-
idic invasionmodel (158); the receptor for XCL1,XCR1, is found on EVT cells (43, 157, 159); and
XCL1 can promote migration of the EVT-derived cell line HTR-8/SVneo in vitro (159). Other
chemokines expressed by uNK cells include CCL5, which is preferentially produced by uNK3
cells and whose receptor, CCR1, is expressed by EVT cells (43), and CCL1 and CCL3, which
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may impact tissue remodeling at the site of implantation by signaling to macrophages (157). Their
exact roles in EVT behavior and impact on other decidual cells remain unclear.

Role in Spiral Artery Remodeling

Transformation of the spiral arteries in early pregnancy is mediated by EVT (160), and therefore
if uNK cells play a role in this process, it is likely to be via an effect on EVT. Some changes to
the spiral arteries do occur in advance of pregnancy or in the decidua of ectopic pregnancies,
by vessel elongation and loosening of the media (161–163). These are likely to be mediated by
decidual factors that could include uNK cells, which have been observed to infiltrate remodeling
spiral arteries in vivo (although it is not clear in some studies how arteries were distinguished
from veins) (164) and in EVT/decidual cocultures (165). In coculture models, uNK cells increase
vascular smooth muscle disorganization by their production of matrix metalloproteinases (165,
166) and they can destabilize tubules made by endothelial cell lines (167).

Some studies have found that uNK cells can promote sprouting angiogenesis in xenograft and
human umbilical vein endothelial cell (HUVEC) tubule formation models (95) and that they
produce angiogenic factors such as VEGF, PlGF, and Ang2 (95, 166, 168), although scRNA-
seq findings have cast doubt on the cellular source of these factors (43). However, given that
both pre-pregnancy and early pregnancy changes to the spiral arteries do not occur by sprout-
ing angiogenesis, the extent to which the expression of these factors is involved in spiral artery
transformation is unclear. Another important unanswered question is exactly how the phenotype
and functions of EVT cells change as they move through the decidua toward the myometrium
and how this is altered in disorders of placentation, causing incomplete arterial transformation.
The new in vitro models of trophoblasts will be important in exploring the impact of uNK cells
on the EVT (169–171).

ROLE OF UTERINE NK CELLS IN CONTROLING INFECTION

Because of their reduced cytotoxicity against the conventional NK cell target line K562, it was
originally thought that uNK cells were unlikely to have a role in controlling infection. However,
their expression of perforin and granzymes always left open the possibility that they could become
cytotoxic under certain circumstances. More recently, evidence suggests that they can recognize
infected cells and control pathogen spread.Because of the proximity of the decidua to the placenta,
interest in this area has focused on those pathogens that can be vertically transmitted, but this
requires infection of villous trophoblast cells and/or breach of the syncytiotrophoblast barrier,
whereas uNK cells are in contact with EVT cells and decidual stromal cells. Nonetheless, the
decidua will be affected in overwhelming systemic infections, so decidual control of pathogens
might reduce the chance of vertical transmission (172).

Human Cytomegalovirus

In healthy adults, human cytomegalovirus (HCMV) is kept in check by the immune response and
is of little consequence.However, active infection during pregnancy can result in vertical transmis-
sion and severe congenital disease. The longstanding observation that NK cells are important for
the control of HCMV, with individuals who have defective NK cells more susceptible to HCMV
infection (173–175), makes uNK cells attractive candidates to control uterine infection. In addi-
tion, the time at which uNK cells are most numerous, the first trimester, is also when vertical
transmission of HCMV is least likely to occur (176).

First-trimester uNK cells can kill HCMV-infected decidual stromal cells in vitro (177). This
process involves degranulation and is reduced following antibody blockade of the activating
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receptors NKp44 and NKp46, or of HLA-E (177, 178). HLA-E binds peptides derived from
HCMV, and pNK cells recognize HCMV-infected targets via NKG2C and HLA-E (179);
NKG2C is preferentially expressed by KIR+ uNK1 cells (68, 112, 180). KIR2DS1 expressed by
uNK cells interacting with C2+HLA-C HCMV-infected decidual stromal cells can also lead to
degranulation, but EVT cells were not affected even if infected with HCMV (178). By term,
this response is reduced, possibly related to the smaller proportion of NKG2C-expressing uNK1
cells later in pregnancy (115, 181).

Zika Virus

Zika virus can infect both the EVT and cytotrophoblast in placental explants; the addition of uNK
cells to the culture reduces the number of infected EVT but not cytotrophoblast cells (182). NK
cells can kill Zika virus–infected JEG-3 choriocarcinoma cells in a manner that is dependent on
recognition via NKp46 and degranulation.

Listeria

First-trimester uNK cells can control Listeria monocytogenes infection in EVT cells by secret-
ing granulysin. Crucially, this does not kill the trophoblast cells themselves (183). Furthermore,
Listeria-induced abortion could be prevented in a mouse model when granulysin-expressing NK
cells were present (183).

SARS-CoV-2

During the SARS-CoV-2 pandemic, a key concern was the effect of SARS-CoV-2 infection on
pregnancy. Although for most, the virus is limited to the respiratory tract, in rare cases dis-
seminated infection can be associated with an inflammatory syndrome of the placenta, called
SARS-CoV-2 placentitis, which is associated with an increased risk of stillbirth (184). uNK cells
might be activated in serious SARS-CoV-2 infection. One small scRNA-seq study compared
two placentae delivered during active SARS-CoV-2 infection to two controls and found in-
creased expression of granzymes, granulysin,CD69, and XCL1 in uNK cells from infected donors
(185), although a larger study of nine placentae from SARS-CoV-2-infected donors compared to
10 controls found little change in gene expression by uNK cells (186). Taken together, these find-
ings may suggest that uNK cells are more activated in SARS-CoV-2 infection, although whether
they play any role in controlling SARS-CoV-2 in those cases where it infects uterine cells during
pregnancy remains to be determined.

ORIGIN AND DEVELOPMENT OF UTERINE NK CELLS

The kinetics of uNK cells during the menstrual cycle raises the question of their origin: How
do they achieve this remarkable cyclical regeneration? Previous evidence has suggested that they
could arise from a resident hematopoietic stem cell (187–189) or recruited from the periphery,
either as a progenitor (190) or mature (187) NK cell.

Origin

CD45+ cells expressing donor HLA class I allotypes are present in the uterine mucosa of bone
marrow transplant recipients up to 13 years after surgery (191). Recently, definitive evidence that
uNK cells arise from a circulating progenitor has come from uterine transplant recipients, where
uNK cells express the recipient, rather than the donor,MHC-I allele (122). A possible mechanism
bywhich this recruitment could occur is that both stromal and endothelial cells might produceNK
cell–attractive chemokines in response to ovarian hormones (192–194), and expression of adhesion
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molecules by endometrial endothelium increases in the early secretory phase of the menstrual
cycle (195).

Development

Two key questions remain to be answered: What is the identity of the circulating progenitor, and
how does it develop within the uterus into a uNK cell? To address the second question, attempts
have been made to define how uNK1, uNK2, and uNK3 cells may be developmentally related to
each other, but with conflicting results. Both a supervised pseudotime analysis on flow cytometry
data and an unsupervised analysis on scRNA-seq data (43) support the idea that uNK cells that
express neither KIRs nor CD39 (largely uNK3 cells) upregulate first KIRs (becoming a uNK2-
like subset) and then CD39 (uNK1-like) (122). This scheme is supported by an experiment where
sorted human uNK cells were allowed to differentiate in immunodeficient mice engineered to
express human IL-15, although the cells were recovered from the spleen and liver and were not
found in the uterus. In contrast, a supervised pseudotime analysis of scRNA-seq data suggested
that there are multiple routes of development, with uNK progenitors able to give rise to uNK1 or
uNK2 cells, and uNK2 cells able to continue developing to uNK3 cells, or to cross-differentiate
to uNK1 cells (118). Finally, using another supervised pseudotime method, uNK3-like cells were
shown to differentiate first to a cluster that contains a mixture of uNK1 and uNK2, and finally
to uNK2 cells (120). This wide variety of proposed lineage relationships is probably due to the
fact that these analyses were supervised, with the root cell type chosen manually, and differently,
between the studies. This underlines the importance both of unsupervised pseudotime analyses to
generate hypotheses and of differentiation assays to test them.

Receptor Acquisition and Education

Education of NK cells depends on interactions between inhibitory NK cell receptors and HLA
class I molecules that determine the strength and specificity with which mature NK cells later
respond to missing HLA class I molecules (196). In pNK cells, receptors recognizing HLA class
I molecules are expressed in a combinatorial manner to produce a diverse repertoire of receptor
expression within the NK cell population. Not all NK cells will express an inhibitory receptor ca-
pable of recognizing a self HLA class I molecule, and while these cells are potentially autoreactive,
they are not educated. The idea that NK cell education could affect the responses of mature NK
cells is particularly pertinent for interactions between uNK and EVT cells, as maternal uNK cells
may encounter non-self class MHC-I (paternal HLA-C) or missing-self class MHC-I (since only
one maternal HLA-C allele will be inherited by the fetus). In the first trimester, uNK cells express
a repertoire of KIRs that is biased toward the recognition of HLA-C, which is expressed by EVT
cells, but not HLA-B, which is not (61, 62, 111, 131, 178). There is mixed evidence on whether
this bias is present in advance of pregnancy (62, 70, 112, 115), but it seems to decline after the first
trimester (115).

The finding that uNK cells have a distinct receptor repertoire suggests that receptor acqui-
sition, and thus education, occurs in the uterus. Certainly, if progenitors are recruited from the
circulation and differentiate locally (122), then education must occur in the uterus. This education
may be different from that of pNK cells, as uNK cells do respond differently to missing MHC-I
than NK cells in the periphery: uNK cells that express greater numbers of KIRs are less able to
respond to the class I–negative target K562 by degranulating or producing XCL1, in contrast to
pNK cells, which respond better the more KIRs they express (38, 111).

Another important question is whether uNK cells are educated on maternal MHC-I but then
respond to paternal MHC-I expressed by EVT cells, or whether MHC-I expressed by EVT cells
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can itself educate uNK cells. Fetal expression of C2+HLA-C is associated with increased risk of
pre-eclampsia in mothers with a KIR AA genotype with a higher risk if the C2+HLA-C allele is
paternally inherited, compared tomaternally inherited, suggesting education bymaternalHLA-C,
and inappropriate over-inhibition when uNK cells encounter paternally derived C2+HLA-C for
the first time (127, 132). Murine uNK cells are also educated on maternal, but not paternal, al-
leles (197). Immunogenetic approaches have also indicated a role for NKG2A in the education of
uNK cells: maternal allotypes of HLA-B that do not provide a strong leader peptide for HLA-E,
and therefore do not favor education via NKG2A, were associated with an increased risk of
pre-eclampsia in a large European cohort (198).

THE POTENTIAL FOR UTERINE NK CELL MEMORY OF PREGNANCY

As innate lymphocytes, NK cells have traditionally been considered not to have immune memory,
but over the last decade it has become clear that NK cells do have some ability to learn from
experience (199). This might mean that uNK cells remember encounters with previous placentae,
perhaps explaining the longstanding observation that second and subsequent pregnancies are at
lower risk of pre-eclampsia, unless there is a change of partner, in which case the risk returns to
that seen in first pregnancies (200).

In pNK cells, NKG2C is a marker of adaptive NK cells that expand in response to HCMV in-
fection (199), andNKG2C+ uNK cells are expanded in first-trimester decidua frommultigravidae
(68). Like other receptors for MHC-I molecules, NKG2C is characteristic of the uNK1 subset.
A confounding effect from HCMV infection is possible, as the findings were not replicated in
endometrial NK cells from multigravidae (180). Expansions of NKG2C+KIR+ cells in both nul-
liparous and parous donors were also reported when menstrual blood was used as a source of uNK
cells (112). An important question is the mechanism by which memory of a previous pregnancy
could persist in the uterus if uNK cells are replaced from the circulation (122).

WHAT CAN WE LEARN FROM MICE?

The role of uNK cells in mice has recently been reviewed elsewhere and is not our focus (201,
202).However, it is worthwhile to consider what experiments carried out inmice can or cannot tell
us about uNK cells and reproductive success in humans. There are some key similarities between
the species: Both have hemochorial placentation, with decidualization, modification to the spiral
arteries, and invasion of trophoblast cells into the decidua. This invasion is considerably more
extensive in humans than in mice, with the trophoblast invading both down the blood vessels and
through the decidua, crossing the junctional zone and continuing as far as the inner third of the
myometrium. In mice, trophoblast invasion is limited to the junctional zone, and spiral artery
modification is instead associated with NK cells, which infiltrate the arterial wall.

There are important differences in the timing of decidualization between the two species, and
thus the point in the reproductive cycle at which uNK cells begin to accumulate. In humans, decid-
ualization begins in the secretory phase of themenstrual cycle,withNK cells becoming prominent
at this time; in mice NK cells do not begin to increase until decidualization is triggered by the
implantation of the embryo. Like humans, mice have three subsets of NK cells in the uterus—
conventional NK, tissue-resident NK, and ILC1—which change in relative frequency over the
course of the reproductive cycle (203). The subsets in the two species do not align precisely, al-
though some comparisons can be made. uNK3 cells are ILC1-like (38) and might therefore be
considered equivalent to mouse ILC1s. Mouse conventional NK cells are circulating NK cells
equivalent to those found in humans, although these are only present in the human decidua at
very low frequency compared to the mouse (43, 203, 204).Mouse tissue-resident NK cells express

140 Male • Moffett

A
nn

u.
 R

ev
. I

m
m

un
ol

. 2
02

3.
41

:1
27

-1
51

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
2a

00
:2

3c
8:

18
15

:c
c0

1:
46

e5
:1

7f
f:

fe
a5

:4
ec

 o
n 

05
/1

8/
23

. S
ee

 c
op

yr
ig

ht
 f

or
 a

pp
ro

ve
d 

us
e.

 



high levels of receptors that recognize MHC-I (203) and may therefore align with human uNK1
and uNK2 cells.

The location of uNK cells also differs between mice and humans. In mice, they are present
in the decidua basalis soon after implantation but by mid-gestation are spatially limited to the
mesometrial lymphoid aggregate of pregnancy (MLAp) in the myometrium. The function of the
MLAp is unknown and no equivalent structure exists in humans, but as it encircles the main ar-
terial branch to the placenta it is likely to affect blood flow. Finally, the major disorders of human
pregnancy, such as pre-eclampsia, have no counterpart in rodents.

With such a list of caveats, it could be argued thatmice are of limited use to illuminate processes
in human reproduction. However, the experimental tractability of murine models is immense
and should not be lightly dismissed. Mice have been engineered to express specific human HLA
and KIR genes (205). By designing breeding experiments in which the pups express the relevant
HLA-C genes and the dams the relevant KIR genes, researchers can use these mice to cleanly test
hypotheses generated using immunogenetic approaches, about HLA-KIR interactions that might
be beneficial or risky for human pregnancy. Another example is the recent finding that NKG2A
knockout dams have incomplete spiral artery remodeling in pregnancy, whereas dams treated
with NKG2A-blocking antibody during pregnancy do not experience this (198). This observation
suggests a role for NKG2A in the education of uNK cells, confirmed in humans using immuno-
genetics. These examples illustrate the power of mouse models, both as a tool to test hypotheses
generated in humans and as a means to generate hypotheses that can be tested immunogenetically.

Mice can also act as a powerful model to investigate how human uNK cells develop and
function in vivo. For example, sorted uNK cells or progenitors can be adoptively transferred to
immunodeficient mice, allowing analysis of which cells they give rise to, and which tissue sites
these cells traffic to (122). Using these adoptive transfer approaches in mice that have been en-
gineered to express human HLA (205) has the potential to narrowly define which of the three
human uNK subsets is most important for implantation in a well-controlled, in vivo model.

FUTURE DIRECTIONS

In the three decades since they were first identified, significant progress has been made in under-
standing uNK cells. In the last few years, unbiased approaches have allowed us to better understand
heterogeneity within uNK cells. These approaches, together with developments in uterine trans-
plantation, have also allowed us to revisit questions about their origin and development. But there
is still much to discover.

The exact roles of uNK cells in normal or abnormal pregnancies are still uncertain, but their
close temporal and spatial associationwith events in the first fewweeks of pregnancy points to their
major role in controlling placentation. Further work is needed to understand exactly how this is
mediated and how the EVT is altered by uNK cells, especially in particular maternal KIR-fetal
HLA-C genetic combinations that are beneficial or detrimental to pregnancy outcomes. Our new
understanding of subset heterogeneitymay be of help here, since it is possible that examining uNK
cells on a subset-by-subset basis will allow us to identify functions that were previously obscure.
Recent developments in microfluidic and organoid approaches will also allow us to probe uNK
cell function using primary trophoblast cells, in a way that was not previously possible (206). Little
is known about the interactions of uNK cells with other decidual cells, especially stromal cells and
macrophages. In the light of a renewed focus on the role of macrophages in implantation, the
latter may prove to be extremely important (123).

A fuller understanding of uNK cell function will be an important first step in identifying cells
and molecules that could potentially be targeted to promote placental implantation, improving
outcomes of pregnancy for mothers and babies. Before we have gained this understanding, it
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seems premature to offer clinical interventions that target uNK cells, or introduce maternal KIR
and parental HLA-C typing in the clinic either for infertile couples or those with recurrent in
vitro fertilization failure or pregnancy loss (207). However, the rapid pace of advance in our un-
derstanding of the development and function of uNK cells holds out the hope that, in the future,
clinical applications based on this could become a reality.
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