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Fig. 1. Proposed computational methodology 

 

ABSTRACT.  

The current industrial practice used at the preliminary design stage 

of complex structures involves the use of multifidelity submodelling 

simulations to predict failure behaviour around geometric and structural 

design features of interest, such as bolts, fillets, and ply drops. A 

simplified global model without the design features is first run and the 

resulting displacement fields are transferred to multiple local models 

containing the design features of interest. The creation of these high-

fidelity local feature models is highly expert dependent, and their 

subsequent simulation is highly time-consuming. These issues compound 

as these design features are typically repetitive in complex structures. 

This leads to long design and development cycles. Application of 

machine learning to this framework has the potential to capture a 

structural designer’s modelling knowledge and quickly suggest improved 

design feature parameters, thereby addressing the current challenges. 

In this work, we provide a proof of concept for a machine learning 

assisted preliminary design workflow, see Figure 1, whereby feature-

specific surrogate models may be trained offline and used for faster and 

simpler design iterations. The key challenge is to maximise the prediction 

accuracy of failure metrics whilst managing the high dimensions required 

to represent design feature simulation parameters in a minimum training 

dataset size. These challenges are addressed using: a modified Latin 

Hypercube Sampling scheme adjusted to improve design of experiment 

in composite materials; a bi-linear work-equivalent homogenisation 

scheme to reduce the number of nodal degrees of freedom; a non-local 

volume-averaged stress-based approach to reduce the number of target 

features; and linear superposition of stacked bi-directional LSTM neural 

network models. This methodology is demonstrated in a case study of 

predicting the stresses of open hole composite laminates in an aerospace 

C-spar structure. Results highlight the high accuracy (>90%) and time 

saving benefit (>15x) of this new approach.  

This methodology may be used to faster correct and iterate the 

preliminary design of any large or complex structure where there are 

repetitive localised design features that may contribute to failure, such as 

in Formula 1 or wind turbines. Combined with exascale computing this 

methodology may also be applied for predictive virtual testing of digital 

twins. 
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1. INTRODUCTION  

Composite materials combine different materials to achieve superior 

properties. Commonly, they consist of a fibre component to carry 

mechanical loads, and a matrix component to transfer these loads to the 

fibres. The fibre-matrix components are manufactured commonly as plies 

where the fibre points in  one direction. These plies are laid up in stacking 

sequences with plies facing varying angles to form a laminate. The 

overall properties of this laminate depend on the order of this ply 

sequence. This high tailorability of composite materials to suit 

application has resulted in the increasing adoption of composite materials 

in a variety of industries such as to build bridges, cars and planes. The 

recent Airbus A350 XWB and Boeing 787, for example, are over 50% 

composite material by volume, primarily carbon fibre- epoxy composite 

[BOEING 787, AIRBUS A350]. Carbon fibre-epoxy composite 

materials have high strength to weight and stiffness to weight ratios. Their 
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use can make structures more lightweight and so more environmentally 

friendly, especially structures whose carbon footprint is correlated with 

their weight, such as most transport vehicles. However, failure for such 

materials is multimodal, with failure possible by fibre tension, fibre split, 

fibre kinking and matrix cracking, for example [Pinho, Darvizeh, 

Robinson, Schuecker and Camanho. 2012]. This failure is driven by 

multiscale phenomena ranging from the microscale of reduced volume 

elements (RVEs) to the mesoscale of laminate layup and macroscale of 

structural components. Their complex, multiscale behaviour means that 

the computational failure modelling required to design and validate 

composite structures can be slow and expert dependent. In order to 

predict damage initiation, high-fidelity modelling is required, however 

modelling a large composite structure using high-fidelity techniques 

would be computationally unfeasible. To ease the computational burden 

of predicting failure within large structures, such as composite airframes, 

a one-way global-local finite element analysis is typically used at a 

preliminary design stage [Ostergaard, Ibbotson, Roux and Prior, 2011]. 

Figure 2 shows this current preliminary design methodology. The low-

fidelity global model typically consists of a coarse 2D shell formulation 

to represent the macroscale structure; in aerospace, this may be an entire 

wing-box structure. Following the global analysis there is progressive 

local submodelling in areas of interest, which consists of higher fidelity 

modelling techniques such as solid 3D elements and higher mesh density 

to represent the small features of interest. These features of interest are 

typically design features such as bolts, fillets and ply-drops. Typically, 

this global-local modelling is displacement-based so the nodal 

displacements from the global model are used to drive the nodal 

displacements of the local model. Stress-based failure criteria such as 

LarC05 and Hashin are often used to predict the damage initiation 

indices. Typically, damage initiation is expected when these indices reach 

a value of 1, and multiple damage indices exist to represent different 

failure modes [Simulia, 2020].  

Fig. 2. Current preliminary design process for large composite structures 

[Ostergaard, Ibbotson, Roux and Prior, 2011] 

However, this global-local modelling technique is still very expert-

dependant and slow, especially as the local design features in composite 

structures are highly repetitive. These computational challenges lead to a 

slow design-development cycle which may reduce the added value of 

choosing these sustainable advanced materials over traditional metals. 

Therefore, this work aims to provide a proof of concept for a 

computational modelling technique that will lead to faster and less expert 

dependent preliminary design of large composite structures with 

repetitive features. To achieve this aim, we use machine learning 

techniques as they have demonstrated great success in the past of using 

offline expert-generated data to inform fast online predictions.  

In this paper, we propose a machine learning-based computational 

methodology that can be used to predict damage initiation when varying 

the laminate stacking sequence, geometric design feature parameters and 

boundary conditions of a local design feature. The design feature in this 

proof of concept is a simple hole in plate, but the methodology is expected 

to be transferrable to more complex features such as bolts, fillets and ply 

drops, as long as the simulation remains linear elastic, as expected at a 

preliminary design phase. Faster failure predictions will also allow faster 

optimisation of features. The new workflow suggested for the structural 

analyst/ designer as well as the workflow to train our new design tool is 

depicted in Figure 3.  

Fig. 3. Proposed preliminary design process for large composite structures 

2. LITERATURE REVIEW 

Machine learning has been used in literature for composite material 

failure predictions, but this has been towards predicting failure at a single 

scale (to predict the effect of skin-stringer geometry on buckling at a 

macroscale [Farokhi, Bacarreza, Ferri Aliabadi, 2020] and to predict 

stiffness of RVEs at a microscale [Liu et al., 2017], for example) or 

predicting multiscale failure that bridges micro-mesoscale via a 

constitutive law [Logarzo, Capuano, Rimoli, 2020], for example. 

However, there has been little research applying machine learning 

techniques to bridge the meso-macroscale which are the scales of concern 

in global-local submodelling at preliminary design stage. Also, the 

research to date either varies geometrical design feature parameters, 

laminate stacking sequence, or boundary conditions. There is no available 

research that has applied machine learning to predict failure when varying 

all three of these types of input features. Therefore, we are not yet able to 

quickly and easily predict the failure of custom local design features at 

variable global locations, as required for a global-local modelling 

framework. 

Fig. 4. General design for the workflow of an existing Abaqus plug-in, 
with the red highlighted area proposed to be replaced by a machine learning 

model [Zou et al, 2021] 

There has been development effort to produce a simulation tool that 

performs analysis of repetitive features in large composite structures [Zou 

et al, 2021]. The general design for the workflow of this tool is shown in 

Figure 4, note that no machine learning is involved at any stage. This tool 

works by generating an M-matrix that stores the stress response of a given 
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local design feature, given a unit displacement applied to each nodal 

degree of freedom separately. The principal idea is that by saving this 

matrix, we are able to use the principle of linear superposition to 

superimpose the stress caused by the actual nodal displacements in the 

global model at the different locations that the local feature appears in. 

This is shown to result in satisfactory accuracy and high-time saving in 

the particular case where the exact same design feature occurs repetitively 

in a structure. However, this method is not flexible to a feature whose 

geometry or layup changes slightly, as an entirely new M-matrix would 

have to be generated every time. The shape of the M-matrix is defined as 

[number of stress variants x number of integration points that stress is 

evaluated at x number of nodal degrees of freedom varied]. The number 

of stress variants are six, the number of integration points that stress is 

evaluated at can be in the thousands depending on the local feature model 

and the number of nodal degrees of freedom can also be in the hundreds 

depending on the fidelity of the mesh. Therefore, calculating the M-

matrix for each change in feature geometry or layup would be time-

consuming. This leads to an opportunity to use machine learning to be 

able to predict the M-matrix, given a feature with variable layup stacking 

sequence and feature geometry. Further modifications are proposed to 

reduce the size of the M-matrix by reducing the nodal degrees of freedom 

(using bi-linear work-equivalent homogenisation) and reducing the 

number of integration points that stress is evaluated at (using a volume-

averaged non-local approach).  

3. FINITE ELEMENT MODELLING METHODOLOGY 

Abaqus 2021 is used to develop the finite element models in this 

work. Both models are run as static, general simulations.  

3.1. Global model 

  The global model we use in this case study is a section of a C-spar 

typically used in composite airframes. We use a 0.125 mm thick 

T700/epoxy  carbon fibre-epoxy prepreg to define the material properties, 

which are given in Table 1 [Qin et al. 2021]. The dimensions are sized 

based on the geometry of a small business jet and the quasi-isotropic 

layup is sized to satisfy a composite design guideline maximum of 4500 

microstrains [Wang, Wan, Groh and Wang, 2021]. The layup used is 

[45,-45,0,90]5s. The C-spar is modelled using coarse (10mm) shell 

elements as typically used in global airframe models. The dimensions and 

finite element modelling are depicted in Figure 5. 

Fig. 5. Finite element modelling of global C-spar model. Dimensions and 

mesh shown in top and strain simulation results shown in bottom 

TABLE 1. Material properties of carbon fibre-epoxy pre-preg [Qin et al. 

2021] 

 

3.2. Local model 

The hole in plate local model is modelled in a script which allows the 

hole diameter to be varied from 3mm to 8mm and the laminate stacking 

sequence to be explicitly specified. The thickness of our local models 

varies from 1mm to 10mm. The size of the local model is fixed as a 32mm 

square, so as to be able to fit within the C-spar flanges in the global-local 

modelling process. We use 3D solid elements for the finite element 

model, with one element per ply in the thickness direction. Further 

circular partitions are created through-thickness for the non-local 

approach described in Section 3.3. We use a structured hex mesh of size 

1mm outside the circular partitions to 0.5mm within the circular 

partitions. Finer mesh size is applied towards the hole to improve the 

accuracy of the stress predictions in this area of interest. The dimensions 

and finite element modelling are depicted in Figure 6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Finite element modelling of local hole in plate model with 

magnified view to show meshing strategy  

4. MACHINE LEARNING MODELLING METHODOLOGY 

R is used to generate the design of experiment and TensorFlow is 

used to generate the machine learning model in this work. 

4.1. Design of Experiment – Modified Latin Hypercube 

Sampling 

The most commonly used type of composite laminates are classic 

quad laminates which are quasi-isotropic in nature, consisting of 0, 45,-

45 and 90 degree plies. The variables in the design of experiment are thus 

the percentage of plies in each of these directions, as well as the total 

number of plies. These variables, as well as the geometrical design 

feature variable of hole diameter, are varied using a variant of the 

commonly used Latin Hypercube Sampling scheme, called Maximum 

Projection [Joseph, Gul and Ba, 2015]. This sampling scheme maximises 

the projection of each sampled point within the dimensions of the 

sampling space. We filter out unfeasible sampled points that violate the 

10% rule [Niu, 1992], a common rule in the design of composite 

laminates which states that a feasible laminate must not contain less than 

10% of any of the four quasi-isotropic ply angles. 
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The laminates generate in this work are restricted to symmetric, 

balanced laminates. To generate a specific layup stacking sequence, 

given the percentage of plies in each angle and the number of total plies, 

we implement an algorithm that follows further common design rules 

[Niu, 1992]. These design rules limit our laminates to having no more 

than 4 plies in a row that share the same ply angle and to laminates where 

the top and bottom plies are +45 degrees for improved damage tolerance.  

4.2. Input Feature Engineering – Bi-linear Work-equivalent 

Homogenisation of Boundary Conditions 

The local model may be located at arbitrary locations within the 

global model mesh. Furthermore, the mesh size of the global model may 

vary. To accurately determine the boundary conditions to transfer to the 

local model we implement an intermediate shell submodel of the same 

size as the local model but with a finer mesh size. Abaqus’ in-built 

interpolation allows the boundary conditions to be transferred between 

these mesh sizes effectively. To reduce the number of nodal degrees of 

freedom, we implement an algorithm that recreates work due to 

displacement along each edge by applying displacements to only 4 corner 

nodes and 4 midside nodes. Thus, the net displacement along each edge, 

and so the net work, assuming that the stiffness is approximately constant 

along each edge, is conserved. The 8 boundary displacements in this 

homogenised intermediate submodel can then be used to drive the solid 

local feature model, in our case the hole in plate. Abaqus’ shell-solid 

default submodelling procedure allows bending and plane rotation to be 

effectively captured. We thus have a fixed 24 degrees of freedom in total, 

as each node has 3 displacement degrees of freedom. To generate our M-

matrix we only need to apply unit displacements to these 24 degrees of 

freedom. Figure 7 depicts the transition from global to local submodel via 

these extra intermediate submodels.  

 

Fig. 7. Transition from global to local model via intermediate models 

4.3. Output Feature Engineering – Non-local volume-averaged 

stress variants 

According to the principle of linear superposition, we can calculate 

the stress response due to a given set of boundary displacements by  

summing the stress response due to each boundary displacement 

individually. We are only concerned with the stress response in this work, 

as failure indices can be calculated at a later post-processing stage 

depending on the stress-based failure criterion chosen. It is unfeasible and 

unnecessary to predict the stress of each element in the local solid model  

using this linear superposition method, especially as the number of 

elements and location of elements will change between models. 

Likewise, the exact location of the maximum stress may change within a 

model depending on the model geometry. Therefore, we suggest 

determining  the average stresses in a non-local area of interest. In our 

case we are most interested in the average stresses within 1.5 times the 

hole diameter, where the stresses are expected to be highest. We 

implement an algorithm that performs this non-local approach by volume 

averaging the 6 stress variants of the elements within this non-local area, 

per ply.  

4.4. Machine Learning Network – Stacked Bi-Directional 

LSTMs 

Our input data for each local model is a sequence of ply layup angles 

and our output data is a M-matrix of volume averaged stresses with a size 

of [number of stress variants x number of plies]. We can split our output 

M-matrix to the 6 sequences for each stress variant. Therefore, our input 

and output shape are the same (that is the number of plies in the laminate), 

and our problem becomes a sequence-to-sequence problem. Predictive 

modelling of sequence-to-sequence problems are often tackled with 

sequential networks such as recurrent neural networks [Geron, A. 2019]. 

These networks feature a connection between the output of one block to 

the input of the next block and therefore the order of the sequence is 

considered. Long-short term memory neural networks are also a 

commonly used network that offer improvements over the basic recurrent 

neural network. These work by incorporating additional operations 

within each neuron block, that allows the network to selectively learn 

from elements which are further away from each other in the sequence. 

Figure 8 shows the structure of a basic RNN (top) featuring this feedback 

connection and a LSTM cell (bottom) featuring the additional operations.   

 

Fig. 8. Recurrent neural network block (top) and long short-term memory 

block (bottom) [Geron, A. 2019] 

Both these neural networks can be stacked to increase their depth  and 

so avoid overfitting to the training data. Bidirectionality can also be 

implemented for both these networks to allow predictions to consider the 

effect of elements of the sequence in both forward and backward 

directions. Our input data for each local model also includes a scalar 

indicating the local feature geometry, in our case the hole diameter. This 

can be added to our network as a separate feature for each laminate by 

creating a sequence that repeats this scalar by the length of the laminate 

stacking sequence. For all the networks the standard Adam optimiser is 

used, and they are run to 1000 epochs or until the network stops learning. 

Loss is calculated using mean squared error (MSE) and the error metrics 

are given as mean absolute error (MAE). Totally there are 133 samples 

generated, split into a training:validation:test ratio of 72:18:10. 

5. RESULTS 

In this work, we compare the performance of the LSTM over the 

RNN, and of further modifications such as stacking and bidirectionality, 

on the training and test accuracy of the local models. Furthermore, we use 

the best developed network to test the accuracy of our overall 

methodology in a global-local setting.  
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5.1. Training  

   The network architecture, a comparison of the training loss and 

validation loss as measured by Mean Squared Error (MSE), and sample 

predictions of stress against actual stress predicted by finite element 

analysis for degree of freedom 1 (DOF1) are shown in Figures 9-12 for 

each network investigated. Figure 13 shows the final validation error as 

measured by mean absolute error (MAE) for each network investigated.  

 

Fig. 9. RNN network: architecture (top left), training and validation loss 

diagram(top right), predicted S11 values for DoF1 (bottom).  

Fig. 10.  LSTM network: architecture (top left), training and validation loss 

diagram(top right), predicted S11 values for DoF1 (bottom).  

Fig. 11.   Stacked LSTM network: architecture (top left), training and 

validation loss diagram(top right), predicted S11 values for DoF1 (bottom). 

 

Fig. 12. Stacked bidirectional LSTM network: architecture (top left), 
training and validation loss diagram(top right), predicted S11 values for 

DoF1 (bottom). 

Fig. 13. Effect of network architecture on validation error 

These results show that LSTM offers improvements over RNNs. 

This indicates that the effect of non-adjacent plies is important to 

determine the overall stress. This is reasonable as the laminate stiffness 

is commonly determined by consideration of all the ply angles, and this 

stiffness determines the stress faced by the laminate given a particular 

loading. Results also show that the stacked LSTM offers improvements 

over a regular LSTM. This indicates that the LSTM was slightly 

overfitting to the data when it was not stacked. Implementing 

bidirectionality also improves the accuracy of the LSTM, which is 

reasonable as the laminates under investigation are symmetrical, so 

reading the laminate forwards and backwards improves the predictions 

generated. The percentage error in predicted stresses across the test set 

laminates in the degree of freedom investigated is 5.03%. At a 

preliminary design stage this may be satisfactory. Especially as we are 

only concerned about errors in the largest stresses, where the errors are 

found to much lower. 

5.2. Testing overall methodology  

We validate our new machine learning based methodology by 

comparing stress predictions per ply against the stresses obtained through 

finite element submodelling. The stresses are queried for a given hole 

diameter (4mm) at four locations of the C-spar, see Figure 14, where bolt 

holes may exist for example. Results are satisfactory with the average 

percentage error in the peak stresses being 6.1%. This slight increase in 

error is associated with the boundary condition homogenisation method.  

To interrogate the boundary conditions from the global model, run 

code to homogenise the boundary conditions, then predict failure using 

the machine learning model took ~2 minutes per hole analysed. 

Conversely, to generate a scripted 3d model in ABAQUS and run the 

submodelling simulation took ~30 minutes per sample. A scripted local 

model may not be available in such an analysis, therefore the time to 

generate finite element submodel may result in even greater time. More 

complex features such as bolts will take longer to model and simulate 

using the standard global-local methodology, whilst the time to run our 
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new methodology will be similar. Therefore, we have demonstrated a 

large (at least over 15x) time saving benefit of the new computational 

methodology.  

 

 

Fig. 14. Holes in C-spar case study to test developed methodology 

6. CONCLUSION 

In conclusion, we have demonstrated our new methodology to result 

in satisfactory stress predictions per ply given a local design feature of 

variable laminate stacking sequence and feature geometry under various 

boundary conditions. These stress predictions can be used to predict 

damage initiation at a preliminary design stage with failure criteria. We 

have also shown at least an order of magnitude time saving with this new 

methodology. This methodology may therefore be useful to accelerate the 

global-local preliminary design process commonly used for large 

composite structures with repetitive design features. This methodology, 

however, is not restricted to composite materials. The key techniques 

developed may be adjusted to faster simulate any complex feature which 

is repetitive in a structure, whether the complexity is due to material 

properties or feature geometry. 

This methodology may be used in future to result in faster design 

optimisation and uncertainty quantification of failure. Combined with 

exascale computing and appropriate sensor placement, this methodology 

could also be applied for real-time predictive virtual testing of digital 

twins to predict damage initiation. Future work will involve proving this 

concept for a realistic local bolt feature applied to a large wing box global 

model. Further machine learning networks and techniques will be 

investigated. 
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IMPLEMENTATION OVERVIEW 

In this section we provide some input-output of the code used to (a) 

generate the design of experiment (b) perform the bi-linear work-

equivalent homogenisation (c) derive the non-local stress variants (d) 

perform machine learning predictive modelling.  

(A) DESIGN OF EXPERIMENT 

This code shows some code to generate the design of experiment 

using R and to modifications to then vary laminate stacking sequence 

INPUT 

MaxPro code. 

library("MaxPro") 

x<-MaxProLHD(n = 200, p = 4) 

X <- x$Design 

Y <- X 

Y[,1] <- X[,1]/rowSums(X[,1:3]) 

Y[,2] <- X[,2]/rowSums(X[,1:3]) 

Y[,3] <- X[,3]/rowSums(X[,1:3]) 

Y[,4] <- X[,4] 

write.csv(Y,"~\\DoEMaxPro.csv", row.names 

= FALSE) 

Snippet of part of a function to modify design of experiment to vary 

laminate stacking sequence within design guidelines 

 

OUTPUT 

This shows the samples chosen from the design of experiment, on a 

plot that shows the feasible region representing the 10% rule. 

(B) BI-LINEAR WORK-EQUIVALENT HOMOGENISATION 

INPUT 

This code shows the main line of code that performs the 

homogenisation. The total area due to the high number of displacements 

along a given intermediate model edge is calculated, and a new 

midpoint displacement is suggested, that creates two triangles of an 

equivalent total area.  

array_newdisp[j]=[((1)*(array_disp[0,0]/2 

+ sum(array_disp[1:-1,0]) + array_disp[-

1,0]/2))/(squaredim/2) - 

0.5*(array_disp[0,0]+array_disp[-1,0]), 

((1)*(array_disp[0,1]/2 

 

OUTPUT 

This shows an example of the output array. Each row represents the 

x,y,z displacements of one of the 4 midside nodes along the boundary of 

the homogenised intermediate mesh. 

 

 

(C) NON-LOCAL STRESS METHOD 

INPUT 

This shows a code snippet of the function used to perform the non-

local approach. By summing the volume and stress variants of the 

elements within the non-local area of each ply, we are able to calculate 

the volume averaged stress variants to use as target features for the neural 

network. 
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OUTPUT 

This shows some example results of the averaged stress variants per 

ply. 

(D) MACHINE LEARNING PREDICTIVE MODELLING 

INPUT 

This shows a code snippet to generate and fit the machine learning 

network that achieved the best results in this work. 

 

OUTPUT 

The training validation loss of this network is shown below 
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