
Imperial College London
Department of Computing

Neural-Symbolic Learning for
Knowledge Base Completion

Shuang Xia

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing of the Imperial College London and

the Diploma of Imperial College London, September 2022

Statement of Originality

I, Shuang Xia, declare that the work is my own and all else is appropriately referenced in the

bibliography.

Copyright Declaration

The copyright of this thesis rests with the author. Unless otherwise indicated, its contents are

licensed under a Creative Commons Attribution-Non Commercial 4.0 International Licence (CC

BY-NC).

Under this licence, you may copy and redistribute the material in any medium or format.

You may also create and distribute modified versions of the work. This is on the condition that:

you credit the author and do not use it, or any derivative works, for a commercial purpose.

When reusing or sharing this work, ensure you make the licence terms clear to others by

naming the licence and linking to the licence text. Where a work has been adapted, you should

indicate that the work has been changed and describe those changes.

Please seek permission from the copyright holder for uses of this work that are not included in

this licence or permitted under UK Copyright Law.

Abstract
A query answering task computes the prediction scores of ground queries inferred from a

Knowledge Base (KB). Traditional symbolic-based methods solve this task using ‘exact’ provers.

However, they are not very scalable and difficult to apply to current large KBs. Sub-symbolic

methods have recently been proposed to address this problem. They require to be trained to

learn the semantics of the symbolic representation and use it to make predictions about query

answering. Such predictions may rely upon unknown rules over the given KB. Not all proposed

sub-symbolic systems are capable of inducing rules from the KB; and even more challenging is

the learning of rules that are human interpretable. Some approaches, e.g., those based on a

Neural Theorem Prover (NTP), are able to address this problem but with limited scalability

and expressivity of the rules that they can induce.

We take inspiration from the NTP framework and propose three sub-symbolic architectures

that solve the query answering task in a scalable manner while supporting the induction of more

expressive rules. Two of these architectures, called Topical NTP (TNTP) and Topic-Subdomain

NTP (TSNTP), address the scalability aspect. Trained representations of predicates and

constants are clustered and the soft-unification of the backward chaining proof procedure that

they use is controlled by these clusters. The third architecture, called Negation-as-Failure TSNTP

(NAF TSNTP), addresses the expressivity of the induced rules by supporting the learning of

rules with negation-as-failure. All these architectures make use of additional hyperparameters

that encourage the learning of induced rules during training.

Each architecture is evaluated over benchmark datasets with increased complexity in size of

the KB, number of predicates and constants present in the KB, and level of incompleteness of the

KB with respect to test sets. The evaluation measures the accuracy of query answering prediction

and computational time. The former uses two key metrics, AUC_PR and HITS, adopted also

by existing sub-symbolic systems that solve the same task, whereas the computational time is

in terms of CPU training time. The evaluation performance of our systems is compared against

that of existing state-of-the-art sub-symbolic systems, showing that our approaches are indeed

in most cases more accurate in solving query answering tasks, whilst being more efficient in

computational time. The increased accuracy in some tasks is specifically due to the learning

of more expressive rules, thus demonstrating the importance of increased expressivity in rule

induction.

Acknowledgements

I would like to express my deepest gratitude to my co-supervisors Dr. Krysia Broda and Prof.

Alessandra Russo. Thank you very much for your enlightenment on AI, enormous supports

and encouragement during the PhD journey. Thanks for offering me the opportunities to

keep challenging myself in this academic adventure, while always preparing a safe net in the

background. Your enthusiasm, wisdom, dedication and rationality have strongly shaped my

mind, both academically and in life.

I would like to thank my parents for their continuous supports on my study and life. I

am lucky to still explore the different possibilities of life at this age, and it is not possible

without your supports.

I would like to thank my friends and colleagues from the SPIKE group for your compan-

ion during this degree.

Table of contents

List of figures 10

List of tables 12

1 Introduction 13

1.1 Contributions . 17

1.2 Thesis Structure . 20

2 Background 21

2.1 Notations and Concepts Used in the Thesis . 21

2.2 Logic Programming . 23

2.3 Artificial Neural Networks . 26

2.4 Methods . 28

2.4.1 Clustering Methods . 28

2.4.2 Evaluation Method . 29

3 Topical NTP 32

3.1 Overview of NTP . 32

3.1.1 Knowledge Bases and Template Rules . 32

3.1.2 Computational Tree Construction . 33

3.1.3 Training . 37

3.2 Introducing TNTP . 39

3.3 The TNTP Approach . 41

3.3.1 Topic Generation . 43

3.3.2 Topic-based Unification . 46

3.3.3 High-level Algorithm of TNTP . 48

3.4 Hyperparameters for Amplifying Rule Learning 50

3.5 Interpretability . 52

8 Table of contents

4 Topic-Subdomain NTP 56

4.1 Method Overview . 57

4.1.1 Subdomain Generation . 58

4.1.2 Computational Tree Simplification . 60

4.2 Challenges in Implementing TSNTP . 61

4.3 The TSNTP Solution . 66

4.3.1 TSNTP Training Algorithm . 68

5 Negation-as-Failure TSNTP 70

5.1 Exception-enriched Rule Learning from Knowledge Graphs 71

5.2 Normal Rule Induction . 74

5.2.1 Normal Rules Induction Pipeline . 74

5.2.2 The Syntax of Normal Rules . 76

5.2.3 Soft-unification for NAF Literals . 77

5.3 Implementation . 78

5.3.1 Step 1: Select Definite Rules . 78

5.3.2 Step 2: Build Normal Rule Sets . 80

5.3.3 Step 3: Evaluate and Select Normal Rules 81

5.3.4 Algorithm . 85

5.4 Decoding Normal Rules . 86

6 Related Works 88

6.1 Query Answering . 91

6.1.1 Query Answering without Rules . 91

6.1.2 Query Answering with Given Rules . 94

6.1.3 Query Answering with Rule Mining . 99

6.2 Rule Induction . 102

6.2.1 NTPs . 102

6.2.2 Other Works . 106

7 Evaluation 113

7.1 Datasets . 113

7.2 Experiment Settings . 117

7.2.1 Evaluation Metrics . 117

7.2.2 Evaluation Procedure . 118

7.2.3 Hyperparameters . 118

Table of contents 9

7.2.4 Template Rules . 121

7.3 Evaluation Results . 122

7.3.1 Accuracy of Query Answering Predictions 122

7.3.2 Runtime and Space Evaluation . 129

7.3.3 Rule Induction . 130

7.3.4 Effects of NAF . 131

7.4 Effects of Hyperparameters . 131

7.4.1 Effects of Alpha and Beta Amplification Hyperparameters 132

7.4.2 Effects of kmax . 132

7.4.3 Effects of Topics and Subdomains . 133

8 Conclusion 135

8.1 Future Works . 137

References 141

List of figures

2.1 An example logic program, denoted as LP . 24

2.2 A typical ANN architecture. 26

2.3 A neuron in an ANN architecture. 27

3.1 An example of NTP computational tree. 35

3.2 The training pipeline of TNTP. 41

3.3 An example vector space of predicate embeddings. 42

3.4 An example of TNTP computational tree. 43

3.5 An example FNTP computational tree. 44

3.6 The role of α and β in the proof. 52

3.7 An example of induced rule decoding. 53

4.1 An overview of TSNTP architecture. 56

4.2 An example TSNTP computational tree. 57

4.3 The vector space of trained embeddings of FNTP. 59

4.4 An example computational tree in the batch processing mode in TNTP. 63

4.5 Unification using a sparse matrix. 65

4.6 Simplification by sorting subdomains. 66

4.7 A TSNTP computational tree for a transitive TTR rule. 68

5.1 An overview of NAF TSNTP architecture. 71

5.2 The high-level architecture of ‘Exception Enriched Rule Learning’. 72

5.3 A hypothetical example of ‘Exception Enriched Rule Learning’. 73

5.4 The normal rule induction pipeline of NAF TSNTP. 75

5.5 Two typical scenarios when proving a negated atom not a in NAF TSNTP. . . . 77

5.6 The computational tree of TSNTP_Definite . 79

5.7 A computational tree constructed to evaluate a normal rule. 83

5.8 P independent computational trees of normal rule extensions of the definite rule z. 84

List of figures 11

6.1 The architecture of ConvE. 93

6.2 The high-level architecture of the ASR adversary component. 98

6.3 The rule extraction algorithm of DistMult. 101

6.4 The OR module of CTP. 105

6.5 The workflow of RNNLogic. 111

List of tables

3.1 The decoding of some induced rules. 54

6.1 Related systems are divided into two categories: query answering and rule induction. 88

6.2 The syntax of rules supported in different systems. 90

6.3 The summary of related works covered in this chapter. 112

7.1 A summary of key features of datasets used in our evaluation. 114

7.2 The ranges of the three hyperparameters used by our systems. 120

7.3 The range of four hyperparameters specific to our systems. 120

7.4 The accuracy of the query answering prediction task of Countries dataset. . . . 123

7.5 The average and the best evaluation results for the query answering prediction

task over five runs, of each system on Nations, Kinship, UMLS dataset. 124

7.6 The accuracy for the query answering prediction task of each system on Nations,

Kinship, UMLS dataset. 126

7.7 The accuracy for the query answering prediction task of TSNTP on FB122. . . . 127

7.8 The improvement of time and memory efficiency of our systems with respect to

NTP. 129

7.9 The effects on the accuracy of query answering predictions and the use of induced

rules for different α and β. 132

7.10 The effects of kmax on TSNTP using the Kinship dataset. 132

7.11 The effects of topics and subdomains on accuracy of query answering predictions, time

and rule involvement, for TSNTP and the UMLS dataset. 133

Chapter 1

Introduction

Neural-symbolic integration is a fast-growing field (see the survey by [d’Avila Garcez et al.,

2019]), which aims to combine the strengths of neural networks and symbolic learning and

reasoning whilst overcoming their limitations. Research advances in these two respective areas

have led to novel neural-symbolic approaches and architectures (e.g. [d’Avila Garcez et al.,

2002, Hammer and Hitzler, 2007, d’Avila Garcez et al., 2009, Yang et al., 2015, Guo et al., 2016,

Serafini and d’Avila Garcez, 2016, Cohen et al., 2017, Yang et al., 2017, Rocktäschel and Riedel,

2017, Evans and Grefenstette, 2018, Das et al., 2018, Minervini et al., 2020a, Yang et al., 2020,

Qu et al., 2020, Sen et al., 2022]).

Neural networks, and deep learning more generally, have the strength of recognising pat-

terns from large amounts of data in a noise-tolerant way. Examples of successful achievements

include the AlphaFold [Jumper et al., 2021] that constructs the 3D structure of a protein by

recognising and combing its substructures. However, although these systems are good at spotting

low-level patterns (such as recognising whether two items are similar), they lack the ability

of performing higher-level reasoning. Moreover, they function as a blackbox and lack human

interpretability. On the other hand, symbolic reasoning is particularly good at performing

higher-level reasoning and learning high-level knowledge expressed as rules, thus making their

reasoning human-interpretable. A symbolic system encodes information by symbols, organises

this symbolic information in a structured representation (e.g. a knowledge base, introduced

in the next paragraph), and uses these structured representations for systematic reasoning

processing. Symbolic rule learning ([Muggleton, 1991]) combines learning and reasoning. Unlike

neural networks (or sub-symbolic methods) where information are expressed by continuous

values, symbolic learning uses discrete information (‘True’ or ‘False’) and can learn from small

amounts of data. These differences between neural and symbolic reasoning and learning systems

14 Introduction

make their integration a way to combine the best features of both.

Engaging with the strengths of the two fields, many neural-symbolic systems have been developed

in recent years and their applications cover many fields [Wang and Yang, 2022], such as query

answering, visual scene understanding, logical reasoning, robotics and control. For example,

[Yang et al., 2015, Rocktäschel and Riedel, 2017, Qu et al., 2020] represent symbolic knowledge

bases using embeddings and use embedding representations to capture relationships in knowledge

bases for answering queries with good accuracy. Other applications combine image recognition

and logical rules or constraints to better classify images and objects in images. Examples are the

use of Logic Tensor Networks [Donadello et al., 2017] and [Yang et al., 2020, Manhaeve et al.,

2018], which use a logic program to leverage classification of images, by learning a probability

distribution over the features extracted from images by supervised learning of a downstream

task. In yet other works such as [Tsamoura et al., 2021, Dai and Muggleton, 2021] features

of images are expressed as symbolic terms and used for reasoning to improve the robustness

of image detection tasks through abductive reasoning. Many of these neuro-symbolic systems

are not scalable, but in [Aspis et al., 2022] a scalable approach is presented that first learns an

approximate classifier using a downstream supervised task to learn a set of unlabelled clusters

and then uses a logic program to fine-tune the classifier and label the clusters again via the

downstream labels. [Zhu et al., 2020, Silver et al., 2022] encodes actions using symbolic logic

and trains neural networks for predicating the next actions to take given a goal for planning,

which both makes the decision making process more interpretable and supports higher-level

logic reasoning.

This thesis contributes to the field of neural-symbolic integration. It proposes a neural-symbolic

approach to tackle query answering task, namely to compute whether a ground query can be

inferred from a knowledge base (KB). In symbolic reasoning, information in a KB, such as the

ones we consider, is expressed as facts (or triples), of the form relation(subject, object), where

the relation is a predicate and the subject and object are constants. A KB may also include

rules, which can be used to answer given queries. For instance, let a KB consist of the facts

is_cured_by(headache, aspirin), has_disease(tom, headache) and eats(ben, apple) and a Horn

rule eats(X, Y) ← has_disease(X, Z), is_cured_by(Z, Y), where X, Y and Z are variables

that can be instantiated with constants. The query has_disease(tom, headache) can be directly

inferred from the facts in this KB, whereas the query eats(tom, aspirin) can be inferred from KB

15

only by using the rule together with the facts.1 Traditional symbolic-based methods for solving

such query answering tasks use ‘exact’ symbolic provers that rely on ‘hard-unification’. That is,

predicates and constants can only match with themselves. As a result of ‘hard-unification’, in

the above example, if instead of the fact is_cured_by(headache, aspirin), it had included the fact

is_cured_by(migraine, aspirin), the KBs would have not been able to prove the query eats(tom,

aspirin), even though migraine and headache are semantically similar. In this thesis, we solve the

query answering task using soft-unification, which could allow the fact is_cured_by(migraine,

aspirin) to ‘soft-unify’ with the body condition is_cured_by(headache,aspirin). In contrast to

‘True’ or ‘False’, some neural network approaches use a score between 0 and 1 as a surrogate for

whether a query is ‘True’ or ‘False’. Although there are many systems tackling query answering

tasks using neural network works (e.g. [Trouillon et al., 2016]), these systems usually act as

blackboxes without human interpretability, unlike the human-interpretable rules shown above,

so it is hard to understand how they make prediction decisions and whether these decisions are

sensible. As a result, these systems are considered as unexplainable in the context of Explainable

AI [Cyras et al., 2021].

Differentiable methods have recently been proposed to solve query answering tasks over large

KBs, with the intent of integrating the strengths of neural networks and symbolic reasoning (see

[Besold et al., 2017] for a survey). They require to be trained to learn the semantic representation

of the symbols and be able to use such semantics to make predictions for query answering. For

example, facts (e.g. q(a, b)) are represented as triples of high-dimensional vector embeddings

(e.g. [θq,θa,θb]) where each vector, θs, embeds the trainable semantic representation of the

symbols s presented in the facts. Trained embeddings intend therefore to capture the semantic

meaning of the symbols. Embeddings that are close in vector space represent symbols that

are semantically similar. A notion of soft-unification can be defined, for instance, in terms of

Euclidean or Cosine distance between embeddings [Mikolov et al., 2013], and be used to perform

reasoning and learning in a ‘soft’ manner. This provides the advantage of identifying connections

between symbols that are similar in their semantic meaning. The relevant approaches range

from earlier systems that learn neural representations without logical reasoning [Socher et al.,

2013, Trouillon et al., 2016], to the more recent approaches that support logical deduction

through rules that are given as input [Badreddine et al., 2022, Guo et al., 2016]. However, query

answering predictions may sometimes rely upon unknown rules over the KB. Rule induction

aims to learn rules that capture relations between facts in a knowledge base needed to answer
1We present a simple example here. More generally, in logic programming, but not in our systems, body

atoms in a rule can be proved by using other rules, not just by using facts, as discussed in Section 2.2.

16 Introduction

unknown queries. Approaches such as [Rocktäschel and Riedel, 2017, Minervini et al., 2018,

2020a, Qu et al., 2020] aim to address this problem.

The notion of inducing rules is closely related to inductive logic programming (ILP) [Muggleton,

1991]. Systems in the ILP domain focus on inducing rules (e.g. Aleph [Ashwin, 2007], ILASP

[Law et al., 2014], Metagol [Muggleton et al., 2015]). Such systems take as inputs a logic program

as background knowledge, a language bias that governs the structure of the learnable rules, and

a set of facts that the learned rules ought to prove to be true or false. In most ILP systems,

facts are often referred to as positive and negative examples respectively. These systems aim

to induce human-interpretable rules as opposed to the so-called ‘blackbox models’ learnt by

neural networks. These rules are induced by iteratively selecting a set of rules from all potential

rules generated in the search space defined by the language bias, so that the selected rules prove

as many positive facts and as few negative facts as possible. Apart from ILP, there are also

other systems that aim at inducing rules. However, we prefer to call them ‘rule mining systems’

instead of ‘rule induction systems’, because these systems extract rules by selecting rules from a

set of potential rules created from the signature of the KB according to some given language

bias. For example, there is a field ‘symbolic reasoning for knowledge base completion’, which

uses symbolic systems to mine rules. Different from ILP, these systems (e.g. AMIE [Galárraga

et al., 2015], AnyBURL [Meilicke et al., 2019]) do not rely on negative examples, as knowledge

bases might not contain negative examples. They develop heuristics to iteratively extend a

selected set of rules with high scores according to heuristic functions while traversing the search

space. There are also systems that use embeddings to mine rules ([Omran et al., 2018, Yang

et al., 2015]), which uses embeddings to compute scores for evaluating potential rules. However,

they do not learn rules and train embeddings at the same time, which means that rules are

not learnt by training neural networks, but are selected from potential rules created using the

signature of KB and given structures according to some embedding-based heuristic functions.

In this thesis we focus on the subset of neurosymbolic reasoning that represents entities in

knowledge bases by embeddings and learns rules at the same time as training embeddings, as

rules induced through training might be more robust than rules selected by predefined heuristic

functions.

Our systems induce first-order definite or normal rules, which are learned by learning vec-

tor representations. Our work was originally inspired by the Neural Theorem Prover (NTP)

framework, first presented in [Rocktäschel and Riedel, 2017]. Although NTP supports similar or

1.1 Contributions 17

more flexible rule syntax than other neural-symbolic rule induction systems, it can only induce

definite first-order rules without negations, which restricts its expressiveness. We propose three

new sub-symbolic architectures that solve query answering tasks in a scalable manner, while

supporting the induction of expressive rules. Our architectures are capable of learning vector

embedding representations for both predicates and constants in a given KB, and inducing rules

from given template rules which impose a bias on the structure of learned rules. Our systems

induce rules by constructing a computational tree for proving given queries and adopting a

logic programming-style backward chaining reasoning strategy for performing logical inference.

During the backward chaining, soft-unification is used to match symbols. During training,

embeddings are updated by minimising the difference between the proof score generated by the

computational tree, and the target label of each given query. The underlying principle, used

by our architectures, of performing logical deduction through soft-unification and backward

chaining over embedding representations, is similar to that used in existing NTP-based systems.

However, the latter have been shown to be not always scalable and limited in the expressivity

and accuracy of the rules that they can induce. Our proposed architectures tackle these limita-

tions. Specifically, our Topical NTP (TNTP) and Topic-Subdomain NTP (TSNTP) address

the scalability aspect and they induce definite Horn rules efficiently. The third architecture,

called Negation-as-Failure TSNTP (NAF TSNTP), addresses the expressivity of the induced

rules by supporting the learning of normal rules with negation-as-failure. All these architectures

make use of hyperparameters for encouraging the use of rules during training, leading to the

induction of more accurate rules. Induced rules can be decoded to symbolic first-order rules for

human-interpretation, so our systems are explainable [Cyras et al., 2021] and could be used to

aid commonsense reasoning tasks (see a survey [Davis, 2017]) by inducing rules that capture

implicit information explicitly. We describe the contributions made by each of our systems in

more detail in what follows.

1.1 Contributions

Topical NTP. Our first and base system is Topical NTP (TNTP), which builds an efficient

rule-induction neural theorem prover. It makes three contributions: 1) it provides an unsuper-

vised topic generation method whereby a topic is a cluster of predicate symbols whose trained

embeddings are close in vector space; 2) it makes use of topical template rules to bias rule

induction by way of language bias; and 3) it makes use of two hyperparameters to favour the use

of topical template rules during training, hence facilitating the induction of more accurate rules.

18 Introduction

TNTP generates topics in an unsupervised way. It first learns the embedding representa-

tions of all predicates and constants that appear in the KB. This is done by means of a naive

NTP mechanism called FNTP (i.e. fact-only NTP), where no rule induction is performed. Then,

it makes use of unsupervised clustering over the trained predicate embeddings to generate topics,

i.e. clusters of predicates that are semantically close in high-dimensional space. Using these

topics, the facts that are included in a given KB are partitioned, by grouping together facts

whose predicates belong to the same topic. Leveraging this notion of topics, template rules

are generalised to topical template rules (TTRs) by specifying the topics that predicates in the

induced rules should belong to. The use of topical template rules has two main advantages: it

‘biases’ the induction of a diverse set of rules, thus increasing the search space of the knowledge

base, and it improves the computational performance during training by targeting the soft-

unification of the conditions of template rules with facts that comply with the topic bias. To

amplify the use of topical template rules during the training process, TNTP makes use of two

hyperparameters. These have the effect of increasing the chance of using template rules during

training where reasoning is performed over the computational tree. As a result, topic-related

induced predicates receive gradients more frequently, resulting in more accurate induced rules

than those induced without use of these hyperparameters. The TNTP architecture and related

evaluation results are published in [Xia et al., 2020].

Topic-Subdomain NTP. To improve the computational efficiency of TNTP even further, in

our second system, Topic-Subdomain NTP (TSNTP), the notion of clustering is applied to

constants as well as predicates. Trained representations of predicates and constants are clustered

to topics and subdomains by an unsupervised clustering algorithm and the soft-unification of

the backward chaining proof procedure is controlled by these clusters. Although the first step

of learning embedding representations of constant symbols is similar to that used in TNTP,

the clustering of constants determines a further partition over the KB by grouping facts that

have predicates belonging to the same topic and their first argument belonging to the same

subdomain. This reduces even more the size of the computational tree without affecting the

semantics of a logical derivation, as soft-unification is computed among conditions of template

rules and facts that are even more semantically related, i.e. facts that match both topics and

subdomains. Only the subdomain of the first argument is used to allow a wide selection of

relevant facts when proving each body literals. If the topic of the predicate and two subdomains

of both arguments were used to partition the knowledge base, each partition would contain

1.1 Contributions 19

too few facts. We discuss this in detail in Section 4.1.1. Our evaluation results show that

TSNTP maintains similar (or even higher) accuracy in solving query answering prediction tasks

compared with TNTP, while reducing the computation time by 50%.

Negation-as-Failure TSNTP. Whereas the focus of the above two architectures is to provide

a scalable and computationally efficient neural-symbolic approach for addressing query answering

tasks over large KBs, the expressivity of the rules that TNTP and TSNTP can induce is limited

to definite rules. Given the incompleteness of KBs and the ‘open world assumption’ that

underpins these KBs, induced definite rules may be over-general, causing a high number of false

positive predictions and therefore low precision. Increasing the expressivity of the rules that

can be induced might be possible to limit this issue. Our third system, Negation-as-Failure

TSNTP (NAF TSNTP), aims to do this and introduces two novel features, namely a new scoring

function for matching negative body literals and a method to select the best normal clauses

arising out of refinements of definite clauses. To learn normal rules, NAF TSNTP first induces

a set of definite rules and then uses a normal rule selection mechanism to convert (some of)

these rules into potential normal rules according to their impact on the accuracy of the query

answering task over the training set. Those normal rules that reduce the number of false positive

predictions are then accepted as induced normal rules. Regarding the scoring function for

negative literals, notice that soft-unification introduces a symmetry between proving a positive

or negative literal. In case of a ground positive atom, say p(a, b), the match is the fact with the

best score selected from all facts having a predicate in the same topic as p and subdomain of

the first argument the same as the subdomain of a. On the other hand, in case of a ground

negative body literal, not p(a, b), the score is 1− score(p(a, b)) where score(p(a, b)) is the best

score that matches p(a, b) and all facts having a predicate in the same topic as p and subdomain

of the first argument the same as the subdomain of a. (Note that, as previously mentioned, our

systems are restricted so rule chaining is not allowed and body literals can only be proved using

facts.) These restrictions are justified and compared with the well-known deduction procedure

used in logic programming, briefly described in Section 2.2, in Chapter 4 for positive atoms and

Chapter 5 for negative atoms, respectively.

Evaluation. Each architecture is evaluated over benchmark datasets, namely Countries

[Bouchard et al., 2015], Nations, Kinship, UMLS [McCray, 2003] and FB122 [Guo et al., 2016].

These have increased complexity in terms of size of the KB, number of predicates and constants

presented in the KB, and level of incompleteness of the KB with respect to their test sets. Our

20 Introduction

evaluation measures the accuracy of query answering predictions and the computational time.

The former uses two key metrics, AUC_PR and HITS, adopted also by existing sub-symbolic

systems that solve the same task, whereas the computational time is in terms of CPU training

time. We compare the accuracy in solving query answering tasks against that of existing

state-of-the-art sub-symbolic systems [Rocktäschel and Riedel, 2017, Minervini et al., 2020a,b,

Das et al., 2018, Qu et al., 2020, Trouillon et al., 2016], showing that our approaches are indeed in

most cases more accurate whilst being over 30 times faster than NTP. Among the three systems,

NAF TSNTP has the highest accuracy, due to its ability to induce normal rules that reduce the

false positive predictions without affecting the true positive predictions, thus demonstrating

the importance of increased expressivity in rule induction. The three systems can also decode

induced rules to human-interpretable first-order rules, making the systems explainable.

1.2 Thesis Structure

The rest of the thesis is structured as follows. Chapter 2 introduces the notations and background

information used throughout the thesis including a brief introduction of logic programming,

neural networks, techniques for clustering and evaluation metrics. Chapter 3 presents the Topical

NTP (TNTP), which uses topics to select relevant facts in a computational tree. Chapter 4

presents TSNTP, which uses topic and subdomain mechanisms for selecting relevant facts in

a computational tree. Chapter 5 extends these two architectures with a new method, NAF

TSNTP, for revising induced definite rules into induced normal rules. Chapter 6 discusses

differences and similarities of our systems with respect to other existing approaches that are

related to ours in that they solve query answering prediction tasks and/or perform rule induction.

Chapter 7 evaluates our systems by describing the various experiment settings, providing results

on accuracy and computational performance and comparing them to existing systems that are

closely related and used as our baselines. Chapter 8 summarises the contributions of the thesis

and briefly discusses some future research directions.

Chapter 2

Background

In this chapter, we cover various basic notations and concepts used throughout the thesis. We

include relevant information about logic programming and artificial neural networks, followed

by a brief introduction to methods used in our systems, such as clustering, the AUC_PR and

HITS evaluation metrics.

2.1 Notations and Concepts Used in the Thesis

We firstly define the two inputs to our systems: the notations of knowledge bases (KB) and

template rules (TRs). Then, we describe the embedding-based representations of symbols in

KB and TRs, our notion of the learning task and the training regime.

We assume that a knowledge base is expressed using a given Signature Σ = P ∪ C, where

P is the set of binary predicates and C is the set of constants. A KB is then a set of positive

facts, also called atoms or triples, of the form p(c1, c2), where p ∈ P and c1, c2 ∈ C. The

constant c1 is referred to as the subject of the relation p, and c2 as the object of the relation p.

We sometimes use p(c̄) to denote an arbitrary ground atom where c̄ represents the two constant

arguments. Only binary atoms are considered in this thesis, because knowledge bases used in

our evaluation of our works and other relevant works consist of binary atoms. Other arities

could be supported in our work, but are outside the scope of this thesis.

Template rules (TRs) are structures of rules in terms of unknown predicate symbols which are

disjoint from P , and variables as arguments that after training will represent the learned rules

(these rules are human-interpretable, see Section 3.5 for details). We refer to these unknown

predicates as induced predicates. A TR has the form h(V̄):- b1(V̄1) . . . bn(V̄n), n ≥ 1, where h and

22 Background

bi are induced predicates, and V̄ and V̄i are pairs of variables. h(V̄) is called the head atom and

bi(V̄i) is called a body atom of the rule. Variables in the head atom are distinct and every variable

in a TR occurs in at least two atoms. Each TR is associated with a number m, indicating that

there are m copies of the TR given as input. Each copy of the TR is independent, with unique

induced predicates. For example, a TR with 3 copies is (3) #1(X, Y) :- #2(X,Z),#3(Z, Y).

One of its copies could be #p1(X, Y) :- #p2(X,Z),#p3(Z, Y) and another copy could be

#p4(X, Y) :- #p5(X,Z),#p6(Z, Y), where each #pn is an independent induced predicate

to be learned. The set of induced predicates in the template rules is denoted by #P :

{#p1,#p2,#p3...}. The set of copies of TRs is denoted as I. An assignment of a con-

stant c to a variable V is denoted as V/c, and a substitution is a set of assignments of constants

to variables, denoted as d = {Vi/ci}. If Vi/ci ∈ d, we say that Vi is in d. A specific assignment

to a variable Vi in a given substitution d, is denoted as d[Vi] = ci. All TRs are definite first-order

rules with binary literals and no constant or function symbols. Normal rules are supported, but

they are induced by refining definite rules induced from TRs by the addition of negated atoms.

There is no restriction on the length of TRs, although a longer rule has a larger search space

that increases the computational time.

In our differentiable setting, we assume that the symbols of our signature and the unknown

predicates are represented as learnable 100 -dimension row vectors of real values, called embed-

ding vectors. We specify the embedding dimension as 100 for comparison with other works, but

our systems can employ other values if desired. The union of all embedding vectors is called

the embedding matrix, denoted by θ, where θ ∈ RZ∗100 and Z = |P|+ |#P|+ |C|. To simplify

our notation, unless specified, we denote the embedding representation of a symbol x as θx

and denote the embeddings of known predicates, induced predicates and constants by θp, θ#p,

and θc respectively. A ground fact p1(c1, c2) is represented by the tuple of embedding vectors

⟨θp1, θc1, θc2⟩.

Given a KB, the training dataset τ consists of facts in KB, called the positive queries, and

corruptions of facts, called the negative queries or also corrupted queries. For each ground fact

q(c̄) in KB, a corruption of q(c̄), denoted as q(ˆ̄c), is a ground fact constructed from q(c̄) by

changing one or more of its constants within the signature of the KB, so that q(ˆ̄c) ̸∈ KB. For

instance, given a ground fact p(c1, c2) in KB, 4 corrupted facts could be generated by either

changing the first argument p(ĉ1, c2) (1 corruption) or by changing the second argument, p(c1, ĉ2)

(1 corruption) or considering two changes for both arguments, so generating two different

2.2 Logic Programming 23

p(ĉ1, ĉ2), such that ĉi ∈ C (i ∈ {1, 2}), where ĉi denotes a corruption of constant ci [Bordes et al.,

2011]. Each epoch of training uses a different τ , with the same positive queries but different

corruptions. Note that these corruptions are generated assuming a closed-world assumption,

that is all atoms that are not in the knowledge base are ‘false’.

We can now informally define the learning task of our systems. Given a knowledge base,

with signature Σ, and a set I of copies of TRs, our learning task consists of learning the

embedding matrix θ of the symbols in Σ ∪ I, which minimises the errors in answering queries

from a training set τ constructed from the knowledge base. These learned embeddings can then

be used to answer unseen queries and to generate rules by decoding induced predicates to the

nearest predicates (in vector space) in Σ.

2.2 Logic Programming

Logic Programming (see [Gabbay et al., 1994]) is traditionally used to represent KBs and

make deductions from KBs. In what follows, we indicate the subset of the logic program-

ming paradigm that is relevant to our works. In particular, throughout this section we make

two assumptions: firstly that logic programs have a signature consisting of predicates and

constants only, i.e. no function symbols, and secondly that the proof procedure is limited to

matching an initial ground query with a fact or the head of a rule and does not allow chaining

of rules. That is, a positive atom in the body of a rule cannot match with the head of an-

other rule and it may only be matched with a fact. Both these assumptions apply to our systems.

A logic program consists of a set of facts and rules. An example with four facts and a rule is

given below. A fact is a ground atom. A rule is ground if no variable appears as an argument

of atoms in the rule. A non-ground rule represents the set of ground rule instances formed by

substituting ground terms for its variables in all possible ways. For example, eat(X, Y) :-

has_disease(X, Z), cured_by(Z, Y) is a non-ground rule and it is read as ‘for all X and Y,

eat(X, Y) is true if has_disease(X,Z) and cured_by(Z, Y) is true’.

24 Background

Fig. 2.1 An example logic program with four facts and one rule, denoted as LP .

We consider two types of rules, definite rules and normal rules. A definite rule is of the form:

h :- b1, ..., bn, where h and bi are binary atoms with variable arguments only. A normal rule

is of the form h :- b1, ..., bn, not e1, ..., not em, where not is negation-as-failure [Clark, 1978]

and ej (1 ≤ j ≤ m) is a binary atom whose arguments are variables that appear in h and

b1, ..., bn. An atom h is proved true if the conjunction of b1, ..., bn can be proved true and none

of ej is true. The literal not ej is proved true if the atom ej cannot be proved true (called

negation-as-failure).

In a logic program Π, a ground query can be proved by using a fact or a rule. In case of

using a fact, the query must match exactly. This is called hard-unification: the predicates must

be the same and each (constant) argument in the query must match with the corresponding

(constant) argument in the fact. In the case of using a rule, the query should first unify with

the head of the rule by hard-unification - that is the predicates of the query and rule head

are identical and the variable arguments in the rule head are unified with the corresponding

constant arguments in the query. The resulting substitution is then propagated to the body

literals of the rule, which can be proved by using the facts in Π. We call this backward

chaining. (Note that this is a restricted form of backward chaining as the body atoms can

only match with facts. More generally, in logic programming the body atoms can be unified

with the head of other rules.) For example, in our restricted backward chaining, given a query

eat(tom, aspirin) to the logic program LP in Figure 2.1, eat(tom, aspirin) is true iff it can be

proved by a fact or a rule. eat(tom, aspirin) cannot be proved using any of the four facts directly.

The query could be proved using the rule eat(X, Y) :- has_disease(X,Z), cured_by(Z, Y), by

backward chaining. The head atom eat(X, Y) is matched to eat(tom, aspirin), generating

the substitution {X/tom, Y/aspirin}. The instantiated body atoms has_disease(tom,Z) and

cured_by(Z, aspirin) are then in turn proved by using the second and the first fact in the KB

respectively with substitution {Z/headache}. Using the rule, the logic program can return

‘True’ for the query eat(tom, aspirin).

2.2 Logic Programming 25

A logic program follows the negation-as-failure semantics [Clark, 1978], which assumes facts

that cannot be deduced from a KB are proved to be ‘False’. As a result, a logic program Π

returns ‘False’ for a query if the query matches no facts in Π and there are no rules in Π that

can prove the query. For example, the logic program LP (in Figure 2.1) returns ‘False’ for

the queries eat(tom, apple) and allergic(ben, aspirin). The negation-as-failure semantics also

applies to negated atoms in normal rules, where a negated atom not e(X, Y), for ground X and

Y , is proved true by a logic program Π if e(X, Y) does not hard-unify with any fact in Π.1 In

the logic program LP , assume the given rule to be replaced by eat(X, Y) :- has_disease(X,

Z), cured_by(Z, Y), not allergic (X, Y) and consider the additional fact allergic(tom, aspirin),

then the query eat(tom, aspirin) can no longer be proved.

Rule Induction. As shown in the previous example, using rules, an unknown query could be

deduced. However, in KBs that are extensional, rules are usually unknown. Rule induction, in

particular inductive logic programming (ILP) [Muggleton, 1991] (as introduced in Chapter 1), is

a popular research area that aims at learning rules from given facts in a KB.

Recall that as introduced in Chapter 1, ILP systems use logic programming for inductive

inference and thus rely on hard-unification. They generally allow the knowledge base to consist

of both facts and rules and impose a language bias to restrict the form of induced rules. Our

task is a little different in several aspects. Firstly, the KB does not usually include rules - it is

generally a set of facts. Secondly, the KB may be noisy in the sense that different predicate

and constant symbols are used to represent possible similar predicates or constants respectively,

which enables our systems to perform a form of soft-unification, instead of hard-unification. Such

soft-unification would allow, for instance, facts such as parent_of(fred, mary) and parent(fred,

alice) to unify with a certain ‘score’, as they capture similar semantics. Thirdly, although

our induced rules are constrained in their structure by TRs, which are somewhat similar to

the templates of Metagol [Muggleton et al., 2015], the predicates in a TR are identified by

embeddings rather than an exact predicate. This flexibility is also exploited in soft-unification.
1This again is the restriction to backward chaining - in general it is necessary to check if e(X, Y) can be

proved using facts and rules in Π.

26 Background

2.3 Artificial Neural Networks

Inspired by biological nervous systems, artificial neural networks (ANN) [Rumelhart et al.,

1988] have made much progress since early 2000s in learning representations, classifications and

pattern recognition. In the following, we introduce the core concepts of ANN that are used in

our neural architecture.

In an ANN classification task, the input is normally a training set, which contains pairs

of data and target labels. For example, in a classification task, where, given attributes of a

person, such as if the person like sports, etc.., represented by a Boolean value ‘0’ or ‘1’, the task

is to classify if a person is a bicycle buyer or not. We can define a training set given by a vector

of attributes for a person and a Boolean label ‘0’ or ‘1’.

Fig. 2.2 A typical ANN architecture with an input layer, two hidden layers and an output layer,
consisted of neurons represented as circles.

For example, imagine that the attributes of a person are represented by a vector of integers

in {0, 1}, then we could consider an ANN architecture as depicted in Figure 2.2. The inputs,

such as [0, 1, 1, 0, 1], are given to the ANN through the input layer where each input value

is represented by a ‘neuron’ (a circle in the graph). (Inputs could be other formats, such as

embedding vectors or images.) The middle part includes 2 hidden layers, with 2 and 3 neurons

respectively. The output layer has 1 neuron as this ANN is for binary classification. Figure 2.3

shows the internal details of a neuron. Each edge between element xi of the input vector x and

the neuron has an associated weight wi, yielding a weight vector w. The output of the neuron

is computed by a function σ(wTx + b), where the vector wT is multiplied with the input vector

x with an additional learnable bias value b. The σ represents a transfer function (such as a

sigmoid function, where σ(x) = 1
1+e−x), which could convert the result of wTx + b within a range

(i.e. (0, 1) for the sigmoid function). As shown in Figure 2.2, the outputs of a neuron become

the inputs of neurons in the next layer. This is how values propagate in a neural networks.

2.3 Artificial Neural Networks 27

Fig. 2.3 A neuron in an ANN architecture with the input vector x, weight vector w, bias value
b and the output value σ(wTx + b).

The objective of the computational task is to train the architecture through gradient descent by

updating the trainable parameters (i.e. weight vectors and biases), so that the error between

predicted output and ground truth labels is minimised. This is therefore an optimisation

problem: find the best parameters that lead to minimal prediction errors (by gradient descent).

There are three steps in gradient descent, which are repeated for a number E of epochs over

the training data. These are, loosely speaking, forward passing, computing loss and backward

passing (backpropagation). We use mini-batch gradient descent, where labelled data are divided

into batches and the three steps are applied to each batch in turn.

In forward passing, each batch is passed through the ANN and a prediction score for each

element in the batch is computed, by computing the outputs of each neuron from left to right.

Then, for each element, a loss value is computed by comparing the predicted score with its

target label. An example of a basic loss function is given in Equation 2.1 [George Cybenko] and

the training goal is to minimise L towards 0 (which is its minimum possible value). Note this is

with respect to the full training set τ , although in practice, it is used over a batch.

L =
∑

(q,y)∈τ

−y log(oq)− (1− y) log(1− oq) (2.1)

In Equation 2.1, q is a data point and y is its label, and oq is the predicted score of q.

During training the value oq is parameterised into the trainable parameters (e.g. wi) of the

network. So the partial derivative of the loss function with respect to each trainable parameter

is computed for each element in a batch using the chain rule of differentiation. The value of

each trainable parameter is updated using the average of its partial derivative values over the

batch. Once the loss gets closer to zero, the ANN is considered to be trained and can be used

at inference time on unseen data to make predictions.

28 Background

2.4 Methods

In this section, we briefly introduce clustering methods over high-dimensional embeddings, as

these are used in our approach. We also introduce the metrics that we use to evaluate the

accuracy of our trained models.

2.4.1 Clustering Methods

Given a set of embeddings in vector space, they can be partitioned (or clustered), so that

embeddings in the same partition are ‘close’ in the vector space. We introduce two methods for

clustering embeddings, namely K-means [Macqueen, 1967] and Agglomerative [Gower and Ross,

1969]. Both methods are unsupervised approaches that could generate good clustering results.

The K-Means algorithm takes as inputs a number K of clusters and a set D of data in

vector representation. The aim is to find the K centroid values for the clusters and assign

each element in D to the nearest cluster, such that the overall distance between each element

and the centroid of its assigned cluster is minimised. It is an iterative method which, after

initialisation, performs two steps repeatedly at each iteration. Initialisation consists of randomly

choosing K values as centroids of the K clusters. On each iteration, elements in D are assigned

to the cluster whose centroid is closest in vector space, according to the least squared Euclidean

distance. The centroids of all K clusters are then recomputed. These two steps are repeated

until the cluster assignment does not change, or a given number of iterations is reached.

The Agglomerative clustering algorithm is a ‘bottom-up’ hierarchical approach. For a given K,

initially, there are |D| clusters, each element in D forming its own cluster. At each iteration,

pairs of clusters are merged such that each cluster is merged with its closest cluster, according

to the least squared Euclidean distance between the two centroids. This is continued until there

are K clusters.

There are some differences between the two methods. Firstly, clustering results generated

by K-means are not deterministic, because it uses an iterative refinement with random initiali-

sation, whereas clustering results generated by Agglomerative algorithm are deterministic. Also,

K-means needs a pre-specified cluster number before clustering, whereas Agglomerative can

generate clustering results for all possible cluster numbers.

2.4 Methods 29

2.4.2 Evaluation Method

In this thesis, we use two evaluation metrics, namely AUC_PR and HITS. Before describing

each metric, we present the basic concepts used in the metrics, in particular how to determine

true/false positive and negative predictions and compute the precision and recall values under

soft-unification.

Firstly, since we use soft-unification, a predication score ps could be any float between 0

and 1. So to classify whether ps is true or not, a true atom threshold, ta_thres, is introduced.

For instance, a threshold of 0.6 means that if a prediction score ps ≥ 0.6, the predicted output

is considered as true; if ps < 0.6, the predicted output is considered as false.

Using this threshold, the precision and recall values can be computed based on the num-

ber of true/false positive and negative predictions in a knowledge base. Precision (Equation 2.2)

measures the proportion of the predicted ‘true’ facts that are indeed true and recall (Equation

2.3) measures the proportion of positive facts that are correctly predicted (i.e. true positive

rate).

precision = TP

TP + FP
(2.2)

recall = TP

TP + FN
(2.3)

where true positives TP (true negative TN) is the number of positive (negative) test queries

in the knowledge base that are correctly classified as positive (negative) queries according

to ta_thres. Similarly, false positives FP (false negatives FN) are the number of negative

(positive) queries that are wrongly classified as positive (negative) queries.

According to Equation 2.2, precision is very sensitive to the number of false positive pre-

dictions, because this number is part of the denominator of the equation. If there are more false

positive predictions than true positive predictions, the precision value would be low. Similarly,

according to Equation 2.3, recall is very sensitive to the number of false negative predictions.

This sensitivity makes them suitable to measure the performance of predictions, especially in a

knowledge base with unbalanced number of positive and negative queries. For example, if a

knowledge base has few positive queries and many negative queries, to achieve high precision and

recall scores, it needs to keep both the number of false positive and false negative predictions low.

30 Background

Note that since we use closed-world assumption, some queries that we assumed to be false

(because they are not in the knowledge base) might, in fact, be true. In contrast, positive

facts in a knowledge base are always true without noise. This may affect the calculation of

precision and recall, which is based on counting true/false positive and negative predictions.

However, since we do not have access to the complete knowledge base, using the closed-world

assumption is an efficient way to generate negative queries. In exchange, we have to tolerate

wrong predictions due to the incomplete knowledge base and therefore noisy labels to start with.

AUC_PR Using the definitions of precision and recall given above, AUC_PR is computed

by constructing the precision-recall curve of a knowledge base and then measuring the area

under the curve. The curve represents the precision values and recall values using different true

atom thresholds ta_thres.

Given a specific ta_thres, its precision and recall values are computed (using Equation 2.2 and

2.3). They represent a dot on the PR curve, with recall as the x-axis and precision as the y-axis.

Connecting precision and recall values over all thresholds gives us a PR curve. The area under

this curve is computed as the final AUC_PR value, using the algorithm provided in [Davis

and Goadrich, 2006]. The area under the curve can be also perceived as the average value of

precision over all recall values. The larger the AUC_PR value, the better the performance.

To reach a high AUC_PR value, a system needs high precision values over all recall values,

which further means that it needs to maximise the number of true positive and true negative

predictions.

HITS In the HITS metric, it is the relative difference between the proof score of a query and

its corruptions that is important, not the absolute value of the proof score. To evaluate the

difference, for each (binary) test query q, two lists of corrupted queries are created, namely q̂1

and q̂2, by corrupting either the first or the second argument of q, respectively, using all constants

in the signature of the KB. Thus, q̂1 contains corrupted queries that have the same predicate

and second argument as q, but different first arguments. Similarly, q̂2 contains corrupted queries

that have the same predicate and first argument as q and different second arguments.

With q̂1 and q̂2, the score of q can be easily compared to that of its corrupted queries. To

compute the HITS scores, two lists, Sq̂1 and Sq̂2 , are created. Sq̂1 (Sq̂2) stores the scores of q,

as well as those of all its corrupted queries in q̂1 (q̂2). These scores are sorted in a descending

order. Note that multiple corrupted queries in Sq̂i
may have the same proof score as q. In this

2.4 Methods 31

case, the rank of q is one of the ranks of queries with the same score, decided by the order of

their id values, as used in [Minervini et al., 2020a]2. A different method can be used to select

the rank of q. As in [Rocktäschel and Riedel, 2017] and our paper [Xia et al., 2020], the HITS

measurement selects the lowest rank when multiple queries generate the same proof score. This

inflates the HITS measurements, because if multiple corrupted queries have the same proof

scores as the test query, the rank of the test query counts as the minimum rank of these queries.

This measurement is particularly inaccurate when these scores are bad and is less fair than the

one used here.

The HITS metric is further quantified by two indicators, namely MRR (Mean Reciprocal

Rank) and HITS@m. MRR counts the average reciprocal rank (in the range (0, 1]) of the score

of each test query q among scores of the corrupted lists, Sq̂1 and Sq̂2 . HITS@m measures the

percentage of test queries that are within the rank m when compared to their corruptions. The

MRR and HITS@m of each query q and its corrupted query list Sq̂i
(i ∈ {1, 2}) are calculated

according to Equation 2.4 and Equation 2.5.

MRR(q, Sq̂i
) = 1

rank(Sq̂i
, q) (2.4)

HITS@m(q, Sq̂i
) =

 1 if rank(Sq̂i
, q) ≤ m

0 otherwise

 (2.5)

The MRR of each test query q is the average of MRR(q, Sq̂1) and MRR(q, Sq̂2) and the MRR

of the test set is the average MRR value over all test queries. The HITS@m value of the test set

is calculated in the same way.

2There could be other ways to determine the ranks of queries with same proof scores, as used by other systems
in Chapter 6. For a fair comparison, we use the same method as [Minervini et al., 2020a].

Chapter 3

Topical NTP

In this chapter we summarise the existing Neural Theorem Prover (NTP) approach, highlighting

its major limitations. We then present our Topical NTP (TNTP) system, which addresses

these limitations, and discuss in detail the characteristics of TNTP that enables increased

scalability and accuracy of query answering predictions. We conclude the chapter with a method

for extracting induced rules from a trained TNTP model in a form that is understandable to

humans.

3.1 Overview of NTP

We introduce here the key concepts of the NTP framework [Rocktäschel and Riedel, 2017]. The

task of NTP is to induce rules and train a set of embeddings, one for each constant and (known

or induced) predicate. It does so by creating a computational tree, built from facts and copies

of template rules, to answer queries. NTP takes as inputs a knowledge base consisting of a set

of facts, and a set of template rules. The outputs of NTP are the set of trained embeddings and

the induced rules which is learnt by learning embeddings of induced predicates in template rules.

The only learnable parameter in NTP is the embedding matrix, which includes embeddings

of known predicates and constants from the KB and induced predicates from template rules,

and these embeddings are trained using gradient descent. In what follows, we describe the

construction of the computational tree and the training process.

3.1.1 Knowledge Bases and Template Rules

The inputs of NTP consist of a symbolic knowledge base (KB) and a set of template rules. The

KB has a set of positive binary facts. Examples are given below.

3.1 Overview of NTP 33

location_of(acquired_abnormality,experimental_model_of_disease).

manifestation_of(anatomical_abnormality,physiologic_function).

isa(alga,entity).

affects(mental_dysfunction,experimental_model_of_disease)

Template rules (TRs) have the form given below.

#1(X, Y) :- #2(X, Y).

#1(X, Y) :- #2(Y, X).

#1(X, Y) :- #2(X, Z), #3(Z, Y).

Predicates with the prefix # are induced predicates, each with an independent embedding. Each

template rule i has an associated number mi, indicating the number of copies of i that are

allowed to be used in the construction of the computational tree, e.g., (5) #1(X, Y) :- #2(X, Y)

indicates that there are 5 copies of the template rule of the form #1(X, Y) :- #2(X, Y). Each

copy has its own unique induced predicates. We indicate with I the set of copies of all template

rules.

NTP learns the embedding representations of predicates and constants. We denote with

P and C the set of known predicates and constants (respectively) used in the given KB, and

with #P the set of induced predicates in I. The embedding matrix, θ, consists of an embedding

for each symbol in P ∪#P ∪ C, and has size [|P| + |#P| + |C|, 100], where 100 is the size of

each embedding. The embedding matrix is initialised randomly and it is the only trainable

parameter in NTP.

3.1.2 Computational Tree Construction

The NTP approach uses a backward chaining reasoning mechanism to construct the compu-

tational tree used to classify the truth value of a ground query (a labelled ground atom from

the training set), similar to that used in proving queries in logic programming [Gabbay et al.,

1994] and described in Section 2.2. Unlike logic programming, which uses symbol unification

(sometimes also called hard-unification), the backward chaining of NTP uses subsymbolic soft-

unification (see Definition 3.1.1). This subsymbolic soft-unification employs the Radial Basis

Function (RBF) formula rbf (θ1,θ2) = exp(−||θ1−θ2||2
2µ2) (µ is a hyperparameter that is set to

1√
2 in experiments for the convenience of computation) for computing the similarity/distance

between embedding vectors θ1, θ2.

34 Topical NTP

Definition 3.1.1. Given an embedding matrix θ, a substitution set d, and two symbols i and

j, which can be predicates, constants or variables, the unification between i and j, denoted as

uni_s(i, j, d), generates a tuple (du, s) defined as follows, where du is the updated substitution

set and s is the unification score.

(du, s) =


(d′, 1),where d′ = d ∪ {i/j}) if is_var(i) and i /∈ d

(d, rbf (θc,θj)) if is_var(i) and i/c ∈ d

(d, rbf (θi,θj)) otherwise


(3.1)

The unification of two atoms encoded as tuples of embedding representations of the predicate

symbols and their respective (constant) arguments, is achieved by applying uni_s pairwise on

the predicates and arguments. The unification score of two atoms a1 and, a2 with respect to

a substitution set d is computed by the function uni_two_atoms(a1, a2, d). This returns the

minimum score among each pairwise predicate-predicate and corresponding argument-argument

unification scores unified left to right (by Definition 3.1.1), and with any updated substitution

set propagated through the argument unifications to give a final updated substitution set of the

two atoms’ unification. The unification score of two atoms is the minimum score among each

pairwise predicate-predicate and argument-argument unification score, so that it can only have

a high unification score if all of its predicates and constants are matched well.

Given a query q, the proof score of a head atom ha starts with an empty substitution set

{} and the proof is computed by uni_two_atoms(q, ha, {}) as defined above, which generates a

proof score of the head atom with an outgoing substitution set. The outgoing substitution set is

computed by propagating the substituting set from left to right when proving each uni_s compu-

tation on each pair of predicates or constants, as defined in Definition 3.1.1. The proof score of a

body atom ba with an incoming substitution set db, denoted as body_atom_proof_score(ba, db),

is the maximal proof score among the unification scores of uni_two_atoms(ba, fi, db) for each

fact fi in the KB. The maximal proof score is selected, because as long as the body atom can

be proved by one fact, the atom can be considered as ‘true’. The outgoing substitution set of

the atom is passed on to prove the following atoms as their incoming substitution set.

Figure 3.1 illustrates an example NTP computational tree using soft-unification.

3.1 Overview of NTP 35

Fig. 3.1 An example of NTP computational tree given a knowledge base KB and a copy of a template
rule in I. In a computational tree, a query is unified with all facts in the KB (indicated by arrow
from query to all facts) and all copies of template rules in I (here just one template rule copy and so
one arrow). In the case of a fact branch, the query unifies with the fact using uni_two_atoms. In the
case of a rule branch, the query firstly unifies with the head atom using uni_two_atoms, generating
a substitution set for its variables, Sh. Then, it proves the first body atom using the substitution
set Sb1 (Sb1 = Sh) according to body_atom_proof_score, matching with all facts in the KB, as
represented by arrows. The fat arrow indicates the best match among all facts. For the simplicity of
illustration, only the best-matched branch is extended to prove the following atoms, passing on its
outgoing substitution set (Sb2 in the figure). (Other branches can be extended in the same way, each
with a different substitution set and to be proved independently with following body literals.) Using
Sb2, the second body atom is proved in the same way as the first body atom, unifying with all facts.
The fat arrows show the highest score branch that is used to generate the proof score for this query
using this rule. Other rules and facts are proved using the same method, each generating a proof score.
The highest proof score among these scores is the proof score of the query, which is used to compute
the loss and update gradients as part of the training process as described in Section 3.1.3.

Figure 3.1 shows a computational tree for a KB composed of five facts and a template rule

with one copy. The tree is used for evaluating queries in the same way in training and testing.

On receiving a query, all possible soft-unification of the query with the facts in KB and all

copies of template rules in I are considered. The arrow to all facts indicates a set of inde-

pendent branches, each performing uni_two_atoms between the query and a fact (fi) in

the KB using an empty substitution set, to give a proof score for unifying the query with

the fact. In the case of a template rule (just one rule here), the query first unifies with the

head atom, which applies uni_two_atoms between the query manage(lisa,ben) and the atom

#1(X,Y). This results in the substitution set of the head atom, Sh : {X/lisa, Y/ben} (each

substitution for the variable X and Y generates a unification score 1 according to uni_s as

defined in Definition 3.1.1), and a score sp, generated by unifying predicate embeddings θmanage

and θ#1 using uni_s. The proof score of the head atom is the minimum unification score

among [sp, 1, 1], which is sp. Then, the updated substitution set is passed on to body atoms’

proofs, as the substitution set of the first body atom, denoted as Sb1 (equivalent with Sh).

Note that once a variable binds with a constant in a substitution set, the binding between the

variable and the constant is fixed over all following branches that extend from this branch. The

first body atom is proved by body_atom_proof_score(#2(X,Z), Sb1), which unifies #2(X,Z)

36 Topical NTP

with all facts in the KB, pairwisely, using uni_two_atoms. The k best unification scores

(k = 1 here for simplicity) for the atom #2(X,Z) ({X/lisa} in Sb1) give the fact in the KB

that outputs the highest score (i.e. colleague(tom, lisa) in Figure 3.1 as shown by the bold

arrow). This generates an updated substitution set Sb2 = {X/lisa, Y/ben, Z/lisa}, which is

carried on to prove the body atom #3(Z, Y) that is instantiated to #3(lisa, ben) in Figure 3.1,

using body_atom_proof_score(#3(Z, Y), Sb2). If k = n, n substitution sets would be created,

each would be carried on to prove the second body atoms independently. Expanding the k

best branches after each body atom unification, instead of expanding over all branches, is an

optimisation strategy of NTP, called kmax. In NTP evaluation [Rocktäschel and Riedel, 2017],

k = 10 is used, meaning that 10 branches are expanded independently.

The proof score of a copy of a template rule, denoted as rule_proof_score, is the maxi-

mum proof branch score over all proof branches of the copy of the template rule, where a proof

branch score is the minimum of the scores of the unifications of head atom and body atoms.

A branch is a ‘proof branch’ if there is a path from the root of the computational tree to the

leaf of the tree, where each literal of the template rule is proved in this path. For example, in

Figure 3.1, the branch with bold arrows is a proof branch with the maximum proof branch score,

given by the minimum proof score among the atom unification (uni_two_atoms) between

#1(X, Y) and manage(lisa, ben), between #2(lisa, Z) and colleague(tom, lisa), and between

#3(lisa, ben) and friend(tom, lisa) respectively. The proof branch score takes the minimum of

the head atom and body atom unification scores, so that a branch can only have a high score

if all of its literals are proved with a high score. The rule_proof_score takes the maximum

proof branch score over all of its proof branches, because as long as one proof branch can prove

the query, the query is considered as ‘true’.

Finally, the proof score of a query q(c̄), denoted as ntpκ
θ(q, c̄), is computed as the maximum

proof branch score obtained by unifying q(c̄) with each fact in F and with each copy of the

given template rules. Note that, unification of q(c̄) with each fact introduces a single branch in

the computational tree, and unification with a template rule introduces several branches in the

computational tree depending on the hyperparameter kmax. Of all these branches only the one

with maximum proof branch score receives gradients during backpropagation [Rocktäschel and

Riedel, 2017].

3.1 Overview of NTP 37

3.1.3 Training

As described in Section 2.3, the neural network training involves three steps: forward passing,

computing loss and backward passing, which are performed repeatedly for a number of epochs

using a given training dataset τ . Differently from a typical neural network consisting of neurons

with trainable parameters (as shown in Figure 2.3), such as weight and bias vectors, as described

above NTP uses a computational tree as its architecture and its only trainable parameter is the

embedding matrix, which includes the embeddings of known predicates, constants and induced

predicates. Despite the different architectures, the paradigm of backpropagation is essentially

the same, where trainable parameters are used to compute the proof score in the forward passing,

then after computing the loss, the trainable parameters are updated by gradients. The forward

passing step is as explained in Figure 3.1, which given a query, computes its best proof score

using the computational tree. Then, the loss value of the query using the NTP computational

tree is computed using Equation 3.4. In the backward passing step, the loss value is passed

backward in the computational tree.

At the beginning of the training process, the embedding matrix θ is randomly initialised.

The training goal is to minimise the difference between ntpκ
θ(q, c̄) and its target label y (1 or 0

for true or false) for each q(c̄) ∈ τ , by optimising θ through mini-batch gradient descent. The

loss function Lntpκ
θ

is defined as the negative log-likelihood of ntpκ
θ:

Lntpκ
θ

=
∑

([q,c̄],y)∈τ

−y log(ntpκ
θ(q, c̄))− (1− y) log(1− ntpκ

θ(q, c̄)) (3.2)

To prevent a query q(c̄) from unifying with itself, the query is temporarily masked in F during

training.

During training, a neural link predictor, ComplEx [Trouillon et al., 2016], is used as a regulariser

term to speedup the learning of embedding representations, so that NTP could focus on rule

induction. Note that ComplEx is only used during training and does not affect testing. A loss

function Lcomplexκ
θ

is defined as the negative log-likelihood of complexθ(q, c̄):

Lcomplexκ
θ

=
∑

([q,c̄],y)∈τ

−y log(complexθ(q, c̄))− (1− y) log(1− complexθ(q, c̄)) (3.3)

38 Topical NTP

Hence, the joint training loss, denoted as Lntpλκ
θ
, is given by:

Lntpλκ
θ

= Lntpκ
θ

+ Lcomplexκ
θ

(3.4)

Recall that in forward passing, due to the min or the max operators in the computational tree,

the proof score of each query is the unification score between a selected pair of embeddings

involved when proving the query. As a result, in the backward passing, only these two embeddings

that determine the overall proof score of a query are updated. Their loss values are computed

by taking the partial derivative of the loss function with respect to themselves, using the chain

rule of differentiation. For instance, for a query q(a, b), if the proof score is generated by the

unification score between a and a constant l (from a best-matching fact), then the embedding a

would receive gradient update, as computed by the equation below (similarly for l by taking the

partial derivative of the NTP loss function with respect to l).

∂Lntpκ
θ

∂a
=
∂Lntpκ

θ

∂ntpκ
θ

× ∂ntpκ
θ

∂rbf(a, l) ×
∂rbf(a, l)

∂a
(3.5)

The embedding a and l would also receive another embedding update at the same time by taking

the partial derivative of Lcomplexθ
(see Section 6.1.1 for details) with respect to themselves, as

shown below.

∂Lcomplexκ
θ

∂a
=

∂ < Re(a), Re(q), Re(b) >
∂a

+ ∂ < Re(a), Im(q), Im(b) >
∂a

+ ∂ < Im(a), Re(q), Im(b) >
∂a

+ ∂ < Im(a), Im(q), Re(b) >
∂a

(3.6)

where ComplEx splits each embedding e to two parts: the upper part is denoted as Re(e) and

the lower part is denoted as Im(e). < a, b, c > sums values in a× b× c.

The gradient received by a for the given query is the partial derivative of the full loss from

Equation 3.4, which is the sum of the two partial derivatives as given by Equation 3.5 and 3.6.

Algorithm 3.1 illustrates the high-level algorithm of NTP training using the Tensorflow frame-

work.

1 def training_task(facts , tr , train_data):

2 theta = tf.Variable([SYMBOL_NUM, EMB_DIM])

3 ntp = build_computational_tree(facts, tr, theta)

4 loss = calculate_loss(ntp)

5 train_step = tf.optimiser.minimise(loss)

3.2 Introducing TNTP 39

6 for i in range(0, TRAIN_EPOCH):

7 for query_batch in train_data:

8 theta = tf.run(train_step, feed_dict=query_batch)

Algorithm 3.1 The high-level training process of NTP using the Tensorflow framework. The algorithm
starts with defining the embedding matrix theta as a variable to be learned. Then, the following
three lines define the forward passing, loss computation and backward passing functions. The for-loop
conducts the actual training using the train_data.

The algorithm starts with input the facts (the knowledge base), template rules (tr) and the

training dataset. In line 2, it creates a ‘tf.Variable’ of the dimension size [SYMBOL_NUM,

EMB_DIM]. ‘tf.Variable’ indicates that this matrix is a trainable parameter and it will get

updated in backward passing. Line 3 defines the forward passing step by constructing the

computational tree which computes the proof score of each query using the method described

for Figure 3.1. Line 4 is the loss function computation step. Line 5 registers the loss function

with an optimiser (an Adam optimiser is used here) and gradients are computed automatically

by the optimiser. In lines 3-5, the three steps of gradient descent are defined as a general

architecture with queries as placeholders. In lines 6-8, the actual training happens, which applies

the three training steps using each query batch in train_data for TRAIN_EPOCH. In line 8,

‘tf.run’ conducts the three steps using the given query batch and updates the relevant embeddings.

Training NTP with a full computational tree is computationally intensive and cannot be

applied to large KBs. Even though in ntpκ
θ(q, c̄), only one proof branch of the tree gets gradients

in backpropagation, many thousands of branches are computed in the forward pass. For example,

given a rule with 2 body literals and a knowledge base with 10000 facts, 10000× 10000 branches

are considered for each query using this rule. Although NTP introduces a kmax gradient approx-

imation approach to reduce redundant computations – when a query unifies with a rule only the

kmax branches of each body atom unification with the highest scores get propagated further and

the other branches are discarded – NTP still needs to unify each body atom with all possible

facts in forward propagation to pick the kmax to expand, generating k × 10000 branches, so it

still suffers from scalability issues.

3.2 Introducing TNTP

In Section 3.1, we have presented the NTP approach, which uses gradient descent to learn

embeddings and induce rules that can be used to complete a given KB. However, NTP has

scalability issues related to the fact that during training, the proof of body literals of given

40 Topical NTP

template rules is done with respect to all facts included in the KB.

In this chapter we address this limitation by introducing topical template rules (denoted

as TTRs), which allows the proof of body literals to focus on these facts from the KB that are

‘topic relevant’. One way to achieve this is to cluster facts in the KB into topics, based on their

semantics similarity in high-dimension space, and define template rules in terms of the identified

topics, so to constrain the unification process during training. The outcome is a diverse set of

induced rules where the induced predicates of TTRs are learned.

Our approach, called Topical NTP (TNTP), involves two phases of training: the topic generation

phase and the induction training phase. The first phase identifies clusters over a large KB,

referred to as topics. The second phase uses these clusters (topics) to control the soft-unification

of predicates during the learning process, with the effect of reducing the size of the computational

tree needed to induce first-order rules. To do so, TNTP uses topical template rules which assign

a topic to each induced predicate in body atoms. This also enables TNTP to induce a diverse

set of rules. Our experiments demonstrate that TNTP is over 20 times faster than NTP on

benchmark datasets (the speedup depends on the number of topics), while achieving higher

accuracy of query answering predictions. The details of the evaluation can be found in Chapter 7.

A second problem of NTP is that the number of branches resulting from matching a query

with copies of template rules used in the computational tree is low compared to the number of

branches resulting from matching a query with facts from the given KB. To solve this problem,

TNTP makes use of two hyperparameters to amplify the proof scores of copies of TTRs used in

the computational tree. Consequently, rules are used more often during training, thus improving

their final accuracy of query answering predictions.

The rest of this chapter is organised as follows. We present the methodology of TNTP,

including the high-level architecture overview, the 2-step training, the topic generation, TTRs

and their use in computational trees, and the high-level algorithm. Then, we discuss the addition

of the amplification hyperparameters. We conclude with presenting the decoding mechanism

of learned topical induced rules into rules that are human interpretable. The material in this

chapter was presented in our GCAI paper [Xia et al., 2020].

3.3 The TNTP Approach 41

3.3 The TNTP Approach

Unlike NTP, TNTP involves two training phases (see Figure 3.2): the topic generation phase

and the induction training phase. The topic generation phase learns embedding representations

of the predicates in the KB and computes clusters over these embeddings. These clusters can be

seen as topics, which group predicates with similar embedding representation in high-dimension

space. These topics are used in the induction training phase to select the subset of topic-related

facts to be used in each body atom unification.

A high-level overview of the TNTP architecture is given in Figure 3.2.

Fig. 3.2 The training pipeline of TNTP. The inputs of TNTP are the knowledge base (KB) and
template rules. There are two main steps: topic generation and TNTP induction. Topic generation
creates topics using trained embeddings of FNTP. These topics are used for TNTP induction, which
generates trained embeddings and interpretable induced rules.

TNTP takes as inputs a KB and a set of template rules. The first step of the topic generation is

to train the embeddings of the facts in the KB. This is done using a fact-only NTP, denoted as

FNTP. The learned embeddings capture semantics of the predicate symbols. An example of the

3-dimension reduction of the learned embeddings for some predicates in the Nation dataset is

given in Figure 3.3, where the distance between points indicates how semantic similar they are.

Then, a clustering algorithm (explained in Section 3.3.1) is applied over the trained embeddings,

which groups semantically related high-dimension predicates into topics, i.e. predicates whose

embeddings are close in space.

42 Topical NTP

Fig. 3.3 An example vector space of predicate embeddings in the Nations dataset after the FNTP
training. The panel on the right-hand side lists the nearest neighbours of negativebehavior and the
scores are the euclidean distances between two points. The closer the distance between two points, the
more similar they are.

As an illustration, Figure 3.3 shows the neighbours of the predicate negativebehavior in 3-

dimension space and their respective euclidean distances on the right hand side panel. As shown

by the list, a majority of the neighbours of negativebehavior are ‘unfriendly relations’, which

fits human commonsense. Note that although most predicates in a cluster have similar semantic

meanings, some outliers could still exist, such as the ‘nonviolentbehavior’ in the neighbours

of ‘negativebehavior’. When clusters are used as a filter to select potential predicates, these

outlier predicates might no longer be selected for matching with topic-based induced predicates,

or be wrongly selected for matching, so proofs involving queries using these outlier predicates

could be affected. However, most predicates in the topic could still match with their most

relevant predicates, while reducing the redundant computations in a computational tree. Our

experiments in Chapter 7 demonstrate that although using topics might affect the proof of some

outlier predicates, the accuracy of TNTP query answering predictions is better than that of

NTP. As a result, outliers in topic generation are acceptable, as long as most of predicates in a

topic are semantically similar.

The TNTP induction phase generates copies of TTRs and constructs the topical compu-

tational tree using these TTRs. Instead of unifying with all facts as in NTP, in TNTP, a

body literal unifies only with facts in the topic specified by the TTR. This cuts down the

number of unifications required and leads to a more compact computational tree. The topical

computational tree is then trained using gradient descent, in the same way as described above

for NTP, using the loss function given in Equation 3.2-3.4.

3.3 The TNTP Approach 43

Fig. 3.4 An example of TNTP computational tree using a topical template rule. TNTP receives the
knowledge base KB, a copy of a template rule in I and topics (T1 and T2) as inputs. The KB is
partitioned according to topics (F1 and F2). Given a query, it matches with all facts in KB and all
rules in I. As in Figure 3.1 the fat arrows depict, for illustration, the highest scoring branch. When
proving a copy of TTR, the query firstly matches with the head atom, proved using uni_two_atoms

with an updated substitution set. Then, topic-based unification is applied for each body literal, where
each body literal only matches with facts in the same topic, ignoring irrelevant branches as shown by
the branches with red crosses.

Figure 3.4 presents an illustration of efficiency improvement using TNTP over NTP. Consider, for

instance, the same KB and the single copy of the template rule #h(X, Y) :- #1(X,Z),#2(Z, Y)

from Figure 3.1. Let us assume that the topic generation phase gives two clusters T1 and T2 (see

Figure 3.4). The copy of the template rule is converted to a copy of a TTR by assigning topics

to predicates in body literals, forming #h(X, Y) :- #T1(X,Z),#T2(Z, Y) (see Section 3.3.2

for details of TTR conversion). The topical computational tree for the query manage(lisa, ben)

is then given in Figure 3.4. The unification of predicates is limited to just the facts from the

KB that belong to the topic indicated by the copy of the TTRs. For instance, the unification of

the body predicate #T1(X,Z) considers only the three facts in F1, instead of all five facts in

the KB.

3.3.1 Topic Generation

We describe here the two steps of the topic generation phase. The first step consists of training

the embeddings for predicates and constants using FNTP, which generates an embedding matrix

θ of the size [n, 100], where n is the total number of symbols (predicates and constants in the

given KB and induced predicates) and 100 is the size of embedding vectors. This is shown in

lines 2-5 in Algorithm 3.2. The second step applies a clustering algorithm over the learned

predicate embeddings, as shown in lines 6-8 of Algorithm 3.2.

1 def TOPIC_GEN(facts, predicate_ids, train_data, t_cluster):

44 Topical NTP

2 theta = init_embed(facts)

3 fntp = build_fact_only_tree(facts, theta)

4 for i in range(0, PRETRAIN_EPOCH):

5 theta = train(fntp, theta, train_data)

6 pca_theta = pca(theta, D_DIMENSION)

7 pca_pred_theta = extract_predicate(pca_theta, predicate_ids)

8 pred_cluster_dic = compute_clusters(pca_pred_theta, t_cluster)

9 return pred_cluster_dic

Algorithm 3.2 A high-level algorithm of the topic generation phase. Strings in capital letters are
hyperparameters of the algorithm. The algorithm firstly trains a FNTP to get a trained embedding
matrix theta. Then, it uses PCA algorithm to reduce the dimension of theta, which are then used to
generate topics by a clustering algorithm.

At the beginning of topic generation, embeddings are initialised randomly (line 2). To learn

the embedding matrix θ (theta in Algorithm 3.2) for clustering, we use NTP with a facts-only

computational tree, denoted fntp (line 3). Figure 3.5 illustrates an example FNTP computational

tree.

Fig. 3.5 An example FNTP computational tree. No template rules are given to FNTP and each query
is proved by the fact in the knowledge base that generates the highest proof score. During the FNTP
training, the embeddings are trained to capture semantic information, where semantically similar
embeddings are close in vector space.

FNTP is trained through gradient descent according to the loss function given in Equation

3.4. Each query q unifies with all facts, except itself, and outputs the highest unification

score, which is used to update θq. The purpose of this training is to force embeddings of

semantically similar predicates and constants to be closer in vector space. For example, if the

fact manage(lisa, jenny) generates the highest proof score for the query manage(lisa, ben), it

would be because the vector representations of jenny and ben are close in vector space. The

training is performed using a given number of epochs (PRETRAIN_EPOCH). At each epoch, a

different query set is used. The positive queries are the same but the corrupted facts (4 per query

sampled randomly) are different in each query set, as explained in Section 2.1. It is known that

high-dimension embeddings inflate Euclidean distances involved in K-means training [Hinneburg

3.3 The TNTP Approach 45

and Keim, 1999]. Thus, before applying clustering, we use Principal Component Analysis (PCA)

[Jolliffe, 1986], to reduce the matrix θ to a d-dimension θd. (We used d = 20, because the topics

generated by this value lead to the best accuracy of query answering prediction in experiments.)

Then, the predicate embeddings are extracted from θd using predicate_ids, denoted as θdP
(line

7 of Algorithm 3.2).

We explored two clustering algorithms to generate the clusters: K-means [Macqueen, 1967] and

Agglomerative [Gower and Ross, 1969] (see Section 2.4.1). We select one of the two methods

to cluster predicate embeddings θdP
to T clusters (line 8). Both algorithms are unsupervised

clustering algorithms which partition a set of N -dimension embeddings into T sets. In our topic

generation, we use both clustering algorithms and pick the number T of topics that gives the

best accuracy of the TNTP with respect to a validation set.

As an example, we show part of a topic distribution of the Nations dataset. Nations dataset

contains 56 predicates and they have been divided into 5 topics using the K-means algorithm.

Some of the predicates in two of the topics (T1 and T2) are given below. It is easy to see

that the topics generated by clustering embeddings fit human commonsense. For example,

T1 contains ‘unfriendly’ relationships between countries; T2 contains ‘friendly’ relationships

between countries.

T1: time since war, negative behavior, accusation, protests , military actions , ...

T2: military alliance , exports, ngo, students, commercial aid, tourism, ...

To choose the best T number of clusters, we use the Silhouette score [Rousseeuw, 1987] to

evaluate the quality of the clustering results. The Silhouette score measures the quality of

clusters: that is the compactness of points within the cluster and the disparity between points in

this cluster against other clusters. The higher the Silhouette score is, the better is the quality of

the clusters. In practice, however, we found that the highest Silhouette score may not necessarily

generate the best accuracy of query answering predictions after TNTP training. If predicates are

spread out to more clusters, fewer facts are used in each body unification, causing some relevant

facts to be missed, hence leading possibly to a lower accuracy of query answering predictions.

So, although Silhouette score is a good way to reflect the quality of topic generation, in practice

the choice of the correct number of clusters is determined by its effect on the accuracy of query

answering predictions and induction performance of the TNTP model. In general, a lower

number of topics leads to better rule induction quality and a higher number of topics leads

to faster training with less induced rules. We demonstrated this in our evaluation in Section 7.4.3.

46 Topical NTP

By applying either the K-means or Agglomerative cluster algorithm (whichever is most appro-

priate) to the predicate embedding θdP
, we generate clusters {T1, T2, ..., TT}. The topic of a

predicate p is given by the cluster its embedding belongs to:

topic(p) = i iff θp ∈ Ti (3.7)

Note that each predicate belongs to exactly one topic.

After generating topics, KB is partitioned according to the topics of the atomic predicates,

forming subsets Fi, as defined in Def. 3.3.1. It is this partition of KB that is used during topical

unification, as illustrated in Figure 3.4.

Definition 3.3.1. Given a knowledge base KB with a signature< P , C > and a set {T1, T2, ..., TT}

of T topics, the set of facts F in KB is partitioned into T (sub)sets of facts, where for each set

Fi, 1 ≤ i ≤ T , a fact p(a, b) ∈ Fi iff θp ∈ Ti.

3.3.2 Topic-based Unification

We describe now how TNTP supports topic-based rule induction. It includes two main parts:

generation of TTRs and topic-based unification.

Generation of TTRs

TNTP receives as input a set of template rules. TTRs are constructed from the input

template rules using the generated topics. Specifically, each copy of a template rule is as-

signed a topic for each body atom in the rule. For instance, a copy of the template rule,

#1(X, Y) :- #2(X, Y),#3(X, Y), might be converted to #H(X, Y) :- #T5(X, Y),#T2(X, Y).

The head predicate is represented as #H to indicate that it is supposed to unify with any given

predicate. The body predicates #T5 and #T2 indicate that during training, the two induced

body predicates are expected to be similar to predicates in topic 5 and topic 2 respectively.

Some copies of TTRs might have the same topic combinations, but each copy has independent

embeddings and will lead to different induced rules. We indicate with I the allowed set of copies

of all TTRs.

To cover as much of the search space of learnable rules as possible, we consider a range

of TTRs over the possible topics. The selection of topics can either be based on on a distribution

3.3 The TNTP Approach 47

over T topics giving equal probability to each topic, or on a distribution in which the probability

of each topic is weighted according to the size (number of facts) in the topic. We call the first

method fair selection and the latter weighted selection, formally defined below.

Definition 3.3.2. Let KB be a knowledge base partitioned into T topics. The probability of a

predicate p to be chosen from a topic i according to a fair selection is 1/T .

Definition 3.3.3. Let KB be a knowledge base including |F | facts partitioned into T topics

{T1, T2, ..., TT }. The probability of selecting a predicate p from Ti according to a weighted

selection is given by |Ti|/|F |.

As discussed in Section 3.3.1, since the clustering mechanisms will unlikely generate clusters

with similar sizes, to have a better coverage of the inductive search space during training, the

weighted selection is preferred to fair selection. In our experiments, when the entire search space

can be covered by half of the number of copies of a template rule (10 in this case), 50% copies of

the template rule are converted to TTRs by fair selection and 50% of it are converted to TTRs

by weighted selection. Otherwise, all copies of the template rule are created by weighted topic

assignment. This mixture selection approach enables most topics to be used in TTRs while

giving topics with more facts higher weights.

For example, given 5 topics and a template rule #1(X, Y) : −#2(X, Y) with 20 copies to

be generated as TTRs, 10 copies of it would be created by fair topic assignment of the form:

(2) #H(X, Y) :− #T1(X, Y).

(2) #H(X, Y) :− #T2(X, Y).

(2) #H(X, Y) :− #T3(X, Y).

(2) #H(X, Y) :− #T4(X, Y).

(2) #H(X, Y) :− #T5(X, Y).

(2) indicates there are two copies of its TTR. The topics of the other 10 copies of TTRs are

selected by weighted topic assignment.

For a template rule, such as #1(X, Y) : −#2(X,Z),#3(Z, Y) with 20 copies to be gener-

ated as TTRs, the selection of topics will not cover the entire search space (which would require

25 copies, since there are 5 topics and 2 body atoms). As a result, topics of all copies are

generated by weighted topic assignment. For example, in the case that |F1| and |F2| are each

double the size of F3, F4 and F5, the chance of T1 or T2 appearing in each body atom of 20

copies would be 2/7, whereas the chance of T3, T4 or T5 would be 1/7.

48 Topical NTP

By using TTRs instead of non-topical template rules, both the computational efficiency and

the diversity of rules induced by TNTP are improved compared with NTP. For instance, when

applying NTP to the UMLS dataset, 12 out of 20 induced rules using the same TR are exactly

the same, whereas TNTP induces 20 different rules. The computational efficiency improvement is

obvious, because in each body unification, only a subset of facts is used instead of all facts in KB.

This is demonstrated in our evaluation (see Section 7.3.2). The improved diversity of induced

rules is due to the topic-based selection strategy that guarantees a wide topic combination in

the TTRs.

Topic-based Unification

TNTP uses a different body atom unification mechanism than the one used in NTP. We have

seen that in the NTP architecture when a body atom q(c̄) is queried, all facts in KB are

considered in the construction of the computational tree. In our TNTP, the TTRs specify the

topic of the body atoms to be considered in the construction of the computational tree and

therefore in the unification. If the query q(c̄) is of topic i, the unification of q(c̄) is computed

with respect to all facts Fi in topic i. We call this unification, topic-based unification.

Definition 3.3.4. Given a knowledge base KB that is partitioned into T sets of Fi (1 ≤ i ≤ T)

according to the topics (T1, ..., TT), the topic-based unification of a body atom #Tn(c̄) with topic

n (1 ≤ n ≤ T) and arguments c̄, is the unification between #Tn(c̄) and all facts in Fn.

It is important to point out that in TNTP topics are not updated during training, as they

are used as a bias to filter unimportant information. Since topics are generated according to

well-trained embeddings of FNTP, the clustering quality is preserved. Generally, topics may be

a little different after training, because there are changes on boundaries of clusters in vector

space. These changes on the boundary do not matter because predicates in the boundary of a

topic are usually not close to any predicates (otherwise they would be near the centroid of a

topic). As a result, the effect of changing topics for these predicates is minor. Our experiments

in Section 7.3.1 demonstrate that TNTP is able to achieve good accuracy of query answering

predictions using topic-based unification.

3.3.3 High-level Algorithm of TNTP

Algorithm 3.3 captures at a high-level the TNTP induction training mechanism.

1 def TNTP_induction(facts, rules, train_data, topics):

3.3 The TNTP Approach 49

2 theta = init_emb(facts, rules)

3 ttrs = build_ttr(rules, topics)

4 tntp = build_topical_computational_tree(facts, ttrs, theta)

5 for i in range(0, TRAIN_EPOCH):

6 theta = train(tntp, theta, train_data)

7 induced_rules = decode_rules(theta, ttrs)

8 return theta, induced_rules

Algorithm 3.3 The TNTP induction pipeline that uses TTRs to construct computational tree and
trains embeddings for rule induction.

Algorithm 3.3 receives as input a set of positive facts (KB), template rules, training data and

topics. At the beginning, the embedding matrix θ (theta in Algorithm 3.3) is initialised ran-

domly. Note that we do not reuse the embeddings learnt by FNTP, because mixing well-trained

embeddings with untrained induced predicate embeddings does not help rule induction. If

TSNTP starts with the trained embeddings of FNTP (including known predicates and constants)

and randomly initialised induced predicate embeddings, facts would be selected for most of

the time when proving queries, because their trained embeddings could match well, hence the

TTRs with random embeddings would rarely get any gradients. In line 3, template rules are

assigned topics according to Section 3.3.2, forming TTRs. Next, the topical computational tree

is built using these TTRs. Topic-based unification is applied for each body atom. In lines 5-6,

TNTP is trained through gradient descent. Finally, induced rules are generated by decoding the

trained embeddings with respect to the KB (see Section 3.5).

We list here the software frameworks used in all our three systems. Our systems are developed

using Python 3.6 version and Tensorflow 1.15 version [Abadi et al., 2016]. We use Tensorflow,

because initially we used the open source code of NTP1 to run some initial exploratory experi-

ments on NTP. However, we have rebuilt the code completely for the development of our systems.

For generating clusters, we inspected two typical clustering algorithms from sklearn.cluster

packages, the Kmeans and Agglomerative clustering algorithms. Kmeans identifies clusters using

a top-down approach and Agglomerative identifies clusters using a bottom-up approach. Before

applying clustering algorithms, to avoid the curse of dimension as explained in Section 3.3.1,

we also use the sklearn.decomposition package to apply PCA to trained embeddings. In our

experiments, we use both clustering algorithms to generate clusters using PCA-compressed

trained embeddings with 20-dimension. Our experiments demonstrate that conducting dimension

reduction indeed leads to better accuracy of query answering predictions, but the improvement is
1https://github.com/uclnlp/ntp

50 Topical NTP

not significant. This is most likely because TNTP does not require perfect clusters – empirically

we found that as long as most relevant predicates are in the same topic, the rule induction

works well. Clusters are selected based on the accuracy of query answering predictions using

a TNTP with fixed hyperparameters. We fine-tune other hyperparameters after we select the

clusters. In Chapter 7.2, we explain the experiment settings and the procedure of tuning these

hyperparameters in detail.

3.4 Hyperparameters for Amplifying Rule Learning

Recall that the proof score of a rule is the minimum proof score among proof scores of each

head and body literals. As a result, a short rule is more likely to yield a higher proof score than

a long rule. Thus in general matching with a fact is more likely to give a higher proof score than

matching with a rule. Similarly, the proof score of two atoms is the minimum unification score

among its predicate-predicate and argument-argument unification. Induced predicates can only

get updated if the induced rule generates the highest proof score, whereas constants can get

updated in both fact and rule branches. As a result, constants are updated more frequently than

predicates, especially than induced predicates. Therefore, during training, the rule induction

gets dominated by query-fact soft-unification, and consequently, the induced predicates in TTRs

may not be trained well. This was also empirically verified.

To improve rule induction, we therefore introduced in TNTP two hyperparameters α and

β. The α hyperparameter scales induced predicate unification scores (see Definition 3.4.1) while

the β hyperparameter scales rule unification scores (see Definition 3.4.2). These amplification

hyperparameters boost the unification scores obtained via TTRs and increase the chances

for induced rules to receive gradients. In this way, the embeddings of induced predicates get

trained more frequently and better rules are learned. The effects of these hyperparameters are

demonstrated in the evaluation, in Section 7.4.1.

By way of exemplification, consider a query q(a, b) to be proved using a copy of a TTR:

#H(X, Y):- #T1(X, Y),#T2(X, Y), which after substitution becomes the copy #H(a, b) :-

#T1(a, b),#T2(a, b). During each backpropagation, a and b have three chances to be updated

within the same branch of the computational tree, while each of #H, #T1 and #T2 has one

chance. Even worse, these #P can only be updated if the rule generates the highest proof score

over other rules. In contrast, q, a and b can also be updated when unifying with facts instead of

3.4 Hyperparameters for Amplifying Rule Learning 51

rules. As a result, the chance for #P to get updated is very low, compared with constant and

known predicates in P . The learned embeddings of constants capture therefore better semantic

information in vector space, giving a better unification score, whereas the learned embeddings

of predicates are more noisy, giving in general a lower unification score between two predicates.

The amplification hyperparameters α and β help to balance this out.

Definition 3.4.1. Given an embedding matrix θ, a substitution set d, an induced predicate

amplification hyperparameter α (α > 0), the unification between arguments i and j (i, j can be

predicates, constants or variables), denoted as uni_s(i, j, d), generates a tuple (du, s) defined as

follows, where du is the updated substitution set and s is the unification score:

(du, s) =



(d′, 1) where d′ = d ∪ {i/j} if is_var(i) and i /∈ d

(d, rbf (θc,θj)) if is_var(i) and i/c ∈ d

(d, α× rbf (θi,θj)) if is_ind_pred(i)

(d, rbf (θi,θj)) otherwise


(3.8)

Recall that the proof score of q(c̄) using a rule #H(X, Y) :- #T1(X,Z), #T2(Z, Y) is the

minimum proof score among the three literals #H(X, Y), #T1(X,Z) and #T2(Z, Y). In

contrast, the proof score of q(c̄) using a fact p(c, d) is just the proof score of unifying these two

atoms. Clearly, the longer the rule, the more atoms need to be proved. With more atoms, if

one of the atoms has a low unification score, the proof score of the rule is low. As a result, a

fact tends to get a higher unification score than a rule. In order not to penalise rules, a rule

amplification hyperparameter β is applied to amplify rules’ unification scores by β.

Definition 3.4.2. Given a knowledge base KB with facts F , a set I of copies of TTRs, an

embedding matrix θ, a query q(c̄) and a rule amplification hyperparameter β (β > 0), we denote

SF (q(c̄)) = {tanh(rule_proof_score(q(c̄), r,F)|r ∈ F)} (3.9)

and

SI(q(c̄)) = {tanh(β × rule_proof_score(q(c̄), r,F)|r ∈ I)} (3.10)

The TNTP proof score for the query q(c̄) is given by:

tntpκ
θ(q, c̄) = max{SF (q(c̄) ∪ SI(q(c̄)))} (3.11)

In the above definition, the rule_proof_score function is the same as the one given in Section

3.1.2. The use of the amplification hyperparameters α and β yield TNTP proof scores in

52 Topical NTP

different ranges, depending on whether they were derived from matching with a fact or a rule

(respectively (0..α] or (0..α × β]). As these are to be compared they are both normalised by

tanh to the same range of (0, 1). This tntpκ
θ is then used to compute the loss function as defined

in Equation 3.2 to 3.4, replacing ntpκ
θ. The role of α and β in the proof is illustrated by Figure

3.6.

Fig. 3.6 The role of α and β in the proof. α amplifies the predicate unification score and β amplified
the unification score of each rule, as defined in Definition 3.4.1 and Definition 3.4.2.

3.5 Interpretability

Once the TNTP model has been trained, the learned induced rules are still in terms of trained

induced predicate embeddings. In this section we explain how these induced rules can be

converted to symbolic rules for human interpretation. Human-interpretability is important,

because it enables an understanding of how the system makes decisions. In contrast, neural

networks often work as a blackbox, making it hard for humans to understand its decision making

process. This problem limits the use of neural networks in some accuracy-sensitive industries and

has been widely discussed in the field of explainable AI [Cyras et al., 2021, Adadi and Berrada,

2018], which aims to improve the trust and transparency of AI-based systems. Although there

are works that try to explain neural networks using logic representations (such as [Ferreira

et al., 2022]), these systems usually work as post-processing after neural networks are learned.

In contrast, rules in our systems are learned during training and they are optimised for many

epochs. In what follows, we present our ‘decoding’ mechanism that converts embedding-based

induced rules to interpretable first-order rules.

The learned embedding matrix θ captures the semantic relationships among P, #P and

C, so decoding of such matrix into interpretable rules is performed with respect to the vocabu-

lary of KB. To do this, all copies of TTRs in I are first ranked according to the frequency that

3.5 Interpretability 53

an induced rule is used by positive (i.e. uncorrupted) queries in the last iteration of training.

Among all induced rules, some of them are rarely picked as the best performing branch, so they

receive very few gradient updates. These rules are not worth decoding. Therefore, to decode

induced rules into the discrete space of the language in KB, we define a frequency threshold

and only induced rules with frequency higher than this threshold are decoded. The frequency

threshold can be any value between 0 and 1. For example, if its value = 0.2, it means that

a rule is only decoded if it was used by the system over 20% of times when proving positive

queries in the last epoch of training. Using the frequency threshold, we get a set of ‘frequently

used’ copies of TTRs to decode. We also define a predicate decoding threshold (between 0 and

1) for predicate decoding in those induced rules that exceeded the frequency threshold. Induced

predicate, such as #T2, is decoded into a known predicate, say p, only if its unification score

is above the predicate decoding threshold. Note that the frequency threshold and predicate

decoding threshold are used to generate a selected set of induced rules. A broader set of induced

rules can be generated by lowering these threshold values.

Fig. 3.7 An example of induced rule decoding. Given a copy of a TTR that exceeds the frequency
threshold, the top 3 nearest neighbours of each induced predicate in the copy of TTR are identified.
Inside each blue box, the score is the unification score between the induced predicate and the matched
known predicate. The higher the score, the better the match. Then, the qualified decoding of each
induced predicate is selected based on whether it passes the predicate decoding threshold. In the end, a
set of interpretable rules is constructed from the induced rule by taking all combinations of the decoded
predicates that pass the predicate decoding threshold. The score of an induced rule is the minimum
value of the decoding scores of the decoded predicates. For example, the score 0.78 of the first decoded
rule is the minimum of the scores of the three predicates, namely 0.79, 0.79 and 0.78 respectively.

Figure 3.7 illustrates the predicate decoding process of a copy of a TTR that exceeds the

frequency threshold. Each induced predicate in such a rule is decoded to one of its top 3 nearest

54 Topical NTP

neighbours in the given topic (in all topics for head predicates). Here, three nearest neighbours

are presented for human interpretation, but more or fewer can be specified by a user as well.

The unification score between the induced predicate and the potential decoded predicate is

shown on the left hand side of each potential decoded predicate (three boxes on the top). Then,

the potential decoded predicates with unification scores below a predicate decoding threshold

(0.6 used in the example) are deleted (three boxes in the middle). Various rules are then formed

using different combinations of the remaining predicates. A decoded rule is only constructed

from decoded predicates with decoding scores above the decoding threshold. The decoding score

of a rule is calculated as the minimum score of its predicate decoding scores. If the decoding

score of a constructed rule is close to or equal to 1, it indicates that all decoded predicate scores

are also close to or equal to 1, which in turn indicates the decoded rule is likely to be a good

match of the embedding-based induced rule. The final decoded rules (at the bottom) are the

rules with scores above a predicate decoding threshold (0.6 used in the table), which indicates

that all of its induced predicates have a score equal to or bigger than it. Table 3.1 gives further

examples of learned rules using TNTP from the UMLS dataset. Recall that when applying

NTP to the UMLS dataset, 12 out of 20 induced rules using the same TR are exactly the same,

whereas TNTP induces 20 different rules.
Topical

Template

Rule

Top 3 Induced Predicate Decoding Decoded Rules

#H(X, Y) :-

#T2(X, Z),

#T2(Z, Y).

#H [0.81, 0.21, 0.17] [affects, evaluation_of, indicates]

#T2 [0.70, 0.37, 0.27] [affects, precedes, process_of]

#T2 [0.82, 0.82, 0.23] [interacts_with, precedes, degree_of]

0.70: affects(X, Y) :- affects(X, Z), interacts_with(Z, Y).

0.70: affects(X, Y) :- affects(X, Z), precedes(Z, Y).

#H(X,Y) :-

#T1(X,Y).

#H [0.87, 0.85, 0.20] [location_of, carries_out, adjacent_to]

#T1 [0.84, 0.81, 0.28] [carries_out, location_of, interconnects]

0.84: location_of(X, Y) :- carries_out(X, Y).

0.84: carries_out(X, Y) :- carries_out(X, Y).

0.81: location_of(X, Y) :- location_of(X, Y).

0.81: carries_out(X, Y) :- location_of(X, Y).

#H(X,Y) :-

#T0(X, Z),

#T2(Z, Y).

#H [0.79, 0.51, 0.18] [causes, property_of, part_of]

#T0 [0.79, 0.60, 0.21] [causes, property_of, prevents]

#T2 [0.78, 0.74, 0.55] [complicates, co-occurs_with, interacts_with]

0.78: causes(X, Y) :- causes(X, Z), complicates(Z, Y).

0.74: causes(X, Y) :- causes(X, Z), co-occurs_with(Z, Y).

0.60: causes(X, Y) :- property_of(X, Z), complicates(Z, Y).

0.60: causes(X, Y) :- property_of(X, Z), co-occurs_with(Z, Y).

Table 3.1 The decoding of some rules induced in UMLS dataset using the decoding mechanism
described above (with the predicate decoding threshold = 0.6).

At inference time the computational tree and the interpretable decoded rules are used to identify

how a query has been proved. For instance, consider the query interacts_with(antibiotic, biolog-

ically_active_substance). This is run through the trained computational tree to extract the

best proof branch, which itself corresponds to a trained copy of a TTR. The decoded rule that

gives the highest score with respect to such copy of the TTR is selected and returned, so making

the inference interpretable. However, note that the returned rule is only an approximation

3.5 Interpretability 55

of the facts from the KB that are used to prove a given query, as the unification in TNTP

is soft. So for the query mentioned above, the induced rule would be: interacts_with(X, Y)

:- interacts_with(Y, X). The body atom interacts_with(Y, X) is proved by the fact inter-

acts_with(biologically_active_substance, receptor) from the KB in the UMLS dataset, where the

constant ‘receptor’ is close in high dimensional space to the constant ‘antibiotic’ that appears in

the query.

Summary. TNTP introduces a two-phase training to use topics to narrow down the number of

facts involved in each body atom unification. It firstly uses a fact-only NTP to train embeddings

and extract clusters from embeddings. Then, it builds a set of TTRs, which contains template

rules with different topic combinations, aiming to cover the search space as much as possible.

With the simplification brought by topics, in each body atom unification, only a subset of

indexed facts in KB is used, improving the computational efficiency. In addition, it introduces

two hyperparameters to improve the chances of induced rules to be used in the proof, so leading

to better induced rules. As shown in Chapter 7, with these changes, TNTP achieves a better

accuracy of query answering predictions while being more computational efficient.

Chapter 4

Topic-Subdomain NTP

The TNTP system demonstrates that grouping predicates into topics helps to filter facts during

induction learning. In this chapter, we apply a similar clustering method to group constants

into subdomains. We extend TNTP to the Topic-Subdomain NTP (TSNTP). An overview of

the TSNTP architecture is given in Figure 4.1.

Fig. 4.1 An overview of TSNTP architecture. The TSNTP architecture differs from the TNTP
architecture shown in Figure 3.2 in two respects: (i) the initial stage generates subdomains as well as
topics, and (ii) in TSNTP induction each body literal matches with facts taking into account both
topics and subdomains.

This chapter starts with a high-level method overview. Then, we highlight the challenges of

implementing TSNTP and how we solved them.

4.1 Method Overview 57

4.1 Method Overview

Figure 4.2 shows a high-level computational tree of how the TSNTP induction uses facts

partitioned by both topics on predicates and subdomains on the first arguments.

Fig. 4.2 An example TSNTP computational tree. The TSNTP receives the topics (T1 and T2) and
subdomains (S1 and S2) generated by FNTP, and a set of TTRs (I) (one copy of a TTR is used here).
The KB is partitioned by the topic of the predicate and the subdomain of the first argument for each
fact. As a result, in each body atom unification, topic_subdomain_uni is used, which selects facts in
the matched topic and subdomain, improving the computation efficiency.

As shown in Figure 4.2, predicates are clustered into two topics (T1 and T2) and constants

are clustered into two subdomains (S1 and S2). The topics and subdomains clustering is

performed over the trained embeddings for predicates and constants generated using FNTP. All

the (ground) facts are partitioned according to topic i of their predicates and subdomain j of

their first argument. We denote with Fi,j all facts with predicate in topic i and first argument

in subdomain j, with Fi all facts with predicates in topic i and with FSj all facts with first

argument in subdomain j. In this way, when computing a body unification of a current body

condition #Ti(X, Y), only facts whose predicate belongs to topic i and first argument belong

to the subdomain of the current substitution of X will be used. Such restricted unification step

is computed by the function topic_subdomain_uni, which essentially performs unification only

between facts that have the given topic and first argument subdomain.

58 Topic-Subdomain NTP

In TSNTP, facts are indexed by both topics for predicates and subdomains for the first

argument. As a result, only a fraction of facts in a given topic is required for each body atom

unification, making TSNTP on average more scalable than TNTP. Facts are selected based

on the subdomain of one argument to enable a wider selection of facts. Otherwise, if facts

are indexed by one topic and two subdomains, the selected facts might be too restricted for

a normal size knowledge base and as a consequence, the soft-unification might not be learned well.

We introduce now the high-level architecture of TSNTP, including subdomain generation,

computational tree construction and knowledge base partition.

4.1.1 Subdomain Generation

In the TSNTP architecture the first step is similar to TNTP, namely the fact-only training

(FNTP). Subdomain generation happens after FNTP training and its results are used as the

basis of the following TSNTP induction. Similar to topic generation, subdomains are computed

by applying either the K-means or Agglomerative clustering algorithm (whichever is most

appropriate) to the learned constant embeddings (with a reduced dimension d generated by

PCA). This generates S clusters {S1,S2, ...,SS}. The subdomain of a constant c, denoted as

sub(c), is given by the cluster its embedding belongs to:

sub(c) = j iff θc ∈ Sj (4.1)

As result of the clustering each constant belongs to exactly one subdomain.

The subdomains are generated using Algorithm 4.1. After a given number of epochs, the

FNTP step generates learned embedding θ (line 5 in the algorithm), from which the embeddings

of constants are extracted (line 7 in the algorithm). The subdomain clustering happens only once

in TSNTP. The number of subdomains S can be specified directly or be selected by optimum

Silhouette scores within a specified subdomain number range.

1 def TOPIC_SUBDOMAIN_GEN(facts, pred_ids, const_ids, train_data):

2 theta = init_embed(facts)

3 fntp = build_fact_only_tree(facts, theta)

4 for i in range(0, PRETRAIN_EPOCH):

5 theta = train(fntp, theta, train_data)

6 pca_theta = pca(theta, D_DIMENSION)

4.1 Method Overview 59

7 pred_theta, const_theta = divide_theta(pca_theta, pred_ids, const_ids)

8 topics = compute_clusters(pred_theta, T_TOPICS)

9 subdomains = compute_clusters(const_theta, S_SUBDOMAINS)

10 return topics , subdomains

Algorithm 4.1 A high-level algorithm of the topic and subdomain generation, using FNTP. Strings in
capital letters are hyperparameters of the algorithm. This algorithm is similar to the topic generation
algorithm 3.2, with the addition of line 7 and line 9 for computing clusters for constants.

The only difference between this algorithm and the topic generation algorithm 3.2 is the ad-

dition of lines 7 and 9, which, respectively, extracts the learned embeddings of the predicates

and of the constants using their ids, and clusters the constants’ embeddings into subdomains.

Note that topics and subdomains are clustered separately because we only unify predicates

with predicates and constants with constants. As a result, the embeddings of predicates and

constants are independent. This decision is also justified by the observation that in all datasets,

the trained embeddings of FNTP show a clear natural separation between the embeddings of

predicates and constants in vector space, as shown in Figure 4.3 for the case of the UMLS dataset.

Fig. 4.3 The vector space of trained embeddings for the UMLS dataset learned by FNTP. The red
dots are predicate embeddings, the blue dots are constant embeddings. This figure illustrates that the
embeddings of constants and predicates are well separated in vector space.

The UMLS dataset contains 135 constants. The subdomain clustering has partitioned the

constants into 10 subdomains. The list below presents an excerpt from the 10 subdomains.

Subdomains reflect semantic similarity. For example, S1 contains constants about groups and

S2 contains biological species. Such good clustering is due to the fact that FNTP training

focuses on proving queries by unifying them just with facts going through many iterations

60 Topic-Subdomain NTP

of symbolic unification. Symbols with similar meaning are brought closer and closer through

backpropagation.

S1: population_group, age_group, professional_group, patient_or_disabled_group, ...

S2: amphibian, bacterium, invertebrate, human, vertebrate, animal, reptile , virus , fish , plant, mammal,

bird, ...

S3: acquired_abnormality, experimental_model_of_disease, anatomical_abnormality,

mental_or_behavioral_dysfunction, ...

Definition 4.1.1. Consider a knowledge base KB with signature < P , C > composed of a

set P of predicate embeddings, clustered in T topics, and a set C of constant embeddings,

clustered in S subdomains. The set of facts F in KB is partitioned into sets Fi,j (1 ≤ i ≤ T

and 1 ≤ j ≤ S), such that fact p(a, b) ∈ Fi,j if and only if the embedding of p is in topic cluster

i (i.e. topic(p) = i), and the embedding of a is in subdomain j (i.e. sub(a) = j).

Note that only the subdomain of the first argument in each fact in F is used to partition F .

Otherwise, if facts are indexed by one topic and two subdomains, the selected facts might be

too restricted for a normal size knowledge base and as a consequence, the soft-unification might

not be learned well. A second reason is related to the run-time efficiency of constructing and

traversing the computational tree, to avoid keeping track of the run-time substitution of variables

in a TTR that only appear in body literals. (TSNTP uses the same TTRs as TNTP. See

Section 3.3.2 for details.) Consider, for instance, the TTR: #H(X, Y) :- #T1(X,Z),#T3(Z, Y).

Even if the partitions were created using the subdomains of both arguments when constructing

the computational tree, the system could not determine which partition of facts to use when

applying the topic_subdomain_uni function over #T1(X,Z). This is because Z will not be

bound with a constant when proving the body atom. This problem will be discussed in more

detail in Section 4.2.

4.1.2 Computational Tree Simplification

Given the topic-subdomain partition of the facts F of a knowledge base, the body atom unifica-

tion process in TSNTP can be further simplified. In this section, we firstly present the aspects

of TSNTP that are similar to TNTP, and then introduce the simplification made in TSNTP.

The high-level proof mechanism for TSNTP is the same as that in TNTP, as shown in Figure

4.2. In order to prove a query of the form q(a, b), each fact branch and rule branch generates a

4.2 Challenges in Implementing TSNTP 61

branch proof score and the highest proof score is selected as the proof score for q(a, b). The

proof score of a rule is the minimum score among its head atom unification score and all of its

body atom unification scores.

TSNTP optimises body atom unification in the construction of the computational tree, by

selecting a subset of facts that match both the topic and the subdomain of the first argument.

To facilitate this unification process, all facts in a given knowledge base are partitioned into

sets Fi,j where i is the topic clustering index of the predicate and j is the subdomain clustering

index of the first argument of the facts in Fi,j . As a result, given a body atom #Ti(X, Y) where

X and Y are variables and X is bound to a constant c of subdomain j, such atom will only

unify with facts in Fi,j . If X were not bound to a constant, such fact would unify with all facts

in topic i (i.e. all facts in Fi).

We present two cases to demonstrate this optimisation in the body unification process. In the

first case, consider a query q(a, b) and a copy of a TTR of the form: #H(X, Y) :- #Tn(X, Y),

where X is bound to a with subdomain sub(a) = j. The facts used for the unification of

#Tn(X, Y) are then only from the set Fn,j, instead of all facts in topic n as done in TNTP.

If facts in the knowledge base are fairly distributed by the topic and the subdomain of the

first argument, then this reduces the computation of each body atom by approximately 1/S

(where S is the number of subdomains). In the second case, consider a copy of a TTR of the

form #H(X, Y) :- #Tn(Z,X),#Tm(Z, Y). Then Z would be unbound when the body atom

#Tn(Z,X) is being proved. In such a case, this body atom will unify with all facts in topic n

(falling back into the TNTP unification process for this particular body atom proof)1.

4.2 Challenges in Implementing TSNTP

Although the methodology builds upon TNTP, the implementation of TSNTP had to be changed

in order to include the extra subdomain processing. This section highlights challenges that we

have overcome in the TSNTP implementation. These challenges include subdomain information

in template rules, imbalanced distribution of facts over subdomains and dynamic binding of

subdomains in batch processing.

Subdomain in TTRs. In the previous chapter, we have seen that the introduction of topics

has led to a new notion of template rules, that is TTRs, where topics of learnable predicates are
1This situation will be discussed in detail in Section 4.3

62 Topic-Subdomain NTP

explicitly indicated in the template rules. It is natural to ask ourselves whether subdomains

would also need to be explicitly included in the definition of rule templates. Consider for example

the following copies of TTRs:

#H(X, Y) :− #T5(X, Y).

#H(X, Y) :− #T3(Y, X).

#H(X, Y) :− #T2(X, Z), #T1(Z, Y).

If subdomain information were specified in each TTR, the number of copies of each TTR would

increase dramatically. Assuming for instance S1, S2,...,SS subdomains and 3 copies of the first

TTR as given above, we would need to replace each copy of #H(X, Y) :- #T5(X, Y), with

multiple copies, one for each subdomain. For instance, specifying S possible subdomains for

argument X in the TTR would require 3 × S copies of the TTR (instead of 3 copies) of the

form2:

#H(X, Y) :− #T5(#S1X, Y).

#H(X, Y) :− #T5(#S2X, Y).

...

#H(X, Y) :− #T5(#SSX, Y).

To maintain the simplicity of template rules, TSNTP uses the same format of TTRs as in TNTP,

without subdomain information. Instead, subdomain information is determined dynamically as

described below.

Imbalanced Fact Distribution. The subdomain generation can cluster constants with

similar semantic meaning together effectively, but it cannot guarantee that facts are evenly

distributed among the subdomains.

Recall that during the subdomain generation, S subdomains are created, and each subdo-

main contains various number of constants. Since clusters are generated by running clustering

algorithm on embeddings, there is no control on the distribution of facts, except the number of

subdomains S. Sometimes, this imbalance is caused by the knowledge base itself. Although the

imbalanced distribution of facts might be ameliorated by selecting the number of subdomains

carefully, the size of each set Fi,j of the partition depends on both the distribution of topics and

the distribution of subdomains. For instance, some Fi,j groups may be very small, because there

are few facts in topic i (regardless of subdomain j), few facts in subdomain j, or a combination
2Note that subdomains would not need to be specified next to the arguments of head predicates since these

arguments are always immediately unified with the constants that appear in the given queries.

4.2 Challenges in Implementing TSNTP 63

of both.

Despite the potential imbalanced distribution of facts, TSNTP is still a more scalable version

than TNTP, because it uses only a fraction of topical facts in each body atom proof.

Dynamic Binding of Subdomains in Batch Processing. Unlike topics, which are given

by the TTRs before the construction of computational trees, subdomains of variables need to

be determined dynamically after variables have been grounded, using a function sub(c) which

returns the subdomain for a given constant c. These subdomains, which essentially cluster

constants with similar semantic meaning, can be used to group the facts in a given KB and

filter the unification process in the construction of a computational tree, even further than what

TNTP does (based just on topics). However, constructing computational trees in the same

way as in TNTP and imposing subdomain constraints in the unification process would cause

computational inefficiency, caused by operations over sparse matrices, even though the number

of facts to be unified would be reduced. We illustrate this point in what follows.

Although checking the subdomain of a constant is not complicated, proving a group of atoms

with different subdomains as arguments, at the same time, is complicated. This situation

happens when batch processing is involved. Batch processing is normally used to speedup

training, meaning that a batch of queries (usually 50 queries per batch) are proved together in a

computational tree. Batch processing applies to each step of a computational tree construction

including, but not limited to the steps uni_s, unify_two_atoms and topic_based_unification

that we have presented in the previous chapter. Let’s revisit the computational tree construction

of TNTP. Consider, for instance, a batch of 50 queries, as indicated in Figure 4.4.

Fig. 4.4 An example computational tree in the batch processing mode in TNTP. A query batch with
50 queries are given as inputs of the computational tree. They are computed at the same time at each
step of the computation tree. In each atom unification, 50 independent substitution sets are generated
and 50 atom proof scores are computed using each substitution set respectively. In the end, 50 proof
scores are returned, one for each query.

64 Topic-Subdomain NTP

The unification of the 50 queries with the head atom #h(X, Y) generates a vector of 50 proof

scores, each computed as uni_s (symbol-symbol unification) between the embedding of a query

predicate and that of #h, and 50 substitutions for the variables X and Y respectively. The

50 proof scores are denoted as Sh and the substitutions as d in Figure 4.4. Then, the body

atom is proved using d. Considering the body atom #T1(X, Y) with a specific substitution

for X and Y , the TNTP approach uses the topic-based unification, which unifies #T1(X, Y)

only with facts whose predicates belong to topic 1 (F1). Let’s assume that |F1| = m. The

unification of #T1(X, Y) with each of the m facts is then performed pairwisely (predicate with

predicate, first argument with first argument, and second argument with second argument)

and a body atom unification score Sqi
is generated corresponding to each initial query qi in

the batch. This is performed for each of the 50 queries in the batch, so the unification for

#T1(X, Y) generates a matrix of size 50 × m, where each row i captures the unification of

#T1(X, Y) with the m facts in F1, corresponding to proving query qi in the batch. What

is important to notice here is that because the filter of facts in KB is only based on the

topic of the predicate, then for every query in the batch, the number of facts considered

for the unification of #T1(X, Y) is fixed and given by |F1|. This is not the case when we

control the unification in terms of subdomains, as this will depend on the number of facts

in KB that have arguments belonging to the same subdomain of the arguments given in the query.

Consider one of the queries qi(ai, bi) in a given batch. In TSNTP, the unification of the

body atom #T1(X, Y) chooses the facts from KB that have predicates belonging to the topic

1 and among these facts, chooses only those that have first argument belonging to the same

subdomain cluster as that of the constant ai used in the current substitution of X. As different

queries in the batch may use different constants as first argument, the number of facts in KB

chosen based on the subdomain is not the same across different queries in the same batch,

causing the unification process for the atom #T1(X, Y) to generate ‘sparse matrices’. An

example of the uneven selection of constant unifications for the first argument of queries in a

given batch is depicted in Figure 4.5. Constants c1,..., cm are the arguments of the facts that

appear in F1 when unifying #T1(X, Y) and constants a1,..., a50 are the 50 constants that appear

as first argument in the 50 queries of a given batch. So, for substitution X/a1 the unification of

#T1(X, Y) would consider only facts in F1,1 ⊆ F1 which have predicates belonging to topic 1

and first arguments belonging to subdomain 1, where S1 = sub(a1).

4.2 Challenges in Implementing TSNTP 65

Fig. 4.5 An example unification between 50 groundings of a variable ‘X’ ([a1, a2, ..., a50]) and constants
in the first argument of selected facts ([c1, c2, ..., cm]). The highlighted area in the matrix indicates
the items that are considered for unification based on subdomains. The non-highlighted area in the
matrix are unifications that need to be ignored, due to unmatched-subdomains. The ∗ represents
soft-unification between two embeddings, which is computed using the RBF kernel as explained in
Section 3.1.2. The highlighted area applies to each operator (i.e. multiply, subtraction) in the RBF

kernel to simplify the computation, where for each operator only the highlighted parts are used for
computation. This matrix can be represented by a sparse matrix.

To avoid computations with sparse matrices (which are inefficient in Tensorflow3), TSNTP

orders the entire KB by topics of the predicates, and within each of these groups, facts are

ordered by the subdomain of the first argument. So, if for a given KB we have T topics and S

subdomains, the ordered KB will be KB∗ = {F1,1,,F1,S,F2,1, ...,F2,S, ...,FT,1, ...,FT,S}. The

ordering essentially induces a partition over the initial KB. Similarly, query batches are formed

so that queries in the same batch have their two arguments belonging to the same respective

subdomains. As a result, given a batch with 50 queries grouped in this way, the substitution of

X would be with constants that belong to the same subdomain, say Sj. Therefore the 50 body

atom unifications of #Tn(X, Y), with respect to the different 50 groundings of X, will all refer

to facts from the group Fn,j ⊆ KB∗. The matrix unification process is in this case simplified

dramatically, as facts will be selected only from the matched subdomain Fn,j for all queries in

the same batch. For example, the unification for the first argument of the 50 queries given in

a batch shown above in Figure 4.5, can be computed in TSNTP using a subdomain specific

matrix as illustrated in Figure 4.6, instead of using sparse matrices.
3In https://github.com/tensorflow/tensorflow/issues/46706, other users of Tensorflow also identified the same

problem and it is reproduceable. For example, using the division operator for a dense matrix takes 0.0625s,
whereas it takes 0.5718s for a sparse matrix.

66 Topic-Subdomain NTP

Fig. 4.6 If all groundings of X ([a0, a1, ..., an]) belong to the same subdomain, the big unification matrix of
Figure 4.5 can be replaced by the smaller unification matrix shown here, ignoring unmatched subdomains. This
simplification can improve computational efficiency.

4.3 The TSNTP Solution

In order to process queries in batches efficiently and avoid the computation challenges caused by

sparse matrix computation, TSNTP restricts both arguments of queries within a query batch

to belong to the same respective subdomain. This is achieved by shuffling queries in the KB

according to subdomains of both arguments. With this restriction, for each query batch TSNTP

could prove a body literal with a subset of facts in a given topic and subdomain, assuming that

their first arguments belong to the same subdomain. Subdomains are used to shuffle queries

with respect to both their arguments. This allows the restricted unification to be applied also to

TTRs such as #H(X, Y) :- #T2(Y,X). In that case, the subdomain of Y determines which Fi,j

to choose when unifying the body atoms #T2(Y,X). This section presents the main features

of TSNTP: shuffled query generation, simplification of body atom unification with partitioned

query batches, computational tree and induction algorithm.

Shuffled Query Generation. An important feature of TSNTP is that queries are grouped

according to their subdomains. Same as TNTP, each epoch of training uses a different query

set, which is generated by corrupting facts in KB randomly using the closed-world assumption.

In TSNTP the query set is also partitioned.

Definition 4.3.1. Let KB be a knowledge base with S subdomains, S1, S2,...,SS, and let Q

be a query set. The shuffled query set Q∗ = {Qs1,s1, ..., Qs1,sS, ..., QsS,s1, ..., QsS,sS} is the set of

queries where Qsi,sj, includes all queries from Q whose first argument embedding belongs to

4.3 The TSNTP Solution 67

subdomain Si and second argument embedding belongs to subdomain Sj . For each query q(a, b)

in Q, there is a unique si and sj such that sub(a) = Si and sub(b) = Sj and q(a, b) ∈ Qsi,sj.

During training, fixed sized batches of queries are created from the set Q∗ so that all queries in

a batch belong to one group Qsi,sj. To maintain a fixed batch size, queries may be duplicated

in some batches. In this way the fact unification in a branch can be simplified. Given that all

queries in a batch belong to a group Qsi,sj , the fact branch of a TSNTP computational tree can

unify just with facts whose first argument embedding belongs to Si, meaning all facts in Fsi.

This is in contrast to TNTP, where the fact branch unifies with all facts of a given KB. Note

that we do not use both subdomains to cut the number of fact branches, because this might cut

down too many facts. Selecting facts according to both subdomains could be applied to very

large datasets but we leave this as part of our future work.

Body Atom Unification. The shuffled query set and the partition of facts in a given KB

can be used to define a simpler body atom unification process.

Definition 4.3.2. Let KB be a knowledge base with a partitioned F∗ set of facts, and let Q∗

be a shuffled set of queries. Let #Ti(V 1, V 2) be a body condition of a TTR to be proved in

a computational tree, where V 1 is substituted by a constant a whose embedding belongs to

subdomain j. The TSNTP body atom unification, denoted topic_subdomain_uni, computes

the unification between #Ti(V 1, V 2) and facts in Fi,j.

Consider for instance the following set of TTRs:

#H(X, Y) :− #T1(X, Y).

#H(X, Y) :− #T1(Y, X).

#H(X, Y) :− #T1(X, Z), #T2(Z, Y).

The first variable of each body atom appears in the head atom. Since all queries in a batch

have first argument’s embedding belonging to the same subdomain, it is safe to apply the

TSNTP body unification given in Definition 4.3.2 above. However, if the first variable of a

body atom does not appear in the head atom, as it is the case for the body atom #T2(Z, Y),

the substitutions for Z would depend on the unification of the previous body literal and may

well be different across the different unifications of #T1(X,Z). Hence the body unification

for #T2(Z, Y) has to be the one used by TNTP. So for the third TTR given above, the two

body atoms are proved in two different ways: #T1(X,Z) is proved using topic_subdomain_uni

whereas #T2(Z, Y) is proved using topic_based_unification.

68 Topic-Subdomain NTP

Computational Tree. We present now an example of computational tree generated by

TSNTP. We consider a TTR rule with transitivity, and a partitioned set of facts F ∗ generated

from two topics T1 and T2 and two subdomains S1 and S2. The shuffled batch of queries shown

in Figure 4.7 includes queries from Qs1,s1. So the body unification of the first body condition is

performed by topic_subdomain_uni which unifies #T1(X,Z) with all facts in F1,1. The body

unification for the second body condition is instead performed by topic_based_unification,

which unifies #T2(Z, Y) with all facts in F2. Figure 4.7 illustrates a computational tree

generated by TSNTP, using a copy of a TTR.

Fig. 4.7 A TSNTP computational tree for a transitive TTR rule. The knowledge base is partitioned
according to topics (T1 and T2) and subdomains (S1 and S2). Ft_s represent a partition of the KB
with the topic t and the subdomain of the first argument s. Fi represents all facts in topic i and
Fsj represents all facts whose first argument is the subdomain j. For a query batch with the same
subdomain combinations, the computational tree consists of topical template rules and facts in the
matched subdomain (i.e. Fs1 is used for fact branches, because topics are variables in the query batch
due to shuffling). In a body atom, such as #T1(X, Z), where all groundings of X have the same
subdomain, topic_subdomain_uni is used to prove this body atom, using facts with the matched
topic and subdomain. For a body atom, such as #T2(Z, Y), topic_based_unification is used in the
proof, because groundings of Z would be different for queries in the batch.

4.3.1 TSNTP Training Algorithm

The high-level algorithm for TSNTP is summarised as follows:

1 def TSNTP_induction(facts, rules, train_data, topics, subdomains):

2 theta = init_emb(facts, rules)

3 ttrs = build_ttr(rules, topics)

4.3 The TSNTP Solution 69

4 facts = partition_facts(facts, topics, subdomains)

5 train_data = shuffle_queries(train_data, subdomains)

6 tsntp = build_topic_subdomain_computational_tree(facts, ttrs, theta)

7 for i in range(0, TRAIN_EPOCH):

8 theta = train(tntp, theta, train_data)

9 induced_rules = decode_rules(theta, ttrs)

10 return theta, induced_rules

Algorithm 4.2 The TSNTP induction algorithm. This algorithm differs from the TNTP induction
algorithm in line 4-6, where facts are partitioned by both topics and subdomains, queries are shuffled
by subdomains and a topic and subomain computational tree is used.

TSNTP receives as input a KB, a set of templates rules, a training set, and a set of topics and

subdomains generated by Algorithm 4.1. This algorithm is similar to that of TNTP shown in

Algorithm 3.3, except for lines 4-6, where the partitioned F∗ set of facts is generated together

with the shuffled Q∗ of the query set. The computational tree is then constructed as described in

Section 4.3, and trained through gradient descent. The scaling factors and decoding mechanism

introduced in TNTP applies to TSNTP as well.

Summary. TSNTP uses topics and subdomains to narrow down the number of facts involved

in each body atom unification when traversing the computational tree. In particular, in

topic_subdomain_uni only a subset of facts Fi,j for a given topic i and subdomain j is used

and in topic_based_unification only a subset of facts Fi for a given topic i is used. Note

that these subsets are known when constructing the computational tree. This simplification is

supported by a shuffle of query batches, which ensures that queries in a given batch have the

same subdomain combination for their argument embeddings, and can therefore be processed

together. Our experiments demonstrate that TSNTP has an improved computation time by at

least one order of magnitude (depending on the subdomain number and constant distribution)

compared to TNTP, while maintaining similar accuracy on the same benchmark datasets. The

evaluation of this approach is presented in Chapter 7.

Chapter 5

Negation-as-Failure TSNTP

In the previous chapter we have shown how our TNTP framework can be made computationally

more efficient by means of subdomain clustering. However, TNTP and TSNTP can only learn

definite rules, which are not expressive enough for representing commonsense. The system,

Negation-as-failure TSNTP (NAF TSNTP), building upon the TSNTP, is a first step towards

learning first order normal rules.

We take inspiration from the work ‘Exception-enriched Rule Learning from Knowledge Graphs’

[Gad-Elrab et al., 2016] and propose a method that induces normal rules in two phases. The

first phase, consisting of FNTP and TSNTP induction, induces a set of definite rules. The

second phase revises these learned definite rules by adding potential negated atoms and selects

the best of such revisions according to a quality function that evaluates their effectiveness in

terms of improved accuracy. An assumption is that only learned rules are revised. An overview

of the NAF TSNTP architecture is given in Figure 5.1.

5.1 Exception-enriched Rule Learning from Knowledge Graphs 71

Fig. 5.1 An overview of NAF TSNTP architecture. The NAF TSNTP consists of two phases. The
first phase is the same as TSNTP, where a knowledge base (KB) is given as input to train FNTP,
which are then used to create topics and subdomains for TSNTP induction. The second phase receives
the output of the TSNTP induction as inputs, including trained embeddings and definite rules. The
normal rule induction phase then creates and selects a set of normal rules to replace the definite rules,
generating a mixture of definite and normal induced rules.

In the following sections, we firstly present a summary of [Gad-Elrab et al., 2016] and then

introduce the mechanism of NAF TSNTP, including the NAF TSNTP pipeline, implementation

details and a high-level algorithm.

5.1 Exception-enriched Rule Learning from Knowledge

Graphs

We summarise here the work in [Gad-Elrab et al., 2016], which has inspired our two-step method

for inducing normal rules. Similar to our TSNTP system, they also assume body literals only

match with facts, not other rules, but in their case they restrict the signature to unary predicates.1

Their method uses a symbolic approach, which they describe as ‘a method for effective revision

of learned Horn rules by adding exceptions (i.e., negated atoms) into their bodies’, where

negated atoms are created using predicates in the signature. For example, a negated atom ‘not

rainy(X)’ could be appended to a Horn rule goodWeather(X) :- sunny(X), forming a more

specific normal rule goodWeather(X) :- sunny(X), not rainy(X). They propose a 2-phase

approach, where definite Horn rules are first learned and then rule bodies are refined with

appropriate negated atoms. To select normal rules that improve data prediction among all

potential normal rules, they use a rule ranking measure to evaluate the performance of normal

rules. The high-level architecture of their approach is summarised in Figure 5.2.
1Some unary atoms are reified binary atoms and others, used in their exception predicates capture exception

individuals.

72 Negation-as-Failure TSNTP

Fig. 5.2 The high-level architecture of ‘Exception Enriched Rule Learning’ from [Gad-Elrab et al.,
2016]. The architecture consists of four steps. In the first step, a set of Horn rules are selected from a
knowledge graph. Then, an exception witness set is created for each Horn rule, including the set of
possible negated predicates for the rule. In step 3, a set of rules is revised, where all possible negated
atoms generated by the exception witness set are appended to each Horn rule respectively. In step 4,
the revised rule set for each Horn rule is refined, which selects the best normal rule using a quality
function.

The architecture in Figure 5.2 consists of four steps. In Step 1, definite Horn rules are extracted

from a given knowledge base represented as a knowledge graph. This extraction method could

be performed by any rule mining algorithm, either symbolic or neural, that can return symbolic

rules. In their work, the symbolic algorithm FPGrowth is used. In Step 2, for each rule r, an

exception witness set EWS is created, denoted as EWS(r,A), where A is the set of facts in the

knowledge graph. Assuming a rule has the form a(X)← b1(X), ..., bk(X), EWS(r,A) consists

of a maximal set of unary predicates, such that each predicate ei in EWS(r,A) satisfies two

criteria: (1) there is at least one fact of the form ei(c′) in A, where a(c′) can be deduced from r,

but it is not in A; (2) for all constants c where a(c) can be deduced from r and a(c) is in A,

ei(c) is not in A. The first criterion ensures that there is at least one exception where a(c) is

true according to r, but not in the knowledge graph. This scenario indicates that r might be

too general and appending a negated atom might make it more specific. The second criterion

prevents the situation that a fact in the knowledge graph, which is also deduced from r, would

no longer be deduced after appending the negated atom to r. If a fact can be proved by multiple

rules, each rule needs to satisfy the second criterion. In Step 3, it constructs candidate rule

revisions for each Horn rule by appending a negated atom with predicates in its EWS. Because

of unary atoms, a negated unary predicate captures an exception individual, even though they

use the term exception predicates. In step 4, it selects the best rule revisions according to a

quality function. Finally, a rule set RNM is generated with both definite rules and normal rules.

5.1 Exception-enriched Rule Learning from Knowledge Graphs 73

Figure 5.3 illustrates an example of normal rule induction using this architecture.

Fig. 5.3 A hypothetical example of ‘Exception Enriched Rule Learning’. In step 1, a set of Horn rules
is extracted from the knowledge graph. In step 2, an exception witness set is created for each Horn
rule, which includes its potential negated predicates. In step 3, each predicate in the exception witness
set of a Horn rule is appended to the Horn rule independently. Step 4 selects the best normal rule for
each Horn rule using a quality function, which generates a set of output normal rules.

The method of [Gad-Elrab et al., 2016] learns nonmonotonic rules under the open-world as-

sumption (OWA) that assumes an atom that is not in the knowledge graph could be simply

missing. This is different from our system which employs the closed-world assumption, namely

CWA, that assumes an atom that is not in the knowledge base to be false. In [Gad-Elrab et al.,

2016], exceptions, in terms of negated atoms, can be viewed as a theory revision under OWA. It

uses a quality function q to quantify whether a normal rule is ‘better’ than its definite part,

by measuring the improvement on prediction accuracy. It proposes a few quality functions.

However, none of these functions offer any guarantee on correctness. It could only ensure that

given the current knowledge graph, these normal rules represent the knowledge graph better

than definite rules, but this might not hold if more facts are added to the knowledge graph, due

to the non-monotonic assumption used in this paper.2

The negated atoms need to be selected carefully, because extending a definite rule to a nor-

mal rule is not always beneficial. By adding negated atoms to definite rules, the number
2In our work, under the closed-world assumption, our knowledge base is fixed, so we do not have this problem.

74 Negation-as-Failure TSNTP

of false positive predictions could be reduced. In other words, the facts deduced by normal

rules are a subset of facts deduced by their definite parts. On the other hand, the negated

atom could increase the number of false negative predictions. If a wrong negated atom is

added, some facts that were deduced by the definite rule might not be deduced any more by

the normal rule. As a result, the quality function is important to identify suitable negated atoms.

The work in [Gad-Elrab et al., 2016] makes some further assumptions which are different

from those made in our work. In particular, it is based on symbolic rules with hard-unification,

so it cannot exploit valuable semantic information gained through TSNTP training. They

assume different predicates have distinct meanings and a predicate is either in EWS or not

in it, without a middle ground, so they cannot take the similarity between different symbols

into account. Also, it supports unary atoms only, whereas binary atoms are used in most

of knowledge base and knowledge graph applications. Use of hard-unification and the unary

signature make it hard to be incorporated to our system directly.

5.2 Normal Rule Induction

As mentioned above, our NAF TSNTP system induces normal rules also in two phases. The

first phase uses TSNTP to train embeddings and to induce definite rules. The second phase

focuses on inducing normal rules by extending the definite rules with negated atoms. This

section focuses on the normal rule induction phase. We firstly present our normal rule induction

pipeline, the syntax of normal rules, and how we support normal rules in a computational tree.

5.2.1 Normal Rules Induction Pipeline

Figure 5.4 illustrates the pipeline of the normal rule induction phase in NAF TSNTP.

5.2 Normal Rule Induction 75

Fig. 5.4 The normal rule induction pipeline of NAF TSNTP. The pipeline starts with the outputs of
TSNTP, namely the KB, trained embeddings and induced definite rules. In the first step, Z definite
rules are selected from induced definite rules by inspecting the frequency that a rule is used to prove
positive queries. In the second step, a set of potential normal rules is created for each rule in the Z

definite rules by appending negated atoms created using predicates in the KB. In step 3, a best normal
rule is selected for each definite rule. In the end, a mixture of definite and normal rules is induced.

As illustrated in Figure 5.4, the normal rule induction starts with a KB and the outputs of

the TSNTP training, including trained embeddings and induced definite rules. The normal

rule induction phase consists of three steps and includes no additional embedding training. In

Step 1, the Z most frequently used definite rules of corrupted queries are selected from the

given induced definite rules to form a set of definite rules, denoted by Z ({z1, ..., zZ}). Recall

that the set of P known predicates is denoted by P , each zi in Z is augmented P times, each

time with a different possible negated atom from P, thus forming P number of normal rules.

This step generates Z × P normal rules in total. For the efficiency of computation, only one

negated atom is added to each induced Horn rule. Otherwise, the number of potential normal

rules would grow exponentially, e.g. adding two negated literals would result in P × P normal

rules being created from each Horn rule. In Step 3, all potential normal rules of each selected

definite rule zi are evaluated by a quality function ns and the best normal rule of each zi

is selected. ns provides a way to quantify the improvement in prediction accuracy for each

query, by checking the difference between the proof score generated by the definite rule zi

and its extension. If its evaluation score is better than a threshold, it can replace zi. For the

efficiency of computation, only one normal rule is selected for each definite rule. If multiple

normal rules are generated for each Horn rule, the final computational tree could potentially

contain many rule branches. As a result, when this trained computational tree is used to

76 Negation-as-Failure TSNTP

prove queries, it would not be as computationally efficient as the computational tree with one

normal rule per Horn rule. Similarly, for the efficiency of computation, only one negated atom

is selected for each definite rule. Note that soft-unification still holds for negated atoms, so

the predicate of a negated atom could represent multiple similar predicates. The final out-

put is a set of induced normal rules, which is a mixture of definite rules and selected normal rules.

As shown by Figure 5.4, NAF TSNTP has a similar high-level architecture to that presented in

[Gad-Elrab et al., 2016]. The ‘extract definite rules’ step in Figure 5.2 is equivalent to TSNTP

training plus top-Z definite rules selection (our step 1). We do not have the ‘create exception

witness set’ step, because we use all predicates directly and leave the selection to step 3. We

have the same ‘construct rule revisions’ step and ‘select best revisions’ step, except that our

quality function supports soft-unification.

5.2.2 The Syntax of Normal Rules

In order to induce normal rules that support soft-unification, the computational tree of NAF

TSNTP needs to support the syntax of normal rules and compute proof scores of negated atoms.

In this section, we introduce the syntax of normal rules and in Section 5.2.3, we explain how to

compute proof scores of normal rules in a computational tree.

Recall that in TSNTP, TTRs are definite rules of the form:

#H(X, Y) :− #T5(X, Z).

#H(X, Y) :− #T3(X, Z), #T4(Z, Y).

where each induced predicate #Ti represents a predicate in topic i and has its own trained

embedding, independent from the embeddings of known predicates.

In NAF TSNTP, a normal rule consists of a definite rule augmented with a negated atom of a

known predicate (i.e. p21, p32), such as in the rules below. As the negated literal is added after

the completion of the TSNTP training, it is the embedding of each predicate that is used (not

the English symbol).

#H(X, Y) :− #T5(X, Z), not p21(X, Y).

#H(X, Y) :− #T3(X, Z), #T4(Z, Y), not p32(X, Y).

5.2 Normal Rule Induction 77

Note that, unlike induced predicates with ‘#’, the predicate in each negated atom is known. As

they are added once the training of TSNTP is complete, these negated (known) predicates can

support soft-unification in the same way as positive predicates.

5.2.3 Soft-unification for NAF Literals

We next describe the extension of soft-unification to negated atoms. As explained in Section

5.2.2, to capture NAF, the computational tree is extended to compute the proof score of

each negated atom in a way that captures negation-as-failure. Whenever a negated atom is

encountered, the proof score of the atom is computed using the function neg_ts_atom_uni

defined in Definition 5.2.1, instead of the normal topic_subdomain_uni.

Definition 5.2.1. Given a negated atom in the form of not a, where a is an atom,

neg_ts_atom_uni(a) defines the proof score of ‘not a’ as 1− topic_subdomain_uni(a).

The score calculation defined in Definition 5.2.1 captures the semantics of negation-as-failure. In

Logic programming, ‘not a’ is true when there is no fact or rule in the knowledge base that can

deduce ‘a’. In our system, under soft-unification, the proof score of ‘a’ indicates the ‘chance’ that

‘a’ is true in the knowledge base. That is, if ‘a’ has a high proof score in topic_subdomain_uni,

‘not a’ would be close to zero and vice versa. Figure 5.5 demonstrates two common scenarios

under NAF TSNTP when proving a negated atom.

Fig. 5.5 Two typical scenarios when proving a negated atom not a in NAF TSNTP. In the first scenario,
as shown on the left-hand side, a is far away from all other known facts in the matched topic and
subdomain (according to the predicate and first argument respectively), so the proof score of a is close
to zero and the proof score of not a is close to one. In the second scenario, as shown on the right-hand
side, a is very close to other facts in the matched topic and subdomain, so the proof score of a is close
to one and the proof score of not a is close to zero.

In Figure 5.5, each point represents a fact. If two points are close, it means that they are similar

and have a high unification score. On the left hand side, a is far away from all facts, so the proof

score of a is close to zero, using not a = 1− a, not a ≈ 1. On the right hand side, a is close to

78 Negation-as-Failure TSNTP

some facts, so the proof score of a is close to one, then not a ≈ 0. Using not a = 1−a as defined

by Definition 5.2.1 fits the semantics of negation-as-failure naturally, because the proof score of

a represents the best possible proof score when unifying a with its closest relevant facts selected

based on its topic and the subdomain of its first argument. So if these facts cannot prove a, any

other fact would be even less likely to prove it. It is therefore sufficient to compute the soft

unification of a negated atom with respect to just the topic and first argument subdomain of

the atom itself. As a result, 1− a is the proof score of not a.

5.3 Implementation

In this section we describe how unification for negated literals is utilised in our NAF TSNTP

architecture. We first discuss in Section 5.3.1 how the definite rules for revision are selected

(Step 1 in Figure 5.4), then, in Section 5.3.2, how normal rules are constructed from these

selected definite rules (Step 2 of Figure 5.4) and finally, in Section 5.3.3 how normal rules are

evaluated to decide which ones are best and should be used to replace the original definite rule

that has been revised (Step 3 of Figure 5.4).

5.3.1 Step 1: Select Definite Rules

As shown in Figure 5.4, the starting point of the normal rule induction is a set of induced

definite rules. In our case, these definite rules are induced using TSNTP training.

TSNTP learns a set of rules, as specified by TTRs, but not all of them are useful. Re-

call that TTRs specify the topics of body atoms and each TTR explores rules with different

topic combinations. If a rule is used infrequently in training, it will not be well-trained, so it is

unhelpful for it to be considered for revision. Only those rules that were frequently selected for

updating during training, and therefore likely to be useful rules, are considered for revision in

our system. We select trained definite rules according to the frequency with which they are used

in proving corrupted queries. This is because we aim to reduce the proof scores of corrupted

queries, especially of false positives. Recall that the proof score of a rule is the minimum score

among the proof score of each atom, so if the score of a negated atom is approximately equal to

one, it has negligible effect on the overall score of the rule. On the other hand, if the score of a

negated atom is near to zero, the score of the rule would be reduced. For these reasons, the

proof score of a normal rule is always less than or equal to that of the definite rule from which

it extends. Adding an extra atom to a body condition can never increase the proof score of a

5.3 Implementation 79

query. As a result, normal rules could be used to reduce false positive predictions. An ideal set

of extended normal rules decreases the proof scores of the corrupted queries while keeping the

proof scores of positive queries unchanged.

In order to identify the frequently used definite rules induced by TSNTP, an evaluation

TSNTP computational tree is constructed, denoted as TSNTP_Definite, using the training

dataset as input. This tree is identical to the tree used in TSNTP training, but it does not

include the fact branch at the top-level, as illustrated in Figure 5.6. Also, this tree includes

forward passing only to generate a proof score for each query, unlike the TSNTP training tree

that also computes loss value and backpropagates gradients.

Fig. 5.6 The computational tree of TSNTP_Definite. The queries are all queries in the training set,
including both positive queries and negative queries. The induced definite rules are the outputs of
TSNTP induction whose embeddings are trained. The only difference between this computational tree
and that of TSNTP induction is that this tree does not have fact branches, so all proofs need to be
proved by rules. Recall that the proof score of each query is the maximum proof score among all proof
branches, as defined by Definition 3.4.2. The score of each query is stored in definite_score_dict and
for each rule zi the queries for which zi contributed the score of the query is stored in a list associated
with zi. There are two such dictionaries, one storing the positive queries proved by each zi, namely
pos_queries_dict, and one storing the negative queries proved by each zi, namely neg_queries_dict.

Different from the TSNTP training tree presented in Chapter 4, the tree in Figure 5.6 does

not contain any fact branch (although the same amplification hyperparameters α and β, used

in scoring rules, still apply for the consistency of proof scores, so that the proof scores of

TSNTP_definite can be compared with the proof scores generated by the trained TSNTP).

Proofs need to be performed by one of the trained definite rules, maximising the involvement of

rules. Note that, when proofs are forced to go through rule branches, some queries that were

proved by facts in TSNTP are proved differently in TSNTP_Definite. This is not a problem,

80 Negation-as-Failure TSNTP

because TSNTP only outputs the proof score of the best branch. Without facts, a query could

be proved by a rule with a relatively lower score. In normal rule induction process, the absolute

values of proof scores are not important, but the differences between the proof scores generated

by definite rules and those generated by normal rules (later on) are important.

The evaluation results of TSNTP_Definite are stored as baselines and they are used to compare

the evaluation results generated by normal rules later on. The evaluation results include: a dic-

tionary definite_score_dict that stores the proof score (value) generated by TSNTP_Definite

for each query (key) and two dictionaries pos_queries_dict and neg_queries_dict respectively

in which each definite induced rule zi acts as a key and stores as values all positive and corrupted

(negative) queries that are proved by zi, respectively. We track the proof scores and queries

dictionaries of both positive and corrupted queries, because they will be used in Step 3 to

compute whether the normal rules improve the performance.

After the evaluation, a set Z of size Z is created that consists of the definite rules used

the most by corrupted queries in TSNTP_Definite. Z is a hyperparameter. The rules in Z are

extended to normal rules in Step 2.

5.3.2 Step 2: Build Normal Rule Sets

In Step 2, for each definite rule z in Z, a set of normal rules is constructed by appending

a negated atom to the body of z. To maintain the semantic information of predicates, we

use all known predicates P in the KB to build the negated atoms and leave the normal rules

selection problem to the next step, selected based on a quality function defined in Section 5.3.3.

As a result, for each definite rule z, in the form of #H(X, Y) :- #T1(X,Z), ..., P number of

normal rules would be constructed, denoted as {z_1, ..., z_P}, where P is the number of known

predicates {p1, p2, ..., pP} in the knowledge base, as listed below.

#H(X, Y) :− #T1(X, Z), ..., not p1(X, Y).

#H(X, Y) :− #T1(X, Z), ..., not p2(X, Y).

...

#H(X, Y) :− #T1(X, Z), ..., not pP(X, Y).

Note that in order to support the negation-as-failure computation as defined in Definition

5.2.1, we modify the order of the step where the amplification hyperparameter β is applied.

Recall that in Definition 3.4.2, β is an amplification hyperparameter that amplifies the proof

5.3 Implementation 81

scores of rules to improve the chances that rules are selected over facts. In both TNTP and

TSNTP, β is applied after the proof score of a rule is computed. For example, given a rule

r of the form h :- b1, b2 (h is the head literal and b1, b2 are body literals), the proof score

of a query q using this rule is tanh(β × rule_proof_score(r)), where the rule proof score

of r is min{atom_proof_score(h), atom_proof_score(b1), atom_proof_score(b2)}. In NAF

TSNTP, the tanh and β are applied to each atom directly and they are no longer applied to

the rule_proof_score(r). In that case, the proof score of q using the rule is min{tanh(β ×

atom_proof_score(h)), tanh(β×atom_proof_score(b1)), tanh(β×atom_proof_score(b2))},

which is mathematically equivalent with the proof score generated by TNTP and TSNTP

due to the monotonic characteristics of tanh and multiplying by β. As a result, the proof

score returned by topic_subdomain_uni(a) of an atom a is already amplified by β. The

amplification is applied to each atom separately, so that when proving a negated atom not a

using 1 − topic_subdomain_uni(a) according to Definition 5.2.1, the topic_subdomain_uni

of a is amplified, representing the final score of a.

5.3.3 Step 3: Evaluate and Select Normal Rules

Step 3 is the most important step in normal rule induction. It evaluates each potential normal

rule independently and for each definite rule z in Z, it selects the normal rule extending z that

has the lowest quality function value. We firstly introduce the quality function that measures

the effects of each normal rule and then introduce how we evaluate each potential normal rule

independently using the quality function and select normal rules.

Quality function. We now describe the quality function used to select which normal rules to

keep from all the potential normal rules constructed in Step 2. To quantify whether a normal

rule z_n is better than the definite rule z that it extended from, we need to measure its impacts

from two perspectives: the average scores of positive queries proved by z should remain the same

and the average scores of corrupted queries proved by z_n should decrease as much as possible

compared with that computed using only z. To quantify the changes, we define a normal rule

scoring function ns, as a quality function, which measures the performance of a normal rule

z_n compared with its definite part z:

ns(z_n) =
∑

q∈z_pos(sq − s′
q)

|z_pos| +
∑

q∈z_neg(1− (sq − s′
q))

|z_neg| (5.1)

82 Negation-as-Failure TSNTP

where z_pos (z_neg) is the set of positive (corrupted) queries proved by definite rule z respec-

tively (extracted from pos_queries_dict and neg_queries_dict); sq is the score of query q in

definite_score_dict and s′
q is the score of query q in z_n_score_dict proved by z_n.

To select the best normal rule, the quality function score, ns, should be minimised. The

first term of Equation 5.1 measures the changes of positive queries after adding the negated

term. The ideal case is when sq and s′
q are the same for each positive query, which means that

the negated atom does not decrease the proof score of positive queries. The second term of

Equation 5.1 measures the changes of proof scores of corrupted queries after adding the negated

atom. In this case, the bigger the difference between sq and s′
q, the better, because it means that

false positive predictions are reduced. As a result, the smaller the ∑
q∈z_neg 1−(sq−s′

q), the better.

The ns(z_n) measures the improvement of z_n compared to z, in terms of overall scores

across all queries proved by z. For each definite rule z in Z, the one with the lowest ns score is

selected as best extension, denoted as z_normal. According to Equation 5.1, ns score is a float

in the range [0, 2]. If ns(z_n) is close to 2, both terms in Equation 5.1 are close to 1. It means

that for each positive query, the negated atom reduces its proof score from 1 to 0 and for all

corrupted queries, none of their proof scores is reduced at all. This case is the worst possible

case that could result from adding a negated atom. In contrast, if ns(z_n) is close to 0, both

terms in Equation 5.1 need to be close to 0. It means that for all positive queries, their proof

scores remain the same as before and for each corrupted query, its proof score decreases from

1 to 0. This case is the ideal case. Note that, such ideal case could nearly never occur in our

system, even if a negated atom is ideal. This is because our soft-unification rarely generates a

high unification score around 1. A unification score of 0.7 is considered as a high unification

score. As a result, ns ∼ 0 is not possible in practice. In general, the lower the ns score, the

better the quality of the induced normal rule.

In order to decide whether a selected normal rule should replace its definite rule, a hyper-

parameter NAF_THRESHOLD is introduced, which is a float decided by users in the range

[0, 2] and reflects how strict the user accepts a normal rule extension. If ns(z_normal) <

NAF_THRESHOLD, the selected normal rule replaces the original definite rule. Similar with

ns score, if NAF_THRESHOLD is close to 0, it only picks the normal rules that improve the

performance significantly. If NAF_THRESHOLD is close to 2, it means that the restriction

is loose and all Z normal rules can replace their definite rules respectively, regardless of the

5.3 Implementation 83

quality of the normal rules. The ideal value of NAF_THRESHOLD is found empirically via

parameter tuning using the validation dataset (in our experiments, NAF_THRESHOLD is

around 1.0). Other definite rules not in Z are kept as their original form. As a result, a new set

of induced rules is generated, with some definite rules and up to Z normal rules. Note that the

formula considers each rule independently and does not consider interaction between rules when

deciding to retain or replace a particular induced rule.

Evaluate Normal Rules. We now describe how the normal rules constructed in Step 2 are

evaluated. This evaluation builds an independent computational tree for each normal rule z_j

(1 ≤ j ≤ P), which contains the normal rule branch only. Each z_j is evaluated with queries

that were proved by its definite rule z. Recall that in Step 1, the TSNTP_Definite procedure

stored two dictionaries pos_queries_dict and neg_queries_dict, to record all queries that were

proved by z. Figure 5.7 illustrates a computational tree for evaluating a normal rule.

Fig. 5.7 A computational tree constructed to evaluate a normal rule
#h(X, Y) :- #T 1(X, Y), not manage(X, Y), a potential extension of a definite rule z, denoted as z_j.
The queries include all positive queries that were proved by z, extracted from z_pos_queries_dict,
and all negative queries that were proved by z, extracted from z_neg_queries_dict. This tree
only consists of one rule branch, the normal rule branch. The proof of the normal rule is the
same as the proof of definite rules in TSNTP, except the negated atom. When proving the
negated atom not manage(X, Y), the computational tree firstly computes manage(X, Y) using
topic_subdomain_uni in TSNTP, which unifies manage(X, Y) with all facts in the selected topic
and subdomain and generates a proof score ps. Then, the proof score of not manage(X, Y) is 1− ps.
A z_j_score_dict is used to store the score of each query proved by this normal rule.

This tree contains only one branch, the normal rule branch. Thus, the proof scores of queries

depend on this rule completely. The queries of the tree are not the full training dataset;

they are the list of positive queries and corrupted queries stored in pos_queries_dict and

neg_queries_dict, retrieved by the key ‘z’. Thus, the queries of the normal rule z_j are the

84 Negation-as-Failure TSNTP

queries in pos_queries_dict[z] plus neg_queries_dict[z]. The evaluation results of the tree

are stored as z_j_score_dict that records the proof score (value) of each selected query (key).

Other normal rules are evaluated in the same way.

Each normal rule generated by Step 2 is evaluated as shown in Figure 5.7. As a result,

Z × P computational trees are constructed, each tree containing one normal rule. These Z ∗ P

computational trees can be evaluated in parallel. As a result, although there are many trees,

each tree only focuses on a given subset of queries.

Figure 5.8 illustrates the P independent computational trees that are constructed in order to

find the best normal rule extension of a definite rule #H(X, Y) :- #T1(X, Y). Other definite

rules in Z and their normal rule extensions are evaluated in the same way.

Fig. 5.8 P independent computational trees of normal rule extensions of the definite rule z. Queries
that were proved by z are given to each independent computational tree and their proof scores are
stored in each z_i_score_dict (1 ≤ i ≤ P).

Figure 5.8 shows P independent computational trees, one for each normal rule. Each tree uses the

same query set, queries of z, and their proof scores are stored in the z_j_score_dict (1 ≤ j ≤ P).

The proof scores of each z_j_score_dict are compared with the proof scores obtained from

TSNTP_Definite to check whether z_j improves the performance of not, according to the quality

function ns, as defined by Equation 5.1. Among these P normal rules, the one with the lowest ns

score is selected to replace the definite rule z if it is less than or equal to NAF_THRESHOLD

(see Section 5.3.1).

5.3 Implementation 85

5.3.4 Algorithm

Algorithm 5.1 captures at a high-level the NAF TSNTP induction mechanism.

1 def NAF_TSNTP_induction(facts, train_data, trained_emb, definite_rules, pred_ids):

2 z_definite_rules, definite_score_dict, pos_queries_dict, neg_queries_dict

3 = TSNTP_Definite_evaluation(trained_emb, definite_rules, train_data)

4

5 normal_rule_dict = {}

6 for z in z_definite_rules:

7 z_pos = pos_queries_dict[z]

8 z_neg = neg_queries_dict[z]

9 min_ns = NAF_THRESHOLD

10 z_normals = create_normal_rules(z, pred_ids)

11 for z_j in z_normals:

12 z_j_score_dict = evaluate_z_j(z_j, z_pos, z_neg)

13 z_j_ns = compute_ns_score(z_j_score_dict, z_pos, z_neg)

14 if z_j_ns <= min_ns:

15 min_ns = z_j_ns

16 normal_rule_dict[z] = z_j

17

18 new_normal_rules = merge_normal_rule(definite_rules, normal_rule_dict)

19 return new_normal_rules

Algorithm 5.1 NAF TSNTP induction mechanism. Line 2-3 is the first step that selects definite rules.
Then, in the outer for-loop, a set of tracking dictionaries are created and a set of normal rules are
created as described in step 2. In the inner for-loop, each normal rule is evaluated independently and
its ns score is computed and evaluated. In the end, the selected normal rules combine with definite
rules, forming the output rule set.

Algorithm 5.1 captures the mechanism of normal rule induction in NAF TSNTP. It receives the

trained results of TSNTP as input, including trained embeddings and induced definite rules,

which is also known as the Phase 1 of NAF TSNTP.

The algorithm starts with TSNTP_Definite evaluation which is Step 1 of normal rule in-

duction phase in Figure 5.4. It forces the queries to be proved by one of these definite rules

(line 2-3). Among them, the Z most frequently used definite rules in corrupted (negative) query

proofs are selected to build normal rules. In line 5, an empty normal_rule_dict is constructed,

which is used to store which selected normal rules would replace their definite rules (in line

6-16).

86 Negation-as-Failure TSNTP

Inside the big for-loop, Lines 7-10 create all possible extensions for each z in z_definite_rules

and set up the environment for further selection. Lines 7-8 retrieve positive and corrupted

queries that were proved by each definite rule z and they are used to evaluate normal rules

extensions of z. In line 9, the initial value of min_ns is set to NAF_THRESHOLD for each

z, which tracks the minimum ns value among normal rule extensions of z. The min_ns is set to

NAF_THRESHOLD, because only a normal rule with ns ≤ NAF_THRESHOLD would

be selected to replace its definite parts. In line 10, each z are extended with all possible negated

atoms, to form a set of normal rules, which is equivalent to Step 2 in Figure 5.4.

The inner for-loop (lines 11-16) shows the process of finding the best normal rule with the

minimal ns score. This is equivalent to Step 3 in Figure 5.4. In this for-loop, each normal

rule z_j is evaluated independently by a computational tree with one branch only and the

proof scores generated by the tree (line 12) are used to compute the ns score (line 13). If

the ns score of z_j is less than or equal to min_ns, it replaces min_ns and updates the

normal_rule_dict of the key z with value z_j. (lines 14-16) Recall that the default value of

min_ns is NAF_THRESHOLD, so if the ns scores of all normal rule extensions of z are

above the threshold, no normal rule would replace z. In that case, there would be no entries in

the normal_rule_dict for key z, and z would remain in its original definite form in the induced

rule set.

After the loop, the normal_rule_dict would contain all selected normal rules that will re-

place their definite counterparts. Line 18 uses each normal rule in normal_rule_dict to

replace its definite rule and merges with other definite rules, which generates the output

‘new_normal_rules’ as shown in 5.4. In the end, a set of rules is induced, which includes definite

rules and normal rules.

5.4 Decoding Normal Rules

The decoding of a normal rule is similar to the decoding method for a definite rule, as described

in Section 3.5. A negated atom ‘not p(X, Y)’ is decoded to its topmost closest neighbours

in the vector space (the actual number is specified by the user), where the decoding score

of the negated atom is the symbol unification score between p and its neighbours. Note

that, since the negated predicate p is selected from known predicates, its closest match is the

known predicate, with the score 1.0 (a perfect match). Its other decodings are the neighbours of p.

5.4 Decoding Normal Rules 87

Here we present an example normal rule induced in UMLS dataset (assume three closest

neighbours of each literal in the induced rule were considered).

#T1(X, Y) :− #T0(X, Y), not isa(X, Y).

0.89 uses(X, Y) :− produces(X, Y), not isa(X, Y).

0.89 uses(X, Y) :− produces(X, Y), not ingredient_of(X, Y).

0.89 produces(X, Y) :− uses(X, Y), not isa(X, Y).

0.89 produces(X, Y) :− uses(X, Y), not ingredient_of(X, Y).

Recall that the decoding score of a rule is calculated as the minimum score of its predicate

decoding scores. The original definite rule is induced by TSNTP, which captures the relationship

between ‘produces’ and ‘uses’ (they correlate highly in the dataset). According to the normal

rule induction method, a negated atom ‘isa(X, Y)’ is selected to extend the definite rule. The

negated atom helps to reduce false positive predictions.

Summary. NAF TSNTP enables normal rule induction that supports negation-as-failure and

soft-unification. The system employs two phases, one phase for a standard TSNTP training and

a second phase for normal rule induction, which constructs and selects normal rules derived from

some of the induced definite rules from TSNTP. The system returns a set of definite and normal

rules according to the quality function given by Equation 5.1, which reduces the number of false

positive predictions while keeping the true positive predictions unaffected. The evaluation of

this approach is presented in Chapter 7.

Chapter 6

Related Works

In this chapter, we present some related neural-symbolic systems that perform query answering,

where given a knowledge base or knowledge graph, they predict the score for a given ground

query or predict the missing entity of a partial query. Various systems have been designed to

tackle the query answering task ([Trouillon et al., 2016], [Dettmers et al., 2018], [Guo et al.,

2016], [Minervini et al., 2017], [Yang et al., 2015], [Rocktäschel and Riedel, 2017], [Minervini

et al., 2018], [Minervini et al., 2020a], [Minervini et al., 2020b], [Das et al., 2018], [Yang et al.,

2017]1) and we have selected typical systems that feature different approaches, such as deep

learning, reinforcement learning and adversarial learning. In all systems, embeddings are used

to represent symbols in the knowledge base, which encode the knowledge base in a neural form

and could take the advantages of both neural networks and symbolic reasoning.

Category Group System

Query answering

Query answering without rules
ComplEx

ConvE

Query answering with given rules
KALE

ASR

Query answering with rule mining DistMult

Rule induction

NTPs

NTP 2.0

GNTP

CTP

Other systems

NeuralLP

MINERVA

RNNLogic

Table 6.1 Related systems considered in this chapter are divided into two main categories: query
answering and rule induction. The query answering category is further divided according to if rules are
supported and whether the rules are learned or not. The rule induction category is further divided
into two groups: systems extending NTP and other systems.

1Notations used in this chapter follow the original notations used in the original papers. Notations used in
each work are independent from other notations and may carry different meanings.

89

We divide the selected related works to two main categories, according to whether rule induction

is involved, as shown in Table 6.1. The first category is earlier systems of neural-symbolic

integration which involve relatively basic logic reasoning and perform query answering tasks

without inducing rules (see Section 6.1). The second category is query answering systems that

induce rules (see Section 6.2). We further divide systems in the first category to three groups:

query answering without rules ([Trouillon et al., 2016], [Dettmers et al., 2018]), query answering

with given rules ([Guo et al., 2016], [Minervini et al., 2017]) and query answering with rule

mining ([Yang et al., 2015]). We further divide systems in the second category to two groups:

NTPs ([Minervini et al., 2018], [Minervini et al., 2020a] and [Minervini et al., 2020b]) and

other works ([Yang et al., 2017], [Das et al., 2018], [Qu et al., 2020]).2 Given a knowledge

base/knowledge graph, each rule induction system aims to induce a set of rules that derives as

many positive examples and as few negative examples as possible. This rule induction ability

is crucial, because induced rules uncover implicit relationships in the knowledge base, which

could be used to deduce more facts. The interpretability brought by induced rules also make

the query answering process more explainable, unlike those neural network systems which act

as a black-box without giving the reasons behind each prediction [Cyras et al., 2021]. Note that

approaches for rule induction can also perform query answering, but they are analysed in this

chapter from the rule induction perspective.

There are two kinds of query answering tasks: query prediction and query completion (also

known as link prediction). We define the two query answering tasks formally as follows, where

the score indicates how likely it is that a query q(s, o) is true given the KB.

Definition 6.0.1. Given a knowledge base KB, the query answering task for query prediction

is to learn a scoring function that generates a prediction score ps for each ground query q(s, o).

Definition 6.0.2. Given a knowledge base KB, the query answering task for query completion

is to learn to identify the missing subject s or object o of each fact q(s, o) in the KB, for each

partial query in the form of q(s, ?) or q(?, o). In some cases, only the constant with the highest

prediction score is returned, and in other cases, multiple constants above a given threshold are

returned.

All systems, except MINERVA [Das et al., 2018] and RNNLogic [Qu et al., 2020], belong to

‘query answering task for query prediction’. Furthermore, all systems, except ComplEx [Trouillon
2Apart from these systems, AMIE [Galárraga et al., 2015] and FastLAS [Law et al., 2020] can also induce

rules, but they are symbolic systems without using embedding representations, so they are not included in the
discussion.

90 Related Works

et al., 2016] and ConvE [Dettmers et al., 2018], use rules to solve query answering tasks, either

by using given background rules or by inducing new rules, such that all the rules are function-free

definite Horn rules of various allowed forms. We define function-free definite Horn rules and

linked definite Horn rules in Definition 6.0.3.

Definition 6.0.3. A function-free definite Horn rule is a rule of the form: h :- b1, ..., bn (n ≥ 1),

where h and bi are positive binary atoms with variable arguments only and the first body atom

shares a variable with the head. Additionally, a linked function-free definite Horn rule also

satisfies the following properties.

• There is no variable in the head that does not occur in at least one body atom.

• Each body atom that is not the first or the last shares one argument with its predecessor

and the other argument with its successor.

• The last body atom shares one argument with its predecessor and one argument with the

head.3

Some examples of linked definite Horn rules are shown below.

p(X, Y) :− q(Y, X).

p(X, Y) :− q(X, Z), r(Z, W), s(W, Y).

p(X, Y) :− q(Z, X), r(Z, Y).

p(X, Y) :− q(Z, X), r(Y, Z).

We summarise in Table 6.2 the various forms of rule syntax supported in these systems. Dashes

mean that rules are not supported.

Rule Syntax

ComplEx –

ConvE –

KALE
p(X, Y) :- q(X, Y)

p(X, Y) :- q(X, Z), r(Z, Y)

ASR definite Horn rules

DistMult linked definite Horn rules

NTP 2.0 definite Horn rules

GNTP definite Horn rules

CTP definite Horn rules

NeuralLP linked definite Horn rules

MINERVA linked definite propositional/first-order rules

RNNLogic linked definite Horn rules

Table 6.2 The syntax of rules supported in different systems.

3Note that if there is only one body atom, both arguments are shared with the head.

6.1 Query Answering 91

Our systems use the same set of basic template rule structures as NTP 2.0, GNTP and CTP,

but modified to topical template rules. Also, instead of definite Horn rules, our NAF TSNTP

can also induce normal rules.

6.1 Query Answering

We now present systems that focus on query answering for knowledge bases.

6.1.1 Query Answering without Rules

Two examples of query answering systems that do not involve rules are ConvE [Dettmers et al.,

2018] and ComplEx [Trouillon et al., 2016]. These systems are not provided with a set of rules

for deduction nor are they able to learn rules during training. Their training goals are to get

good embedding representations of the knowledge base and to learn a prediction function that

generates a score for each query. The common disadvantages of ConvE and ComplEx are the

lack of interpretability of prediction results and the lack of generality of the learned model.

Because no rules are learnt in these systems, there is no extracted human readable justification

for predictions, so the decision making process of such systems remain as a blackbox. Also,

although it is possible to achieve good query answering results without learning rules, it would

be harder for the system to capture more complex relationships, such as transitive relations.

ComplEx

ComplEx uses complex-valued embeddings to capture symmetric and antisymmetric relations

through latent factorisation. Using complex values as embeddings is unusual, because embed-

dings typically consists of real numbers only. In ComplEx, both predicates and constants are

K-dimensional complex vectors. For each complex vector u ∈ CK , u = Re(u) + iIm(u), where

Re(u) ∈ RK is the real part of the complex vector u; Im(u) ∈ RK is the imaginary part of u;

and i is the square root of -1. In implementation, Re(u) and Im(u) are represented by two

K-dimension real vectors. The conjugate of u, ū = Re(u)− iIm(u), is denoted ū.

The scoring function ϕ of the model for each query r(s, o) is defined as:

ϕ(r, s, o; Θ) = Re(< wr, es, ēo >) (6.1)

92 Related Works

where wr represents the complex embedding of the predicate r; es represents the complex

embedding of the subject s; ēo represents the complex conjugate of the object o; and Θ represents

the learning parameters of the model (complex embeddings of predicates and constants).

The < a,b, c > denotes the standard componentwise multi-linear dot product, such that

< a,b, c >: −Σkakbkck. Thus, the scoring function can be further expanded as:

ϕ(r, s, o; Θ) =Re(< wr, es, ēo >)

=Re(ΣK
k=1wrkeskēok)

= < Re(wr), Re(es), Re(eo) > + < Re(wr), Im(es), Im(eo) >

+ < Im(wr), Re(es), Im(eo) > − < Im(wr), Im(es), Re(eo) >

(6.2)

Complex vectors play an important role in learning antisymmetric relationship, especially the

conjugate vector of the object, ēo. Because the conjugate vector is used, the scoring function

ϕ generates different scores for a query r(s, o) and r(o, s), whereas without using conjugate

vectors, r(s, o) and r(o, s) would get the same score. If wr is purely imaginary, it indicates that

the function is antisymmetric. If wr is real, it indicates a symmetric relationship.

Its loss function is the negative log-likelihood of the logistic model with L2 regularisation

on parameters Θ:

min
Θ

∑
r(s,o)∈Ω

log(1 + exp(−Yrsoϕ(s, r, o; Θ))) + λ∥Θ∥2
2 (6.3)

where Ω is the training dataset; Yrso is the target label of query r(s, o); and Θ represents complex

embeddings of predicates and constants in the knowledge base.

ConvE

ConvE [Dettmers et al., 2018] is a multi-layer convolutional neural network (CNN) model for

query answering. Predicates and constants in the knowledge base are encoded as embeddings,

which are learnt during training. Its high-level architecture is illustrated in Figure 6.1:

6.1 Query Answering 93

Fig. 6.1 [Dettmers et al., 2018] illustrates how ConvE generates prediction scores for all queries in the
form of r(s, E) which has a predicate r, a subject s and an object E which can be any constant in
the knowledge base. The embeddings are firstly reshaped as ‘images’ and then converted to multiple
feature maps as a part of CNN training. Then, the feature maps are projected to embedding dimension
and multiply with entity matrix E, forming a prediction score for each entity.

In Figure 6.1, the first step gives the embeddings of r and s as input. The second step reshapes

the embeddings r and s, denoted as rr and es, which after the reshape are denoted as r̄r and ēs.

They are then concatenated. Dropout can be applied to the concatenated embedding during

training to improve robustness of the network. At the third step, this concatenated embedding

becomes the input of a 2D convolutional layer f . This convolutional layer returns a feature map

tensor τ ∈ Rc∗m∗n which contains c number of 2D feature maps, each with dimensions m and n.

The convolutional layer also has a filter w that controls the dropout of the c feature maps. At

step four, τ is reshaped to a vector vec(τ) ∈ Rcmn and it is further projected to a k dimensional

embedding by the linear transformation matrix W ∈ Rcmn∗k. At the fifth step, the k-dimension

projected embedding dot-products with all possible object embeddings (say there are g con-

stants in the knowledge base), to generate a list of g predictions. In the end, a logistic sigmoid

function is applied, forming g final prediction scores over all possible queries in the form of r(s, E).

Following the notation used in Figure 6.1, the scoring function ψr(es, eo) of a query r(s, E),

where E = o is defined as below:

ψr(es, eo) = f(vec(f([ēs; r̄r] ∗w))W)eo (6.4)

The logistic sigmoid function σ(·) is applied to the scoring function, to give a prediction score

qi = σ(ψr(es, eo)) for the ith query in the training dataset q, r(s, o), which is used to define the

binary cross-entropy loss, as below:

L(q, t) = − 1
N

∑
i

ti · log(qi) + (1− ti) · log(1− qi) (6.5)

94 Related Works

where t is set of target labels of queries in q, and qi and ti are the prediction score of the ith

query and its corresponding target label.

Comparison between ComplEx and ConvE ComplEx learns the embedding representa-

tions of predicates and constants in a knowledge base capturing semantic meaning and it is able

to use semantic similarity to prove similar queries. However, with no involvement of rules, it

can only capture symmetric and antisymmetric relationships. As a result, more complicated

relationships, such as a transitive relationship, are beyond its scope. On the other hand, its

simple architecture makes it more computationally efficient than most rule induction systems

if learning embedding representations is the main learning goal. ConvE makes an interesting

attempt to solve a query answering task with a symbolic knowledge base using a convolutional

neural network. It treats the embeddings of predicates and constants as ‘images’ and converts

these ‘embedding images’ to different feature maps. Although these feature maps might help it

to identify non-linear relationships for answering queries, this system has limited connections

with logic reasoning. Although neither works support rules, ComplEx could capture symmetric

and antisymmetric relationships and its embeddings captures semantic information. However,

we did not see the claim of learning any kinds of relations or semantic meaning in ConvE. Its

convolutional architecture with multiple feature maps makes it hard to interpret its decision

making process.

6.1.2 Query Answering with Given Rules

The two systems KALE [Guo et al., 2016] and ASR [Minervini et al., 2017] are able to deal

with a set of given background rules. KALE uses grounded rules as part of training dataset and

ASR uses rules to generate adversarial examples to improve overall robustness of the learned

embeddings. Both systems are more advanced than ComplEx and ConvE, because background

rules enable them to capture more complex relationships, such as the multi-hop and transitive

relations, given these relations that are captured by the background rules. Both systems use

background rules to train embeddings, but do not use then to deduce new facts, as is typical in

logic programming, for instance.

The main limitation of these two systems is their reliance on given rules. If the quality

of known rules is bad or there are only a few background rules, the performance of these systems

would be affected. Both systems extend from existing query answering systems that uses

embeddings, i.e. TransE [Bordes et al., 2013], ComplEx [Trouillon et al., 2016] and DistMult

6.1 Query Answering 95

[Yang et al., 2015]. If there are no given rules, KALE and ASR are equivalent to the systems

that they extended from.

KALE

KALE [Guo et al., 2016] is a neural-symbolic system that aims to represent and model facts

and logical rules in a unified framework. Given a knowledge base, facts are represented as

triples of the form (subject, predicate, object) following TransE assumption (which will be

explained later) and represents Horn rules as complex formulae modelled by the t-norm fuzzy

logic ([Rocktäschel et al., 2015] and [Hájek, 1998]). At the time of this work, it was novel to

learn embeddings that are compatible with both facts and rules, although this has become a

new norm now. The system uses a loss function to be minimised by stochastic gradient descent

and the key element of the loss function is the scoring function. The only learning parameter is

the embedding matrix of all predicates and constants.

KALE follows TransE [Bordes et al., 2013] and it models predicate embedding as a trans-

lation between two entity embeddings. i.e. for a fact p(a, b), they assume ea + rp ≈ eb where

r is the embedding matrix of predicates and e is embedding matrix of constants (rp refers to

the embedding of p and ea refers to the embedding of a). They get inspiration from [?], which

identifies linguistic regularities such as France - Paris = Germany - Berlin. As a result, the

scoring function for each grounded triple k(i, j) is defined as:

I(ei, rk, ej) = 1− 1
3
√
d
∥ei + rk − ej∥1 (6.6)

where d is the dimension of the embedding. A high value of I(ei, rk, ej) indicates that the triple

is true.

KALE is able to use given rules during training. KALE claims that it can handle any first-order

logic formulae, but in [Guo et al., 2016] it restricts the rules to two types. The first type has

the form:

∀x, y : (x, rs, y)⇒ (x, rt, y)

Given a ground rule f ≜ (em, rs, en)⇒ (em, rt, en), following the t-norm fuzzy logic ([Rocktäschel

et al., 2015] and [Hájek, 1998]), the truth value is computed as:

I(f) = I(em, rs, en) · I(em, rt, en)− I(em, rs, en) + 1 (6.7)

96 Related Works

The second type has the form:

∀x, y, z : (x, rs1, y) ∧ (y, rs2, z)⇒ (x, rt, z)

Given a ground rule f ≜ (el, rs1 , em) ∧ (em, rs2, en) ⇒ (el, rt, en), following the t-norm fuzzy

logic, the truth value is computed as:

I(f) = I(el, rs1, em) · I(em, rs2, en) · I(el, rt, en)− I(el, rs1, em) · I(em, rs2, en) + 1 (6.8)

Note that all rules need to be grounded before training and only ground rules including at least one

fact in the knowledge base would be used. For example, a ground rule (el, rs1 , em)∧(em, rs2, en)⇒

(el, rt, en) would only be selected if at least one atom in {(el, rs1 , em), (em, rs2, en), (el, rt, en)}

is in the knowledge base. As a result, although it uses this heuristic, the size of the ground rule

set is still large.

The loss function is defined as:

min
{e},{r}

∑
f+∈F

∑
f−∈Nf+

[γ − I(f+) + I(f−)]+,

s.t.∥e∥2 ≤ 1,∀e ∈ ϵ; ∥r∥2 ≤ 1, ∀r ∈ R.
(6.9)

where γ is a margin that separates positive and negative formulae; [x]+ ≜ max{0, x}, ∥x∥2 =√∑
i x

2
i ; ϵ and R are the sets of constants and predicates in the given signature respectively.

The F represents the positive training dataset set. However, different from other systems in

this chapter, where training dataset usually contains facts only, the training dataset F in KALE

contains both facts and ground rules, where each rule contains at least one fact in F . Nf+ is

the negative training dataset, which is created by corrupting facts and ground rules. One item

of negative training data is created for each f+ ∈ F . For a fact p(a, b), its corrupted atom is

created by randomly changing either a or b, such that the corrupted atom does not belong to

known facts. Rule corruption is created by randomly replacing the predicate of a head atom.

For instance, given a ground rule located_in(paris, france) :- capital_of(paris, france), one

of its potential corruptions could be: far_from(paris, france) :- capital_of(paris, france).

Compared to ComplEx and ConvE, that do not support logic reasoning, KALE is able to

support background rules and use these background rules to answer queries. However, this

also means that the quality of query answering prediction in KALE depends on the quality of

background rules. Although it still cannot induce rules, these background rules could be used

6.1 Query Answering 97

to express more complicated relationships, such as transitive and multi-hop relations. In [Guo

et al., 2016] the authors claim that ‘the KALE framework is general enough to handle any rules

that can be represented as first-order logic formulae’, but only two types of rule are used in the

paper as specified by Equation 6.7 and 6.8. KALE only uses these rules for answering queries

by computing the I value as defined in Equation 6.7 and Equation 6.8. Also, KALE did not use

background rules in the same way as logic programming for deducing more facts. Its training

goal is not to deduce more facts, but to make sure the I value of a positive fact or a positive

ground rule is higher than the I value of a negative fact or a negative ground rule. Furthermore,

KALE only supports grounded rules, so any first-order rules need to be grounded first, which

could generate a long list of rules.

ASR

ASR [Minervini et al., 2017] is an adversarial system that trains jointly with other neural-

symbolic learning systems and uses adversarial examples of given Horn rules to regularise the

training process. It has to be used jointly with another neural query answering system which

performs link prediction tasks. In [Minervini et al., 2017], the performance of ASR is evaluated

when it is used with DistMult [Yang et al., 2015] and ComplEx [Trouillon et al., 2016].

The training objective of an adversarial system is a minimax problem, which is a zero-sum

game. It consists of two parts: an adversary that identifies the most violating examples and

a discriminator that tries to minimise the loss. During ASR training, given a knowledge base

with a set of first-order Horn rules as assumptions, an adversary identifies the most offending

adversarial constant groundings for variables in the given rules which outputs the biggest

inconsistent loss. These adversarial examples are then used as inputs to the discriminator. The

high-level architecture of the ASR adversary part is illustrated in Figure 6.2.

98 Related Works

Fig. 6.2 The high-level architecture of the ASR adversary component [Minervini et al., 2017]. Given
a rule, the adversary identifies the most violating constant groundings for variables. These constant
groundings are fed into link predictors to compute the inconsistency loss. The training goal is to
minimise the inconsistency loss.

Given a rule A with variables {X1, X2, X3}, the adversary part finds the set of constant

embeddings {h1,h2,h3} for the variables that generate the biggest inconsistent loss score. Using

these adversary constant embeddings, the system generates a prediction score for each literal

of A using a link predictor (either ComplEx or DistMult), where the prediction score of each

literal in the form of p(s, o) is represented as ϕp(s, o). The prediction scores of body atoms can

be combined using Gödel t-norm, a continuous generalisation of the conjunction operator in

logic [Gupta and Qi, 1991]. The combined score of body literals in A, denoted as ϕ(BODY), is

then used to compute the inconsistency loss, where the inconsistency loss for each Horn rule

assumption (of the form BODY⇒ HEAD) is defined as:

JI(BODY⇒ HEAD) ≜ [ϕ(BODY)− ϕ(HEAD)]+ (6.10)

ϕ(X) is the neural link prediction score generated for X. []+ is the ReLu function that only

returns the positive result of the computations inside the [] and returns 0 if the computation

result is negative. A high loss indicates that the rules are false (i.e. the body is true and the

head is false). The inconsistency loss helps maintain consistency with the given assumptions in A.

6.1 Query Answering 99

After the adversary component, the discriminator component (not shown in Figure 6.2) is

trained by minimising the joint loss function J (G,A; θ,γ,S) between fact loss JF and the

inconsistency loss JI . This is defined in Equation 6.11:

J (G,A; θ,γ,S) ≜ JF(G; θ,γ) + αJI(A; θ,S) (6.11)

where G represents the knowledge graph; A represents assumptions (function-free Horn rules);

S represents the adversarial input set; θ represents embeddings of constants and γ represents

embeddings of predicates; α ∈ R controls the weight given to the assumption rules in the

optimisation process. JF(G; θ,γ) is the loss function over training dataset, which can be

replaced by any neural link predictors. For instance, it can be replaced by the loss function in

ComplEx. JI(A; θ,S) is specific to the ASR architecture.

The training goal of ASR can be viewed as a minimax problem, where the adversary aims to

identify input set S with maximal inconsistency and the discriminator minimises the inconsis-

tency through parameter θ and γ. The minimax problem can be defined formally as:

min
θ,γ

max
S
J (G,A; θ,γ,S) (6.12)

This means that it firstly identifies the S with biggest inconsistency and then optimises parame-

ters θ,γ to minimise this inconsistency and query answering loss.

The strength of ASR is its ability to use background rules (in the form of Horn rules) to

generate adversarial examples, which improves the robustness of the system through adversarial

training. However, ASR is a regulariser that has to work with other systems in order to

train embeddings. This is unlike our systems which work as independent systems that train

embeddings and induce rules. Its performance also relies on the quality of given background

rules. If given background rules are wrong, wrong adversary examples would be found, making

the training more noisy.

6.1.3 Query Answering with Rule Mining

DistMult is a query answering system that uses rule mining. However, the rule extraction in

DistMult is performed as a post-processing step, making it different from other query answering

methods in Section 6.2, where the rule extraction happens during the training process. Its rule

mining algorithm enables it to learn linked Horn rules from a given knowledge base. Since

100 Related Works

DistMult can learn rules, it could be used to capture unknown relationships in a knowledge base,

making it more advanced than systems that use just the given background rules (such as ASR

and KALE).

DistMult consists of two parts: the embedding learning part, which involves training, and

the rule extraction part which uses the trained embeddings. In the embedding learning part, no

rules are involved and the training target is to find embedding representations for predicates

and constants in the knowledge base that help to solve the query answering task. Instead of

initialising the embeddings randomly and training them by gradient descent, DistMult uses the

one-hot encoding to represent constants. These constant vectors are fixed values, where the

one-hot index vector of each constant ei is denoted as xei
. The fixed one-hot vector is then

projected to a n-dimension vector: the learned constant representation yei
, which could carry

semantic information through training. This transformation is defined as:

yei
= f(Wxei

) (6.13)

where f can be a linear or non-linear function and W is a projection matrix to be learnt.

Each predicate r is represented by a 2D matrix operator Mr ∈ Rn∗n. To reduce the learning

parameters, DistMult restricts Mr to be a diagonal matrix. Using these representations, the

scoring function of a query r(e1, e2) is computed by a basic bilinear scoring function S:

S(e1,r,e2) = yT
e1Mrye2 (6.14)

The training objective is to minimise the following margin-based ranking loss:

L(Ω) =
∑

(e1,r,e2)∈T

∑
(e′

1,r,e′
2)∈T ′

max(S(e′
1,r,e′

2) − S(e1,r,e2) + 1, 0) (6.15)

where (e1, r, e2) is a positive query in the positive training dataset T and (e′
1, r, e

′
2) is a corrupted

query of the positive query (e1, r, e2) in the negative training dataset T ′.

Note that DistMult can represent predicate embeddings also in the form of vectors (as in

TransE [Bordes et al., 2013]), in which case the relation composition score is calculated as addi-

tion. Otherwise, using the matrix representations (as in Bilinear mentioned earlier), the relation

composition score is calculated as multiplication. After learning the embedding representations of

6.1 Query Answering 101

predicates and constants, the rule extraction is performed by selecting a set of rules with high rela-

tion composition scores among possible rules. The score indicates the confidence level of the rule.

Its rule extraction algorithm is summarised below:

Fig. 6.3 The rule extraction algorithm of DistMult from [Yang et al., 2015]. The algorithm extracts K

rules (of the form ‘2-hop transitive rule’) for each predicate in the KB. For each predicate, it selects
a set of start relation S and a set of end relation T , such that these relations have domain overlap.
Then, it finds all possible relation sequences and select the K best sequences according to the matrix
computation. The rule is formed using the predicate as the head relation and the sequence as bodies.

The input of the rule extraction algorithm is the knowledge base and its output is a set of

candidate rules Q. K possible rules are extracted for each predicate r. The expected rule

of predicate r is a linked Horn rule with r as the head predicate (only 2-hop or 3-hop rules

are considered in their experiments), such as r(X, Y) : −s(X,Z), t(Z, Y), where s and t are

predicates in the knowledge base. In line 4-6, the algorithm finds all possible relation sequences

in the body atoms for each such rule. Line 4 selects the set of predicates that could be the

predicates of the first body atom. Since the variable X is the subject of both r and s, it

restricts that the subject domain of s and r must overlap. (X refers to the domain of the

subject and Y refers to the domain of the object.) Similarly, in the last relation t in the body,

{t : Yt ∩ Yr ̸= ∅} in line 5 forces that the object domains of t and that of r must overlap. In

line 6, the algorithm generates all possible body atom sequences P of r by computing different

combinations of body atoms whose predicates fit this restriction. For example, one potential

rule could be r(X, Y) : −s(X,Z), q(Z,W), t(W,Y). In line 7, the relation composition of each

sequence P ′ ⊆ P is computed by adding or multiplying each predicate in the sequence. (i.e. The

relation composition of r(X, Y) : −s(X,Z), q(Z,W), t(W,Y) is Ms ·Mq ·Mt, where · can be

either addition or multiplication depending on whether embeddings are represented by vectors

or matrices.) Then, the distance between M r and relation composition is computed. The

sequences with K closest distance are selected. The distance metric provides a way to rank

potential sequences according to how relevant their composition is to the target relation. Each

102 Related Works

extracted rule is created by combining head relation r and the selected sequence as body of the

rule. (i.e. if the distance between Mr and Ms ·Mq ·Mt is the K closest distances among all

possible sequences as body of the rule, then r(X, Y) : −s(X,Z), q(Z,W), t(W,Y) is added to Q.)

DistMult is a more advanced system in terms of reasoning ability than the other systems

described in this section because it is able to learn rules from a knowledge base, whereas other

systems either do not support rules or rely on given background rules. However, we do not

classify DistMult as a rule induction system, unlike systems in Section 6.2, because instead of

generating rules during the training process, rules in DistMult are generated after training, which

means that embeddings are fixed in the rule extraction process. Moreover, the demonstration

of extracted rules in its evaluation shows that its extracted rules are limited to 2-hop/3-hop

linked Horn rules. In particular rules capturing the similarity of predicates p and q (say), such

as p(X, Y) :- q(X, Y) are not able to be learned. As a result, DistMult can be considered to be

more like a rule-mining system than a rule induction system.

6.2 Rule Induction

This section presents systems that induce rules and is divided to two subsections, these systems

that are direct extensions of NTP (denoted as NTPs and covering NTP 2.0 [Minervini et al.,

2018], GNTP [Minervini et al., 2020a], CTP [Minervini et al., 2020b]) covered in Section 6.2.1,

and other relevant learning systems (namely NeuralLP [Yang et al., 2017], MINERVA [Das

et al., 2018] and RNNLogic [Qu et al., 2020]) covered in Section 6.2.2.

6.2.1 NTPs

There are three extensions of NTP with consistent high-level architecture as NTP, namely NTP

2.0, GNTP and CTP, which were introduced to tackle scalability limitations of NTP. Each

system gets as inputs a knowledge base and template rules which define the allowed structures of

the learned Horn rules as inputs and produces as outputs learnt embeddings, induced rules, proof

scores for queries. The following paragraphs show how they differently tackle the scalability

problems.

NTP 2.0

NTP 2.0 [Minervini et al., 2018] is a more efficient version of NTP. Its key idea is to reduce the

number of facts unified with a body atom in the computational tree when answering a query. At

6.2 Rule Induction 103

each body atom unification, given a body atom subgoal g (g is the body atom grounded by the

substitution set), NTP2.0 identifies the K nearest atoms of g, instead of all facts. This reduces

the unification facts from the full fact set to K facts, making it more scalable. To search for the

nearest atoms, NTP 2.0 uses the Hierarchical Navigable Small World HNSW [Malkov et al.,

2013] [Boytsov and Naidan, 2013], which is a graph-based Approximate Nearest Neighbour

Search algorithm ANNS. HNSW is used to construct the computational tree dynamically when

answering each query.

NTP 2.0 uses a subset of facts to prove body literals. It finds the nearest neighbours us-

ing the HNSW algorithm based on randomly initialised embeddings, thus it is likely that the

nearest neighbours would miss many good matches especially at the beginning of the training,

so it might fall into a local optimum. Our systems also improve computational efficiency by

selecting a subset of facts used in each body atom unification, but different from the HNSW

algorithm that selects facts dynamically, our systems choose the subset of facts before rule

induction training based on topics and subdomains. Thus, our selection method is more control-

lable, because we can check which predicates/constants are in a given topic/subdomain whereas

their nearest neighbours keep changing and are affected by noise due to randomisation.

GNTP

GNTP [Minervini et al., 2020a] is a more scalable extension of NTP 2.0.

GNTP has three new features to improve the scalability: fact selection, rule selection and

attention mechanism. It uses the same Nearest Neighbour Search (NNS) method as NTP

2.0 to select the K closest facts for each body atom, except it uses a different variant of

NNS algorithm [Johnson et al., 2017] based on exact L2-nearest neighbour search. The search

index of NNS is updated every 10 batches, because it assumes that small updates made by

gradient descent do not affect search indexes much. Apart from fact reduction, GNTP also

reduces the number of rules used to prove each query. Given a query q, GNTP only unifies

rules where head predicates are in the neighbourhood of q according to NNS. In addition, it

introduces an attention mechanism to reduce the number of learning parameters when the

predicate number in the given knowledge base is lower than the dimension of embedding vectors.

The size of the attention vector is equivalent to the number of predicates in the knowledge

base. Hence, if the predicate number is low, it is more parameter efficient to use attentions

compared with embeddings. In attention-based embedding mode, induced predicates are defined

104 Related Works

by attending over known predicates dynamically during training. Since GNTP is the closest

related work to ours, we compare it with TSNTP in terms of scalability and template rule syntax.

Both GNTP and TSNTP tackle the scalability limitations of NTP. Both systems reduce

the number of facts involved in body atom unification by selecting a relevant subset of facts,

but in different ways. GNTP selects facts by keeping updating the nearest neighbours during

training. However, this selection would be very noisy at the beginning, when all embeddings

are randomly initialised. Thus, it usually leads to more epochs of training, i.e. 100 epochs is

used in GNTP training. Also, its nearest neighbours need to be updated every 10 batches per

epoch, which causes computation overheads. On the other hand, we use topics and subdomains

generated by FNTP to select facts. These topics and subdomains do not update during training,

because they are clustered based on well-trained embeddings. As a result, symbols with similar

semantic meaning are selected to unify with each other from the beginning of the training. With

this semantic information, we require fewer epochs of training for rule induction. We report

training results after 50 epochs of FNTP training (around 7 times faster than rule induction

training) and 50 epochs of rule induction. Apart from fact selections, GNTP also reduces

the number of rules to prove each query. For each query p(a, b), GNTP selects rules whose

head predicates are neighbours of p. However, this rule selection method is very noisy at the

beginning, because all embeddings are randomly initialised without semantic meanings. We

believe that this might cause GNTP to fall into a local optimum at the early stage of the

training. Our systems use all rules in the TTRs. Reducing the number of rules can be an

extension to our approaches too. Furthermore, GNTP always finds the K nearest neighbours,

where K is a hyperparameter and K = {1, 3, 5} in its evaluation. However, selecting only K

facts could miss some closely relevant facts in unification. In our systems, the reduced number of

facts for unification depends on how many facts there are in the given topic and subdomain. So

this number varies for different queries, depending on the size of the cluster they belong to. In

our evaluation, the fact number given a topic and a subdomain is around 100 on average, more

than K used in GNTP, but covering more highly related facts. However, although we unify

with more facts at each body unification, we only expand the best branch for each atom while

GNTP expands K branches with different substitution sets. Overall, we achieve similar scalabil-

ity improvement as GNTP and the details of the scalability comparison is presented in Chapter 7.

In terms of template rule syntax, GNTP only supports definite non-topical template rules,

which is likely to learn duplicate rules as shown by experiment results. Our works support more

6.2 Rule Induction 105

flexible template rules by allowing topics to be specified in the rule body atoms. Thus, each

copy of a TTR can focus on inducing rules with respect to given topics, avoiding duplication.

Also, our NAF TSNTP supports normal rules with the negation-as-failure syntax, which could

make definite rules more specific by adding a negated atom.

CTP

CTP [Minervini et al., 2020b] is an extension of NTP that generates a set of rules dynamically

during learning for proving each query, instead of using all rules in the given template rules. It

extends from the original NTP [Rocktäschel and Riedel, 2017], not the more scalable GNTP

[Minervini et al., 2020a] which also reduces the facts in unification, so CTP is less scalable than

GNTP.

The main change of CTP is the OR module, as illustrated in Figure 6.4.

Fig. 6.4 The OR module of CTP. The only difference between CTP and NTP is the second line. CTP
has a select module that selects a set of rules according to the query G, while NTP uses all rules in
the template rules.

Given a ground query, the select module can generate a set of rules according to the given

template rules. For example, given a template rule #1(X, Y) : −#2(X,Z),#3(Z, Y) and a

query x(a, b), CTP generates a rule for the query according to its predicate x, in the form of

f0(x)(X, Y):- f1(x)(X,Z), f2(x)(Z, Y), where fi(x) is a differentiable function that, given an

embedding x, returns the embedding of the i-th induced predicate. The same set of rules would

be generated for queries with the same predicate. Each query is linked to a set of template rules.

CTP proposes three different definitions of the function fi: neural goal, attentive goal and

memory-based function. In each definition, fi(x) includes some training parameters, so that this

function is optimised during training. For example, in the neural goal function, fi(x) = Wix+b,

where x ∈ Rk, Wi ∈ Rk∗k and b ∈ Rk. In this function, Wi and b are learning parameters

to be optimised and the output of this fi(x) is an induced embedding. In the attentive goal

function, fi(x) = αER, where ER represents the embedding matrix of all predicates and α is

an attention vector to be learned. In the memory-based function, fi(x) = αM i, where Mi

represents the ith predicates of a set of given rules and α is an attention vector to be learnt.

106 Related Works

The main strength of CTP is that it can select a set of rules by differentiable functions,

instead of using all rules. N rules are generated specifically for each predicate based on the

fi function, so each generated rule is a relevant rule of a predicate by default. However, this

means that if there are many predicates in the knowledge base, many rules would be created.

Its scalability is still limited, because CTP needs to unify with all facts at each body atom

unification. Although our works do not select rules, they also tackle the scalability limitation

by unifying with facts with matched topics and subdomains in each body atom unification. In

our work, the number of rules is fixed by the number of template rules and these are used in a

passive way; all rules are used in each query’s proof and the most relevant rule is selected.4

6.2.2 Other Works

We present here three systems that induce rules, namely NeuralLP, MINERVA and RNNLogic.

We have selected these systems to illustrate three different approaches to rule induction, namely

recurrent neural networks, reinforcement learning and EM-based optimisation.

NeuralLP

NeuralLP [Yang et al., 2017] is another system that performs query answering for query comple-

tion. For a partial complete query, it identifies the missing constants by finding a set of linked

Horn rules, generated by a recurrent neural network, without the addition of template rules.

NeuralLP takes a knowledge base KB with facts stored as triplets as an input, and outputs a

set of induced first-order rules.

NeuralLP uses the same representation as TensorLog [Cohen et al., 2017], namely that each

entity in the entities set E is presented by a |E|-dimension one-hot embedding, vi. Each

Relation r is presented by a |E| ∗ |E| matrix, Mr, with values either 0 or 1, such that its (i, j)

entry is 1 if and only if r(i, j) is in the knowledge base, where i is the i-th entity and j is the

j-th entity. For any entity X = x, the logical rule inference for each rule l, in the form of

r(Y,X)→ p(Y, Z) ∧ q(Z,X), can be computed by matrix multiplication Mp ·Mq · vx, which

generates the score of l, denoted as sl. The non-zero entries of the vector sl equals the set of

y where there exists z that p(y, z) and q(z, x) is true. As a result, given a partial query with
4The rest of comparison made when comparing GNTP with our work holds for CTP as well.

6.2 Rule Induction 107

entity x, the score for missing entity y is given by Eq. 6.16:

s =
∑

l

αlsl, score(y|x) = vT
y s (6.16)

where vy is the embedding of y; s represents the scores over all constants conditioned on entity

x of the probability that these constants are the missing entity. These scores are the weighted

average of sl over all rules l ∈ L, where the weighted average is controlled by a learnable

attention vector α. However, this computation of s is based on known rules.

To learn logical rules, a recurrent neural network is used to model a set of rules with the

maximum length T . In the recurrent formulation, it uses an auxiliary memory vector ut to

record the proof score up until the t-th atom of each rule. At each inference step, the partial

inference results is held in the memory, i.e. {u0, ...,ut, ...,uT +1}. Initially, the memory vector is

set to the given entity vx.

u0 = vx (6.17)

At each step as described in Equation 6.18, the model firstly computes a weighted average of

previous memory vectors using the memory attention vector bt. Then, the model applies all

predicates to the weighted average of previous memory, so that the previous rules are extended

with all possible predicates. The weighted average is controlled by a trainable attention vector

at. This formulation allows the model to apply the TensorLog operators on all previous partial

inference results, instead of just the last step’s.

ut =
|R|∑
k

ak
t MRk

(
t−1∑
τ=0

bτ
t uτ) for 1 ≤ t ≤ T (6.18)

The attention vectors {at|1 ≤ t ≤ T} and {bt|1 ≤ t ≤ T + 1} are learnable parameters and

MRk
is the operator of the k-th relation. ak

t is the attention value of predicate k at the t-th

step of the RNN. bτ
t is the attention value of memory vector uτ , at the t-th step of the RNN.

This ut creates a set of rule with length t. At the final step, the model computes a weighted

average of all memory vectors, as shown in Equation 6.19, thus using attention to select the

proper rule length.

uT +1 =
T∑

τ=0
bτ

T +1uτ (6.19)

The learning objective is to maximise vT
y u and therefore the score(y|x) (see Eq. 6.16).

NeuralLP is similar to our work in that it learns first-order rules through ANNs and links

108 Related Works

each induced predicate to a score, though by a different method. In NeuralLP, the score of

an induced predicate is a parameter to be learnt, which is controlled by an attention vector.

The score of a query is the aggregated scores of multiple rules controlled by the recurrent

neural networks as specified by Equation 6.19. The multiple attention vectors involved in

answering each query using the recurrent neural networks make it hard to understand the

decision making process. In our system, the score of an induced predicate is not learnt directly

and it is determined by unifying it with other predicates. The learning parameters are the

embeddings and these embeddings can be visualised to inspect whether semantic meaning is

captured correctly. Also, although both systems use embeddings to represent the knowledge

base, embeddings are used in different ways. NeuralLP uses one-hot embeddings and essentially

they are just ID encodings, so embeddings do not carry any semantic information and they

can only be hard-unified. In contrast, our system learns embeddings and embeddings carry

semantic information. Embeddings that are close according to Euclidean distance indicates

they are similar and can be used interchangeably in soft-unification. In addition, NeuralLP

only supports definite linked Horn rules, whereas our systems do not restrict that and support

normal rules.

MINERVA

MINERVA [Das et al., 2018] is a query answering system for query completion. Its input is

a knowledge base KB with facts stored as triplets, which then constructs a knowledge graph

G with both relations and inverse relations. Given an incomplete query, MINERVA aims to

find paths in a knowledge graph to identify the missing entity. A path is the sequence of edges

involved in a knowledge graph from the start node to the end node, which can be viewed as a

linked propositional rule. After training, it outputs a sequence of ground paths for each query

and trained embeddings of predicates and constants. The path of each partial query is identified

by reinforcement learning.

MINERVA is a neural reinforcement learning system on a knowledge graph. Given an in-

complete query, in the form of q(a, ?) or q(?, a) and the missing entity ? = b, the agent starts

from the node a and aims to reach the node b within the path length restriction by finding

viable paths in G. The learning environment is a finite horizon, deterministic partially observed

Markov decision process on G, which is a 5-tuple (S,O,A, δ, R) that specifies states, observations,

actions, transitions and rewards correspondingly. Each state S encodes the incomplete query,

the missing entity of the query and the current node of the agent. The observations O contain

6.2 Rule Induction 109

the known information for the agent, including the incomplete query and the current node of

the agent, but the answer b remains unknown for the agent. Actions A of the state S include all

outgoing edges the agent could take from the current node of the agent. The transition function

δ returns a new state S ′, given a state and an action. In the end, if the agent is at the expected

node b, it would receive a reward +1 for R.

In order to solve the finite horizon deterministic partially observable Markov decision process

mentioned above, a randomised non-stationary history-dependent policy π = (d1,d2, ...,dT −1)

is devised, where dt is a function that receives a history state at time t, Ht, as an input, and

outputs the probabilistic distribution of taking each action in ASt ; history Ht = (Ht−1, At−1, Ot)

records the sequence of observations and actions taken up until time t. These policies are

parameterised by long short-term memory network (LSTM) [Hochreiter and Schmidhuber, 1997].

Given a query relation, the policy networks select a discrete action from all available actions

(ASt) based on the history embedding ht. This decision is made by a two-layer feed-forward

network with ReLU nonlinearity.

For each policy network πθ, the training aims to maximise the expected reward using REIN-

FORCE algorithm [Williams, 1992]:

J(θ) = E(e1,r,e2)∼DEA1,...,AT −1∼πθ
[R(ST)|S1 = (e1, e1, r, e2)] (6.20)

where (e1, r, e2) is a query in the training dataset D and the subject e2 is missing; S1 =

(e1, e1, r, e2) represents the initial state of the agent, where given the query r(e1, ?), it starts

from the node e1 and aims to reach the expected destination, the node e2; A1, ..., AT −1 ∼ πθ

is the sequence of actions generated by the policy network πθ for each query; R(ST) indicates

whether the query gets a reward, depending on whether the node e2 is reached at step T .

MINERVA uses reinforcement learning to perform rule induction. It optimises the path selection

via reinforcement learning for each query, which starts from the given constant of a partial

query and keeps identifying the best path (action) to take from all actions so that it could

reach the missing entity of the query. In this process, the path taken by each query can be

viewed as a linked propositional rule, starting with the ground query as the head of the rule,

followed by the sequence of actions (including inverse relations) taken as predicates of the body

atoms in the rule. Although the authors of [Das et al., 2018] claim that MINERVA can induce

first-order rules, the paper did not state how first-order rules are generated. If first-order rules

110 Related Works

are generated by turning the actions in propositional rules into atoms with variables abstracting

the entities used between hops, then these rules could be over-generalised. The path exploration

of MINERVA is in contrast to our systems that learn embedding representations via a backward

chaining computational tree. In our systems, each body atom unification is equivalent with

taking a path in MINERVA, which identifies the best matched fact among a set of facts selected

by topics and subdomains. This topic and subdomain based fact selection helps the systems to

narrow down the number of facts considered during rule induction. This fact reduction is similar

with the process of exploring a subset of paths that is likely to lead to the missing constant in

MINERVA.

RNNLogic

RNNLogic [Qu et al., 2020] is a neural symbolic system that induces rules through EM-based

optimisation. It performs query answering tasks for query completion. Given a knowledge graph

G with partial complete queries, each partial query q in the form of q = r(s, ?) or q = r(?, o),

where the answer a of the question mark ? is the expected constant t, the goal of RNNLogic is

to learn to predict the correct answer a = t. RNNLogic identifies the answer a by modelling the

probabilistic distribution p(a|G,q) through learning a set of linked Horn rules. In summary,

RNNLogic receives a knowledge graph as input and outputs a set of learnt compositional logic

rules and the missing entity of each partial complete query.

In RNNLogic, a knowledge graph is represented by embeddings, where each predicate and

constant is linked to an embedding. The following paragraphs will explain how rules are induced

in RNNLogic, including the probabilistic formalisation of the link predication task and the

EM-based optimisation process.

The overall objective function of RNNLogic is identifying the target distribution p(a|G,q)

of each query q, where a is the expected missing entity. This objective is achieved by jointly

training a rule generator and a reasoning predictor together, where each has its own learning

parameters, θ and w respectively. In RNNLogic, a set of linked Horn rules z is generated by a

recurrent neural network RNNθ where θ are trainable parameters in the RNN network. The

maximum length of each rule and the number of rules generated for each predicate are given

by users. Using the predicates in the given KB, the RNN network generates a sequence of

predicates to be converted to Horn rules. For example, it could generate a sequence p, t, s,

which could be converted to p(X, Y) :- t(X,Z), s(Z, Y). For each query q with predicate h,

6.2 Rule Induction 111

the rule generator pθ defines a multinomial distribution over the rule set z conditioned on q,

denoted as pθ(z|q), to select rules for q.

pθ(z|q) = Mu(z|N,RNNθ(·|h)) (6.21)

where Mu indicates multinomial distributions, N is a hyperparameter for the size of the set z,

and RNNθ(·|h) is the distribution over all potential generated rules with a rule head h. The

reasoning predictor pw defines pw(a|G,q, z), such that for a query q, it uses a set of selected

rules z to reason on a knowledge graph G and generates the likelihood that the answer is a.

Thus, p(a|G,q) is computed using Equation 6.22:

pw,θ(a|G,q) =
∑

z
pw(a|G,q, z)pθ(z|q)

=Epθ(z|q)[pw(a|G,q, z)]
(6.22)

The objective function is to maximise the pw,θ(a|G,q) for each query q in the training dataset

pdata, as defined by Equation 6.23:

maxθ,wO(θ,w) = E(G,q,a) ∼ pdata[logpw,θ(a|G,q)]

= E(G,q,a)∼pdata
[logEpθ(z|q)[pw(a|G,q, z)]]

(6.23)

where θ and w are the training parameters.

The optimisation of RNNLogic can be summarised by the algorithm below.

Fig. 6.5 The workflow of RNNLogic [Qu et al., 2020]. It repeats the EM optimisation process until
convergence. It firstly use a rule generator to generate rules. Then, it updates the reasoning predictor
based on generate rules. At the E-step, it identifies the K best rules from generated rules. At the
M-step, it update the rule generator according to the identified rules.

The optimisation involves four steps repeatedly. The first step uses the rule generator pθ to

generate a set of rules ẑ according to the RNN network. The second step uses ẑ to update the

112 Related Works

reasoning predictor pw. This update is achieved by maximising the objective function O(θ,w)

(Equation 6.23) with respect to w. The third step, the E-step, identifies K high-quality rules ẑI

from ẑ according to a heuristic scoring function: H(rule). Details of H(rule) can be found in

[Qu et al., 2020]. In the final step, the M-step, the rule generator pθ is updated using the K

high-quality rules ẑI . This update is achieved by maximising the objective function O(θ, w)

(Equation 6.23) with respect to pθ.

RNNLogic uses EM-based algorithm for optimisation, which is unique among other works

in this chapter. EM-algorithm enables RNNLogic to optimise the reasoning predictor and rule

generator separately at each epoch, but it is not end-to-end differentiable. Similar to NeuralLP,

RNNLogic also uses multiple rules to prove queries, where the proof score of each query is the

aggregated proof score over multiple rules generated by the RNN network (which is a set of

linked Horn rules). Although the system could induce rules using the rule generator as specified

by Equation 6.21, the involvement of multiple rules for proving each query makes the system

less interpretable, unlike our systems where one query is proved by one rule or one fact.

Summary. In Table 6.3 we summarise all the systems described in this chapter with respect

to five main features: architecture, learning of embedding representations, if rules are supported,

and interpretability. A more detailed quantitative evaluation of these systems is given in Chapter

7.

Architecture
Learn Embedding

Representations
If Rules are Supported? Interpretability

ComplEx ANN Yes No No

ConvE CNN Yes No No

KALE ANN Yes Given Background rules No

ASR
Adversarial

training

Yes, when used

jointly with other

systems

Given Background rules No

DistMult Rule mining Yes Rule mining as post-processing Yes

NTP 2.0 ANN Yes Rule induction Yes

GNTP ANN Yes Rule induction Yes

CTP ANN Yes Rule induction Yes

NeuralLP RNN
No, use predefined

embeddings
Rule induction Yes

MINERVA
Reinforcement

learning
Yes Rule induction Yes

RNNLogic
EM-based

optimisation
Yes Rule induction Yes

Table 6.3 The summary of related works covered in this chapter from five aspects: architectures,
learning of embedding representations, if rules are supported, rule syntax and interpretability.

Chapter 7

Evaluation

In this chapter, we present the evaluation results of our three architectures, namely TNTP,

TSNTP and NAF TSNTP. They are evaluated using benchmark datasets and compared with

other related state-of-art baseline systems.

In the following sections, we firstly describe the datasets used in our experiments. We then

describe our experimental settings, including the evaluation metrics, evaluation procedure,

hyperparameters and template rules used. After this, we present our evaluation results, in terms

of accuracy of query answering prediction, time and space improvement and rule induction

quality. We conclude with an empirical analysis of the effects of some hyperparameters on the

performance of our systems.

7.1 Datasets

This section covers the benchmark datasets used in our experiments, namely Countries [Bouchard

et al., 2015], Nations, Kinship, UMLS [McCray, 2003] and FB122 [Guo et al., 2016], since these

are widely used in the evaluation of our baselines.

Recall that, as discussed in Chapter 2, all facts in a dataset are considered to be true. False

facts are those which are absent, thus following the closed-world assumption. Facts in a dataset

are divided into a training set, a validation set and a test set. The training set is used to learn

embeddings and induce rules, whereas the validation set is used for tuning the hyperparameters.

The test set is used for evaluating the trained embeddings and the induced rules. The HITS

and MRR metrics are used for this purpose (see Section 2.4.2).

114 Evaluation

Table 7.1 summarises the key features of these datasets. The details and analysis of each

dataset are presented in the following paragraphs.

Countries Nations Kinship UMLS FB122

Predicate # 2 56 26 49 122

Constant # 272 14 104 135 9,738

Positive Facts # 1,159 2,565 10,686 6,529 112,476

Maximum Facts #

according to the Signature
149,058 10,976 281,216 893,025 11,569,094,568

% of the Positive Fact Number

over the Maximum Fact Number
0.7% 23.4% 3.8% 0.7% 0.0009%

Size of Training Set
S1 1111

S2 1063

S3 979

1,592 8,544 5,216 91,638

Size of Validation Set 24 199 1,068 652 9,595

Size of Test Set 24 201 1,074 661
S1 5,057

S2 6,186

S3 11,243

Identifies Expected Rules Yes No No No Yes

Table 7.1 A summary of key features of datasets used in our evaluation, including the predicate
number, the constant number, the positive fact number, the maximum fact number according to the
signature, the percentage of the positive fact number over the maximum fact number, the size of
training/validation/test sets and if there are expected rules.

The first two rows state the number of predicates and constants in the signature of the dataset.

The third row states the number of facts in the knowledge base. The fourth row is the maximum

number of facts that could be constructed from the knowledge base signature, which is given

by the formula number of predicates× (number of constants)2 (recall that all facts are binary

atoms1). The fifth row is the percentage of the positive fact number over the maximum fact

number. The remaining three rows specify the sizes of the training, validation and test sets

respectively. Note that the Countries dataset includes three training sets, S1, S2, S3 and one

test set, whereas the FB122 dataset has one training set and three test sets. The last row

indicates whether the knowledge base includes also any ‘expected’ rules.

Countries. This dataset was initially proposed in [Bouchard et al., 2015] and extended in

[Nickel et al., 2015] to three training tasks to test the reasoning ability of the systems. It is a

geographical dataset that records the location and neighbourhood relations between countries,

subregions and regions, through two predicates located_in and neighborOf . The signature

contains 272 constants, comprising of 244 countries, 5 regions (continents) and 23 subregions

(such as Eastern Europe). In this small dataset it is assumed that each country is located in
1Note that extra constraints might be applied to restrict some predicate and constant combinations. This

number does not consider these constraints and indicates a theoretic maximum number, which might be larger
than the facts number allowed under various constraints.

7.1 Datasets 115

exactly one subregion; each subregion is located in exactly one region; however, each country

may have zero or more neighbours.

In order to evaluate the reasoning ability of a learning system, the dataset includes the three

tasks, S1, S2, S3, of increasing difficulty. These have the same learning goal, i.e. predict

locatedIn(c, r), where c ranges over all countries and r ranges over the 5 regions. However, the

training sets of these tasks are slightly different. Countries has a ‘basic’ training set consisting

of all facts in the knowledge base. To increase the level of difficulty across the three tasks,

some selected facts are removed from the ‘basic’ training set, so they must be proved using

some learned rules. The dataset comes with an ‘expected rule’ for each task, which is used

to inform the structure of the template rules that need to be induced. The task S1 could be

solved by a transitive rule locatedIn(X, Y) :- locatedIn(X, Z), locatedIn(Z, Y). The task S2

removes ground facts of locatedIn(c, s), where c is a test country and s is a subregion, so queries

cannot be answered using the rule in S1 and needs to be answered by a rule locatedIn(X, Y)

:- neighborOf(X, Z), locatedIn(Z, Y). In task S3, more facts are removed and queries needs

to be answered by a three-hop rule locatedIn(X, Y) :- neighborOf(X, Z), neighborOf(Z, W),

locatedIn(W, Y).

Nations. The Nations dataset consists of a set of facts about nations and their features. The

dataset was originally proposed in [Rummel, 1992] with a mixture of unary and binary predicates,

but in [Rocktäschel and Riedel, 2017], all unary facts were removed. To be consistent with our

baselines, NTP and its extensions2, we use the same version of Nations dataset presented in

[Rocktäschel and Riedel, 2017].

Nations is a good dataset on which to evaluate our systems. With 56 binary predicates

and the given rule templates, it has a much bigger search space compared to Countries. On the

other hand, it includes only 14 constants, so the use of subdomains might not be very effective,

possibly making it less than ideal for evaluating TSNTP.

Kinship. The Kinship dataset [Denham and White, 2005] consists of a set of facts about kin-

ship relations among people from the Alyawarra tribe in Central Australia. There are 26 binary

predicates (kinship relation) and 104 constants (person) in the knowledge base. All predicates

and constants are anonymised, so facts have the forms such as term0(person0, person45).

2Other systems that we compare with do not use Nations dataset, because they focus on binary facts.

116 Evaluation

Kinship is a good dataset on which to evaluate our systems, especially TSNTP and NAF

TSNTP, since it has sufficient predicates and constants to demonstrate how topics and subdo-

mains can be used to improve computational efficiency. Differently from Nations, where the

knowledge base contains 23.4% of facts out of all potential facts that can be generated from

the signature, the Kinship knowledge base contains only 3.8% of potential facts. In this case,

high HITS values of positive queries indicate a more robust trained model, because the number

of corrupted facts in the test set is bigger. Another strength of Kinship is that the data is

anonymised, such that a human cannot understand the meaning of each symbol. Thus, there is

no human bias in selecting topics and subdomains and interpreting decoded rules.

UMLS. The UMLS dataset consists of a set of facts from the Unified Medical Language

System [McCray, 2003], a biomedical ontology. Similarly to Kinship, UMLS is a good dataset

on which to evaluate our systems. It has similar numbers of predicates and constants as Kinship,

but the knowledge base contains only 0.7% of facts among potential facts given the signature.

UMLS is not an anonymous dataset, so its decoded rules and clustering are interpretable for

humans to check whether the induced rules make sense.

Freebase122. The FB122 dataset [Guo et al., 2016] is a subset of the Freebase dataset [Bol-

lacker et al., 2008] which stores general facts about the world. It is by far the largest knowledge

base used in our evaluation. FB122 stores facts about people, location and sports. There are

47 rues about triples in FB122 that are known to be true and the dataset comes with two

test sets, depending on whether they can be proved by one of the 47 rules or not. There is a

single training set, so the training process is the same with the same hyperparameters and rule

induction. Test-I is the harder of the two tests, consisting of 5,057 positive facts that cannot be

proved by any of the 47 rules, whereas Test-II consists of 6,186 positive facts all of which can

be proved by the 47 rules. Note that, although there are 47 known rules, to test the induction

ability of our system, we do not use these rules3. For each test set the evaluation is based on our

induced rules and trained embeddings, without the 47 known rules. Therefore, for Test-II our

system has to learn some or all of the 47 rules in order to achieve a good accuracy, whereas for

Test-I it has to induce some other rules. A third test set, Test-III is formed by joining Test-I

and Test-II and its evaluation result represents the weighted average of evaluation results of

Test-I and Test-II.

3Other systems, such as GNTP, also test the three datasets without using the known rules. We compare with
them under the same settings.

7.2 Experiment Settings 117

FB122 is a good dataset on which to evaluate our systems and test their scalability. The

number of facts in the KB is 17.2 times more than that of UMLS (112,476 vs 6,529), which is a

standard benchmark dataset to test rule induction. In terms of predicate and constant numbers,

its 122 predicates and 9,738 constants are also greater than the 49 predicates and 135 constants

in UMLS. This dataset motivated us to develop TSNTP that aims to support large knowledge

bases.

7.2 Experiment Settings

In this section, we present the settings of our experiments, including the evaluation metrics used,

evaluation procedure, hyperparameters involved and the template rules used for each dataset.

7.2.1 Evaluation Metrics

We consider two main metrics: AUC_PR [Davis and Goadrich, 2006] and HITS [Bordes et al.,

2011]. Both are standard metrics used to evaluate accuracy of query answering predictions:

AUC_PR is used for the Countries dataset and HITS is used for the other datasets. For a

fair comparison, these choices of metrics are the same as those used by our baselines. In what

follows, we introduce the details of the two metrics.

AUC_PR

Following [Rocktäschel and Riedel, 2017], the accuracy of query answering predictions in the

Countries dataset is evaluated using AUC_PR [Davis and Goadrich, 2006] (see Chapter 2.4.2

for details). This metric measures the area under the curve (AUC) of a precision-recall curve

(PR). According to [Davis and Goadrich, 2006], AUC_PR is particularly good at evaluating

datasets with an unbalanced number of positive and negative (corrupted) examples. Recall from

Section 2.2, precision is very sensitive to the number of false positive predictions and recall is

very sensitive to the number of false negative predictions, especially when the number of true

positive predictions is low. The PR curve better represents the performance over a dataset

with more negative examples than positive examples, because precision and recall are more

sensitive to the quality of predicting positive examples. Note that in our experiments, negative

examples are corrupted examples.

118 Evaluation

HITS

Following [Rocktäschel and Riedel, 2017], the Nations, Kinship, UMLS and FB122 datasets

are evaluated using the HITS metric. This metric measures the rank of a (positive) test query

when its proof score is compared with the proof scores of its corrupted queries (see Chapter

2.4.2). Ideally, the rank of each positive query should be 1 when compared with its corruptions,

meaning its proof score is the highest.

7.2.2 Evaluation Procedure

In what follows, we describe our evaluation procedure.

As stated in Chapters 3, 4, and 5, TNTP and TSNTP rely on the topics and subdomains

information generated using the embeddings learned by FNTP, whereas NAF TSNTP relies

on trained embeddings and rules generated by TSNTP. In our evaluation, we maximise the

common parts among the various systems, such that for each dataset, TNTP and TSNTP

use the same topics, and NAF TSNTP uses the trained results from TSNTP as its starting point.

In all cases, the training set is used to train the learning systems and the validation set

is used to tune hyperparameters. For each system and each dataset, the hyperparameters vary

within fixed ranges (see Section 7.2.3). Finally, after selecting the best hyperparameters, the

results of the query answering task are generated using the test set. These are generated by

performing 5 runs that use different random embedding initialisations. We consider 5 runs only,

because our standard errors are small. We also record the best result from the 5 runs, because

most of systems that we compare with reported one result only, rather than a mean value for

several repetitions.

7.2.3 Hyperparameters

To have a fair comparison with our baselines, and in paticular with the systems presented in

[Rocktäschel and Riedel, 2017] and [Minervini et al., 2020a], we use the same hyperparameters

as theirs whenever possible4. In the following paragraphs, we firstly introduce the common

features used by all systems and the hyperparameters for topic and subdomain generation.

Then, we present the hyperparameters specific to TNTP/TSNTP/NAF TSNTP.
4Most of their experiment settings are the same. When they differ, we use the experiment setting of [Minervini

et al., 2020a], because it is the latest version.

7.2 Experiment Settings 119

Common Features. All systems use ADAM [Kingma and Ba, 2015] with a mini-batch size

of 50 queries for optimisation. We use l2 regularisation to optimise all trainable parameters

and clip gradient values between [−1.0, 1.0]. All embeddings are initialised randomly using

Xavier initialisation [Glorot and Bengio, 2010]. For each (positive) query, four corrupted queries

are used during training and these corrupted queries are recreated at each epoch. For a fair

comparison with other systems, we consider the same set of template rules and same number of

copies as that used by the baselines (see details in Section 7.2.4).

Hyperparameters for Topic and Subdomain Generation. Since the aim of FNTP is

to train the embeddings from which to generate topics and subdomains, achieving the highest

accuracy of query answering predictions is not its goal. Thus, we keep the parameter tuning of

FNTP as simple as possible. FNTP uses a fixed learning rate at 0.001, a fixed l2 regularisation

value at 0.001 and a fixed batch size, 50 queries per batch. Although using fixed hyperparameters,

FNTP is still able to reach high accuracy of query answering prediction, which is a good basis

to generate topics and subdomains.

After FNTP is trained, topics and subdomains are generated by clustering the trained em-

beddings. The number of topics and subdomains are also hyperparameters, whose ranges are

{5, 10, 20} and {10, 20, 50, 100, 200} respectively. Note that the upper bounds of topic number

and subdomain number are dependent on the numbers of predicates and constants in the

dataset. When creating topics or subdomains using the trained embeddings of FNTP, we

apply both K-means and Agglomerative clustering algorithms to generate different number of

topics and subdomains. We found that the topics generated byK-means algorithm usually lead

to better accuracy of query answering predictions, except for the UMLS dataset where the

clusters generated by K-means concentrate on two topics whereas the clusters generated by

Agglomerative are distributed more uniformly. As a result, except for the UMLS dataset, other

datasets use the K-means clustering algorithm.

As shown in Section 7.4.3, which compares the different evaluation results for the query

answering task with respect to different numbers of topics and subdomains, fewer topics and/or

subdomains give better accuracy of query answering predictions. When more topics and sub-

domains are used, the computation time is faster with less memory usage, but the accuracy

of query answering predictions could be slightly lower. When we compare our systems against

the baselines, we pick the numbers of topics and subdomains that generate best accuracy of

120 Evaluation

query answering predictions. Once the topics and subdomains are selected, we then fine-tune

the TNTP or TSNTP induction with respect to other hyperparameters.

Simplified Hyperparameters. We fine-tune the two hyperparameters, learning rate and l2,

only within a subset of the ranges used by GNTP, and keep the batch size fixed, due to limited

computational resources. These are summarised in Table 7.2.

Hyperparameters TNTP/TSNTP Ranges

Learning Rate {0.001, 0.01, 0.1}

l2 {0.001, 0.0001}

Batch Size 50

Table 7.2 The ranges of the three hyperparameters used by our systems, including the learning rate,
l2 value and batch size.

We first tune the learning rate using a fixed l2 regularisation value and then use the best learning

rate to further tune l2. Although this method does not guarantee the best hyperparameter

combination, it proved sufficient to achieve good overall accuracy of query answering predictions.

New Hyperparameters. Specific to our systems, we introduced four tunable hyperparame-

ters, namely the number of topics and subdomains, α and β (for amplifying the rule learning)

and two fixed hyperparameters for NAF TSNTP, namely Z and NAF_THRESHOLD. The

range of values for these hyperparameters is given in Table 7.3. The hyperparameter Z controls

how many definite rules are converted to normal rules. We fix Z to 10 to concentrate on

the 10 most frequently used rules. Z could in principle cover all TTRs, but the computation

time grows linearly when more definite rules are considered. Similarly, for simplicity, we keep

NAF_THRESHOLD fixed to 1.0, which is the mid-point of the allowed range [0, 2]. Recall

that in NAF TSNTP, each normal rule has a ns score which measures the quality of the normal

rule. If the ns score of a selected normal rule is less than or equal to NAF_THRESHOLD,

the normal rule could replace the definite rule from which it extends.

Hyperparameters Ranges

α {20, 50, 100, 200}

β {3, 5, 100, 1000}

Z 10

NAF_THRES 1.0

Table 7.3 The range of four hyperparameters specific to our systems, including α, β, Z and
NAF_THRES.

7.2 Experiment Settings 121

Changed Hyperparameters. We also changed the two hyperparameters, kmax and the

number of epochs for our systems, leading us to select kmax = 1 (except for the Countries

dataset, which would have poor accuracy of query answering predictions if kmax = 1 is used, due

to its small data size) and running for 50 epochs for training FNTP and 50 epochs for training

TNTP/TSNTP.

Note that NTP sets kmax to 10 and GNTP tunes it in the range {1, 3, 5}.5 In our systems, we

are able to set kmax to 1 and still induce rules with good quality, because we use α and β to

encourage queries to be proved by rules. Without these amplification hyperparameters, the rule

induction quality cannot be maintained when kmax = 1. The empirical evidence is presented in

Section 7.4.1.

We use 50 epochs to train FNTP and another 50 epochs to train TNTP/TSNTP induc-

tion, whereas NTP uses 100 epochs directly. Note that FNTP training around 7 times faster

than TSNTP induction training, because it does not involve rule induction. With given topic

and subdomain information as induction bias, TNTP/TSNTP induction only requires 50 epochs

to induce rules. In contrast, NTP does not have this information, so it needs more epochs to

induce rules.

7.2.4 Template Rules

For each dataset, we list the template rules with the numbers of copies in brackets that we use

in our evaluation (see Section 3.3.2 for details of template rules). These are the same template

rules as those used by our baselines where applicable.

For Countries dataset, the template rules are as follows. Recall that there are only two

predicates, so no topics are introduced.

(3) #1(X, Y) :− #2(Y, X).

(3) #1(X, Y) :− #2(X, Z), #2(Z, Y).

(3) #1(X, Y) :− #2(X, Z), #3(Z, Y).

(3) #1(X, Y) :− #2(X, Z), #3(Z, W), #4(W, Y).

In task S1, the first two template rules are given. In task S2, the first three template rules are

given. In task S3, all template rules are given.
5In their work, kf is used to denote the number of branches that will expand in the proof. It is similar with

kmax.

122 Evaluation

The template rules for Nations, Kinship, and UMLS datasets are listed below.

(20) #1(X, Y) :− #2(X, Y).

(20) #1(X, Y) :− #2(Y, X).

(20) #1(X, Y) :− #2(X, Z), #3(Z, Y).

The template rules for FB122 dataset are listed below.

(20) #1(X, Y) :− #2(X, Y).

(20) #1(X, Y) :− #2(Y, X).

(20) #1(X, Y) :− #2(X, Y), #3(X, Y).

Note that we our third template rule is different from the template rule #1(X, Y) :- #2(X,Z),

#3(Z, Y) used by GNTP.

For each of these four datasets, the template rules are converted to TTRs, as described

in Section 3.3.2. As our evaluation is based on 5 runs, we use newly generated sets of TTRs in

each run.

7.3 Evaluation Results

We compare the accuracy results of the query answering task of our systems against three

groups of baselines: the first group includes the family of NTP-based systems (NTP [Rocktäschel

and Riedel, 2017], NTP 2.0 [Minervini et al., 2018], GNTP [Minervini et al., 2020a] and CTP

[Minervini et al., 2020b]), the second group refers to systems that are capable of doing rule

induction (NeuralLP [Yang et al., 2017], MINERVA [Das et al., 2018] and RNNLogic [Qu et al.,

2020]) and the third group includes systems that cannot do rule induction (ComplEx [Trouillon

et al., 2016], KALE [Guo et al., 2016], ASR [Minervini et al., 2017] and DistMult [Yang et al.,

2015]). On the other hand, we compare the time and memory performance of our systems with

respect only to NTP and GNTP, since our systems are inspired by the NTP approach. Then,

we also discuss the quality of our induced rules and the effects of NAF.

7.3.1 Accuracy of Query Answering Predictions

We summarise the accuracy results for the query answering prediction task in four tables (Table

7.4-Table 7.7).

7.3 Evaluation Results 123

Table 7.4 shows the accuracy of the query answering prediction task on the Countries dataset for

our TNTP system, based on the best result out of 5 runs using only one topic6, and compares

it with that of baselines for which results are published. We found that the limited number of

predicates (2 only) in the Countries dataset affects the training by FNTP of embeddings of

constants such that the subdomain clustering does not reflect their (geographical) semantic

meaning. For this reason we considered just 1 subdomain, making TSNTP identical to TNTP,

hence we have not included results for TSNTP. Also, we did not run NAF TSNTP since the

expected rules for this dataset are all definite rules.

Dataset Metrics TNTP NTP
GNTP

(standard)

GNTP

(attention)
CTP MINERVA NeuralLP ComplEx

Countries

S1 AUC_PR 100.00 90.83 99.98 100.00 100.00 100.00 100.0 99.37

S2 AUC_PR 89.67 87.40 90.82 93.48 91.81 92.36 75.1 87.95

S3 AUC_PR 88.49 56.68 87.70 91.27 94.78 95.10 92.2 48.44

Table 7.4 The accuracy of the query answering prediction task of the Countries dataset using the
AUC_PR evaluation metric. We present the average result over 5 runs for our systems. We quote
the average results of NTP, GNTP, CTP, MINERVA, NeuralLP and ComplEx, where results of NTP
and GNTP are reported in [Minervini et al., 2020a], the result of CTP is reported in [Minervini et al.,
2020b] and results of MINERVA, NeuralLP and ComplEx are reported in [Minervini et al., 2020a].

As shown in Table 7.4, the TNTP accuracy of query answering predictions is comparable or

better than that of most baselines, except for GNTP (attention), CTP and MINERVA for tasks

S2 and S3. GNTP (attention) and CTP have better accuracy of query answering predictions in

Countries dataset, because their systems are more likely to perform well when there are fewer

predicates. Both systems use attention vectors over embeddings of known predicates. When

there are only two known predicates, learning the attention vector is easier. However, GNTP

(attention) and CTP have scalability limitations, which are explained in detail after Table 7.5.

Although MINERVA learns embeddings of predicates and constants, it does so not through

template rules but through reinforcement learning and chaining relations. Since there are only

two predicates, this method is more effective than inducing template rules. As shown later, this

is not the case for datasets that include more predicates.

We have used for this dataset kmax equal to 10 instead of 1. This is due to the fact that

the leaned embeddings of constants do not reflect well their semantic meaning and therefore the

choice of a single proof branch might land on wrong substitutions. Also, since there is only 1

topic, which does not require 50 epochs of FNTP training, the rule induction part is trained for
6This is because the signature includes only two predicates and topic clustering is not needed.

124 Evaluation

100 epochs, the same number of epochs used by other systems.

In Table 7.5, we present the accuracy for the query answering prediction task of our three

systems (TNTP, TSNTP and NAF TSNTP) using both the MRR and HITS metrics over the

three datasets Nations, Kinship and UMLS. We compare these results against the baseline

NTP [Rocktäschel and Riedel, 2017], as well as the extended systems GNTP (standard), GNTP

(attention) [Minervini et al., 2020a] and CTP [Minervini et al., 2020b]. Among these related

approaches, the system most relevant to our systems is GNTP (standard), which among the

other baseline systems has been shown to achieve high accuracy whilst maintaining scalability.

Dataset Metrics
TNTP

(best)

TNTP

(average)

TSNTP

(best)

TSNTP

(average)

NAF

TSNTP

(best)

NAF TSNTP

(average)
NTP

GNTP

(standard)

GNTP

(attention)
CTP

Nations

MRR 0.689 0.684 ± 0.002 - - - - 0.61 0.658 0.645 0.709

HITS@1 0.535 0.528 ± 0.003 - - - - 0.45 0.493 0.490 0.562

HITS@3 0.803 0.792 ± 0.002 - - - - 0.73 0.781 0.736 0.813

HITS@10 0.993 0.991 ± 0.001 - - - - 0.87 0.985 0.975 0.995

Kinship

MRR 0.746 0.740 ± 0.002 0.747 0.746 ± 0.001 0.751 0.749 ± 0.001 0.35 0.719 0.759 0.764

HITS@1 0.632 0.619 ± 0.004 0.630 0.627 ± 0.002 0.638 0.631 ± 0.002 0.24 0.586 0.642 0.646

HITS@3 0.840 0.837 ± 0.001 0.842 0.839 ± 0.001 0.848 0.844 ± 0.001 0.37 0.815 0.850 0.859

HITS@10 0.953 0.943 ± 0.002 0.954 0.951 ± 0.001 0.958 0.953 ± 0.001 0.57 0.958 0.959 0.958

UMLS

MRR 0.839 0.837 ± 0.001 0.845 0.839 ± 0.002 0.847 0.841 ± 0.002 0.80 0.841 0.857 0.852

HITS@1 0.737 0.730 ± 0.002 0.750 0.735 ± 0.004 0.754 0.738 ± 0.004 0.70 0.732 0.761 0.752

HITS@3 0.938 0.933 ± 0.001 0.935 0.931 ± 0.001 0.939 0.933 ± 0.002 0.88 0.941 0.947 0.947

HITS@10 0.986 0.982 ± 0.002 0.984 0.981 ± 0.001 0.984 0.981 ± 0.001 0.95 0.986 0.983 0.984

Table 7.5 The average and the best evaluation results for the query answering prediction task over
five runs, of each of our systems on Nations, Kinship, UMLS dataset. The average performance is
represented as the mean value plus its standard error. The dash means that the results are the same
as that in TNTP. We highlight the best accuracy over all our systems and also the best accuracy over
the baselines NTP, GNTP(standard), GNTP(Attention) and CTP. The results of these baselines are
quoted from other works as stated in [Minervini et al., 2020a] and [Minervini et al., 2020b].

Among our three systems, TNTP is the basic system. The more optimised TSNTP system

yields better accuracy of query answering predictions. TSNTP possesses two properties that

are somewhat opposing in their effects: although it selects fewer facts in each body atom

unification than TNTP, which means it could miss more information, on the other hand the

selected facts, based on topics and subdomains, may be more accurate than the facts selected

by topics only, so the proof of each body atom is more targeted. The accuracy results of our

experiments demonstrate that the second effect appears to overrule the first effect. We did not

provide the accuracy of query answering predictions of TSNTP and NAF TSNTP on Nations

dataset, because the Nations dataset has only 14 constants, making subdomains not very effective.

7.3 Evaluation Results 125

For the Kinship and UMLS datasets, NAF TSNTP improves TSNTP further, by inducing

normal rules from TSNTP induced definite rules. Due to our normal rule induction algorithm,

if a normal rule has more negative impact on the accuracy of query answering predictions than

positive impact, the normal rule would not be used and its associated definite rule would be

used instead. As a result, the accuracy of query answering predictions of NAF TSNTP is

always higher than or equal to the accuracy of query answering predictions of TSNTP. For

example, for the Nations dataset, NAF TSNTP does not find better normal rules than the

definite rules induced by TNTP (or TSNTP using one subdomain), possibly due to the nature of

the KB, so NAF TSNTP has the same accuracy of query answering predictions as that of TNTP.

Overall, among our three systems, NAF TSNTP also outperforms GNTP(standard), the system

most similar to our systems since it uses embeddings in the same way as our systems do, in

nearly all cases.

Among all systems, GNTP (attention) and CTP have similar or slightly better performance

than our systems. However, both systems suffer scalability problems. In GNTP (attention),

the embedding of an induced predicate is the weighted average of all embeddings of known

predicates, which is controlled by an attention vector with the dimension size equivalent to

the number of known predicates. If there are 1000 known predicates, each induced predicate

needs to learn an attention vector with 1000 dimensions, whereas we keep the embedding size

to 100. Consequently, GNTP (attention) can quickly become inefficient when there are over

100 known predicates, as stated in [Minervini et al., 2020a]. As for CTP, it is equivalent to

the original NTP, except that it learns to select a subset of rules that are most relevant to the

predicate of each specific query. Although it performs slightly better, it has scalablity issues as

well, because it needs to consider all facts in each body atom unification. As a result, it has

never been applied to FB122 dataset.

Table 7.6 compares the accuracy for the query answering prediction task of our systems

with respect to baselines other than those in the NTP family. In this table as these other

baselines report one result only, we also report one result, namely the best accuracy from 5 runs

for each of our systems.

126 Evaluation

Dataset Metrics TNTP TSNTP
NAF

TSNTP
MINERVA RNNLogic NeuralLP ComplEx

Nations

MRR 0.689 - - - - - 0.60

HITS@1 0.535 - - - - - 0.46

HITS@3 0.803 - - - - - 0.67

HITS@10 0.993 - - - - - 0.97

Kinship

MRR 0.746 0.747 0.751 0.720 0.722 0.619 0.46

HITS@1 0.632 0.630 0.638 0.605 0.598 0.475 0.34

HITS@3 0.840 0.842 0.848 0.812 0.814 0.707 0.49

HITS@10 0.953 0.954 0.958 0.924 0.949 0.912 0.74

UMLS

MRR 0.839 0.845 0.847 0.825 0.842 0.778 0.58

HITS@1 0.737 0.750 0.754 0.728 0.772 0.643 0.47

HITS@3 0.938 0.935 0.939 0.900 0.891 0.869 0.63

HITS@10 0.986 0.984 0.984 0.968 0.965 0.962 0.80

Table 7.6 The accuracy for the query answering prediction task of each system on Nations, Kinship,
UMLS dataset compared to MINERVA, RNNLogic, NeuralLP and ComplEx. The result of RNN logic
are reported in [Qu et al., 2020] and results of MINERVA, NeuralLP and ComplEx are reported in
[Minervini et al., 2020a]. TSNTP has the same results as TNTP in the Nations dataset, because
only one subdomain is required for its 14 constants (Thus, it is equivalent with TNTP). Also, in this
dataset, no normal rules that could lead to better accuracy of query answering prediction compared
with definite induced rules are induced, so the accuracy of NAF TSNTP is the same as that of TNTP.
We did not find the evaluation results of MINERVA, RNNLogic and NeuralLP for this dataset, so we
use dashes to represent that the results are not available.

As shown in Table 7.6, our systems have higher performance than ComplEx, MINERVA, Neu-

ralLP and RNNLogic with respect to all metrics, except HITS@1 of the UMLS dataset, where

RNNLogic outperforms our systems.

In Table 7.7, we present the accuracy for the query answering prediction task of our sys-

tem TSNTP on FB122 dataset [Guo et al., 2016]. FB122 is the largest dataset used in this

thesis, with over 11.6 billion potential facts in its signature. We evaluate just TSNTP as this is

our most efficient system. The objectives of this evaluation are to demonstrate that TSNTP is

scalable enough to learn rules over large KBs, and to test the level of accuracy that it can reach

in solving query answering prediction tasks over large KBs.

Due to our limited computation resources we were not able to run multiple experiments

to fine-tune our hyperparameters, as we did in the previous experiments where the KBs were

much smaller. We only run our system once. Hence the results reported in Table 7.7 are just

an indication of what TSNTP is capable of achieving. In this experiment, we used a fixed

learning rate at 0.001, a fixed l2 at 0.001, 5 topics and 20 subdomains, which were the best

hyperparameter values found in the previous experiments. (Note that if more topics are used,

7.3 Evaluation Results 127

more template rules are required to support different topic combinations.) We used also a

limited validation set to fine-tune the hyperparameters α and β. Their final values were 20 and

5 respectively. Also, note that differently from the GNTP experiments, our template rules do

not contain transitive rules. This might have an impact on the overall accuracy and needs to be

taken into account when comparing our results with that of GNTP.

Table 7.7 shows accuracy results of two classes of experiments, one where the FB122 KB

and known background rules are given as input and the other where only the FB122 KB is given

as input. Our systems belong to the second class. In each of these experiments, we consider two

given test sets: Test-I where test queries are not provable by the given rules and Test-II where

test queries are provable using the given rules. We compare the performance of our TSNTP

against baseline systems that perform inference without the ability of inducing rules (i.e., KALE,

ASR-DistMult, ASR-ComplEx, DistMult and ComplEx), and the GNTP system which instead

is capable of learning rules.

Test-I Test-II

HITS@3 HITS@5 HITS@10 MRR HITS@3 HITS@5 HITS@10 MRR

With Background

Rules as input

KALE 0.384 0.447 0.522 0.325 0.797 0.841 0.896 0.684

ASR-DistMult 0.363 0.403 0.449 0.330 0.980 0.990 0.992 0.948

ASR-ComplEx 0.373 0.410 0.459 0.338 0.992 0.993 0.994 0.984

Without Background

Rules as input

DistMult 0.360 0.403 0.453 0.313 0.923 0.938 0.947 0.874

ComplEx 0.370 0.413 0.462 0.329 0.914 0.919 0.924 0.887

GNTP 0.337 0.369 0.412 0.313 0.982 0.990 0.993 0.977

TSNTP 0.218 0.262 0.337 0.206 0.884 0.933 0.980 0.789

Table 7.7 The accuracy for the query answering prediction task of TSNTP on FB122 [Guo et al.,
2016], compared with baseline systems KALE [Guo et al., 2016], ASR [Minervini et al., 2017], DistMult
[Yang et al., 2015], ComplEx [Trouillon et al., 2016] and GNTP (standard) [Minervini et al., 2020a].
The results of these systems were summarised in [Minervini et al., 2020a]. Among these systems, the
first three systems are given background rules as their inputs, whereas the bottom four systems do not
use these rules. Among the four systems, TSNTP falls into the category that could induce interpretable
first-order rules during training.

The Test-I experiment is mainly indicative of the completeness and generality of the induced

rules. The performance of our systems, indeed that of all baseline systems, is very poor. We

believe this is the case because the test queries in Test-I are mostly facts that are less likely to

be proved by the limited number of rules that can be induced, considering also that the facts in

the KB might not be fully representative of knowledge needed.

128 Evaluation

In our opinion, the most interesting experiment is that over Test-II when known background

rules are not given as input and the training relies only on the facts included in the FB122 KB.

In this case, we can truly evaluate the correctness of the induced rules, since ‘target’ learnable

rules for the queries in Test-II are known but not used during training. We discuss some of the

results in this experiment. As shown in Table 7.7, in the first class, the systems with background

rules as input perform well, especially ASR-ComplEx, which takes the advantages of both given

background rules and adversarial training. However, its success is based on the given rules,

which might not be provided by other systems. In the second class, the DistMult and ComplEx

systems perform reasonably well despite the fact that they are not capable of inducing rules.

This might, at first sight, appear to be unexpected. But we believe that their good performance

is due to the fact that learned embeddings of related constants are very close in vector space and

can be unified interchangeably, allowing these systems to use learned embedding representations

to answer queries correctly, without the need of learning rules. Because of the characteristic of

the FB122 KB hypothesised for the relatively good results for ComplEx and DistMult, which

do not induce rules, both the GNTP system and our TSNTP system are trained using specific

regimes. GNTP learns just the embeddings of induced predicates and the selection strategy

over induced rules during the first 95 epochs and then learns and fine-tunes the embeddings

of known predicates, constants and unknown predicates only in the last 5 epochs of training.

The purpose is, in our opinion, that in this way during the 95 epochs, a very specific ‘abstract’

space of potential rules is trained, which is then fine-tuned (or instantiated) over the known

predicates and constants while their embeddings are learned during the last 5 epochs. In our

TSNTP we use a different training regime. We freeze the (randomly initialised) embeddings

of constants for the first 30 epochs, in order to ‘force’ the system to learn the embeddings of

both known and induced predicates together. We then allow the constant embeddings to be

updated during the remaining 20 epochs. We believe that this difference in the training regime

is why GNTP slightly outperforms our TSNTP system. The computational task that GNTP

solves when learning unknown predicates only is ‘simpler’ than the one computed by TSNTP,

which has to learn embeddings of both known and unknown induced predicates at the same

time. Nevertheless, it is interesting to note that the trained TSNTP proves all test queries in

TestII using only its induced rules, some of which are the same as the given background rules

known to be useful for proving the test queries.

7.3 Evaluation Results 129

7.3.2 Runtime and Space Evaluation

We now evaluate the time and memory efficiency of our systems and compare with those of

GNTP (standard). We track the CPU computation time and maximum memory used for each

system, using the hyperparameters that lead to the accuracy results reported in Table 7.5.

Specifically, we report the improvement of our systems with respect to NTP as well as that

of GNTP with respect to NTP. We do so by re-running NTP and GNTP (standard) using

the configuration ranges specified in [Minervini et al., 2020a]. The improvement of time and

memory efficiency are presented in Table 7.8. Since the authors in [Minervini et al., 2020a] did

not specify the configuration that lead to the best accuracy, we have tested the time and space

improvements for all the given ranges of values with respect to number of rules and number of

facts selected in the computational tree for each query. Therefore, the table includes for GNTP

(standard) the range of time and space improvement with respect to NTP. All systems are run

using the same hardware, namely 8 CPU with 96 GB memory, allocated by Imperial Cloud.

The computational time is measured in terms of CPU time.

Time Nations Kinship UMLS

TNTP 21.2 20.9 23.9

TSNTP – 47.0 44.1

NAF TSNTP – 43.3 35.0

GNTP (standard) 10.4 - 25.8 15.15 - 60.8 15.25 - 52.8

Space Nations Kinship UMLS

TNTP 2.4 5.4 5.0

TSNTP – 5.4 5.2

NAF TSNTP – 2.9 1.6

GNTP (standard) 4.8 - 9.3 7.3 - 13.0 7.5 - 18.1

Table 7.8 The improvement of time and memory efficiency of our systems with respect to NTP, when
using 5 topics and 10 subdomains (except 1 subdomain for Nations dataset). The number indicates
how many times more efficient a system is, compared with NTP. The higher the number, the better.
We compare our systems with GNTP (standard) and report their improvement as a range using their
given configurations. The time and memory improvement of our systems are the average value over
five runs and the ranges of improvement of GNTP (standard) are based on a single run for each value
in the range.

The computation time of TNTP and TSNTP includes 50 epochs of FNTP training and 50

epochs of rule induction. The time also includes topic and/or subdomain generation, but

these take less than 0.01 second, which is negligible compared with the training time which is

measured by hours. Note that, on average across the different datasets, our systems use more

facts and rules in the unification process than the maximum configuration considered by GNTP

(standard). The computation time of NAF TSNTP includes TSNTP computation time plus

the normal rule induction time. As shown in Table 7.8, our systems show time speed up from

about 20.9 to 47 times faster than NTP, whereas the time speed up ranges of GNTP indicate

that for some configurations GNTP performs better than our systems but for others it performs

130 Evaluation

worse. Similarly, our systems show memory efficiency improvement up from 1.6 to 5.4 times

more memory efficient than NTP, which is slightly worse than GNTP. Note that the memory

improvement of NAF TSNTP is worse than TSNTP due to extra memory used to construct

multiple independent computational trees for selecting the rules to revise. Note also that when

more topics and subdomains are used the speedup and memory utilisation improve further, but

at a cost of slightly lower accuracy. We report in Table 7.11 experiments that demonstrate this.

7.3.3 Rule Induction

Our systems can induce rules that generate high accuracy of query answering predictions

comparable with other state-of-the-art systems, while also being human-interpretable. To

illustrate this we present here the five most frequently used induced rules and their decoding

from Nations dataset, using our decoding algorithm described in Section 3.5.

1st important rule, used by 11.1% test queries

0.465759: intergovorgs3(X, Y) :− intergovorgs(X, Y).

−−

2nd important rule, used by 8.8% test queries

0.42706525: relintergovorgs (X, Y) :− relngo(X, Y).

−−

3rd important rule, used by 6.8% test queries

0.76974094: emigrants3(X, Y) :− tourism3(X, Y).

0.7543415: ngo(X, Y) :− tourism3(X, Y).

0.71589917: reltourism(X, Y) :− tourism3(X, Y).

−−

4th important rule, used by 6.8% test queries

0.33827525: severdiplomatic(X, Y) :− treaties (Y, X).

−−

5th important rule, used by 6.8% test queries

0.89173555: negativebehavior(X, Y) :− negativecomm(X, Y).

0.80859405: accusation(X, Y) :− negativecomm(X, Y).

0.89173555: negativebehavior(X, Y) :− warning(X, Y).

0.80859405: accusation(X, Y) :− warning(X, Y).

0.6028473: negativecomm(X, Y) :− warning(X, Y).

0.65975684: negativebehavior(X, Y) :− expeldiplomats(X, Y).

0.65975684: accusation(X, Y) :− expeldiplomats(X, Y).

0.6028473: negativecomm(X, Y) :− expeldiplomats(X, Y).

As shown by the above examples, the decoded induced rules reflect human commonsense. For

example, the last rule (the 5th important rule) describes the negative relationships between two

7.4 Effects of Hyperparameters 131

entities. Note also that because of the learned embedding representations, this induced rule

yields to many decoded rules with similar meaning, thus demonstrating how compact induced

rules are in capturing information.

In Nations dataset, all queries in the test set are proved by induced rules and the accu-

racy of query answering predictions of TNTP is very high compared with other systems. This

illustrates that our induced rules capture all relations in the knowledge base. These rules can

be used to aid knowledge base completion when some facts are missing. In UMLS and Kinship

dataset, around 30%-40% test queries are proved by induced rules and other test queries are

proved by facts. This lower percentage of rule involvement is acceptable for the following reason.

Given a specific query, there may be facts in the KB that are similar to the query. In this case,

since proving with a similar fact will generally give a higher score than proving with a rule, and

the selected branch is the one with the highest score, the query would be proved by the fact. As

a result, the percentage of rule involvement is also affected by the nature of the knowledge base.

7.3.4 Effects of NAF

As presented in Table 7.5, inducing normal rules using NAF TSNTP improves the accuracy

of query answering predictions compared to TSNTP. In particular, the MRR and HITS@1 is

higher, even though in every dataset we only convert 10 definite induced rules (Z = 10) to

normal rules, over the 60 induced rules. Appending a negated atom can improve the accuracy

of query answering predictions, because the negated atom may reduce the proof scores of some

false positive predictions. In the evaluation over the test set, fewer numbers of false positive

queries improve the rankings of the true positive queries. In UMLS and Kinship dataset, 9 and

10 qualified normal rules (respectively) are induced from the 10 most frequently used definite

rules for proving positive training queries. With these induced normal rules, in UMLS, about

1.5% of corrupted queries in the test set receive lower proof scores compared to those generated

by the associated definite rules. For Kinship, it is about 5% of corrupted queries that result to

have lower scores.

7.4 Effects of Hyperparameters

We present here some experiments to demonstrate the effects of some hyperparameters, including

α and β amplification hyperparameters, kmax values, topic and subdomain numbers.

132 Evaluation

7.4.1 Effects of Alpha and Beta Amplification Hyperparameters

As presented in Section 3.4, we introduced two scaling factors, α and β, to encourage more rules

to be used during training. In this section, we present empirical results that demonstrate how

these two hyperparameters indeed lead to better rules being learned.

Table 7.9 presents the effects on the accuracy of query answering predictions and the use

of induced rules for different α and β. The four experiments are run under the same setting,

except for these two scaling factors.

α β MRR| @1 | @3 | @10 Rule Involvement (%)

Experiment 1 1 1 0.744|0.622|0.844|0.951 2

Experiment 2 500 1 0.669|0.564|0.744|0.843 41

Experiment 3 1 3 0.751|0.632|0.846|0.955 2

Experiment 4 500 3 0.754|0.645|0.834|0.949 34

Table 7.9 The effects on the accuracy of query answering predictions and the use of induced
rules for different α and β, using TSNTP on Kinship dataset. The rule involvement indicates
the percentage of test queries that are proved using induced rules. α = 500 and β = 3 are the
optimal values we found and subsequently used in evaluating TSNTP on Kinship dataset.

This table illustrates the importance of the two hyperparameters. Without the two hyperpa-

rameters (i.e. α/β = 1 implies that they are not used), although the MRR and HITS results

are good, only 2% of test queries are proved using the induced rules, indicating that they

are of limited use. In fact, in such case the system is like a FNTP, with much more training

time for little effect on rule induction. Experiment 2 and 3 use either α or β, but they either

have low accuracy of query answering predictions (Experiment 2) or have low rule involvement

(Experiment 3). Experiment 4 uses both hyperparameters and it has the highest accuracy

and also high rule involvement. These experiments validate that these hyperparameters can

encourage induction of useful rules.

7.4.2 Effects of kmax

MRR| @1 | @3 | @10 Rule Involvement

kmax = 1 0.741|0.615|0.841|0.960 0.43

kmax = 3 0.740|0.618|0.836|0.948 0.33

kmax = 5 0.727|0.603|0.828|0.941 0.36

Table 7.10 The effects of kmax on TSNTP using the Kinship dataset, in terms of accuracy of query
answering predictions and rule involvement.

7.4 Effects of Hyperparameters 133

Table 7.10 presents the impact on MRR, HITS and rule involvement of different kmax values. The

three experiments are run under the same setting, except for the kmax value. Surprisingly, when

kmax is higher, the accuracy of query answering predictions decreases, whereas it might have been

expected to increase. When kmax is low, although there are fewer proof branches, each branch

gets updated more frequently, so leading to better rule induction. A higher kmax means that

more branches are expanded. The kmax value does not affect template rules with one body literal.

However, for template rules with two body literals, such as #H(X, Y) :- #T1(X,Z),#T2(Z, Y),

the second body literal #T2(Z, Y) needs to be proved kmax times following the kmax best proved

branches of #T1(X,Z), each time with a fresh binding for the free variable Z. In theory, the

kmax expansions cover the search space better, compared to kmax = 1, which prove #T2(Z, Y)

with only one binding of Z. However, when kmax = 1, although Z only binds with one constant,

because of soft-unification, such binding actually is representative of bindings with many similar

constants. As shown by the results, a higher kmax does not necessarily lead to higher accuracy

of query answering predictions. The best accuracy of query answering predictions is when

kmax = 1.

7.4.3 Effects of Topics and Subdomains

We present here the effects that different numbers of topics and subdomains have on accuracy

of query answering predictions, computational time and use of induced rules. We consider only

the TSNTP system.

Topic Num Subdomain Num MRR| @1 | @3 | @10 Time Speedup Rule Involvement (%)

5 10 0.845|0.750|0.935|0.977 1.00 35

5 20 0.835|0.731|0.923|0.977 1.20 40

5 30 0.782|0.675|0.873|0.939 1.22 41

10 10 0.834|0.730|0.927|0.975 1.31 45

10 20 0.822|0.722|0.911|0.969 1.43 35

10 30 0.785|0.685|0.865|0.919 2.12 37

15 10 0.831|0.725|0.929|0.976 1.67 43

15 20 0.834|0.726|0.935|0.978 1.79 48

15 30 0.799|0.694|0.887|0.952 2.14 53

Table 7.11 The effects of topics and subdomains on accuracy of query answering predictions, time and
rule involvement, for TSNTP and the UMLS dataset.

The results in Table 7.11 show that the differences in MRR and HITS results are not significant

when using settings with different numbers of topics and subdomains. All experiments achieve

high accuracy of query answering predictions, except for the cases when the subdomain number

is 30. This maybe because when the subdomain number is high, constants are more distributed,

134 Evaluation

possibly forcing similar facts to belong to different subsets of facts, Ft_s.

The speedup of a setting is calculated as the ratio of the computation time of TSNTP with 5

topics and 10 subdomains to the computation time of the setting. Thus the speedup is 1.0 in

the first row and for 10 topics and 30 subdomains the computation of the test set is just over

twice as fast as for 5 topics and 10 subdomains. The results show that the more topics and

subdomains, the faster the computation, but the lower the accuracy.

Summary. All our systems, especially NAF TSNTP, are able to induce interpretable (normal)

rules that can be used to answer queries with high accuracy. We achieve the highest accuracy

of query answering predictions in most cases, comparing to GNTP (standard) and the other

baselines. Furthermore, our NAF TSNTP is the only system that can induce normal rules.

Chapter 8

Conclusion

We developed three neural-symbolic systems that learn rules and embeddings at the same time,

namely TNTP, TSNTP and NAF TSNTP. They can induce first-order (normal) rules efficiently

and answer queries from KBs with good accuracy. Our systems take the advantages of both

neural network and symbolic reasoning. Each system represents a symbolic knowledge base

using embeddings that are trained to capture semantic meaning, so that soft-unification can be

used to unify similar symbols, unlike the hard-unification used in symbolic logic where a symbol

can only unify with an exact match. Our systems use a computational tree to prove queries

in a backward chaining approach which models the proof method used in logic programming.

This computational tree architecture not only enables our systems to answer queries, but

also supports logic reasoning, in particular rule induction where rules are induced by learning

embedding representations. To control the size of the computational tree, our systems are able

to use topics and subdomains, generated by unsupervised clustering algorithms. They identify a

subset of most relevant facts during the proof, thus improving the computation efficiency. In

addition to definite rules, our NAF TSNTP also induces normal rules, as a first step towards

learning more expressive rules, where negated atoms can be added to a definite rule to make

the rule more specific. These induced rules can be decoded to first-order rules, which are

human-interpretable and can be used to explain the knowledge base. Using these induced rules

and trained embeddings, our systems are shown to achieve high accuracy of query answering

predictions.

With the normal rule induction ability and the embedding-based architectures, our systems could

be extended in many directions to tackle challenges in neural-symbolic reasoning. For example,

our systems can be extended to support background rules and using these background rules to

deduce more facts, forming an integrated system that perform deduction and induction at the

136 Conclusion

same time. Our systems can also be used to tackle the commonsense reasoning challenges, where

our systems could be used to identify the missing information that are ignored as ‘commonsense’

via rule induction and these induced rules can be viewed as ‘explanations’ of the knowledge

base.

In the following paragraphs, we firstly summarise the key features of the three systems, from the

perspectives of rule induction, query answering and computational efficiency. Then, we present

the potential directions of our systems.

Rule Induction. All our systems induce first-order (normal) rules that aim to cover as

many positive examples and as few negative examples as possible. These rules enable complex

relations, such as transitive relations, to be captured to answer relevant queries and explain

how a proof score is generated for a query. In our systems, each induced rule is trained through

gradient descent by learning the embedding representations of the predicates that appear in the

copies of the given topical template rules (TTR). This is done through backward chaining and

soft-unification with the known facts given in the KB. Using the specification of topics in the

TTRs enables more targeted soft-unification of the body conditions. The topic specification

also encourages the induction of rules over a larger search space within the signature of the KB.

After training, embeddings capture the semantic meaning of these symbols, so that embeddings

with similar meanings are close in vector space and their corresponding symbols can be used

interchangeably. Thus, each induced rule can be interpreted by decoding the predicate embed-

dings to their nearest known predicates in vector space. To amplify the chances of TTRs being

used during the backward chaining, all three systems use two hyperparameters.

Out of the three systems, the NAF TSNTP is the one capable of learning more expressive rules.

Indeed, this is the first ever purely differentiable system able to learn rules with negation-as-

failure in the body to solve query answering tasks. As demonstrated in the evaluations, the

increased expressivity of negation-as-failure leads to increased accuracy of the query answering

prediction task.

Query Answering. All three systems are able to answer symbolic queries from given KBs.

A query is answered by constructing a computational tree and computing a proof score through

backward chaining and soft-unification. A high score indicates that the query is provable given

the current information. The system is trained so that positive queries are predicted with high

scores and negative queries (i.e. corrupted facts) are predicted with low scores. The query

8.1 Future Works 137

answering prediction task is then evaluated using the MRR and HITS metrics. Note that this

evaluation does not care about the absolute value of the score, but only its relative rank among

the scores of the corruptions. High MRR and HITS scores indicate that the system is able

to distinguish positive queries from their corruptions, where positive queries consistently have

higher scores than the scores of their corruptions. We compare the accuracy of solving query

answering tasks against that of existing related state-of-the-art sub-symbolic systems. As shown

in Chapter 7, our approaches are indeed in most cases more accurate. Among the three systems,

NAF TSNTP performs the best, by using both definite and normal rules to answer queries.

Computation Efficiency. Our systems are able to induce rules efficiently. To improve the

computational efficiency, the three systems make use of the notion of topical template rules

(TTRs). Each copy of a TTR is given specified topics, which helps to prevent multiple copies

of a TTR inducing similar rules, by forcing specified topics. Using topics, TNTP only unifies

each body atom with a selected subset of facts, instead of all facts in the KB, so reducing the

computation time and space. This computational efficiency is improved even further in TSNTP

where constants are grouped into subdomains, constraining even further the soft-unification

process. This improved computational efficiency does not, however, cause a reduction in accuracy,

as both TNTP and TSNTP report similar performance on the various datasets. On the other

hand, NAF TSNTP also maintains the features of TSNTP, allowing a negated atom to be

proved by just checking that its positive part cannot be proved within the context of its specific

topic and subdomain. Furthermore, NAF TSNTP achieves better accuracy by the virtue of

its ability to learn normal rules. Our evaluation in Chapter 7 shows that our systems have

significant improvement in speed and memory efficiency compared to NTP, and comparable

computational efficiency with GNTP.

8.1 Future Works

There are many potential directions in which this work could be taken further. In what follows,

we discuss in a broad sense three directions that look at how our systems can be used for

commonsense reasoning, explainableAI and interacting with other symbolic/neural/neural-

symbolic systems. Then, we discuss further extensions of our systems, including incorporating

background rules in the training process; improving the computational performance even further

by paralleling the training process, and exploring the possibility of inducing rules only from

part of a large KB and then fine-tuning them over the full KB.

138 Conclusion

• Commonsense Reasoning

Our system could be extended to support commonsense reasoning [Davis, 2017]. A

knowledge base might not capture some basic information that human considers as

commonsense knowledge and would not state explicitly, such as ‘sister’ is a subset of

‘siblings’. The missing of such important yet implicit information makes logic reasoning

harder. Our systems can identify these implicit information by inducing rules, where

given an incomplete knowledge base, our systems learn rules that capture relationships

in the knowledge base, so that queries can be answered correctly. Our systems, unlike

humans, have no bias on these explicit or implicit relations: all predicates are treated in

the same way by learning their embedding representations during the training process and

predicates that correlate are likely to be induced as a rule. The induced rules can be added

to the knowledge base as background rules for further deductions and logic reasoning. In

this way, the implicit information becomes interpretable ‘explicit rules’. A next step would

be to explore how to incorporate our systems in commonsense reasoning systems.

• ExplainableAI

Our systems are able to induce first-order (normal) rules for human-interpretation, so

they could be applied to solve the explainability challenges in the neural network field, as

addressed in Explainable AI [Cyras et al., 2021]. Although some neural network systems

are able to achieve good prediction results, its prediction mechanism remains as a blackbox

with many matrices that are hard for human to interpret. Our systems can be used as

surrogate models. They can use other systems’ prediction results as prediction labels and

induce some rules using their queries and labels. These induced rules can provide some

insights on how neural networks make decisions. The challenge here is that our systems

can only induce rules from knowledge bases, so the training set needs to be converted to a

knowledge base first. So future works could be needed to explore how to support other

forms of training data, apart from knowledge bases.

• Further Use of Induced Rules and Embeddings

Our systems support both symbolic representations and neural representations, which

enable our systems to interact with both neural systems and symbolic systems. Our

induced rules, in symbolic representation, can be used by other logic reasoning systems

for further reasoning. The trained embeddings can be used by other neural systems, as

they capture semantic meanings that are trained via backward chaining.

8.1 Future Works 139

• Use of Background Rules

Background information can provide many useful information to a learning system, for

example background rules can be used for answering queries through backward chaining,

whereas without these rules queries might not be answered correctly. The injection

of background rules can improve the efficiency of a learning system, which can focus

on learning other unknown relations and use the given rules directly. In this thesis,

our proposed systems learn rules from only facts in the KB and TTRs. However, the

computation process is general enough to support also the inference over given background

rules. These could be processed in the same way as induced rules, except that the predicate

embeddings in the background rules would be ‘known’. Different background rules involving

the same predicates would then share predicate embeddings. This differs from induced

predicates, where embeddings are independent from each other across different TTR

copies. In this way, the reasoning process over the computational tree would help the

training of embeddings to converge faster and hopefully improve the accuracy even further.

This of course may come with additional computational challenges in the construction

of computational trees, e.g. they would be much larger. These could be overcome by

exploring how existing proof methods developed for pure symbolic inference could be

adapted and applied to the context of pure differentiable settings.

• Parallelisation

Our systems could be optimised further by splitting the training of induction rules

into multiple tasks, each with different combinations of TTRs. Each task would learn

embeddings independently. As typical of a parallelisation process, the challenge is on how

to ‘recombine’ the outcome of each computational thread. In our case, we would need to

develop mechanisms for merging the embeddings of the symbols in the signature of the

KB, which have been trained in each independent task. One possibility is to select the

TTRs that are most frequently used in each parallel task and retrain the system using

these selected TTRs. In this way, each parallel task could use fewer epochs in training, so

helping to improve the overall performance.

• Induction from a Subset of a KB

Our systems currently use the whole KB to induce rules. However, for a very large KB

it would be ideal if a subset of such a KB could be used for learning induced rules. For

example, given a kinship KB, we would only need a fraction of the KB to learn the kinship

relations, which would be applicable to the whole KB. The challenge would be to identify

140 Conclusion

the ‘most relevant’ subset of the KB. In a pure symbolic setting, concepts such as strongly

connected components of a KB have often be used to improve the inference process. Some

heuristics similar to this could be developed and applied to the differentiable setting and

evaluated against pure sampling methods.

The above extensions would help develop effective and scalable differentiable inference systems

underpinned by principles informed from the well established symbolic reasoning field.

References

Martín Abadi, Paul Barham, Jianmin Chen, Z. Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat
Monga, Sherry Moore, Derek Gordon Murray, Benoit Steiner, Paul A. Tucker, Vijay Vasudevan,
Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zhang. Tensorflow: A system for large-
scale machine learning. arXiv, abs/1605.08695, 2016. URL https://arxiv.org/abs/1605.08695.

Amina Adadi and Mohammed Berrada. Peeking inside the black-box: A survey on explainable
artificial intelligence (xai). IEEE Access, 6:52138–52160, 2018. URL https://doi.org/10.1109/
ACCESS.2018.2870052.

Srinivasan Ashwin. Aleph manual [third print.]. 2007. URL http://www.comlab.ox.ac.uk/
activities/machinelearning/Aleph/aleph.html.

Yaniv Aspis, Krysia Broda, Jorge Lobo, and Alessandra Russo. Embed2sym - scalable neuro-
symbolic reasoning via clustered embeddings. Proceedings of the Nineteenth International
Conference on Principles of Knowledge Representation and Reasoning, 2022. URL https:
//proceedings.kr.org/2022/44/.

Samy Badreddine, Artur d’Avila Garcez, Luciano Serafini, and Michael Spranger. Logic tensor
networks. Artificial Intelligence, 303:103649, 2022. URL https://doi.org/10.1016/j.artint.2021.
103649.

Tarek R. Besold, Artur S. d’Avila Garcez, Sebastian Bader, Howard Bowman, Pedro M.
Domingos, Pascal Hitzler, Kai-Uwe Kühnberger, Luís C. Lamb, Daniel Lowd, Priscila
Machado Vieira Lima, Leo de Penning, Gadi Pinkas, Hoifung Poon, and Gerson Zaverucha.
Neural-symbolic learning and reasoning: A survey and interpretation. abs/1711.03902, 2017.
URL http://arxiv.org/abs/1711.03902.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: A
collaboratively created graph database for structuring human knowledge. In Proceedings of
the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD ’08,
pages 1247–1250, 2008. URL http://doi.acm.org/10.1145/1376616.1376746.

Antoine Bordes, Jason Weston, Ronan Collobert, and Yoshua Bengio. Learning structured
embeddings of knowledge bases. In Proceedings of the Twenty-Fifth AAAI Conference on
Artificial Intelligence, AAAI’11, pages 301–306, 2011. URL http://dl.acm.org/citation.cfm?
id=2900423.2900470.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. In Advances in Neural Information
Processing Systems, volume 26, 2013. URL https://proceedings.neurips.cc/paper/2013/file/
1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf.

Guillaume Bouchard, Sameer Singh, and Théo Trouillon. On approximate reasoning capabilities
of low-rank vector spaces. In 2015 AAAI Spring Symposia, March 22-25, 2015, 2015. URL
http://www.aaai.org/ocs/index.php/SSS/SSS15/paper/view/10257.

Leonid Boytsov and Bilegsaikhan Naidan. Engineering efficient and effective non-metric space
library. In Proceedings of the 6th International Conference on Similarity Search and Appli-
cations - Volume 8199, SISAP 2013, pages 280–293, 2013. URL https://doi.org/10.1007/
978-3-642-41062-8_28.

https://arxiv.org/abs/1605.08695
https://doi.org/10.1109/ACCESS.2018.2870052
https://doi.org/10.1109/ACCESS.2018.2870052
http://www.comlab.ox.ac.uk/ activities/machinelearning/Aleph/aleph.html
http://www.comlab.ox.ac.uk/ activities/machinelearning/Aleph/aleph.html
https://proceedings.kr.org/2022/44/
https://proceedings.kr.org/2022/44/
https://doi.org/10.1016/j.artint.2021.103649
https://doi.org/10.1016/j.artint.2021.103649
http://arxiv.org/abs/1711.03902
http://doi.acm.org/10.1145/1376616.1376746
http://dl.acm.org/citation.cfm?id=2900423.2900470
http://dl.acm.org/citation.cfm?id=2900423.2900470
https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
http://www.aaai.org/ocs/index.php/SSS/SSS15/paper/view/10257
https://doi.org/10.1007/978-3-642-41062-8_28
https://doi.org/10.1007/978-3-642-41062-8_28

142 References

Keith L. Clark. Negation as failure. In Logic and Data Bases, pages 293–322, 1978. URL
https://doi.org/10.1007/978-1-4684-3384-5_11.

William W. Cohen, Fan Yang, and Kathryn Mazaitis. Tensorlog: Deep learning meets proba-
bilistic dbs. arXiv: abs/1707.05390, 2017. URL http://arxiv.org/abs/1707.05390.

Kristijonas Cyras, Antonio Rago, Emanuele Albini, Pietro Baroni, and Francesca Toni. Argu-
mentative XAI: A survey. In Proceedings of the Thirtieth International Joint Conference on
Artificial Intelligence, IJCAI 2021, Virtual Event, 19-27 August 2021, pages 4392–4399, 2021.
URL https://doi.org/10.24963/ijcai.2021/600.

Wang-Zhou Dai and Stephen H. Muggleton. Abductive knowledge induction from raw data. In
Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI
2021, Virtual Event / Montreal, Canada, 19-27 August 2021, pages 1845–1851, 2021. URL
https://doi.org/10.24963/ijcai.2021/254.

Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, Luke Vilnis, Ishan Durugkar, Akshay
Krishnamurthy, Alex Smola, and Andrew McCallum. Go for a walk and arrive at the answer:
Reasoning over paths in knowledge bases using reinforcement learning. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 -
May 3, 2018, Conference Track Proceedings, 2018. URL https://openreview.net/forum?id=
Syg-YfWCW.

Artur S. d’Avila Garcez, Krysia Broda, and Dov M. Gabbay. Neural-symbolic learning systems -
foundations and applications. Perspectives in neural computing. 2002. ISBN 978-1-85233-512-0.
URL https://doi.org/10.1007/978-1-4471-0211-3.

Artur S. d’Avila Garcez, L. Lamb, and Dov M. Gabbay. Neural-Symbolic Cognitive Reasoning.
01 2009. ISBN 978-3-540-73245-7. URL https://doi.org/10.1007/978-3-540-73246-4.

Artur S. d’Avila Garcez, Marco Gori, L. Lamb, Luciano Serafini, Michael Spranger, and S. Tran.
Neural-symbolic computing: An effective methodology for principled integration of machine
learning and reasoning. arXiv, abs/1905.06088, 2019. URL https://arxiv.org/abs/1905.06088.

Ernest Davis. Logical formalizations of commonsense reasoning: A survey. J. Artif. Intell. Res.,
59:651–723, 2017. URL https://doi.org/10.1613/jair.5339.

Jesse Davis and Mark Goadrich. The relationship between precision-recall and roc curves.
In Proceedings of the 23rd International Conference on Machine Learning, ICML ’06, page
233–240, 2006. URL https://doi.org/10.1145/1143844.1143874.

Woodrow W. Denham and Douglas R. White. Multiple measures of alyawarra kinship. Field
Methods, 17(1):70–101, 2005. URL https://doi.org/10.1177/1525822X04271610.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional
2d knowledge graph embeddings. In Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence, (AAAI-18), pages 1811–1818, 2018. URL https://www.aaai.org/ocs/
index.php/AAAI/AAAI18/paper/view/17366.

Ivan Donadello, Luciano Serafini, and Artur S. d’Avila Garcez. Logic tensor networks for semantic
image interpretation. In Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, IJCAI 2017, August 19-25, 2017, pages 1596–1602, 2017. URL
https://doi.org/10.24963/ijcai.2017/221.

Richard Evans and Edward Grefenstette. Learning explanatory rules from noisy data. J. Artif.
Int. Res., 61(1):1–64, January 2018. URL http://dl.acm.org/citation.cfm?id=3241691.3241692.

João Ferreira, Manuel de Sousa Ribeiro, Ricardo Gonçalves, and João Leite. Looking inside
the black-box: Logic-based explanations for neural networks. In Proceedings of the 19th
International Conference on Principles of Knowledge Representation and Reasoning, KR 2022,
Haifa, Israel. July 31 - August 5, 2022, 2022. URL https://proceedings.kr.org/2022/45/.

https://doi.org/10.1007/978-1-4684-3384-5_11
http://arxiv.org/abs/1707.05390
https://doi.org/10.24963/ijcai.2021/600
https://doi.org/10.24963/ijcai.2021/254
https://openreview.net/forum?id=Syg-YfWCW
https://openreview.net/forum?id=Syg-YfWCW
https://doi.org/10.1007/978-1-4471-0211-3
https://doi.org/10.1007/978-3-540-73246-4
https://arxiv.org/abs/1905.06088
https://doi.org/10.1613/jair.5339
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1177/1525822X04271610
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17366
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17366
https://doi.org/10.24963/ijcai.2017/221
http://dl.acm.org/citation.cfm?id=3241691.3241692
https://proceedings.kr.org/2022/45/

References 143

Dov M Gabbay, C J Hogger, and J A Robinson. Handbook of Logic in Artificial Intelligence
and Logic Programming, Volume2, Deduction Methodologies. 1994. ISBN 0-19-853746-8.

Mohamed H. Gad-Elrab, Daria Stepanova, Jacopo Urbani, and Gerhard Weikum. Exception-
enriched rule learning from knowledge graphs. In The Semantic Web – ISWC 2016: 15th
International Semantic Web Conference, Kobe, Japan, October 17–21, 2016, Proceedings, Part
I, page 234–251, 2016. URL https://doi.org/10.1007/978-3-319-46523-4_15.

Luis Galárraga, Christina Teflioudi, Katja Hose, and Fabian M. Suchanek. Fast rule mining in
ontological knowledge bases with amie+. The VLDB Journal, 24(6):707–730, dec 2015. URL
https://doi.org/10.1007/s00778-015-0394-1.

Jorma Rissanen George Cybenko, Dianne P. O’Leary. The Mathematics of Information Coding,
Extraction and Distribution. ISBN 9780387986654.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. Journal of Machine Learning Research - Proceedings Track, 9:249–256, 01
2010. URL http://proceedings.mlr.press/v9/glorot10a.html.

John C. Gower and Gavin J. S. Ross. Minimum spanning trees and single linkage cluster
analysis. Journal of The Royal Statistical Society Series C-applied Statistics, 18:54–64, 1969.
URL https://sites.cs.ucsb.edu/~veronika/MAE/mstSingleLinkage_GowerRoss_1969.pdf.

Shu Guo, Quan Wang, Lihong Wang, Bin Wang, and Li Guo. Jointly embedding knowledge
graphs and logical rules. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, pages 192–202, November 2016. URL https://aclanthology.org/
D16-1019.

Madan M. Gupta and J. Qi. Theory of t -norms and fuzzy inference methods. Fuzzy Sets and
Systems, 40:431–450, 1991.

Petr Hájek. Metamathematics of fuzzy logic. In Trends in Logic, 1998. ISBN 978-0-7923-5238-9.

Barbara Hammer and Pascal Hitzler. Perspectives of Neural-Symbolic Integration, volume 77.
01 2007. ISBN 978-3-540-73953-1. doi: 10.1007/978-3-540-73954-8.

Alexander Hinneburg and Daniel A. Keim. Optimal grid-clustering: Towards breaking the curse
of dimensionality in high-dimensional clustering. In Proceedings of the 25th International
Conference on Very Large Data Bases, VLDB ’99, page 506–517, 1999.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):
1735–1780, November 1997. URL https://doi.org/10.1162/neco.1997.9.8.1735.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. arXiv,
abs/1702.08734, 2017. URL http://arxiv.org/abs/1702.08734.

Ian Jolliffe. Principal Component Analysis and Factor Analysis, pages 115–128. 01 1986. ISBN
978-1-4757-1906-2. doi: 10.1007/978-1-4757-1904-8_7.

John M. Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf
Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Zídek, Anna Potapenko, Alex
Bridgland, Clemens Meyer, Simon A A Kohl, Andy Ballard, Andrew Cowie, Bernardino
Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen,
David A. Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska,
Tamas Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior,
Koray Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis. Highly accurate protein structure
prediction with alphafold. Nature, 596:583 – 589, 2021.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.

https://doi.org/10.1007/978-3-319-46523-4_15
https://doi.org/10.1007/s00778-015-0394-1
http://proceedings.mlr.press/v9/glorot10a.html
https://sites.cs.ucsb.edu/~veronika/MAE/mstSingleLinkage_GowerRoss_1969.pdf
https://aclanthology.org/D16-1019
https://aclanthology.org/D16-1019
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1702.08734
http://arxiv.org/abs/1412.6980

144 References

Mark Law, Alessandra Russo, and Krysia Broda. Inductive learning of answer set programs.
In Proceedings of the 14th European Conference on Logics in Artificial Intelligence - Volume
8761, pages 311–325, 2014. URL http://dx.doi.org/10.1007/978-3-319-11558-0_22.

Mark Law, Alessandra Russo, Elisa Bertino, Krysia Broda, and Jorge Lobo. Fastlas: Scalable
inductive logic programming incorporating domain-specific optimisation criteria. In The
Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, pages 2877–2885, 2020.
URL https://aaai.org/ojs/index.php/AAAI/article/view/5678.

James B. Macqueen. Some methods for classification and analysis of multivariate observations.
In In 5-th Berkeley Symposium on Mathematical Statistics and Probability, pages 281–297,
1967.

Yu Malkov, Alexander Ponomarenko, Andrey Logvinov, and Vladimir Krylov. Approximate
nearest neighbor algorithm based on navigable small world graphs. Information Systems, 45:
61–68, 01 2013. URL https://doi.org/10.1016/j.is.2013.10.006.

Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc De
Raedt. Deepproblog: Neural probabilistic logic programming. arXiv, abs/1805.10872, 2018.
URL http://arxiv.org/abs/1805.10872.

Alexa McCray. An upper-level ontology for the biomedical domain. Comparative and functional
genomics, 4:80–4, 01 2003. URL https://doi.org/10.1002/cfg.255.

Christian Meilicke, Melisachew Chekol, Daniel Ruffinelli, and Heiner Stuckenschmidt. Anytime
bottom-up rule learning for knowledge graph completion. pages 3137–3143, 08 2019. URL
https://doi.org/10.24963/ijcai.2019/435.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed
representations of words and phrases and their compositionality. In Proceedings of the 26th
International Conference on Neural Information Processing Systems - Volume 2, NIPS’13,
pages 3111–3119, 2013. URL http://dl.acm.org/citation.cfm?id=2999792.2999959.

Pasquale Minervini, Thomas Demeester, Tim Rocktäschel, and Sebastian Riedel. Adversarial sets
for regularising neural link predictors. In Gal Elidan, Kristian Kersting, and Alexander T. Ihler,
editors, Proceedings of the Thirty-Third Conference on Uncertainty in Artificial Intelligence,
UAI 2017, Sydney, Australia, August 11-15, 2017, 2017. URL http://auai.org/uai2017/
proceedings/papers/306.pdf.

Pasquale Minervini, Matko Bosnjak, Tim Rocktäschel, and Sebastian Riedel. Towards neural
theorem proving at scale. arXiv, abs/1807.08204, 2018. URL http://arxiv.org/abs/1807.08204.

Pasquale Minervini, Matko Bosnjak, Tim Rocktäschel, Sebastian Riedel, and Edward Grefen-
stette. Differentiable reasoning on large knowledge bases and natural language. In The
Thirty-Fourth AAAI Conference on Artificial Intelligence, pages 5182–5190, 2020a. URL
https://aaai.org/ojs/index.php/AAAI/article/view/5962.

Pasquale Minervini, Sebastian Riedel, Pontus Stenetorp, Edward Grefenstette, and Tim Rock-
täschel. Learning reasoning strategies in end-to-end differentiable proving. In Proceedings
of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020,
Virtual Event, volume 119 of Proceedings of Machine Learning Research, pages 6938–6949,
2020b. URL http://proceedings.mlr.press/v119/minervini20a.html.

Stephen Muggleton. Inductive logic programming. New Generation Computing, 8:295–318,
1991.

Stephen H. Muggleton, Dianhuan Lin, and Alireza Tamaddoni-Nezhad. Meta-interpretive
learning of higher-order dyadic datalog: predicate invention revisited. Machine Learning, 100
(1):49–73, Jul 2015. URL https://doi.org/10.1007/s10994-014-5471-y.

http://dx.doi.org/10.1007/978-3-319-11558-0_22
https://aaai.org/ojs/index.php/AAAI/article/view/5678
https://doi.org/10.1016/j.is.2013.10.006
http://arxiv.org/abs/1805.10872
https://doi.org/10.1002/cfg.255
https://doi.org/10.24963/ijcai.2019/435
http://dl.acm.org/citation.cfm?id=2999792.2999959
http://auai.org/uai2017/proceedings/papers/306.pdf
http://auai.org/uai2017/proceedings/papers/306.pdf
http://arxiv.org/abs/1807.08204
https://aaai.org/ojs/index.php/AAAI/article/view/5962
http://proceedings.mlr.press/v119/minervini20a.html
https://doi.org/10.1007/s10994-014-5471-y

References 145

Maximilian Nickel, Lorenzo Rosasco, and Tomaso A. Poggio. Holographic embeddings of
knowledge graphs. arXiv, abs/1510.04935, 2015. URL http://arxiv.org/abs/1510.04935.

Pouya Ghiasnezhad Omran, Kewen Wang, and Zhe Wang. Scalable rule learning via learning
representation. In Proceedings of the Twenty-Seventh International Joint Conference on
Artificial Intelligence, IJCAI 2018, July 13-19, 2018, pages 2149–2155, 2018. URL https:
//www.ijcai.org/Proceedings/2018/0297.pdf.

Meng Qu, Junkun Chen, Louis-Pascal A. C. Xhonneux, Yoshua Bengio, and Jian Tang. Rnnlogic:
Learning logic rules for reasoning on knowledge graphs. arXiv, abs/2010.04029, 2020. URL
https://arxiv.org/abs/2010.04029.

Tim Rocktäschel and Sebastian Riedel. End-to-end differentiable proving. In Advances in
Neural Information Processing Systems 30, pages 3788–3800. 2017. URL http://papers.nips.
cc/paper/6969-end-to-end-differentiable-proving.pdf.

Tim Rocktäschel, Sameer Singh, and Sebastian Riedel. Injecting logical background knowledge
into embeddings for relation extraction. In Proceedings of the 2015 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 1119–1129, May–June 2015. URL https://aclanthology.org/N15-1118.

Peter Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of cluster
analysis. J. Comput. Appl. Math., 20(1):53–65, November 1987. URL http://dx.doi.org/10.
1016/0377-0427(87)90125-7.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning Representations by
Back-Propagating Errors, page 696–699. 1988. ISBN 0262010976.

Rudolph J. Rummel. Dimensionality of nations project: Attributes of nations and behavior of
nation dyads, 1950-1965. MI: Inter-university Consortium for Political and Social Research,
pages 80–4, 1992. URL https://doi.org/10.3886/ICPSR05409.v1.

Prithviraj Sen, Breno W. S. R. de Carvalho, Ryan Riegel, and Alexander G. Gray. Neuro-
symbolic inductive logic programming with logical neural networks. In Thirty-Sixth AAAI
Conference on Artificial Intelligence, AAAI 2022, pages 8212–8219, 2022. URL https://ojs.
aaai.org/index.php/AAAI/article/view/20795.

Luciano Serafini and Artur S. d’Avila Garcez. Logic tensor networks: Deep learning and logical
reasoning from data and knowledge. In Proceedings of the 11th International Workshop on
Neural-Symbolic Learning and Reasoning (NeSy’16) co-located with the Joint Multi-Conference
on Human-Level Artificial Intelligence (HLAI 2016), July 16-17, 2016, volume 1768 of CEUR
Workshop Proceedings, 2016. URL http://ceur-ws.org/Vol-1768/NESY16_paper3.pdf.

Tom Silver, Ashay Athalye, Joshua B. Tenenbaum, Tomas Lozano-Perez, and Leslie Pack
Kaelbling. Learning neuro-symbolic skills for bilevel planning. arXiv, abs/2206.10680, 2022.
URL http:arxiv.org/abs/2206.10680.

Richard Socher, Danqi Chen, Christopher D. Manning, and Andrew Y. Ng. Reasoning with
neural tensor networks for knowledge base completion. In Proceedings of the 26th International
Conference on Neural Information Processing Systems - Volume 1, NIPS’13, pages 926–934,
2013. URL http://dl.acm.org/citation.cfm?id=2999611.2999715.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard.
Complex embeddings for simple link prediction. arXiv, abs/1606.06357, 2016. URL http:
//arxiv.org/abs/1606.06357.

Efthymia Tsamoura, Timothy M. Hospedales, and Loizos Michael. Neural-symbolic integration:
A compositional perspective. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI
2021, pages 5051–5060, 2021. URL https://ojs.aaai.org/index.php/AAAI/article/view/16639.

http://arxiv.org/abs/1510.04935
https://www.ijcai.org/Proceedings/2018/0297.pdf
https://www.ijcai.org/Proceedings/2018/0297.pdf
https://arxiv.org/abs/2010.04029
http://papers.nips.cc/paper/6969-end-to-end-differentiable-proving.pdf
http://papers.nips.cc/paper/6969-end-to-end-differentiable-proving.pdf
https://aclanthology.org/N15-1118
http://dx.doi.org/10.1016/0377-0427(87)90125-7
http://dx.doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.3886/ICPSR05409.v1
https://ojs.aaai.org/index.php/AAAI/article/view/20795
https://ojs.aaai.org/index.php/AAAI/article/view/20795
http://ceur-ws.org/Vol-1768/NESY16_paper3.pdf
http:arxiv.org/abs/2206.10680
http://dl.acm.org/citation.cfm?id=2999611.2999715
http://arxiv.org/abs/1606.06357
http://arxiv.org/abs/1606.06357
https://ojs.aaai.org/index.php/AAAI/article/view/16639

146 References

Wenguan Wang and Yi Yang. Towards data-and knowledge-driven artificial intelligence: A
survey on neuro-symbolic computing. arXiv, abs/2210.15889, 2022. URL http://arxiv.org/
abs/2210.15889.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Mach. Learn., 8(3–4):229–256, May 1992. URL https://doi.org/10.1007/
BF00992696.

Shuang Xia, Krysia Broda, and Alessandra Russo. Topical neural theorem prover that induces
rules. In GCAI 2020. 6th Global Conference on Artificial Intelligence (GCAI 2020), volume 72
of EPiC Series in Computing, pages 107–120, 2020. URL https://easychair.org/publications/
paper/mFsC.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge bases. In 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6575.

Fan Yang, Zhilin Yang, and William W. Cohen. Differentiable learning of logical rules
for knowledge base reasoning. In Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems 2017, December 4-
9, 2017, pages 2319–2328, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
0e55666a4ad822e0e34299df3591d979-Abstract.html.

Zhun Yang, Adam Ishay, and Joohyung Lee. NeurASP: Embracing neural networks into answer
set programming. In Proceedings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence, IJCAI 2020, pages 1755–1762, 2020. URL https://doi.org/10.24963/
ijcai.2020/243.

Yifeng Zhu, Jonathan Tremblay, Stan Birchfield, and Yuke Zhu. Hierarchical planning for long-
horizon manipulation with geometric and symbolic scene graphs. 2021 IEEE International
Conference on Robotics and Automation (ICRA), pages 6541–6548, 2020. URL https://arxiv.
org/abs/2012.07277.

http://arxiv.org/abs/2210.15889
http://arxiv.org/abs/2210.15889
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://easychair.org/publications/paper/mFsC
https://easychair.org/publications/paper/mFsC
http://arxiv.org/abs/1412.6575
https://proceedings.neurips.cc/paper/2017/hash/0e55666a4ad822e0e34299df3591d979-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/0e55666a4ad822e0e34299df3591d979-Abstract.html
https://doi.org/10.24963/ijcai.2020/243
https://doi.org/10.24963/ijcai.2020/243
https://arxiv.org/abs/2012.07277
https://arxiv.org/abs/2012.07277

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Contributions
	1.2 Thesis Structure

	2 Background
	2.1 Notations and Concepts Used in the Thesis
	2.2 Logic Programming
	2.3 Artificial Neural Networks
	2.4 Methods
	2.4.1 Clustering Methods
	2.4.2 Evaluation Method

	3 Topical NTP
	3.1 Overview of NTP
	3.1.1 Knowledge Bases and Template Rules
	3.1.2 Computational Tree Construction
	3.1.3 Training

	3.2 Introducing TNTP
	3.3 The TNTP Approach
	3.3.1 Topic Generation
	3.3.2 Topic-based Unification
	3.3.3 High-level Algorithm of TNTP

	3.4 Hyperparameters for Amplifying Rule Learning
	3.5 Interpretability

	4 Topic-Subdomain NTP
	4.1 Method Overview
	4.1.1 Subdomain Generation
	4.1.2 Computational Tree Simplification

	4.2 Challenges in Implementing TSNTP
	4.3 The TSNTP Solution
	4.3.1 TSNTP Training Algorithm

	5 Negation-as-Failure TSNTP
	5.1 Exception-enriched Rule Learning from Knowledge Graphs
	5.2 Normal Rule Induction
	5.2.1 Normal Rules Induction Pipeline
	5.2.2 The Syntax of Normal Rules
	5.2.3 Soft-unification for NAF Literals

	5.3 Implementation
	5.3.1 Step 1: Select Definite Rules
	5.3.2 Step 2: Build Normal Rule Sets
	5.3.3 Step 3: Evaluate and Select Normal Rules
	5.3.4 Algorithm

	5.4 Decoding Normal Rules

	6 Related Works
	6.1 Query Answering
	6.1.1 Query Answering without Rules
	6.1.2 Query Answering with Given Rules
	6.1.3 Query Answering with Rule Mining

	6.2 Rule Induction
	6.2.1 NTPs
	6.2.2 Other Works

	7 Evaluation
	7.1 Datasets
	7.2 Experiment Settings
	7.2.1 Evaluation Metrics
	7.2.2 Evaluation Procedure
	7.2.3 Hyperparameters
	7.2.4 Template Rules

	7.3 Evaluation Results
	7.3.1 Accuracy of Query Answering Predictions
	7.3.2 Runtime and Space Evaluation
	7.3.3 Rule Induction
	7.3.4 Effects of NAF

	7.4 Effects of Hyperparameters
	7.4.1 Effects of Alpha and Beta Amplification Hyperparameters
	7.4.2 Effects of kmax
	7.4.3 Effects of Topics and Subdomains

	8 Conclusion
	8.1 Future Works

	References

