
Machine-Learning-Driven Advanced
Characterization of Battery Electrodes
Donal P. Finegan,† Isaac Squires,† Amir Dahari, Steve Kench, Katherine L. Jungjohann,
and Samuel J. Cooper*

Cite This: ACS Energy Lett. 2022, 7, 4368−4378 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: Materials characterization is fundamental to our under-
standing of lithium ion battery electrodes and their performance
limitations. Advances in laboratory-based characterization techniques
have yielded powerful insights into the structure−function relationship
of electrodes, yet there is still far to go. Further improvements rely, in part,
on gaining a deeper understanding of complex physical heterogeneities in
the materials. However, practical limitations in characterization techniques
inhibit our ability to combine data directly. For example, some
characterization techniques are destructive, thus preventing additional
analyses on the same region. Fortunately, artificial intelligence (AI) has
shown great potential for achieving representative, 3D, multi-modal
datasets by leveraging data collected from a range of techniques. In this
Perspective, we give an overview of recent advances in lab-based
characterization techniques for Li-ion electrodes. We then discuss how AI methods can combine and enhance these
techniques, leading to substantial acceleration in our understanding of electrodes.

“You cannot manage what you cannot measure” is an
engineering adage to encourage measurement of parameters
that can explain the success of a strategic change. This adage is
also applicable in the field of lithium ion battery technology.
The performance of Li-ion cells is linked to numerous material
properties involving spatially and temporally varying chemistry,
crystallography, and morphology. Managing these properties to
achieve favorable cell performance has led to considerable
improvements in Li-ion batteries since they were first
commercialized. Often, management of material properties
can only be confirmed by using advanced characterization
techniques, yet there remains much that cannot be measured
due to physical or practical limitations of analytical equipment.

Over the past decade, there has been tremendous progress in
artificial intelligence (AI) techniques to enhance, merge,
predict, classify, or artificially generate data.1−3 This has
coincided with materials characterization equipment achieving
higher resolution than ever before, acquiring data in shorter
times, and having streamlined multi-modal data processing
routes. Numerous commercial data-analysis software packages
have started to include AI techniques to, for example, enhance
spatial resolution, correlate data across multi-modal techni-
ques, or identify and quantify features within the data. Every
year, new approaches of applying AI to further enhance data
are demonstrated, many of which are seen in commercial

products not long after. A particularly relevant example is that,
through the use of AI techniques, datasets are being generated
with detail beyond what any single characterization technique
can achieve, thus exceeding equipment limitations.

Despite the progress to date, there remains ample
opportunity to apply AI techniques to further advance our
characterization capabilities, thus empowering researchers to
measure and therefore manage battery material properties that
are otherwise unobtainable. In this Perspective, we provide an
overview of the multi-length-scale battery material properties
of interest, the limitations of lab-based materials character-
ization techniques, and the recent developments in AI that can
be used to overcome these limitations. Our Perspective focuses
on how generative adversarial networks (GANs) can be used in
conjunction with multi-modal data to transcend systematic
limitations of microscopy techniques. Finally, we will outline a
view of the future where AI techniques enable the fusion of
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data into a unified, multi-modal dataset that spans many length
scales.

1. IMPORTANT PROPERTIES FOR ELECTRODE
PERFORMANCE

There are a wide variety of electrode materials and electrolyte
chemistries used in Li-ion batteries today. For simplicity, we
focus our attention on conventional Li-ion cell materials with a
graphite anode, a LiNixMnyCozO2 (NMC) cathode, a porous
polymer separator, and a liquid electrolyte. Across the length
scales from hundreds of micrometers down to nanometers,
chemical, crystallographic, and morphological properties
dictate the electrochemical performance of the cell throughout
its cycle-life (Figure 1). Our understanding of these structure−
function relationships is critical to defining operational
limitations and degradation pathways, as well as identifying
opportunities to improve the performance of cells.

Electrodes are typically around 100 μm thick, and the
geometry of their porous microstructure must achieve a
delicate balance between ionic transport through the pores and
electronic conduction through the solid. In addition, the
volume fraction of the active material should be maximized,
and enough active surface area should be available to facilitate
homogeneous (de)lithiation. Manufacturers aim to achieve the
highest energy density possible while still maintaining sufficient
rate and life performance for a particular application. If the
electrode is not porous enough or the pore network is too
tortuous, there can be ion transport limitations at high
operational rates, leading to concentration gradients, lithiation
gradients, and reduced performance.4,5

As illustrated in Figure 1, morphological properties of the
electrode, such as the pore size distribution and tortuosity
factor, can influence the transport of Li ions from the separator
to the current collector. A favorable distribution of conductive
carbon and binder throughout a cathode is also important to
achieve sufficient electrical conductivity.6,7 Tuning manufactur-

ing conditions to optimize these electrode properties for
specific applications can be accelerated with data from high-
throughput characterization techniques able to quantify the
key morphological metrics of the electrodes.

At the particle level (μm-scale), characterizing properties
relevant to Li transport requires inter- and intraparticle
characterization. For example, the layered crystal structure of
NMC facilitates transport of Li along the stacked planes of the
crystal lattice. As such, the orientation of these planes relative
to the particle surface will determine how, and in which
directions, Li will intercalate into the particle. Therefore, not
only is the morphology of the particle’s outer surface important
to characterize, but knowledge of the morphology and
orientation of intraparticle crystals is needed for a complete
understanding of Li transport, rate limitations, and oppor-
tunities for particle-level optimization. This is demonstrated by
measured diffusion coefficients of polycrystalline NMC111,8

NMC532,9,10 and NMC811,11,12 which differ by an order of
magnitude across the literature.

Previous work has shown that grain size,13,14 the density of
grain boundaries,15 and grain orientations16 also significantly
influence the rate capability and cycle life of NMC electrodes.
Upon lithiation and delithiation, the crystal lattice of NMC
displays anisotropic expansion and contraction that causes
mechanical and crystallographic strain and subparticle
cracking.17 The propagation of cracks and how the dynamic
crack growth is influenced by intraparticle architectures, and

Figure 1. Illustration showing examples of multi-length-scale morphological, chemical, and crystallographic properties that influence the
electrochemical behavior of electrodes throughout their cycle-life. 100 μm: the full cell from top to bottom - aluminum current collector,
NMC cathode, polymer separator, graphite anode, copper current collector. 10 μm: top - in the cathode the gray phase is the carbon binder
domain (CBD) and the black phase is the active material; bottom - in the anode the gray phase is graphite. 100 nm: top - an image of a single
NMC crystal where the subparticle polycrystalline structure is visible; bottom - the growth of lithium plating on the surface of the active
material, the light blue phase represents lithium, light gray the SEI and dark gray the active material. 1 nm: top - an atomic-scale image of a
crystalline interface; bottom - a schematic of the composition of the SEI, which is commonly made up of various inorganic compounds.

Across the length scales from hundreds
of micrometers down to nanometers,
chemical, crystallographic, and mor-
phological properties dictate the elec-
trochemical performance of the cell
throughout its cycle-life.
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how cracks relate to performance loss, is also not well
understood and requires advanced morphological character-
ization in 3D. Cracks bridge μm to nm length scales, where
crack nucleation has been observed at the atomic scale17 and
cracks continue to grow until they are visible at the μm-scale.
This makes cracks extremely challenging to characterize
because multi-length-scale 3D imaging techniques are
necessary to quantify their presence and create a direct link
to the electrochemical function of the electrode. Li plating and
dendrite growth also span length scales from nucleation of Li
plating to growth of Li microstructures.

At the nm-scale, further structural, chemical, and morpho-
logical features exist that influence cell performance and cycle-
life. For example, the surface of Ni-rich chemistries such as
NMC811 undergo oxygen loss and consequent surface
reconstruction to spinel or rock-salt structures during a cell’s
cycle-life.18,19 This surface reconstruction can cause high
interfacial lattice strain between the bulk layered NMC
structure and its thin rock-salt surface that increases electrode
impedance.20 Surface treatments can also be intentionally
applied to improve electrode performance, such as by creating
composition or crystallographic gradients from the surface to
the bulk of the particles to enhance stability and therefore the
cycle-life of electrodes.21,22 These surface effects are on the
scale of nanometers, and their characterization is critical to
understanding electrode degradation and validating methods
to alter surface structures for enhanced cell performance. The
solid electrolyte interphase (SEI) is also at the nm-scale and is
a key contributor to the stability of the interface between the
active material and electrolyte.

This list of multi-scale properties is not all-encompassing of
performance-influencing factors, but it provides topical
examples of why multi-scale characterization of morphology,
chemistry, and crystallography within electrodes is critical to
achieve an understanding of structure−function relationships.
Such properties are also spatially heterogeneous across the
length scales, the extent of which is expected to be highly
influential on a cell’s electrochemical behavior, highlighting the

need for high-resolution characterizations of representative 3D
volumes.

2. CHARACTERIZATION ACROSS LENGTH SCALES
AND LIMITS OF TECHNIQUES

Characterization of the morphological, crystallographic, and
chemical properties across length scales is critical to under-
standing structure−function relationships for Li-ion electrodes.
The selection and sequence of techniques to acquire this
information is important but can be complex due to each
technique having specific strengths and systematic limitations.
While we acknowledge the tremendous progress and
capabilities of synchrotron sources for multi-length scale and
multi-modal characterization, here we focus on laboratory-
based techniques that are more widely and readily accessible to
the research community.

Table 1 gives an overview of frequently used lab-based
techniques, their capabilities, and systematic limitations. Figure
2 shows some examples of techniques from Table 1 that were
applied to Li-ion battery electrodes. To create a direct link
between the material properties of electrodes and their
electrochemical performance, information from several distinct
techniques would be required from the same material sample.
An ideal characterization tool would provide a high-dimen-
sional dataset containing morphological, chemical, and
crystallographic detail across length scales in space and over
time. For example, such a dataset might consist of 3D
coordinates of voxels where each voxel contains information on
local material properties such as diffraction information,
resistivity, mechanical properties, and chemical composition.

However, as Table 1 shows, there are systematic limitations
that prevent the acquisition of multi-modal detail from the
same sample. First, many techniques are destructive and so
inherently prevent a sample from being imaged in a different
system for correlative microscopy. Sample preparation is
another considerable challenge for many techniques. Li-ion
electrode samples are often air-sensitive, and preparing samples
for imaging can be tedious and time-consuming. For example,

Table 1. Examples of Multi-modal Lab-Based Techniques and Their Capabilitiesa

technique typical best resolution information spatial ability destructive? environment requirement

TEM ∼1 nm morphology, atomic arrangement 2D yessp −
EELS ∼1 nm bonding, chemical 2D yes −
APT28,29 ∼1 nm chemical 3D yes vacuum
SPM/SSRM30,31 ∼1 nm morphology, resistivity 2D no −
AFM ∼1 nm mechanical, morphology 2D no −
SEM † ∼10 nm morphology 2D no* vacuum
XCT32,33 ∼30 nm morphology 3D no or yessp −
EBSD27,34 † ∼50 nm crystallographic 2D no* vacuum
EDS † ∼100 nm chemical 2D no* −
TOF-SIMS † ∼1 μm chemical 2D yes vacuum
DCT35 ∼100 μm crystallographic 3D no −

(†) FIB sectioning ∼10 nm n/a 3D *yes vacuum
aThe † symbol refers to the fact that many 2D imaging techniques can collect 3D information when used in combination with FIB serial sectioning.
The * symbol refers to the fact that any technique that uses FIB sectioning to generate 3D volumes becomes destructive. Subscript “sp” specifies
that although the sample is not destroyed by the imaging itself, the sample preparation required before imaging will typically require destroying the
component from which the sample was taken. Abbreviations: transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS),
atom probe tomography (APT), scanning probe microscopy (SPM), scanning spreading resistance microscopy (SSRM), atomic force microscopy
(AFM), scanning electron microscopy (SEM), X-ray computed tomography (XCT), electron backscatter diffraction (EBSD), energy dispersive
spectroscopy (EDS), time-of-flight secondary mass spectroscopy (TOF-SIMS), diffraction contrast tomography (DCT), and focused ion beam
(FIB).

ACS Energy Letters http://pubs.acs.org/journal/aelccp Perspective

https://doi.org/10.1021/acsenergylett.2c01996
ACS Energy Lett. 2022, 7, 4368−4378

4370

http://pubs.acs.org/journal/aelccp?ref=pdf
https://doi.org/10.1021/acsenergylett.2c01996?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


TEM methods require samples to be thin enough for electrons
to pass through them (typically less than 100 nm, or less than
10 nm for atomic resolution), followed by micro-manipulation
of the sample slice for mounting and imaging. Another
example of a limitation caused by sample preparation is how
nano-XCT requires samples that are not much wider than the
field of view (around 0.1 mm) for optimal attenuation. The
challenges facing sample preparation can render the technique
infeasible for gaining statistical confidence or make it
impossible to do correlative metrology using multiple
techniques and length scales. Progress is being made, and
with the recent introduction of laser milling in electron
microscopes, the time needed for cutting small samples has
been considerably reduced,36 but the challenges still remain.

The limitations of the characterization techniques have led
to some interest in methods for blending multi-modal data-
streams into a single dataset, where the strengths of each mode
of imaging are leveraged to generate a new representative
dataset with detail beyond that of each technique alone.37 An
example of this is work by Furat et al.,38 where it was
recognized that nano-XCT was excellent in capturing Li-ion
electrode particle morphologies but lacked the ability to
determine sub-particle crystallographic detail, while EBSD was
excellent in recording sub-particle crystal detail but lacked the
ability to capture full particle morphologies. Detail from the
two data-streams were quantified, and a new representative
dataset containing 3D crystallographic and particle morpho-
logical detail was generated. This work demonstrated the
potential for merging distinct data-streams to generate more
comprehensive data than any single technique could achieve
alone. Xu et al.39 used a similar approach of stochastic
reconstruction to create an artificial but representative

architecture of a polymer separator material using input data
from nano-XCT data and higher resolution 2D SEM data.
While stochastic techniques have been shown to be effective,
they are complex to build, and tend to be specifically designed
for a particular material, rather than being generally applicable.
As such, we are especially interested in the new family of
machine learning (ML) techniques that can achieve greater
breadth of application, with comparatively little expert fine-
tuning required. For example, Dahari et al.40 used data from
distinct but complementary imaging techniques (XCT and
SEM) to train deep convolution generative adversarial
networks (GANs) to generate representative 3D images with
multi-modal details. The opportunities to expand beyond this
work to create high-dimensional data fusion and super-
resolution datasets will be discussed in the following section.

3. MACHINE LEARNING METHODS FOR ENABLING
NEXT-GENERATION MATERIALS
CHARACTERIZATION

The rapid advancement of ML algorithms, along with
continued improvement of computational power, has begun
a paradigm shift in the approach to materials design, discovery,
optimization, and characterization. Of particular interest is the
wealth of existing computer vision research for image-based
tasks, some of which can be applied to Li-ion microstructural
datasets. Central to many of these approaches are convolu-
tional neural networks (CNNs), which employ a neural
network architecture designed to process image data inspired
by biomimicry of the human visual system. CNNs have been
key to image classification, but they also form the basis of many
of the pioneering methods in object detection, image
augmentation, and image generation. These ML methods
have already helped to mitigate some of the limitations of the
characterization techniques described above,45−47 such as
enhancing resolution and automating segmentation of
structural features from images, and we believe that there is
huge potential for further advances in the near future.

In many cases, established ML methods can be directly
applied to materials characterization challenges. Examples of
six of these scenarios are described below and also summarized
in Figure 3.
Segmentation, the process of assigning each pixel/voxel a

phase label, is an excellent example of a common materials
science task that can be greatly aided by the appropriate use of
AI. In a broader context, semantic classification of objects
within images is important for a wide range of applications. A
number of the advances in ML segmentation have come from
the self-driving car research community, where recognizing and
labeling objects within images is critical for the safety of
passengers and pedestrians. CNNs have been very successful at
semantic segmentation. “Encoder−decoder” architectures
(CCNs with a bottleneck shape), such as U-Net,48 have
demonstrated high accuracy with short evaluation and training
times, even with limited data.

In materials science, semantic segmentation is required
before quantitative characterization or simulations are
performed. “Thresholding” is a common segmentation method
in the literature, where pixels are assigned to classes based only
on their grayscale values relative to a fixed cutoff. However,
thresholding has shown to have a high variability and poor
performance at the boundary between different materials,
which leads to misleading analysis of battery electrode
microstructural images and, as such, should be avoided. As

Figure 2. Examples of recent morphological, structural, and
chemical characterization achievements across the length scales
for Li-ion electrodes. References for adapted images are as follows:
EELS,23 SIMS,24 TEM,25 SEM,26 and EBSD.27 The resolution scale
is indicative of typical practice found in the literature today.

There are systematic limitations that
prevent the acquisition of multi-modal
detail from the same sample.
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outlined in sections 1 and 2, quantifying multi-length-scale
morphological features from images is extremely important for
creating structure−function relationships of battery materials.
Quantification of morphological information almost always
involves segmentation of gray scale images. CNN methods that
improve the accuracy of segmentation and therefore of
quantified morphological properties are expected to consid-
erably improve our characterization capability in this space.

Trainable Weka Segmentation (TWS) is a ML approach
which is available as a plug-in to ImageJ.49 TWS provides the
user with various ML frameworks for the classification of
pixels, including neural networks, with the labeled training data
input by the user via a graphical user interface. There are cases
when the segmentation of phases is not clear with a single
imaging technique. The input to a ML segmentation tool could
be extended to include multi-modal data streams, as is
demonstrated in the paper by Cooper et al. when
complementary SEM images (secondary and backscattered
electrons) of a battery cathode are used for segmentation.26

Currently, the segmentation methods used in other domains
such as autonomous vehicles are much more sophisticated,
leaving significant scope for the introduction of these methods

into materials science workflows to improve the speed and
accuracy of segmentation.
Style transfer is another common ML technique that can be

applied to materials science. This method generates a dataset
that adopts the appearance or stylistic details of a second
dataset, while maintaining the structural features of the original
data. Style transfer has been applied to a range of tasks,
including modifying artwork to adopt the painting style of
another painter.50 As outlined in the previous sections,
different imaging techniques provide different resolution,
fidelity, and information. Consider two complementary
techniques that capture different material properties, such as
XCT and EBSD. A theoretical style transfer workflow could
start with an XCT image, which captures the microstructural
distribution of phases. A style transfer algorithm can be trained
on EBSD data to understand the relationship between gross
particle morphology and grain structure. This EBSD “style” can
then be applied to the XCT image, resulting in microstructural
volume, which includes subparticle crystallographic informa-
tion. Employing style transfer could enable the fusion of
different imaging techniques, yielding a pathway to beyond lab
capability characterization for multi-modal datasets.

Figure 3. Examples of machine learning methods for enabling next-generation materials characterization. In each example, the image on the
left shows the input, and the image on the right shows the output after the specified method was applied. In each case, the images were
generated based on the approaches described in relevant studies: segmentation,26 generation,41 inpainting,42 style transfer,40 super-
resolution,43 and dimensionality expansion.44
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Missing or corrupted regions of an image can be filled in
with a technique called inpainting. Deep convolutional
models, particularly GANs and autoencoders, have been very
successful at inpainting and have demonstrated their
effectiveness in a range of applications of image reconstruc-
tion.51 Many materials characterization techniques contain
artifacts or corrupted regions. Broadly, there have been two
approaches to inpainting in materials science. First, using
classical statistical reconstruction methods such as exemplar-
based inpainting, of which the most famous example is the
PatchMatch algorithm.52 Second, ML-based methods are
starting to emerge which use GANs and autoencoders to
detect and inpaint damaged regions.42,53,54 It is important to
note that stochastic inpainting methods do not aim to
reconstruct the ground truth missing data exactly. Instead,
the missing data is replaced with statistically similar generated
data with matching boundaries. Inpainting enables the
transformation of low-quality datasets into high-quality
datasets, potentially avoiding repeating experiments and
removing unwanted imaging artifacts. For example, low-quality
high-resolution datasets are commonly collected from battery
electrodes, as these materials are very sensitive to the electron
beam used in TEM, EDS, and EELS, and therefore decreased
collection intervals on the electrodes generate noisy datasets.55

Although some ML techniques already exist, further
exploitation of cutting edge ML research is possible to
improve the quality of the inpainting, and more work is
required to integrate these tools into existing workflows and
make them more widely accessible to the community.

There are a multitude of ML data generation techniques,
but the two most widely adopted are GANs and diffusion
models. GANs are a family of generative ML models
characterized by the use of two networks competing in an
adversarial game eventually resolving in a network that can
produce samples that mimic the underlying probability
distribution of a training dataset.56 Diffusion models are
networks that learn to invert the process of adding Gaussian
noise to an image.57 Both methods have been very successful in
generating complex fictitious data.58,59 These methods can also
be applied to data augmentation tasks where data availability is
limited. This makes them a powerful tool in materials science,
where collecting large field-of-view images of a macro-
homogeneous materials is time-consuming and expensive. To
this end, Gayon-Lombardo et al. demonstrated the ability of
GANs to generate numerous arbitrarily large volumes of 3D
microstructure (including battery materials) after training on a
comparatively small volume of training data, with training
algorithms similar to those used for conventional GANs.41

These methods allow for the generation of datasets with
physical extents beyond lab capabilities.

More recently, bespoke solutions to specific characterization
challenges have been developed. 2D images can typically offer

higher resolution and better phase identification than their 3D
CT-derived counterparts, while also often being faster and
easier to obtain. However, many metrics of interest are
inherently volumetric. For example, extracting the transport
efficiencies (or tortuosity factors) of porous media requires a
3D volume of material. Dimensionality expansion is the
process of using a lower-dimensional dataset to generate a
higher-dimensional version. SliceGAN is a GAN-based method
for dimensionality expansion proposed by Kench and
Cooper.44 This method uses homogeneous 2D microstructural
training data to train a GAN that outputs 3D volumes of
microstructure. The approach allows for the non-destructive
generation of 3D datasets, providing the opportunity to
perform comparative studies. This method also provides an
opportunity to generate 3D datasets that were previously
unobtainable if applied to a 2D imaging technique that has no
3D analogue. For example, EELS datasets are rich in chemical
information at sub-nanometer resolution in 2D datasets but
would require dimensionality expansion to observe nanometric
chemical distributions in 3D volumes.
Super-resolution (SR) is the generation of a high-resolution

image from a low-resolution image. There are many possible
approaches to SR, with deep learning among the most
effective. Super-resolution methods are useful when low-res
imaging is cheaper, easier, or faster, or where the high-res
image is difficult to obtain. There have been great advance-
ments in deep learning SR, most notably, for the application of
facial recognition by super-resolving low-res faces taken in the
natural environment. These ML-based methods employ CNNs
with a range of architectures from GANs40,60 to deep residual
nets.61 It is important to note the difference between super-
resolution and super-sampling in the context of imaging for
electrode characterization. Super-sampling generates new
points in between those collected experimentally, therefore
reducing the apparent step size while retaining the same field-
of-view, whereas super-resolution is the improved capacity to
distinguish between neighboring regions and can, in this
context, be thought of as deblurring. Low-res data is more
easily obtained, and therefore training a super-resolution
model with a small set of high-res data could provide a
shortcut to collecting representative volumes of high-res data.
For example, consider an SEM micrograph of a cathode
particle super-resolved with sub-10-nm features of the SEI
from TEM data. As outlined in sections 2 and 3, bridging
length scales remains a challenge for hardware and super-
resolution presents tremendous opportunity for overcoming
the continuous struggle between resolution and field of view in
lab-based systems.

Validating methods that produce synthetic data is
challenging when no ground truth experimental reference
exists. This is the case for many of the ML tools outlined in
this section. Assessing the quality of synthetic data by
comparing various microstructural metrics you have not
constrained during training to the ground truth is a useful
validation technique, as this can assert whether your generated
data has retained some of the implicit statistics of the dataset.
Therefore, when developing these techniques, validation must
first be explored in studies where the ground truth is available,
before extending to cases where there is no ground truth.

As new techniques and methods are developed and adapted
to solve materials characterization challenges, it is important to
identify new assumptions that can be built into and enforced
by AI algorithms. For example, when generating micro-

The rapid advancement of machine
learning algorithms, along with con-
tinued improvement of computational
power, has begun a paradigm shift in
the approach to materials design,
discovery, optimization, and character-
ization.

ACS Energy Letters http://pubs.acs.org/journal/aelccp Perspective

https://doi.org/10.1021/acsenergylett.2c01996
ACS Energy Lett. 2022, 7, 4368−4378

4373

http://pubs.acs.org/journal/aelccp?ref=pdf
https://doi.org/10.1021/acsenergylett.2c01996?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


structural datasets, it is possible to encourage a GAN to
produce the correct volume fractions of each material phase
using an extra loss function term. This both simplifies the task
of generation and can result in more accurate synthetic data.
The SliceGAN algorithm demonstrates this by incorporating
the assumptions of spatial homogeneity and isotropy.44 This
can vastly reduce computational expense as far fewer filters can
be used compared to typical GAN generating structured
images, such as faces, where different regions of the output
must contain particular features. Thus, while it is exciting to try
and make use of the most recent advances from the ML
community, well thought through adaptations for materials
science applications are crucial to fast progress in this field.

Our Perspective mainly discusses the application of GANs to
materials characterization problems. This is due to the recent
wave of success of GANs in this field, although they are not
without their weaknesses and many efforts have been made to
characterize their failure modes.62 Notoriously, they suffer
from instability during training and commonly get stuck
generating a small subset of possible outcomes (mode
collapse). A study by the authors applied SliceGAN to a
wide range of materials with a variety of feature complexities.63

The model performed consistently well, indicating that these
general GAN failure modes can be suppressed when solving
general micrograph generation problems.

ML has the potential to help overcome many of the
limitations of existing characterization techniques. The
methods outlined in this section are already a useful set of
tools, but they could be even more powerful when combined,
as we now discuss.

4. OPTIMIZATION AND DATA FUSION: ENVISAGING
A FUTURE FOR AI AND MULTI-MODAL
CHARACTERIZATION

The AI-powered enhancements to conventional character-
ization techniques described in the previous section will enable
significant acceleration in understanding battery materials as
they currently are; however, the exciting next step is to explore
the consequences of combining them.

A powerful potential application of AI is the optimization of
electrode morphology (microstructure, mesostructure, and cell
geometry), which would lead to increases in energy density
and reduced charge times by minimizing the losses resulting
from the various electrochemical processes. In homogenized
models, such as the Doyle−Fuller−Newman model,64 the
morphological properties are captured by parameters that can
generally be trivially optimized in isolation. For example,
tortuosity factors and particle radii should be minimized, while
surface areas should be maximized. However, this is typically
not an instructive exercise, as the resulting electrode properties
are unlikely to be manufacturable, but even if they were,
determining the appropriate processing conditions to obtain
such a microstructure presents a significant challenge. As such,
in order to be useful, morphological optimization needs to be
linked to relevant manufacturing parameters.

Implementing these constraints presents an intimidating
new challenge. One approach to address this problem is to use
physics-based simulations to directly model the manufacturing
processes and thus recover the space of possible electrodes.65

However, this is computationally expensive and, in terms of
complexity and validation, is a problem at least as difficult as
battery modeling itself, unless highly simplified systems are
used. While physics-based models may not be practical for

optimization of complex manufacturing conditions and supply
chains, we note that they have tremendous utility for
understanding the influence and optimization of specific
material properties on cell performance.66

ML can offer data-driven methods that avoid the cost and
complexity of direct simulation. The ability of GANs to learn
to generate instances from implicit distributions describing
complex systems based only on training examples is well
aligned with this challenge. In particular, conditional GANs
can learn to generate families of samples that correspond to a
set of specified parameters,67 which in this context could be
manufacturing parameters. This means the relationship
between manufacturing parameters and microstructural
features could be learned using only information about the
inputs (e.g., calendaring pressures or mass fractions) and the
resulting outputs (e.g., microstructural image data).

Although a conditional GAN enables fast generation of
novel microstructures, this does involve interpolating in the
parameter space and generating previously unseen examples.
The interpolation procedure is based on implicit relationships
between the labels and the data, and not any physics-based
relationships. This is a potential weakness of a GAN-based
approach, and care must be taken to validate any interpolated
results. Additionally, training such a conditional GAN would
require careful collection of microstructural data with fixed
manufacturing parameters. This is by no means trivial, and any
issues in the data will be reflected in the output of the GANs.
Although GANs are promising candidates, it is important that
other methods for high-throughput, data-driven optimization
of manufacturing parameters are explored.

Once a GAN’s generator has been trained, it is very cheap to
evaluate (i.e., to generate microstructural data), and metrics
such as the tortuosity factor can also be cheaply extracted using
open-source software such as TauFactor.68 As such, conven-
tional optimization approaches, such as Bayesian optimization,
can then be applied to explore the manufacturing parameter
space and predict optimal values for a particular application. In
addition, this approach could also be adapted to intelligently
suggest the next best cell to build and test in reality, based on
both its expectation of high performance and its awareness of
uncertainty.

Furthermore, the AI-enhanced characterization methods
described in the previous section can be used to minimize the
cost and difficulty of building the training set�for example,
only requiring 2D information when using dimensionality
expansion, or coping with hard-to-avoid experimental artifacts
through inpainting.

Aside from optimization, the ML methods described in the
previous section also offer a new approach for obtaining multi-
modal datasets through data fusion, as was recently explored
by Dahari et al.40 As an example workflow, starting from a
high-resolution SEM image, segmentation could first be used
to generate a phase map. Dimensionality expansion can then
be applied to generate a large 3D volume. Using this as a base

AI-enhanced characterization can
bridge systematic limitations that pre-
vent the simultaneous collection of the
numerous performance-influencing
material properties.
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volume, style transfer and super-resolution methods could be
used to project features from other characterization techniques
onto each of the phases. A single voxel in the resulting dataset
could thus contain a variety of properties, including chemical,
crystallographic, electronic, mechanical, and many more.

Correlations between different properties could also be
enforced, for example by applying different characterization
techniques to the same region of a microstructure, extracting
statistical relationships between them, and including this in the
eventual loss during the style transfer process. Alternatively,
correlations could be enforced using our understanding of the
covariance between channels. For example, a resistivity map
might show high diffusion coefficients at grain boundaries,
which can subsequently be matched to the grain boundaries of
EBSD data. While it is currently impossible to obtain a multi-
modal 3D dataset using only characterization techniques, this
approach could allow us to capture some of the key
relationships between different physical properties. It would
also allow different groups working on separate projects to
unify their characterization results into a powerful dataset for
multi-physics modeling, with the aim of unlocking new
information about battery behavior.

The fusion of multi-modal datasets into a unified
representation of battery electrodes (as illustrated in Figure
4) is a very appealing prospect, especially for characterization
and modeling purposes. This alone would solve numerous
challenges outlined in sections 2 and 3. However, there is also
an opportunity to leverage AI techniques to change the historic
paradigms of design and optimization of battery materials.
Neural networks do not rely on human-readable or human-
interpretable datasets. Constraining our networks to output
data in forms such as 3D volumes representing different
material properties so that we can model physical processes on
them does not exploit the full power of data-driven ML. If

instead the imaging data was combined with other data-
streams, then more abstract models could be built which use
data from the end-to-end process, from fabrication to death.
These models would bypass assumptions and simplifications
baked into models or the constraints required to output
human-readable results. Instead, this Deep Design approach
would be fully data-driven, allowing us to see new relationships
and ask new types of questions. To work toward this goal,
considerable thought and planning is needed on relevant
variables and the collection, organization, and processing of
data.69

The performance of Li-ion batteries is determined by a
plethora of constituent material properties across multiple
length scales. This makes the task of creating a quantitative link
between structure and function for Li-ion battery materials
extremely challenging, requiring multi-modal and multi-length-
scale datasets. To model and quantify the influence of specific
material properties on battery performance without any
assumptions requires a complete detailed spatial description
of all influencing material properties, which is currently not
achievable due to systematic limitations of the various
characterization techniques.

AI-enhanced characterization can bridge systematic limi-
tations that prevent the simultaneous collection of the
numerous performance-influencing material properties. CNN-
based methods in particular can enable the generation of
higher resolution and higher dimensionality datasets than is
otherwise experimentally achievable. Furthermore, data from
all characterization techniques can be used to generate unified
representative volumes of electrode microstructure. These
unified volumes, in combination with electrochemical data, can
enable detailed multi-physics simulations and high-throughput
optimization. While a specific case example of Li-ion electrodes
was used throughout this Perspective, the general approach is

Figure 4. An imagined future workflow for data fusion using machine learning techniques. A range of characterization datasets are combined
through machine learning techniques, resulting in a unified, multi-length-scale, and multi-modal dataset.
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widely applicable to other areas of energy materials research.
These capabilities present a new paradigm for characterization,
and high-quality data will be critical to its success.
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