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The emergence of carbapenem-resistant organisms (CROs) is a significant global threat. Reduction of carbapenem 
consumption can decrease CROs. In the global endemic era of ESBL-producing bacteria, carbapenems are consid-
ered the treatment of choice, leading to challenge in limiting carbapenem use. This review describes the role of pre-
cision prescribing for prevention of CROs. This involves improving antibiotic selection, dosing and shortening duration. 
The effect of different antibiotics, dosing and duration on CRO development are explored. Available options for pre-
cision prescribing, gaps in the scientific evidence, and areas for future research are also presented.
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Introduction
Carbapenem-resistant organisms (CROs), including carbapenem- 
resistant Enterobacterales (CRE), carbapenem-resistant 
Acinetobacter baumannii (CRAB), and carbapenem-resistant 
Pseudomonas aeruginosa (CRPA), are increasing in incidence glo-
bally.1 CRE can be categorized into carbapenemase-producing 
CRE (CP-CRE) and non-carbapenemase-producing CRE 
(non-CP-CRE).2 CP-CRE is the most problematic among CROs 
due to plasmid localization allowing for horizontal gene transfer 
in both environmental and clinical Enterobacterales.2,3

The emergence of CROs is a significant global threat.1

Mortality following CRO infection is up to 50%, largely due to 
the limited treatment options.4 Consequently, they have been ca-
tegorized by the WHO as critical priority pathogens for discovery, 
research and development of new antibiotics.5

CRO transmission frequently occurs in hospital,6,7 especially 
CRPA and CRAB.8,9 CRO outbreaks incur a high cost for the hos-
pital.10 Cost associated with CROs is not only from direct cost 
such as antibiotics, contact precautions or decontamination, 
but also indirect cost from bed closure and missed opportunities 
for patient care.10 Several hospital infection prevention and con-
trol interventions are deployed to tackle the problem.11–15 These 
interventions include surveillance, hand hygiene, standard and 
transmission-based precautions, isolation, antibiotic steward-
ship, decolonization and environmental hygiene.

Core strategies of antibiotic stewardship include interventions 
to reduce inappropriate antibiotic use, antibiotic optimization, 
diagnostic approaches and programme measurement.16

Interventions focusing on reducing antibiotic consumption are 
effective in reducing CROs.17 For example, reduction of 

carbapenem consumption can decrease incidence of CRE,18

CRPA18–20 and CRAB.18,21

In the era of resistance, it is becoming difficult to restrict 
broad-spectrum antibiotic use. Carbapenems are considered 
the treatment of choice for ESBL-producing Enterobacterales 
(ESBL-E).22 The global endemic nature of ESBL-E in recent dec-
ades has led to an inevitable rise in carbapenem use.23

If carbapenem use is now unavoidable in many circum-
stances, the optimizing of antibiotic use, including careful selec-
tion of agents in these contexts, may be considered as an 
important intervention in local infection prevention and control 
strategies to minimize the development of antimicrobial resist-
ance, particularly carbapenem resistance, and drug-resistant 
hospital-acquired infections.24 Optimizing antibiotics involves 
precision prescribing, allergy assessment and timely use of oral 
antibiotics.16 This review will focus on the role of precision pre-
scribing for prevention of CROs, which is a key aspect of antibiotic 
stewardship. This involves improving antibiotic selection, dosing 
and shortening duration through the application of more indivi-
dualized interventions. First, the effect of different antibiotics, 
dosing and duration on resistance development will be explored. 
We will then explore available options for antibiotic selection, 
dosing and duration, with an aim to prevent CROs.

Effects of different antibiotic agents, dosing 
and duration on CRO emergence
There is emerging evidence describing the effects of different 
antibiotics, doses and treatment durations on resistance devel-
opment. CRO emergence in this section is defined as isolation 
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of CRO in any specimen obtained from the same individual during 
or after exposure to antibiotics. This does not include treatment 
failure caused by antibiotic resistance developing during the 
treatment with the specific antibiotic for the same organism, as 
shown in Figure 1. Efficacy and treatment failure will be discussed 
in the next section.

Effects of different antibiotics on CRO emergence
Numerous efforts have been made to find and characterize the 
effect that individual antimicrobials exert on selection of resist-
ance.25 Notably, the WHO classifies antibiotics in the essential 
medicines list (EML) into three groups based on risk of toxicity 
and resistance selection: Access, Watch and Reserve 
(AWaRe).26 For CRO, a recent meta-analysis of 349 studies by 
Sulis et al.27 demonstrated that carbapenem use at both individ-
ual and population levels is the strongest risk factor for CRO col-
onization/infection. CRPA colonization/infection is most strongly 
associated with carbapenem use (OR 3.2; 95% CI 2.5–4.2), fol-
lowed by CRE (OR 2.5; 95% CI 2.2–2.7) and CRAB (OR 2.2; 95% 
CI 1.8–2.6), respectively.

Effects of different antibiotic classes

Identification of antibiotics with the least selective pressure for 
CRO is important as it can help guide alternative, carbapenem- 
sparing regimens. The meta-analysis by Sulis et al.27 defined 
that other significant antibiotics associated with CRO include lin-
cosamides (OR 2.4 for CRE), polymyxin (OR 2.4 for CRE), tigecyc-
line (OR 2.4 for CRE), linezolid (OR 2.1 for CRE), 
fourth-generation cephalosporins (OR 1.7–2.0 for CRO), glycopep-
tides (OR 1.5–1.9 for CRO), daptomycin (OR 1.8 for CRE), macro-
lides (OR 1.6 for CRE), fluoroquinolones (OR 1.4–1.9 for CRO) 
and piperacillin/tazobactam (OR 1.3–1.5 for CRO). It should be 
noted that polymyxin and tigecycline, reserved for the treatment 
of CRO, are also amongst the strongest risk factors of CRE colon-
ization/infection. However, these associations should be inter-
preted with caution as it is difficult to control all the 
confounding factors influencing antibiotic selection.25 For ex-
ample, glycopeptides do not have activity against most 
Gram-negative pathogens, but are often used in combination 
with broad spectrum β-lactams, such as carbapenems, as empir-
ical treatment in hospitalized patients.28 Moreover, these asso-
ciations are usually derived from population-level instead of 
patient-level data, disregarding the complexity of clinical para-
meters, epidemiological factors and antibiotic exposure in each 
patient.29,30 Because this complexity may be too difficult for 
classical statistical analysis, machine learning is expected to 
be used in the future to define antibiotic pressure in individual 
patients.31 Machine learning was successful in estimating anti-
biotic exposure and ESBL-E colonization in a recent study.32 The 
random forest model derived from machine learning could rank 
antibiotics, whether used as monotherapy, used in combination 
or used sequentially, based on the measurement of error in 
predicting ESBL-E colonization. However, there is currently no 
machine learning model to estimate the impact of antibiotic ex-
posure on CRO colonization/infection. This model may be 
needed to understand the complex interaction between anti-
biotic utilization and development of CRO from patient-level 
data.

Effects of different carbapenem agents

Mechanisms of carbapenem resistance are different amongst 
CROs. For CRE, the selection of carbapenemase is the most im-
portant mechanism, whereas for CRPA, permeability changes 
(e.g. OprD) and multidrug efflux pumps (e.g. MexA-MexB-OprM) 
are usually the determining factors.

Carbapenem agents consist of imipenem, meropenem, erta-
penem, doripenem, panipenem, biapenem, razupenem, tebipe-
nem and faropenem. Individual carbapenems exert variable 
selection pressure on CRO. Selecting a carbapenem with least re-
sistance pressure has been proposed as a potential method to re-
duce the occurrence of CROs.33 Any carbapenem use can 
aggravate the occurrence of CRE, with ertapenem the least se-
lective within the group.33 On the contrary, ertapenem use, unlike 
other carbapenems, is not associated with the emergence of 
CRPA and CRAB.34–37 However, it should be noted that a strategy 
of replacing group 2 carbapenems with ertapenem failed in redu-
cing CROs in three studies of carbapenem stewardship.38 The 
mandatory use of ertapenem for ESBL-E infections did not lead 
to a post-intervention reduction in CRAB and CRPA.38

Effect of different antibiotic combinations

Antibiotic combination therapy has also been proposed as a 
strategy to suppress the emergence of resistance. Combination 
therapy is an effective strategy to suppress the emergence of re-
sistance in mycobacterial infections such as tuberculosis and lep-
rosy.39 These slow-growing bacteria are capable of producing 
subpopulations of non-replicating or slowly growing cells in re-
sponse to antimicrobials, also called persister subpopulations, re-
sulting in drug tolerance.40 Therefore, treatment of mycobacteria 
consists of exceptionally long courses of antimycobacterial com-
binations. The mechanism of combination antimycobacterial 
therapy is thought to occur by resistance suppression, i.e. the first 
drug kills mutants resistant to the second drug, while the second 
drug kills those resistant to the first drug.39

For pyogenic bacteria that have more rapid growth, the pos-
sible benefits of antibiotic combination to prevent resistance 
emergence are found in P. aeruginosa.41–44 Various preclinical 
studies in P. aeruginosa infection found benefit in preventing re-
sistance emergence in antibiotic combinations of β-lactams 
with aminoglycosides or fluoroquinolones.41–44 Early clinical 
studies suggested that a β-lactam in combination with an amino-
glycoside could delay resistance development compared with 
monotherapy.45 However, several subsequent clinical studies 
and meta-analyses in P. aeruginosa infection have failed to dem-
onstrate any benefit of combination treatment to the emergence 
of resistance.42 Because of the increased toxicity, continuous 
aminoglycoside combination therapy is not recommended for 
suppressing resistance.42,46 There are no clinical data evaluating 
fluoroquinolones in combination with β-lactams for this specific 
purpose.

Effects of different antibiotic dosing on CRO emergence
Drug exposure can have a significant impact on resistance devel-
opment. In vitro experiments demonstrate low resistance select-
ive pressure occurs when drug exposure is at relatively low or high 
concentrations, forming an ‘inverted U’ relationship.47 Antibiotic 
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concentrations achieved in vivo using recommended doses for 
clinical cure are associated with greater selective pressure for re-
sistance.48 For carbapenems, this phenomenon is found in ex-
periments of P. aeruginosa and may explain resistance 
development during therapy.49–52 A meta-analysis of 28 studies 
found that CRPA developed in 35% of patients with P. aeruginosa 
infections during carbapenem treatment without resulting in 
treatment failure.53 Therefore, increased target concentration 
of carbapenems may arguably be justified in P. aeruginosa infec-
tion to suppress resistance, but not to improve clinical 
outcomes.54

On the other hand, for Enterobacterales, the concentration for 
maximal killing is the same as for suppression of carbapenem re-
sistance.55 A study found that the percentage of the dosing inter-
val for drug concentration to remain above MIC ( fT>MIC) for the 
maximal killing effect of razupenem for Enterobacterales was 
63%–92%, but CRE rarely occurred at >70%.55 In clinical practice, 
CRE and CRAB rarely emerged during carbapenem treatment 
(<1%).53 Therefore, increased target concentration may not be 
needed in general cases of Enterobacterales and Acinetobacter 
spp. infection.

Although optimizing antimicrobial dosing to suppress resist-
ance may seem plausible, it has potential consequences. 
Antibiotics can transform intestinal flora into a reservoir of 
antibiotic-resistant organisms, also called the gut resistome.56

Intestinal carriage is an important source of transmission.57,58

Resistance can occur even with antibiotics with minimal bile ex-
cretion into the intestine, such as cefotaxime.59,60 A recent study 
found that increasing ciprofloxacin pharmacokinetic/pharmaco-
dynamic (PK/PD) target attainment did not reduce the chance 
of resistance emergence.61 Moreover, higher ceftriaxone PK/PD 

indices were associated with increased amplification of resistant 
genes.62 In clinical practice, resistance commonly emerges away 
from the site of the primary infection.63,64 Therefore, serum anti-
biotic concentrations should be aimed at maximal treatment ef-
ficacy and minimal toxicity. For most infections, using current PK/ 
PD approaches, it is difficult to include resistance suppression in 
the treatment plan.65

Effect of antibiotic duration on CRO emergence
Historically, the misconception that shortening antibiotic dur-
ation can lead to resistance emergence was held by clinicians 
and the general population.66,67 Evidence from experimental 
models and subsequent clinical studies has demonstrated that 
shortening duration can reduce resistance emergence.68–70

Regarding CROs, prolonged duration of many antibiotics is asso-
ciated with resistance acquisition. Prolonged duration of pipera-
cillin/tazobactam and aminoglycosides was associated with 
subsequent CRO acquisition (OR = 1.13 and 1.62, respectively).71

Prolonged duration of β-lactams with β-lactamase inhibitors 
(BL-BI), or carbapenems and fluoroquinolones was associated 
with subsequent CRE infection (OR 1.15 and 1.02 per day in-
crease, respectively).72 Prolonged duration of fluoroquinolones, 
broad-spectrum cephalosporins and carbapenems was asso-
ciated with CRAB infection [risk ratio (RR) 81.2, 31.3, and 112.1, 
respectively].73

Although optimizing the duration of antibiotic is one of the 
strategies of antibiotic stewardship, not many studies specifically 
evaluate its effectiveness in reducing CRO acquisition. A resis-
tome study nested in a clinical trial found that shortening anti-
biotic duration from 14 to 7 days did not result in a decreased 

Figure 1. Potential antimicrobial resistance risks increased by improper antibiotic prescription.
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quantity of carbapenem resistance genes in gut microbiota.74

However, another study showed that early carbapenem de- 
escalation was associated with a shorter duration of carbapenem 
usage by 2 days and lower incidence of CRAB acquisition.75 A re-
duction in CRE and CRPA was also observed in this study, although 
this was not statistically significant.

In conclusion, the current evidence suggests that the best op-
tion for minimizing CRO emergence is selecting alternative 
agents in place of carbapenems. If carbapenem usage is un-
avoidable, options to reduce antibiotic resistance are dosing car-
bapenem therapy to achieve defined PK/PD targets for efficacy 
and prescribing the shortest effective duration.

Carbapenem-sparing options for the 
treatment of ESBL-E
Optimal antibiotic selection involves choosing the most appropri-
ate antibiotic to achieve efficacy in managing infections whilst 
minimizing adverse events associated with antibiotic use, includ-
ing development of antibiotic resistance.76 Because carbapenem 
use is amongst the strongest risk factors for CROs, research has fo-
cused on carbapenem-sparing strategies for the treatment of 
ESBL-E.77–83 These strategies include combination antibiotic regi-
mens, evaluation of other potential antibiotics, and selecting erta-
penem as a carbapenem agent with the narrowest spectrum.

Combination therapy
The main benefit of combination therapy for ESBL-E is likely to be 
promoting antibiotic synergy and broadening the spectrum of 
coverage.

For targeted therapy, combination antimicrobial therapy was 
investigated clinically for synergistic effects based on organism 
in vitro results. Apart from the standard combination of BL-BIs, 
the most frequently described combination antibiotics for 
ESBL-E are aminoglycosides, in combination with β-lactams, 
such as cefepime or piperacillin/tazobactam.84–86 Several studies 
have been unable to demonstrate evidence of improved clinical 
outcomes of combination therapy compared with β-lactam 
monotherapy for ESBL-E.87,88 Instead, increased toxicity may be 
observed in the combination group.87 Moreover, a recent study 
found that some Escherichia coli strains can exhibit in vitro antag-
onistic effects between aminoglycosides and β-lactam 
combinations.89

Another proposed combination option is between β-lactams, 
mostly between a cephalosporin and a BL-BI. A study found 
that an oral third-generation cephalosporin, cefixime, in combin-
ation with clavulanate can effectively treat patients with ESBL-E 
urinary tract infection.90 Another study reported clinical cure in 
10 patients with ESBL-E urinary tract infection treated with cef-
tibuten and clavulanate.91 Several clinical trials are evaluating ce-
phalosporins in combination with β-lactamase inhibitors. It 
should be noted that all ongoing trials are being conducted in pa-
tients with mild infections without bacteraemia.92

For empirical treatment, evidence from meta-analysis of six 
studies found that appropriate empirical antibiotic therapy, i.e. gi-
ven within 24 h of initial culture, is associated with improved sur-
vival in patients with ESBL-E bacteraemia (adjusted OR = 2.03, P =  
0.04).93 As combination therapy has been found to broaden the 

spectrum of coverage, a study also confirmed that empirical 
combination therapy could improve appropriateness for ESBL-E 
and was associated with survival.94

Non-carbapenem antibiotics
For urinary tract infections without bacteraemia, several 
carbapenem-sparing antibiotic options for ESBL-E are available. 
These options include ciprofloxacin, levofloxacin and trimetho-
prim/sulfamethoxazole.46 Nitrofurantoin, piperacillin/tazobac-
tam, amoxicillin/clavulanate and cefepime may also be used in 
cases of cystitis. However, for ESBL-E infection outside the urinary 
tract, carbapenems are the drug of choice.46 Potential antibiotics 
as alternatives for carbapenems include piperacillin/tazobactam, 
cephamycins, aminoglycosides and temocillin.

Broader-spectrum antibiotics than carbapenems such as tige-
cycline, IV fosfomycin, or newer β-lactams, such as ceftolozane/ 
tazobactam, ceftazidime/avibactam, or cefiderocol, can be po-
tential carbapenem-sparing options for ESBL-E.95 Large volumes 
of carbapenem consumption can be substituted by these poten-
tial agents. However, they also have greater potency to create a 
selective advantage for bacteria resistant to carbapenems.96

Several panels uniformly recommended that they should be re-
served for XDR pathogens, such as CROs.46,97–99 Therefore, 
broader-spectrum antibiotics will not be discussed here.

The most extensively studied antibiotic as a carbapenem- 
sparing option is piperacillin/tazobactam,78,100 because of the 
high percentage of in vitro susceptibility in ESBL-E.79 However, 
in vivo susceptibility to piperacillin/tazobactam can be different 
from in vitro because of an inoculum effect. An inoculum effect 
is the dramatic increase of MIC due to increased bacterial load 
despite the initial susceptibility.100 Because the results from sev-
eral meta-analyses and retrospective studies found conflicting 
results for the efficacy of piperacillin/tazobactam for the treat-
ment of ESBL-E bacteraemia,101,102 a multicentre, randomized 
clinical trial called MERINO was conducted to evaluate the effi-
cacy of bolus infusion of piperacillin/tazobactam 4.5 g q6h com-
pared with meropenem 1 g q8h in patients with 
ceftriaxone-non-susceptible E. coli or Klebsiella pneumoniae bac-
teraemia.103 The study found that the definitive treatment with 
piperacillin/tazobactam did not result in a non-inferior mortality, 
therefore it was concluded that use of piperacillin/tazobactam 
was not supported. Post hoc analysis showed that some bacteria 
harbour narrow-spectrum oxacillinase (OXA) genes, which 
caused a major error in piperacillin/tazobactam susceptibility in-
terpretation used in the trial.104 Therefore, many patients allo-
cated to the piperacillin/tazobactam arm actually had 
bacteraemia resistant to piperacillin/tazobactam. The question 
still remains whether the extended infusion of piperacillin/tazo-
bactam is comparable to carbapenems.79 There is an ongoing 
trial in Israel, Canada, and Italy evaluating this issue.105

Cephamycins, such as cefoxitin or cefotetan, may be used 
against ESBL-E; however, AmpC producers have unfavourable 
susceptibility to these.81,106 They may be an alternative to carba-
penems only for non-severe infections and should be used at 
high dose and continuous infusion.79,100,107

Aminoglycosides may be used against ESBL-E bacteraemia. In 
a retrospective cohort, INCREMENT, differences of 30 day mortal-
ity between patients treated with meropenem and 
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aminoglycosides were not observed.108 However, renal toxicity 
was common.108 Another retrospective study in patients with 
bacteraemia from urinary tract infection found that aminoglyco-
sides were non-inferior to carbapenem or piperacillin/tazobac-
tam in mortality, without difference in acute kidney injury.109

However, the subgroup analysis comparing aminoglycosides 
and carbapenems was not reported.

Temocillin is a β-lactamase-resistant penicillin, which was 
marketed in the UK in the 1980s.110 It was again relaunched in 
the 2010s in the UK and some European countries to combat 
drug-resistant organisms.111 A retrospective study found that 
the clinical cure rate was 93%, 83% and 100% in patients with 
ESBL-E urinary tract infection, bloodstream infection and 
hospital-acquired pneumonia, respectively.112 Currently, there 
is an ongoing clinical trial evaluating the efficacy of temocillin 
for ESBL-E bacteraemia.113

Ertapenem
Ertapenem is an carbapenem with activity against ESBL-E but has 
only weak activity against Pseudomonas and Acinetobacter 
spp.114 It is marketed for use in severe community-acquired in-
fections, where Pseudomonas and Acinetobacter spp. are unlike-
ly, such as intra-abdominal infections, community-acquired 
pneumonia, acute pelvic infection, skin and soft tissue infections 
and complicated urinary infections. Because of the limited data 
on ertapenem efficacy as empirical treatment of severe ESBL-E 
infections, it is not recommended for patients with bacteraemia 
and severe infection, especially septic shock.99 A recent retro-
spective propensity score matching study in patients with 
ESBL-E bacteraemia reported no difference between ertapenem 
and other carbapenems in mortality, even in a subgroup of pa-
tients with septic shock.115

Carbapenem dosing
The aim of antibiotic dosing is to keep antibiotic levels within the 
therapeutic window. Suboptimal levels of antibiotics are not only 
associated with treatment failure, but also with the emergence of 
resistance.116–118 On the other hand, supratherapeutic levels 
may lead to toxicity. Therefore, maintaining serum concentra-
tions within therapeutic range is crucial.

There are many approaches for antibiotic optimization to 
maintain antibiotic concentrations within the therapeutic win-
dow. The most frequently described methods are the antibiotic 
nomogram and therapeutic drug monitoring (TDM).24

Nomogram
The concept of a nomogram, sometimes called a population 
model or a priori dosing method, was introduced shortly after 
the discovery of antibiotics.119,120 This method usually relies on 
simple clinical parameters such as renal function and body 
weight.121–123 Some software can take more variables into ac-
count, such as gender, height, weight, age and serum creatin-
ine.120,124 Compared with clinician-guided dosing, this method 
can improve target attainment of antibiotics such as 
vancomycin.125,126

Regarding carbapenems, three studies developed a dosing 
nomogram for continuously infused meropenem based on 

creatinine clearance (CLCR) of patients.122,127,128 All studies found 
that a standard daily dose of 3 g meropenem is sufficient for tar-
get attainment in patients with normal renal function and sus-
ceptible organisms. However, it remains unclear whether 
nomogram-based dosing would increase the frequency of 
achieving β-lactam target concentrations.123 Moreover, this 
method is aimed at achieving a predefined PK target, which 
may be different between patients.129

TDM
TDM involves measuring antibiotic levels in blood, or in other bio-
logical fluids, which can be linked to antibiotic levels in blood or at 
the site of infection to personalize dosing.130,131 It is commonly 
employed for drugs with a narrow therapeutic index, e.g. vanco-
mycin and aminoglycosides. TDM for vancomycin and aminogly-
cosides is recommended in standard guidelines for antibiotic 
prescribing.16 For antibiotics with wider therapeutic indices, e.g. 
β-lactams, TDM is recommended in critically ill patients because 
of the proven benefits of achieving target plasma drug le-
vels.65,132,133 Achieving target plasma drug levels is associated 
with improved survival.134,135 However, the direct impact of 
TDM in improving clinical outcomes has not been shown.132

Despite these recommendations, TDM for β-lactam therapy is 
not routinely available in most institutions. In a survey in 
Europe, less than 3% reported TDM for β-lactams.136 Another sur-
vey in the USA showed that only 8% of 39 hospitals with dedi-
cated infectious disease pharmacists had TDM for β-lactams.137

Drug assays

Different drug assays are being used routinely to measure serum 
levels clinically, or at the sites of infections for research purposes. 
Current TDM methods for antibiotics are immunoassays, chroma-
tographic assays and biosensors.

Immunoassays. For widely established aminoglycosides and 
vancomycin levels, immunoassays are commonly used.138 Most 
immunoassays are fast, relatively inexpensive and available 
commercially.139 However, most commercially available assays 
cannot differentiate between bound and unbound drugs.140,141

Moreover, there can be differences between manufacturers.142

Recently, lateral flow assays (LFAs) were used to detect anti-
microbials in clinical specimens. These assays are less expensive 
and can be a point-of-care test. Traditional LFAs are used for 
qualitative analysis. Recently, there has been improvements in 
affordable and compact detection devices, such as smartphone 
cameras, to support analysis and quantification of immunochro-
matographic results.143 This trend has led to the development of 
quantitative LFAs.

Quantitative LFAs have been evaluated as a tool for TDM for 
large molecules such as immunosuppressive drugs in serum.144

However, detection of smaller molecules such as antibiotics is 
more challenging because of the lack of immunogenicity. 
Therefore, LFAs for antibiotics often use a competitive technique 
instead of the common sandwich technique. The competitive 
technique has a major advantage in its low lower limit of quanti-
tation (LLOQ). Therefore, the competitive technique is commonly 
used for detection of residual antibiotics in animal pro-
ducts.145,146 The major limitation of this technique is that it 
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usually has a low upper limit of quantitation (ULOQ), making 
quantification of drug concentration within a clinically relevant 
range difficult. Newer techniques may increase the ULOQ. For ex-
ample, a recently tested LFA for tenofovir TDM in clinical speci-
mens has the ULOQ of as high as 100 mg/L.147,148

Chromatographic methods. For antibiotics such as β-lactams, 
commercial TDM assays are not available.149 TDM for β-lactams 
is usually conducted in plasma.150–153 Because of the unreliability 
of immunoassay, chromatographic methods are frequently used. 
The mostly commonly used method is liquid chromatography 
(LC).131,154 Detectors for chromatography also vary between la-
boratories, ranging from simple detectors such as ultraviolet 
(UV) to mass spectrometry (MS).65,131 MS has the highest specifi-
city, although it is more expensive and requires time-consuming 
optimization.

Because of the sophistication, the adoption of β-lactam TDM is 
limited to large medical centres. Moreover, the turnaround time is 
usually prolonged.155 Although chromatography-based methods 
have a relatively short run time at 3–30 min,156 the typical la-
boratory workflows increase the average turnaround time to 
18–24 h.157 In a study in real-world practice, this number was 
as high as 4 days,158 making prompt dose adjustment for critic-
ally ill patients challenging.

Biosensors. A biosensor is a device that transforms the inter-
action between antibiotics and bioreceptors into a quantifiable 
signal.131 Biosensors can measure serum levels from collected 
blood specimens or directly from patients. They can be minimally 
invasive and wearable, supporting the measurement of other 
biological fluids, which can be linked to the sites of infections. 
Biosensors can be classified according to their detection method, 
sensing mechanism, functionality or degree of invasiveness.131

Common antibiotic detection methods include optical and elec-
trochemical sensors.131,159

Optical sensors are the most common method. These devices 
can measure the levels directly from the blood without using 
chromatography. They can be portable, offer high sensitivity 
and fast turnaround time.131,160–162 Their main limitations are 
the lower specificity from the background signal and the inability 
to be used as a wearable biosensor.

Electrochemical sensors can work with small sample volume 
and can be miniaturized to allow on-site monitoring.159

Bioreceptors for this type of sensor include antibodies,163 en-
zymes163,164 and aptamers.165 Their limitations are the lower 
specificity from non-specific binding and the low ULOQ for 
some methods and high LLOQ for others.

Dose-adjustment strategies
After receiving the results of serum drug levels, several different 
dose-adjustment strategies are being implemented. These strat-
egies include dose adjustment made specific to the intervention, 
dosing nomograms and software for dose optimization.166

Dose adjustment made specific to intervention

Specific intervention is the least sophisticated method. Dosing 
adaptation is usually simplified according to the difference 

between the targets and the levels measured. For example, 
some studies increased the frequency of the same dose by 
25%–50% when the concentration was below the target and re-
duced the dose by 50% when the concentration was above 10 
times the expected dose.167,168 Some studies increased the 
dose based on the degree of the differences. For example, one 
study suggested increasing antibiotic dose by one step if the le-
vels were within 50%–100% of the target, or two steps if the le-
vels were within 10%–50% of the target.169

Because some studies found that physicians may not adhere 
to consulting pharmacy service advice for dose adjust-
ment,158,170 this may be the most feasible method for adoption 
in general practice. However, it is the least reliable method to at-
tain the target levels.

Dosing nomogram

Dosing nomograms are well described and validated for amino-
glycosides and vancomycin. However, they cannot be used in crit-
ically ill patients as most PK data are derived from non-critically ill 
patients.171 Nomograms are also available for β-lactams but they 
have not been validated.127

Software for dose optimization

Software for dose optimization is designed for more accurate 
dose adjustment. It can be categorized into two methods: linear 
regression models; and models that incorporate Bayesian fore-
casting or artificial intelligence.129

Linear regression (one-compartment model) is the least com-
plicated method, which uses an algorithm to calculate a drug 
clearance rate from antibiotic levels derived from two different 
times. This method performs better than using a nomogram 
but still does not include other variables from the patients.172

Because of the limitations of the linear regression model, most 
software now uses real-time Bayesian forecasting. This method 
combines the population model (a priori) with the current PK in-
formation (a posteriori) to suggest the dose and the expected 
PK results after the adjustment.120 Many validated software pro-
grammes are available, both commercially and for free.173–175

This method can suggest the dose adjustment even from a single 
measured drug level. Moreover, it can calculate even after the 
first few doses before the steady-state concentration. These pro-
grammes demonstrated higher PK/PD target attainment for 
meropenem dosing.176 However, it failed to achieve target at-
tainment for dose adjustment based on the concentration in a re-
cent study.177

Optimal carbapenem duration
Several studies have been focused on defining the least non- 
inferior treatment duration in various sites of common 
Gram-negative infection, including bacteraemia, urinary tract in-
fection, intra-abdominal infections and pneumonia.

Bacteraemia
For uncomplicated Gram-negative bacteraemia, three rando-
mized controlled trials including a total of 1365 patients, 11% 
of whom had ESBL-E as the responsible pathogens, found that 
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a 7 day duration was non-inferior to a 14 day duration.178–180 The 
notable exclusion criteria for uncomplicated bacteraemia were 
uncontrolled source of infections, site of infection requiring pro-
longed antibiotic course, severely immunocompromised pa-
tients, CRO infection and polymicrobial bacteraemia.

Urinary tract infections
For urinary tract infections, a recent meta-analysis of treatment 
in pyelonephritis showed that a short course of antibiotic (≤7 
days), regardless of antibiotic class, resulted in higher clinical 
cure rate with no significant difference in clinical failure.181

However, longer duration may be required for complicated pyelo-
nephritis, i.e. patients with urogenital abnormalities. According to 
a meta-analysis of only studies including more than 20% with 
complicated infection, short duration had significantly higher 
microbiological failure.182 There is no clinical trial including only 
patients with complicated infection. However, two retrospective 
studies in patients with ESBL-E complicated urinary tract infec-
tion found no difference in mortality or recurrent infection in pa-
tients with ≤7 day duration of antibiotic.183,184

Intra-abdominal infections
For intra-abdominal infections, a randomized controlled trial in 
patients with post-operative intra-abdominal infection found 
that 8 day duration was equivalent to 15 day duration in terms 
of mortality and length of stay.185 ESBL-E was responsible for 
about half of isolated pathogens. Another randomized controlled 
trial in patients with intra-abdominal infection and adequate 
source control found that 4 day duration was comparable to anti-
biotic discontinuation after clinical resolution in term of mortality, 
recurrent infection or surgical site infection.186

Ventilator-associated pneumonia
For ventilator-associated pneumonia, which is commonly caused 
by Gram-negative pathogens, a randomized controlled trial 
found that 8 day duration was non-inferior to 15 day duration 
in terms of mortality or recurrent infection. However, subgroup 
analysis found that patients with non-fermenting Gram- 
negative infection had a significantly higher rate of recurrent in-
fection in the 8 day arm.70 Another randomized controlled trial 
also found that 8 day duration was non-inferior to 15 day dur-
ation in terms of clinical cure and mortality, but also found a sig-
nificantly higher rate of infection in the 8 day arm.187

Conclusions
In the era of resistance, it is becoming difficult to restrict broad- 
spectrum antibiotic use. Precision prescribing, involving selection, 
dosing and duration of antibiotic, may help prevent CROs and as-
sociated hospital-acquired infections, and play a key role in infec-
tion prevention and control strategies. Future work must focus on 
improving precision antibiotic prescribing, not only to improve 
patient outcomes and reduce toxicity, but also to prevent 
resistance.

Current evidence suggests that the best option is selecting 
alternative agents to carbapenem with comparable efficacy. 
More work is required to investigate the effect of different 

carbapenem-sparing treatment options on CRO emergence, 
and their efficacy against ESBL-E as empirical and targeted 
treatment.

If carbapenems are unavoidable, the options include the im-
proved dosing of the carbapenems, aiming to achieve defined 
PK/PD targets for efficacy, and prescribing shortest effective dur-
ation. However, to achieve target levels for minimal resistance 
development and maximal treatment outcome, innovation and 
new technological solutions are needed to provide rapid antibiot-
ic concentrations for prompt dose adjustment.
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