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Abstract—The aim of this paper is to quantify the interactions
between the oscillation modes of power systems within the realm
of small-signal stability. This paper focuses on the interactions
between Converter Interfaced Generator (CIG) oscillation modes
and electromechanical oscillation modes of Synchronous Gener-
ators (SGs). It is difficult to determine the modal interactions
using the existing analysis such as mode sensitivity, mode loci and
participation factors. This paper proposes an extension to eigen-
value sensitivity analysis in order to determine the interaction
between modes and impact of the interaction on system stability.
Interaction coefficients are proposed to quantify the interaction
between the modes. A modified IEEE 39-bus system with CIGs
is considered to carry out the proposed analysis. The analysis
is carried out to investigate the impact of PLL parameters on
the interaction among the oscillation modes. The analysis is also
carried out considering renewable energy penetration levels of
50-70%. It is observed that the interaction between CIG and
electromechanical modes of SG results in increased participation
of SGs’ states in CIG modes. This increased participation of SG
states in CIG modes results in reduced damping of oscillations
in SG states.

Index Terms—Interaction, eigenvalues, renewable generations.

I. INTRODUCTION

The interaction among different components of power sys-
tems is important to understand the dynamic behaviour of
system [1]. The increased penetration of Converter Interfaced
Generations (CIGs) into power systems could lead to in-
teractions among Synchronous Generators (SGs) and CIGs.
The control structures of CIGs differ from SG controls sig-
nificantly. The control parameters have high impact on the
dynamics of CIG generator. The aim of this paper is to
quantify the interactions between the oscillation modes of
power systems within the realm of small-signal stability. Two
new categories of modes (Type 1 and Type 2) associated with
CIGs are observed in power systems with CIGs.

• Type 1 modes are dominated only by the CIGs.
• Type 2 modes have participation of both CIGs and SGs.

It is found that there is an overlap in the frequency ranges of
SG and CIG modes [1]. The overlap in frequency ranges could
lead to interaction among the CIG and SG oscillation modes.
The interaction among modes may hamper the damping of
otherwise well damped states of the power system [2]–[5]
resulting in system instability. So, analyzing the interaction
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among oscillation modes can help in understanding the in-
teraction among the CIGs and SGs. The interaction analysis
should capture the following features:

• Feature-1: Influence of a set of modes on damping and
frequency of a desired oscillation mode

• Feature-2: Resonance between the oscillation modes
• Feature-3: Change in mode shapes due to interaction

The interaction among generators in the power systems
is analyzed in some of the existing literature. The works
[6-15] highlight the importance of analyzing the interaction
among modes in power system. Literature [6] discusses about
the impact of interactions among SG and CIGs on power
system stability. The work in [7] presents that the interaction
among full converter-based wind power generation (FCWG)
and SG will result in new category of oscillation modes called
quasi-electromechanical modes. A method to classify the
electromechanical modes from quasi-electromechanical modes
is proposed in [7] based on participation factors of FCWG
states and SG states. Literature [8] discusses about the impact
of Phase Locked Loop (PLL) tracking ability on stability of
power system with doubly fed induction generator (DFIG)
incorporating virtual inertia control. The study in [8] is based
on coupling matrices and participation factors. In [9], using
participation factors, it is observed that interaction of PLL and
automatic current control in wind turbines may lead to grid
instability during grid faults. Literature [10] discusses about
the impact of PLL and voltage source converter parameters on
interaction between AC and Multiple Terminal DC (MTDC)
systems. The impact of converter control parameters on inter-
actions among grid connected wind generators is discussed in
[11], [12]. The works in [6]- [12] have studied interaction by
analyzing the shift in modes. However, the modes which are
responsible for the shift in modes can not be identified through
the works [6]- [12]. So, the works [6]- [12] can not capture the
Feature-1 and Feature-3 interactions. The impact of open loop
PLL oscillation modes of a wind generator on nearby elec-
tromechanical oscillation modes is discussed in [13] based on
mode loci. In [13], [14], it is identified that the the open loop
modal resonance between PLL and the rest of power system
is one of the reasons behind interaction among the oscillation
modes. The interactions between full converter-based wind
power generation and rest of the power system is investigated
in [15]. The interaction between electromechanical modes
and permanent magnet synchronous generator (PMSG) modes
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is carried out in [15] by employing modal shift evaluation
method. The works in [13]- [15] have studied interaction by
analyzing the resonance between the modes. However, the
works [13]- [15] can not capture the Feature-1 and Feature-3
interactions. A resonance index has been proposed in [15] and
the index is used for controller tuning. This research is in the
same direction to that of [15]. However, the goal of this paper
is to develop a more generalized interaction coefficients which
can capture various features of interaction. The work in [16]
discusses about mode coupling in the system which results
in mode shapes of one operating point influencing the mode
shapes at another operating point. The work [16] focuses on
the feature 3 of interaction. However, analytical proof is not
presented in [16] for analyzing feature 3. In addition, feature
1 and 2 are not discussed in [16]. The work presented in [17]
presents a method to calculate sensitivity of modes and mode
shapes towards a system parameter but does not discuss about
interaction between modes in particular. In summary, there is a
lack of literature on methods to quantify all the three features
of interactions.

This paper proposes a method to quantify modal interactions
(Feature-1,2 and 3) between CIGs and SGs. The contributions
of this paper are:

• An extension to eigenvalue sensitivity analysis is pro-
posed to quantify interactions among oscillation modes
of CIGs and SGs. Interaction coefficients are proposed
to estimate the interaction among oscillation modes that
can occur due to the change in system parameters.

• The proposed method can be used to investigate interac-
tion between any two modes of the system. In this study,
the proposed method is used to analyze the impact of
PLL parameters on the interaction among CIG and SG
oscillation modes. This analysis can be used to design
SG controls to minimize the effect of critical CIGs on
damping of SG states.

• It is identified that the change in PLL parameters does not
directly influence the electromechanical modes. However,
participation of SG states in CIG modes is affected due to
the interaction among CIG and electromechanical modes.

The proposed method can be used in following applications.
These applications highlight the practical value of the method.

• Application-1: This study can be used to tune CIG param-
eters (such as PLL parameters of CIGs) to maximise the
damping of CIG modes and minimise the participation of
SG states in critical CIG modes.

• Application-2: Proposed interaction coefficients can be
used to study the impact of RE penetration level on small
signal stability.

• Application-3: Oscillation source identification methods
can be developed from the proposed interaction index for
power systems with both SGs and CIGs.

• Application-4: The interaction coefficients can be used in
controlled islanding algorithms to determine whether the
proposed islands would lead to adverse interactions.

• Application-5: Proposed interaction coefficients can be
used in new applications related to RE integration as a
measure of interactions.

II. PROPOSED EXTENSION TO EIGENVALUE SENSITIVITY
ANALYSIS

Power system with penetration from CIG generations is
considered in this paper to investigate the interaction among
modes. Small signal analysis is carried out on the system to
analyze the modal interaction [18]. Linear model of power
system is derived by linearizing the system around an op-
erating point. The SGs in the system are considered to be
equipped with AVR and PSS. The state space model for SGs is
formulated using the 1.1 model of SG [19]. CIGs are modeled
as in [20] and [21]. Dynamic equations of CIGs are linearized
to form the state equation as shown in (1), where ACIG and
BCIG denote the state matrix and the control matrix of CIG;
XCIG is the vector of CIG states; ∆XCIG is the change in
XCIG; Vdqterm is the vector of q and d components of terminal
voltages of CIGs i.e. in dq-frame.

˙∆XCIG = ACIG ∆XCIG +BCIG ∆Vdqterm (1)

The state equations of SGs are coupled with CIG state
equations through transmission network equations. The net-
work dynamic equations are used to combine the CIG and SG
dynamic equations to formulate the equations representing the
whole power system. Dynamic equations of the whole power
system can be written as (2), where A denotes the state matrix
of the power system. The matrix A is a square matrix with n
rows and n columns. The size n depends on the components
of power system. Formulation of (2) is given in Appendix
A. The influence of a system parameter on the interaction
of eigenvalues (also termed as modes) of power system is
explored in the following section.

˙∆X = A ∆X (2)

To analyze the interaction of modes, a perturbation in
system parameter, ksys is considered here. Considering the
perturbation ∆ksys, (2) can be rewritten as (3). As given in (3),
∆ksys gives rise to an additional component of state matrix
i.e. ∆Aksys

.
˙∆X = (A+∆Aksys) ∆X (3)

The derivation to analyze the impact of change in operating
point on the interaction of modes can be obtained in the similar
lines. When the operating point changes, the additional com-
ponent can be denoted as ∆Ax0 . Symbolically, the equation
representing change in system parameters is same as that of
change in operating point. Hence, the proposed derivation for
interaction analysis is valid for change in operating point as
well.

A. Limitation of the Existing Eigenvalue Sensitivity Analysis in
Calculating Interaction Among CIG and SG Oscillation Modes

The term ‘interaction’ in this paper refers to the interaction
between the modes. Any perturbation – either a change in op-
erating point or system parameters – shifts the modes (eigen-
values) and alters the corresponding mode shapes (eigenvec-
tors). The proposed approach quantifies how this change in
modes and mode shapes due to a perturbation is influenced
by the interaction between the modes.
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The interaction among the generations (SG and CIG) in
power system is analyzed in existing works by tracking the
eigenvalues when a system parameter is changed. In addition,
to investigate the impact of system parameters on the eigen-
values, eigenvalue sensitivity analysis has been widely used in
literature [22]–[24]. Eigenvalue sensitivity analysis essentially
quantifies the change in eigenvalues as a parameter of interest
is changed, as shown in (4). Participation factor is also derived
from sensitivity analysis as shown in (5). Participation factor
(5) signifies the participation of a state variable of the system
in an eigenvalue of the tsystem.

∂λi

∂para
=

wT
i (∂A/∂para)vi

wT
i vi

(4)

∂λi

∂akk
= wi(k)vi(k) (5)

where, λi denotes an eigenvalue of A; wi, vi denote the left
and right eigenvectors of λi; para is the parameter of interest;
(∂A/∂para) denotes the change in system matrix A with
change in para; akk denotes the element of A in kth row
and kth column; wi(k), and vi(k) denote kth element of wi

and vi respectively.
It can be seen that the sensitivity and participation factors

provide information on amount of change in modes. However,
these indexes do not quantify the interaction among modes
of the system. In addition, the modes which participate in
the interaction can not be calculated through the available
methods.

So, the existing methods are not sufficient to quantify the
interaction among SG and CIG modes of a power system.
An extension to the sensitivity analysis is proposed in the
following sections to quantify the interaction among modes.
Method to calculate the interaction coefficients (for example,
α1,1 and α2,1) is derived in the following sections. The
proposed method is used to analyze the interaction among SG
and CIG modes.

B. Proposed Method to Quantify Interaction of Modes

To analyze the interaction among modes in power system,
all possible scenarios of eigenvalues for LTI system are con-
sidered in this work. The small signal/linear model of power
system will typically have multiple distinct (non-repetitive)
eigenvalues corresponding to dynamic components of genera-
tors and different control loops of generators. However, there
could be repeated eigenvalues in power system, for instance,
this could be due to the lack of uniqueness of absolute rotor
angles (referred to a common reference frame without an
infinite bus) and the absence of the governor loop. So, for
completeness of the interaction analysis method the following
three cases are considered.

• Case 1: All eigenvalues of A are distinct from one
another. As all the eigenvalues are distinct, all the eigen-
vectors of A are linearly independent. So, the matrix A
can be diagonalized.

• Case 2: The matrix A has repetitive eigenvalues, with
linearly independent eigenvectors. This case arises if the
geometric multiplicity is equal to algebraic multiplicity

[25] for all eigenvalues. As all the eigenvectors are
linearly independent, the matrix A can be diagonalized.

• Case 3: The matrix A has repetitive eigenvalues, but
the eigenvectors of repeated eigenvalues are not linearly
independent. This case arises if the geometric multiplicity
is less than the algebraic multiplicity for repeated eigen-
values [25]. As the eigenvectors of A are not linearly
independent, the matrix A can not be diagonalized. In
this case, the generalized eigenvectors are used to obtain
Jordan canonical form (a block diagonal form) of A [25].

It can be seen that, cases 2 and 3 deal with repetitive eigen-
values. So, these cases reflect the modal resonance present in
the system, if any.

Case 1: Distinct eigenvalues: For the system described in
(2) and with distinct eigenvalues of A, the eigenvectors and
eigenvalues of A satisfy (6).

A V (:, i) = λi V (:, i)

W (:, i)T A = λi W (:, i)T
(6)

where, WT and V are the left and right eigenvector matrices
of A respectively; V (:, i) represents ith column of matrix V ;
W (:, i) represents ith column of matrix W and λi is the ith

eigenvalue of A; i takes values 1, 2, 3, ..., n.
Using the transformation ∆X = V∆Z on (3),

∆̇Z = WT (A+∆Aksys
)V ∆Z (7)

∆̇Z = (Λ +∆A1) ∆Z

∆A1 ≡ WT∆AksysV
(8)

where, Λ is the diagonal matrix with eigenvalues of A along
the diagonal, ∆A1 is the modified representation of ∆Aksys .

The matrix ∆A1 being non-zero signifies the influence of
ksys on the modes of system. So, eigenvalues of Λ+∆A1 are
not same as Λ. Main interest of this study is to evaluate the
interaction among eigenvalues of Λ which result in new set of
eigenvalues of Λ +∆A1.

The matrix Λ+∆A1 is diagonalized in order to investigate
it’s eigenvalues. For the system (8), eigenvectors and eigen-
values satisfy (9).

(Λ +∆A1) Vz(:, i) = Ξi Vz(:, i)

Wz(:, i)
T (Λ +∆A1) = Ξi Wz(:, i)

T
(9)

where, WT
z and Vz are the left and right eigenvector matrices

of Λ + ∆A1 respectively; Ξi denotes ith eigenvalue of Λ +
∆A1. Using the transformation ∆Z = Vz ∆Y on (8),

∆̇Y = WT
z (Λ +∆A1)Vz ∆Y (10)

WT
z (Λ +∆A1) Vz ≡
WT

z,1(Λ +∆A1)Vz,1 WT
z,1(Λ +∆A1)Vz,2 · · ·WT

z,1(Λ +∆A1)Vz,n

WT
z,2(Λ +∆A1)Vz,1 WT

z,2(Λ +∆A1)Vz,2 · · ·WT
z,2(Λ +∆A1)Vz,n

...
...

. . .
...

WT
z,n(Λ +∆A1)Vz,1 WT

z,n(Λ +∆A1)Vz,2 · · ·WT
z,n(Λ +∆A1)Vz,n


(11)
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where, WT
z,i, Vz,i, i ∈ 1, 2, ...n are the left and right eigenvec-

tors of ith eigenvalue of Λ+∆A1 respectively. As WT
z,i, Vz,j

are orthogonal for i ̸= j, the off-diagonal elements in (11) are
zero. Equation (10) can be written as (12).

∆̇Y =


Ξ1 0 · · · 0
0 Ξ2 · · · 0
...

...
. . .

...
0 0 · · · Ξn

∆Y (12)

Comparing (12) and (11),

Ξi = WT
z,i(Λ +∆A1)Vz,i

=⇒ Ξi =

n∑
j=1

Wz,i(j) λj Vz,i(j) + f(elements of ∆A1)

(13)
where, Wz,i(j) denote jth element of left eigenvector of ith

eigenvalue; Vz,i(j) denote jth element of right eigenvector of
ith eigenvalue; f is a linear function; f(elements of∆A1) =
WT

z,i(∆A1)Vz,i. The factor Wz,i(j) ∗ Vz,i(j) determines the
contribution of jth eigenvalue in ith eigenvalue. The coeffi-
cients of (13) determines the interaction among the eigenval-
ues, λi.

It is to be noted that the modes that participate in the
interaction depends on the matrix ∆A1. If all the non-diagonal
elements of ∆A1 are zero, there will not be any interaction
among the modes. For a ith eigenvalue (Ξi), the coefficients of
(13) will be zero except for λi. In this scenario, the shift in the
eigenvalues do not have any contribution from the interaction.
On the other hand, if the non-diagonal elements of ∆A1

are non-zero, then the coefficients of (13) will be non-zero.
The coefficients determine the contribution of old eigenvalues
towards the new eigenvalues. So, the interaction among modes
is dictated by the elements of matrix ∆A1.

Case 2: Repetitive eigenvalues, geometric multiplicity is
equal to algebraic multiplicity: The derivation for Case2 is
presented here considering that A has one repeating eigenvalue
without loss of generality. The derivation holds for any number
of repeating eigenvalues. Consider the matrix A with one
repeating eigenvalue with an algebraic and geometric multi-
plicity of nrep. The repeating eigenvalue and corresponding
eigenvectors of A satisfy (14).

A V (:, i) = λ V (:, i)

W (:, i)T A = λ W (:, i)T
(14)

where, WT and V are the left and right eigenvector matrices
of A respectively; V (:, i) represents ith column of matrix V ;
W (:, i)T represents ith column of matrix WT and λ is the
repeating eigenvalue of A; i takes values 1, 2, 3, ..., nrep.

The distinct eigenvalues and corresponding eigenvectors of
A satisfy (6) as stated above. As the geometric multiplicity of
eigenvalues is equal to algebraic multiplicity, the eigenvectors
of A constitute a set of linearly independent vectors. So, using
the transformation ∆X = V∆Z on (3) will result in the
system of the form (8). The rest of the derivation is exactly
the same steps as mentioned in Case1.

Case 3: Repetitive eigenvalues, geometric multiplicity is less
than algebraic multiplicity: The derivation for Case3 is pre-
sented here considering that A has one repeating eigenvalue.
The derivation holds for any number of repeating eigenvalues.
Consider the matrix A with one repeating eigenvalue with an
algebraic of nrep,alg and geometric multiplicity of nrep,geo.
The repeating eigenvalue and corresponding eigenvectors of
A satisfy (15). The repeating eigenvalue and corresponding
generalized eigenvectors of A satisfy (16).

A V (:, i) = λ V (:, i)

W (:, i)T A = λ W (:, i)T

i = 1, 2, 3, ..., nrep,geo

(15)

(A− λI)k+1 V (:, nrep,geo + k) = 0

(A− λI)k V (:, nrep,geo + k) ̸= 0

k = 1, 2, 3, ..., nrep,alg−nrep,geo

(16)

where, λ is the repeating eigenvalue of A. It is to be noted
that V (:, 1) to V (:, nrep,geo) are the normal eigenvectors of λ;
V (:, nrep,geo + k) denotes the generalized eigenvectors of λ of
rank k+1, k = 1, 2, 3, ..., nrep,alg−nrep,geo. The generalized
eigenvectors being linearly independent set of vectors, the
matrix V is a full rank matrix. The matrix WT is obtained as
WT = V −1.

The distinct eigenvalues and corresponding eigenvectors
of A satisfy (6) as stated in Case1. The index of distinct
eigenvalues will range from nrep,alg + 1 to n. Using the
transformation ∆X = V∆Z on (3),

∆̇Z = WT (A+∆Aksys
)V ∆Z (17)

∆̇Z = (J +∆A1) ∆Z

∆A1 ≡ WT∆AksysV
(18)

where, J is the Jordan canonical form of A, ∆A1 is the
modified representation of ∆Aksys

. J is shown in (19) where
m = nrep,alg + 1.

J =

λ 0 · · · 0
0 λ · · · 0
...

...
. . .

...
0 0 · · · λ

0
0
...
0

· · · · · ·
0
0
...

0 0 · · · 0

...

λ 1 0 0 0
0 λ 1 0 0
...

. . . . . . . . .
...

0 · · · 0 λ 1
0 · · · 0 0 λ

...

...

0 0 · · ·

· · ·

· · ·

λm · · · 0
...

. . .
...

0 · · · λn


(19)

In the similar fashion the transforming matrices Wz and Vz

for J +∆A1 can be obtained from generalized eigenvectors,
if needed. Using the transformation ∆Z = Vz ∆Y on (18):

∆̇Y = WT
z (J +∆A1)Vz ∆Y (20)
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Due to the orthogonality properties of eigenvectors and
generalized eigenvectors, (20) can be written as shown in (21).
It is to be noted that the number of distinct and repeating
eigenvalues of the matrix J+∆A1 may not be same as that of
A. In case of repeating eigenvalues of J+∆A1, the algebraic
multiplicity and geometric multiplicity may differ from that
repeating eigenvalues of A. In (21), the second block matrix
with 0 and 1 along the off diagonals and Ξ along the diagonal
indicates that Ξ has geometric multiplicity less than algebraic
multiplicity. The third block diagonal matrix indicates the
distinct eigenvalues of J +∆A1.

∆̇Y =

Ξ 0 · · · 0
0 Ξ · · · 0
...

...
. . .

...
0 0 · · · Ξ

0
0
...
0

· · · · · ·
0
0
...

0 0 · · · 0
...

Ξ 1 0 0
...

. . . . . .
...

0 · · · Ξ 1
0 · · · 0 Ξ

...

...

0 0 · · ·

· · ·

· · ·

Ξn′ · · · 0
...

. . .
...

0 · · · Ξn



∆Y

(21)

By expanding WT
z and Vz of (20) into rows and columns,

comparing with (21) the new eigenvalues can be expressed as
(22).

Ξ ≡ WT
z,l(J +∆A1)Vz,l; Ξi ≡ WT

z,i(J +∆A1)Vz,i (22)

where, WT
z,l is the lth row of WT

z ; Vz,l is the lth column
of Vz; l takes values from 1 to algebraic multiplicity of
repeating eigenvalue of J+∆A1; i takes values from algebraic
multiplicity +1 to n. Expanding (22),

Ξ =

nrep,alg∑
j=1

Wz,l(j) λ Vz,l(j) +

n∑
j=nrep,alg+1

Wz,l(j) λj Vz,l(j) + f1(elements of ∆A1);

Ξi =

nrep,alg∑
j=1

Wz,i(j) λ Vz,i(j) +

n∑
j=nrep,alg+1

Wz,i(j) λj Vz,i(j) + f2(elements of ∆A1)

(23)

where, Wz,l(j) denotes jth element of WT
z,l; Vz,l(j)

denotes jth element of Vz,l; f1 and f2 are linear
functions; f1(elements of ∆A1) = WT

z,l∆A1Vz,l and
f2(elements of ∆A1) = WT

z,i∆A1Vz,i.
It is to be noted that the relationship between the modes

prior to and after the perturbation is similar in all the three
cases. From (13) and (23) it can be conclude that the modes

of the power system with new value of ksys, Ξ and Ξi have
contributions from modes of system prior to the perturbation,
λi and elements of ∆A1. The factor Wi(j)∗Vi(j) determines
the contribution of jth mode in ith mode. The coefficients of
(13) and (23) determines the interaction among the modes,
λi. If there is no impact of ksys on the interaction among the
modes, then WT

z , Vz will be identity matrices. WT
z , Vz being

identity matrices results in zero contribution of jth mode in
ith mode for i ̸= j.

Sensitivity analysis shows that eigenvectors of A holds the
information about the variation in modes of a system. From the
above derivation, it can be concluded that the eigenvectors of
Λ+∆A or J+∆A holds the information about the interaction
of modes of a system.

C. Influence of Interaction Among Modes due to Change in
System Parameters

1) Influence on oscillation modes: The influence of this
interaction on small signal stability of the system can be
observed from the shift in modes of the system i.e. damping
and frequency. From (13) and (23) it is identified that, the
interaction between the modes also contribute to shift in modes
of the system. So, the change in damping and frequency of
oscillation modes (due to change in system parameters) is
influenced by interaction between modes.

Consider a power system with ne electromechanical modes,
λei , nc1 type-1 CIG modes, λc1i , and nc2 type-2 CIG modes,
λc2i . After changing the values of system parameters, the new
set of modes can be written as (24). From (24), αei , αc1i

and αc2i determine the interaction between the CIG and
electromechanical modes of SG. This interaction results in
change in participation of SG states in CIG modes.

Ξj =

ne∑
1

αeiλei +

nc1∑
1

αc1iλc1i

+

nc2∑
1

αc2iλc2i + f(elements of ∆A1)

(24)

where, αei , αc1i and αc2i are the interaction coefficients;
λei , λc1i and λc2i are the interacting modes. In (24), the con-
tribution of mode j in mode i is given by αj,i = Wi(j)∗Vi(j)

The interaction coefficients in (24) quantifies the influence
of system oscillation modes (λi) before perturbation on the
system oscillation modes (Ξi) after the perturbation. So, the
Feature 1 interaction discussed in section I can be captured
by (24). In addition, in case of resonance in the system,
the interaction coefficients of the modes participating in the
resonance will have much higher value compared to the rest
of modes. So, the Feature 2 interaction discussed in section I
can also be captured by (24).

The sequence of eigenvalues Ξj depends on the eigenvectors
chosen for diagonalizing the matrix (Λ+∆A1) or (J+∆A1).
It is to be noted that the eigenvectors of a matrix are not
unique. So, the sequence of the eigenvalues after diagonalizing
(Λ + ∆A1) or (J + ∆A1) will vary depending on the
eigenvectors. However, the sequence of the eigenvalues doesn’t
tamper with the inferences about interaction among modes
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of the system. It is also to be noted that, as the proposed
method is based on a linearized model of the power system,
the coefficients need to be recalculated when the operating
point changes.

2) Influence on degree of participation of states in modes:
From (7), (10) and (12), it can be seen that the new right
eigenvector matrix of the system (ν) can be written as (25).
It is noted from (26) that, the right eigenvector of any mode
of system after considering change in ksys can be written as
linear combination of eigenvectors of the system before the
change. As mentioned earlier, if there had been no interaction
about modes, Vz will be an identity matrix resulting in no
interaction in eigenvectors. The right eigenvector of a mode
signifies the participation of states in the mode. This shows
that the participation of states of the system in modes are
affected by system parameters.

ν = V ∗ Vz (25)

=⇒ [ν(:, 1) ν(:, 2) . . . ν(:,m)] =

[V (:, 1) V (:, 2) . . . V (:,m)] ∗ Vz

=⇒ ν(:, i) =
∑
j

V (:, j) ∗ Vz(j, i) (26)

where, Vz(j, i) is the element in jth row and ith column of
matrix Vz .

The relation presented in (26) quantifies the influence of
system mode shapes (Vi) before perturbation on the system
mode shapes(νi) after the perturbation. The change in mode
shapes of a power system can be analyzed by computing
the Vz matrix as discussed in section II-B. So, the Feature
3 interaction discussed in section I can be captured by (26).

So, the amount of interaction can be determined by the
coefficients of (24) which signifies the contribution of old
modes in formation of new modes. High value of coefficients
indicates strong interaction between modes. One more factor
that determines the amount of interaction is the eigenvector
relation derived in the paper. High value of coefficients Vz(j, i)
indicates strong interaction between the modes.

III. RESULTS

In section I various applications of the proposed interac-
tion coefficients are identified. Due to space constraints, in
this section the results are presented for Application-1. The
proposed coefficient (24) is used for quantifying the impact of
PLL parameters on the interaction between electromechanical
and CIG modes. The focus of this work is interaction among
modes of the system, where modes are closely related to the
frequency domain analysis. So, this paper mainly presents
mathematical analysis and frequency domain results of the
system to determine the validity of the proposed method. Time
domain simulation results are also presented to further validate
the proposed method.

To validate the proposed analysis technique, a modified
IEEE-39 bus system is considered for simulation studies.
Some of the SGs of IEEE-39 bus system are replaced by PV
generators to represent the base case as shown in Fig. 1. In
addition, one type-4 WG has also been added to demonstrate

Fig. 1. Modified IEEE 39 bus system

TABLE I
LOAD-GENERATION SCENARIO

Real 

Power(MW)

Percentage 

contribution

PV 2810 45.8

WG 830 13.5

SG 2500 40.7

Loads 6097 -

Losses 43 -

that the proposed method is also applicable for type-4 WG.
Generation and load scenario of the system is presented in
TABLE I. The SGs in the power system are equipped with a
static AVR and PSS [26]. SGs are represented by model 1.1
[19] and the magnetic saturation in neglected. Parameters of
SGs, AVR and PSS are taken from [26]. Two types of PV
generators are considered in the present study, utility scale
PV (PV-UT) and residential rooftop PV (PV-RT) generators.
PV-UT generators can supply active and reactive power to the
system and PV-RT generators can supply only active power
[20]. PV-UT generators are equipped with PQ control strategy
and modeled as in [20] and the parameters are employed
from [27] with proper scaling. PV-RT generator represents an
aggregated model of the roof-top PV generations in the area.
PV-RT is modeled as constant negative PQ load, with reactive
power equal to zero [27]. WGs considered in the system are
type-4 wind generations (equipped with PQ control strategy)
and are modeled as per [21]. One-mass drive train model
of wind turbine in [21] is replaced by two-mass drive train
model in [28]. Converter and controller parameters are adopted
from [21] with appropriate scaling. All loads are modeled as
constant PQ loads as given in [19]. Parameters of transmission
lines are taken from [26]. The modified system is modeled as
(2). MATLAB software is used for analysis of the system.
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TABLE II
CRITICAL OSCILLATION MODES

S.No Oscillation modes
Frequency of 

oscillation
Damping (%)

1 -2.04±j11.582 1.84 17.35

2 -2.164±j12.593 2.01 16.94

3   -2.219 ±j12.027 1.92 18.14

4 -2.284±j12.579 2.00 17.86

5   -2.41 ±j12.794 2.04 18.51

6 -0.137±j4.359 0.69 3.14

7 -0.326±j2.248 0.36 14.36

8   -2.58 ±j12.96 2.06 19.53

1   -1.751 ±j12.796 2.04 13.56

2   -1.699 ±j11.747 1.87 14.31

3   -1.867 ±j12.790 2.04 14.45

4   -1.836 ±j12.224 1.95 14.85

5   -1.971±j13.022 2.07 14.97

6   -2.135±j13.202 2.10 15.96

7 -0.137±j4.359 0.69 3.14

8 -0.326±j2.249 0.36 14.37

With SRF-PLL

With MRF-PLL

A. PLL and Critical Oscillation Modes

PLL is an integral block in most of the VSC based gen-
erations. The existing literature points out that the PLL has
significant impact on the interactions in the power systems.
So, the interaction analysis is carried out here considering
perturbation in PLL parameters.

The parameters of PI blocks of PLL are chosen as
kp,pll = 5 and ki,pll = 170 (bandwidth=3.14 Hz). The
parameter wp of MRF-PLL is chosen as 180 as per [29].
Equations of PLLs are linearized and combined with equations
of PVs, WGs and SGs to formulate the state matrix of entire
power system. Oscillation modes of the power system with
percentage damping less than 20%, referred to as critical
oscillation modes, are presented in TABLE II.

B. Interaction Among SG and PV Modes

As per analysis discussed in Section II, interaction among
oscillation modes due to perturbation in kp,pll and ki,pll is
calculated. The modes which change due perturbation of the
PLL parameters are listed in TABLE III. As seen in Section
II, the interaction among the modes is a factor contributing
to the change in modes of the system. It is to be noted
that, most of the modes which interact on perturbing kp,pll
and ki,pll are type-2 CIG modes. Modes that contribute to
change in (interact with) the 3rd oscillation mode of TABLE
III SRF-PLL case, are presented in Table IV (under column
With SRF − PLL). The 3rd oscillation mode is chosen
for presenting results because the 3rd mode is found to be
interacting with all the categories of modes (Type-1, Type-2
and electromechanical). Interaction coefficients of the modes
listed in Table III are calculated as per (24). The oscillation
modes are designated as inter area and local modes (in Table
III) by dividing the modified IEEE 39 bus system into three
areas as given in [30]. G1, G2, G3, G11 are considered to be in
Area1; G4, G5, G6, G7, G12 are considered to be in Area2;

TABLE III
INTERACTING MODES

S.No Oscillation mode Damping (%) Type of oscillation mode

1   -2.0402 ±j11.5819 17.35 Type 2

2   -2.1640 ±j12.5930 16.94 Type 2 

3   -2.2192 ±j12.0277 18.14 Type 2

4   -2.2839 ±j12.5796 17.86 Type 2

5   -2.4105 ±j12.7940 18.51 Type 2

6   -2.58 ±j12.96 19.53 Type 1

1   -1.751 ±j12.796 13.56 Type 2

2   -1.699 ±j11.747 14.31 Type 2

3   -1.867 ±j12.790 14.45 Type 2

4   -1.836 ±j12.224 14.85 Type 2 

5   -1.971±j13.022 14.97 Type 2 

6   -2.135±j13.202 15.96 Type 2

With SRF-PLL

With MRF-PLL

TABLE IV
MODES THAT CONTRIBUTED TO CHANGE IN 3rd MODE OF TABLE III

Oscillation mode Type of oscillation mode Interaction Coefficient

  -2.2839 ±j12.5796 Type 2 1.022

  -2.4105 ±j12.7940 Type 2 0.0136

 -2.219 ±j 12.027 Type 2 0.0048

 -14.599 ±j 6.425 Electromechanical 0.0013

  -2.0402 ±j11.5819 Type 2 0.0010

 -17.4517 ±j 4.3384 Type 1 0.0005

 -5.678 ±j 5.441 Type 2 0.0003

Oscillation mode Type of oscillation mode Interaction Coefficient

  -1.867 ±j12.790 Type 2 1.026

  -1.751 ±j12.796 Type 2 0.0228

  -1.836 ±j12.224 Type 2 0.004

 -14.604 ±j 6.419 Electromechanical 0.0012

  -1.699 ±j11.747 Type 2 0.001

 -17.464 ±j 4.354 Type 1 0.0005

With SRF-PLL 

With MRF-PLL

G9, G8, G10 are considered to be in Area3. The areas are
demarcated using different colors in Fig. 1.

From Table III, it is to be noted that electromechanical
modes of SG are not affected due to perturbation in kp,pll and
ki,pll. But Table IV shows that 3rd oscillation mode interacts
with an electromechanical mode. As discussed in Section
II-C2, this interaction results in changing the participation of
SG states in the 3rd oscillation mode. In addition to this,
interacting with type-2 modes may also result in change of
participation from SG states as type-2 modes have participa-
tion from SG states. Similar analysis is carried out for the
oscillation modes presented in Table III (under the column
With MRF−PLL). The results for the 3rd oscillation mode
of Table III are presented in Table IV (under the column
With MRF − PLL).

In TABLE IV, it can be seen that the interaction coefficient
of the electromechanical mode is smaller than that of type 2
modes. However, it is to be noted that, presence of interaction
among type 2 and electromechanical mode will increase the
participation of SG states in the type 2 mode. This is because
the electromechanical modes are dominated by SG states. So,
the presence of interaction will influence the mode shape of
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TABLE V
CHANGE IN THE DEGREE OF PARTICIPATION OF SG STATES IN THE

INTERACTING MODES AS kp,pll IS VARIED

DSG PI DSG PI

1 0.0223 1 0.0133

2 0.2764 2 0.2271

3 0.4972 3 0.6968

4 0.4833 4 1.2623

5 -0.0043 5 -0.0053

6 0.0008 6 0.0846

DSG PI DSG PI

1 0.005 1 0.0104

2 -0.0115 2 -0.0108

3 -0.028 3 -0.0261

4 -0.024 4 -0.0218

5 -0.005 5 -0.0049

6 -0.0009 6 -0.0009

2

No. of 

SG states

24

27

31

28

10

9

24

27

31

20

11

S.No No. of 

SG states

S.No

With SRF-PLL

Kp=5 to 25

With MRF-PLL

Kp=5 to 25

S.No S.No

With SRF-PLL With MRF-PLL

Ki=170 to 1700 Ki=170 to 1700

No. of 

SG states

No. of 

SG states

29 29

10 10

22 22

20 20

10 9

2 2

TABLE VI
PARTICIPATION OF SG STATES IN THE MODES AS ki,pll IS VARIED

DSG PI DSG PI

1 0.0223 1 0.0133

2 0.2764 2 0.2271

3 0.4972 3 0.6968

4 0.4833 4 1.2623

5 -0.0043 5 -0.0053

6 0.0008 6 0.0846

DSG PI DSG PI

1 0.005 1 0.0104

2 -0.0115 2 -0.0108

3 -0.028 3 -0.0261

4 -0.024 4 -0.0218

5 -0.005 5 -0.0049

6 -0.0009 6 -0.0009

2

No. of 

SG states

24

27

31

28

10

9

24

27

31

20

11

S.No No. of 

SG states

S.No

With SRF-PLL

Kp=5 to 25

With MRF-PLL

Kp=5 to 25

S.No S.No

With SRF-PLL With MRF-PLL

Ki=170 to 1700 Ki=170 to 1700

No. of 

SG states

No. of 

SG states

29 29

10 10

22 22

20 20

10 9

2 2

type 2 oscillation mode (especially the elements corresponding
to SG states in mode shape) even if the value is relatively
small. When the mode shape of the studied type 2 mode
is calculated for a shift from kp,pll = 5; ki,pll = 170 to
kp,pll = 10; ki,pll = 340, it is identified that the elements
corresponding to SG states in the mode shape have under-
gone a change of 20%. This implies that even the smaller
value of interaction coefficient between type 2 mode and
electromechanical mode can influence the mode shape of
interacting type 2 mode. In addition, the operating frequency
range of CIGs may overlap with stator transients and sub-
synchronous resonance frequencies [1]. When such overlap
exists, the interaction coefficients corresponding to SG modes
can be of the same order of interaction coefficients for CIG
modes.

The results representing the increase in degree of participa-
tion of SG states in the modes impacted due to change in PLL
parameters are presented here. The change in participation of
SG states in the modes listed in Table III, when kp,pll is
changed from 5 to 25 is presented in Table V. The change
in degree of participation of SG states is also presented in
Table V using ∆SG PI (Synchronous Generator Participation
Index). The index ∆SG PI is calculated for ith mode as given
in (27).

∆SG PIi =

SG∑
pnewki −

SG∑
pki (27)

where, ∆SG PIi denotes the change in participation of all SG
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(a) With SRF-PLL : Change in kp,pll
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(b) With SRF-PLL : Change in ki,pll
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(c) With MRF-PLL : Change in kp,pll
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(d) With MRF-PLL : Change in ki,pll
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(e) With SRF-PLL : Change in kp,pll
and ki,pll
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(f) With MRF-PLL : Change in
kp,pll and ki,pll

Fig. 2. Number of critical modes that interact

states in ith mode; pnewki denotes the normalized participation
factor of kth state in ith mode after the change in PLL
parameters; pki denotes the normalized participation factor of
kth state in ith mode of the system before the change in PLL

parameters;
SG∑

pki denotes the sum of pki of the states of all

the SG units in the power system. The results obtained when
ki,pll is changed from 170 to 1700 are presented in Table VI.
From Table V and Table VI, it can be inferred that interaction
between CIG modes and electromechanical modes will change
the participation of SG states in CIG modes.

Comparing the columns With SRF − PLL and
With MRF − PLL of Table V and Table VI, it is observed
that SRF and MRF-PLLs have similar impact on interaction
of modes. For both the PLLs, the proportional gain kp,pll has
more impact on interaction than the integral gain ki,pll. It is
identified that for both the PLLs the change in participation
factor is prominent in states corresponding to rotor frequency,
field winding and exciter control of SGs.

C. Interaction of Critical Modes with Change in PLL Gain

As seen in Section III-B and Section III-D, participation
of SG states in the interacting CIG modes is affected due
to interaction of CIG modes with electromechanical modes
of SG. Lesser the damping of CIG modes that interact with
electromechanical modes of SG, larger will be the time taken
for SG states to reach their steady state value, thus resulting
in detrimental impact on system performance. Thus, the less
damping ratio of CIG modes and their interaction with elec-
tromechanical modes of SG and type-2 modes cumulatively
result in degraded system performance. This can be avoided by
ensuring that the oscillation modes which interact with other
modes are well damped.
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Fig. 3. Time domain simulations

TABLE VII
RE PENETRATION LEVEL

Case 

No.

RE 

generation

Synchronous 

generation
Description

1 60% 40% Base case

2 70% 30% High RE

3 50% 50% Low RE

The percentage is with respect to total generation in the system

Number of critical oscillation modes that interact with other
oscillation modes are calculated for different values of kp,pll
with ki,pll = 170 for SRF-PLL (bandwidth varied from 1.4
Hz to 3.14 Hz), is shown in Fig. 2 (a). The result for different
values of ki,pll with kp,pll = 5 for SRF-PLL (bandwidth varied
from 3.14 Hz to 10.2 Hz), is shown in Fig. 2 (b). Similar
results for MRF-PLL, are presented in Fig. 2 (c) and Fig. 2
(d). The results obtained by varying kp,pll and ki,pll together,
are shown in Fig. 2 (e) and 2 (f). From these Fig. 2, it is
observed that for higher values of kp,pll and ki,pll, there are no
critical oscillation modes that interact with electromechanical
or type-2 CIG modes. So, it is preferred to ensure that PLL
parameters are tuned to values higher than that of dictated
from Fig. 2.

D. Time Domain Simulations

Interaction of CIG modes with electromechanical modes of
SG and participation factors of all states in the modes that are
affected by PLL parameters are calculated. It is found that G2
states has increased participation in the critical CIG modes for
lower values of kp,pll and ki,pll. Time domain simulations are
performed to validate the increased participation of SG states
at low values of kp,pll and ki,pll. Simulations are carried out on
the modified IEEE-39 bus system considering SRF-PLL with
kp,pll = 3; ki,pll = 102 and kp,pll = 10; ki,pll = 340. At
t = 1 s, load at bus 7 is suddenly increased and the observed
responses are shown in Fig. 3. Terminal voltage of G2, a SG, is
shown Fig. 3(a) and output signal of the exciter (Efd) of G2 is
shown in Fig. 3(b). The analysis performed to calculate change
in participation of SG states due to interaction of modes has
pointed that the states of G2 corresponding to the field winding
undergo prominent change in degree of participation. So, the
time domain simulations for terminal voltage and Efd are
presented in Fig. 3. The decreased damping of low frequency
oscillations (frequency around 1 Hz) in figures, at kp,pll =
3; ki,pll = 102, validate the poor damping of the SG states at
lower values of PLL parameters. As discussed in section III-B,

TABLE VIII
INTERACTING MODES AT 70% AND 50% RE PENETRATION LEVEL

S.No Oscillation mode
Type of oscillation 

mode

1 -1.8183 ±j11.6493 Type 2 

2   -2.1197 ±j12.5547 Type 2

3   -2.2127 ±j12.6225 Type 2

4   -2.2827 ±j12.1770 Type 2

5   -2.4169 ±j12.7744 Type 2

6   -2.5816 ±j12.9711 Type 2

1   -2.1813  ±j11.8104 Type 2

2   -2.2683  ±j12.1043 Type 2

3   -2.2975  ±j12.6724 Type 2

4   -2.3686  ±j12.6207 Type 2

5   -2.4265  ±j12.8269 Type 2

6   -2.5800  ±j12.9658 Type 2

Oscillation mode
Type of oscillation 

mode

  -1.7693 ±j12.7948 Type 2 CCBG

  -1.8460±j12.3150 Type 2 CCBG

  -1.9748 ±j13.0020 Type 2 CCBG

  -2.1356 ±j13.2104 Type 2 CCBG

  -1.6890 ±j12.7354 Type 2 CCBG

  -1.5061 ±j11.6902 Type 2 CCBG

  -1.9261 ±j12.8212 Type 2 CCBG 

  -1.8199 ±j12.2876 Type 2 CCBG 

  -1.9805 ±j13.0536 Type 2 CCBG 

  -2.1339 ±j13.2025 Type 2 CCBG 

  -1.8230 ±j12.8717 Type 2 CCBG 

  -1.8429 ±j11.7835 Type 2 CCBG 

MRF-PLL

70% RE penetration

50% RE penetration

With SRF-PLL

70% RE penetration 

50% RE penetration

due to interaction, it is observed that the participation of SG
states in the CIG modes is relatively higher at lower values of
PLL parameters. This proves that the interaction among modes
can hamper the damping of otherwise well damped states of
the power system.

The change in participation of field winding states in the
CIG modes when kp,pll is changed from 3 to 10 and ki,pll is
changed from 102 to 340 are obtained as 0.269, 0.089, 0.099,
0.214, 0.168 and 0.217 (in the order presented in TABLE III).
As the CIG modes in TABLE III has damping less than 20%, it
is expected that participating SG states also have less damping.
To crosscheck the claim that the increased participation of
SG states in the CIG modes results in reduced damping,
time domain simulations are carried out. The obtained time
domain simulation results for terminal voltage and Efd of G2
are presented in Fig. 3. The decreased damping for kp,pll =
3; ki,pll = 102 compared to kp,pll = 10; ki,pll = 340 validate
the poor damping of the SG states at higher participation in
CIG modes.

E. Impact of Variation in PV Penetration Levels

To understand the impact of seasonal variation of PV on the
impact of PLL, different RE penetration levels are investigated
as shown in Table VII. The change in RE penetration is
achieved by changing the PV generation level in the system.
The analysis presented in section II is carried at different
penetration levels of PV to investigate the impact of PLL
on interaction of modes. Interaction between the modes is
calculated as per proposed technique and the modes that
interact are presented in Table VIII. It is noted from Table
VIII and Table III that the number of modes which interact
remain unaltered with change in penetration level of PV. The
results obtained for 60% penetration level are compared with
the results in section III-B (i.e. for 50% PV, referred to as base
case) to analyze the impact of PV.

It is identified that the mode investigated in section III-B,
−2.2192 ± j12.0277 of Table III has changed to −2.2827 ±
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TABLE IX
MODES THAT CONTRIBUTED TO CHANGE IN 4th MODE OF TABLE VIII

Oscillation mode Type of mode
Interaction 

Coefficient

  -2.2127 ±j12.6225 Type 2 1.026

  -2.283 ±j12.1770 Type 2 0.0612

  -2.417 ±j12.7744 Type 2 0.0252

 -1.818 ±j 11.649 Type 2 0.0072

 -14.643 ±j 5.128 Electromechanical 0.0021

 -17.637 ±j 4.3877 Type 1 0.0013

 -4.824 ±j 0.861 Type 2 0.0010

-18.0574 Electromechanical 0.0010

  -0.7828 ±j 6.1282 Electromechanical 0.0005

-61.95±j62.10 Type 2 0.0004

  -0.4895 ±j 5.2715 Electromechanical 0.0003

-55.377 Type 2 0.0001

Oscillation mode Type of mode
Interaction 

Coefficient

  -2.0031 ±j11.4455 Type 2 CCBG 1.0654

  -2.2056 ±j11.9972 Type 2 CCBG 0.0338

  -2.2714 ±j12.5742 Type 2 CCBG 0.0024

 -11.0384 Electromechanical 0.0026

  -2.1258 ±j12.5189 Type 2 CCBG 0.0016

-12.096 Electromechanical 0.0013

  -2.3672 ±j12.7895 Type 2 CCBG 0.0007

-6.4226±j2.0129 Type 1 CCBG 0.0007

  -14.647 ±j 6.4042 Electromechanical 0.0006

-18.507 Type 2 CCBG 0.0004

-17.387±j4.24 Type 2 CCBG 0.0002

-55.659 Type 2 CCBG 0.0002

With SRF-PLL : 70% RE penetration 

j12.177 (S.No 4 in Table VIII) for 60% penetration level
due to change in PV penetration level. To determine the
impact of PLL on interaction between modes at different PV
penetration level, analysis (presented in Section II) is carried
out for 4th oscillation mode of Table VIII. The results of
4th oscillation mode of system, (given in Table VIII and
with 60% PV penetration level) are presented in Table IX.
From Table IV and Table IX, it can be noticed that there
is an increase in number of modes with which the mode
−2.2827±j12.177 of Table VIII interacts compared to that of
base case mode −2.2192± j12.0277. It can also be identified
that the interaction coefficients also have increased. It is
identified that the participation of SG state variables E′

q, Efd

and ω in CIG modes increase with PV penetration. In addition,
the participation of PV state variables δpll, xpll and iq in
electromechanical modes increase with PV penetration

F. Comparison with existing methods

In this section, the performance of the proposed method
is compared against two existing methods available in the
literature. First method is the conventional mode sensitivity
analysis approach and the second method is modal shift
evaluation method presented in [15].

• Conventional approach: In conventional eigenvalue sen-
sitivity analysis, the eigenvalue sensitivity is calculated
from eigenvectors as shown in (4) and (5). However, the
modes which are participating in the interaction can not
be known from conventional approach. So, the quantifi-
cation of interaction can not be done using conventional
approach. In addition, the change in mode shapes can not
be calculated from the conventional approach.
In addition, the conventional eigenvalue sensitivity anal-
ysis considers a change in one element of the state
matrix at a time. The proposed approach can analyze the
impact of change in multiple system parameters at a time
on the interaction among modes. The results obtained

by changing two parameters viz., kppll
and kipll , are

presented in TABLE III - IV and Fig. 2 (e-f).
• Modal shift evaluation method presented in [15]: In

the modal shift evaluation method [15], the resonance
index (RI) between electromechanical oscillation modes
(EOMs) and PMSG oscillation modes (POMs) are calcu-
lated as shown in (28).

RI =
|λCEOM − λCPOM |
|λEOM − λPOM |

(28)

where |λCEOM − λCPOM | is the distance between
closed-loop EOM and POM and |λEOM − λPOM | is
the distance between open-loop EOM and POM. From
the method in [15], the resonance between EOM and
POMs can be calculated. However, the interaction among
oscillation modes which are not in resonance can not be
captured. In addition, the change in mode shapes can not
be analyzed from the method in [15].

The proposed method can effectively determine the modes
participating in the interaction and also quantify the interaction
as derived in section IIB.

IV. DISCUSSIONS

In this paper, the proposed extension to eigenvalue sensitiv-
ity analysis is used to study the interaction between SG and
CIG modes of a power system. With the growing penetration
of power electronics into power systems, oscillation modes
of the system are expected to be influenced by numerous
factors and parameters. The proposed extension to eigenvalue
sensitivity analysis can also be used to determine the impact
of any parameter on the interaction between modes.

The present study has identified the presence of interaction
between the CIG modes and electromechanical modes in
PV dominated power systems. The studies presented in this
paper identify that the poor damping observed in SG states
at lower values of PLL parameters is due to the interaction
between the modes of the system. It is observed that at lower
values of PLL parameters, the participation of SG states is
increased in poorly damped CIG modes. Hence the damping
of oscillations in SG states is reduced at lower values of
PLL parameters. The present study indicates that interaction
between the modes should also be considered while tuning
the PLL parameters. From the studies, it is observed that
even though there is no direct influence of PLL parameters
on electromechanical modes, the interaction results in change
of participation of SG states in CIG modes. The interaction of
type-2 modes (modes that have noticeable participation from
CIG and SG states) also will result in change in participation of
SG states. This interaction is problematic for system stability
when the participation of SG states increases in CIG modes
with critical damping. The oscillations in SG states (due to the
participation) may result in activation of unnecessary controls
which can be avoided if PLL is tuned appropriately.

Two different types of PLLs: SRF and MRF PLL are
investigated in this study. It is observed that SRF and MRF
PLLs have similar impact on interaction of modes. For both
the PLLs, the proportional gain kp,pll has more impact on
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interaction than the integral gain ki,pll. It is identified that for
both the PLLs the change in participation factor is prominent
in states corresponding to rotor frequency, field winding and
exciter control of SGs.

As the proposed method is based on the small signal
model of power system, the nonlinear interactions can not
be captured by this method. However, the nonlinear modal
analysis techniques face scalability and computation capability
issues which makes it difficult to apply for power systems [18].
Hence in this work, linear modal analysis is chosen to analyze
interaction among modes.

V. CONCLUSION

An extension to eigenvalue sensitivity analysis is proposed
in order to quantify the interaction between any two modes
in system and the impact of interactions on system stability.
The impact of the interaction on degree of participation of
state variables (states) in the oscillation modes is analyzed.
The proposed analysis is performed on a modified IEEE-39
bus system. The impact of PLL dynamics on interaction of
CIG modes and electromechanical modes of SG is studied.
The analysis is carried out for two different types of PLLs viz.,
SRF-PLL and MRF-PLL. It is identified that for both the PLLs
the interaction has major impact on SG states corresponding
to rotor frequency, field winding and exciter control of SGs. It
is also identified that the interaction among electromechanical
and CIG modes is higher for lower bandwidth of PLL. The
analysis is also carried out considering 40-60% penetration
levels of PV. It is identified that PV penetration levels mainly
impact the SG state variables E′

q, Efd and ω and the PV state
variables δpll, xpll and iq .

APPENDIX A
The equations of SGs, CIGs and transmission lines are

linearized to formulate state space equations as (29). The
components with state space representation are grouped under
category 1 in this work. The equations of constant PQ loads
are linearized to formulate algebraic equations as (30).

˙∆Xcat1n = Acat1n ∆Xcat1n +Bcat1n ∆Vcat1n ;

∆Icat1n = Ccat1n ∆Xcat1n +Dcat1n ∆Vcat1n

(29)

where Xcat1n denotes states; Acat1n , Bcat1n , Ccat1n , Dcat1n

denotes the state, control, output and feed-forward matrices
respectively of the nth category 1 component.

∆IPQln = YPQln ∆VPQln (30)

where YPQln denotes the admittance matrix of the nth load;
Vcat1n , VPQln are the vectors with Q and D components of
terminal voltage and Icat1n , IPQln are the vectors with Q
and D components of current injection of the nth category
1 component and constant PQ load respectively.
Equations of all category 1 components and loads are concate-
nated to formulate (31) and (32).

˙∆Xsys = A1 ∆Xsys +B1 ∆Vcat1 ; (31a)
∆Icat1 = C1 ∆Xsys +D1 ∆Vcat1 (31b)

∆IPQl = YPQl ∆VPQl (32)

Current injections to the buses from all the components of
power system can be written as (33). ∆Ibus denotes the vector
of bus current injections. Substituting (31b) and (32) in (33),
voltages of all buses in network are expressed in terms of Xsys

of the form (34). Xsys is the vector of all state variables and
Vsys denotes the vector of bus voltages of the power system.
Substituting (34) in (31a) will result in the state equation of
whole power system as shown in (35).

∆Ibus =
∑

∆Icat1 +
∑

∆IPQl (33)

∆Vsys = A2 ∆Xsys (34)

˙∆Xsys = A ∆Xsys (35)
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