
Mathematical perspectives on
waves and currents

a thesis presented for the degree of

Doctor of Philosophy of Imperial College London

and the

Diploma of Imperial College

by

Oliver D. Street

Department of Mathematics

Imperial College

180 Queen’s Gate, London SW7 2BZ

August 2022



I certify that this thesis, and the research to which it refers, are the product

of my own work, and that any ideas or quotations from the work of other

people, published or otherwise, are fully acknowledged in accordance with

the standard referencing practices of the discipline.

ii



Copyright

The copyright of this thesis rests with the author. Unless otherwise indi-

cated, its contents are licensed under a Creative Commons Attribution-Non

Commercial 4.0 International Licence (CC BY-NC).

Under this licence, you may copy and redistribute the material in any medium

or format. You may also create and distribute modified versions of the work.

This is on the condition that: you credit the author and do not use it, or any

derivative works, for a commercial purpose.

When reusing or sharing this work, ensure you make the licence terms clear

to others by naming the licence and linking to the licence text. Where a

work has been adapted, you should indicate that the work has been changed

and describe those changes.

Please seek permission from the copyright holder for uses of this work that

are not included in this licence or permitted under UK Copyright Law.

iii



Thesis advisor: Professor Dan Crisan
Additional advisor(s): Professor Darryl D. Holm

Oliver D. Street

Mathematical perspectives on waves and currents

Abstract

The behaviour of waves on the surface of a fluid has fascinated scientists for

centuries. Attempts to describe the problem mathematically have revealed a

rich geometric structure, as well as a number of celebrated equations. When

considering a stochastic theory of water waves, it is therefore sensible to be-

gin with a structure preserving methodology of introducing a stochastic noise

into a fluid model. Within this thesis, the mathematical framework of semi-

martingale driven variational principles is introduced, which reveals a new

methodology of formulating problems for which we have a stochastic action

integral. The inclusion of stochastic advection by Lie transport into the un-

derlying fluid momentum equation will allow us to achieve a novel stochastic

perturbation of water wave theory which preserves its geometric properties.

A number of phenomena observable on the free surface of a fluid are chal-

lenging to describe using existing modelling approaches. In particular, the

classical modelling approach requires modification to permit the introduction

of thermal gradients or rotational flows. Through a new variational perspec-

tive involving the composition of two maps, the interaction between waves

and thermal fronts in the upper ocean is studied. This approach involves

a natural separation of waves and currents on the free surface as vertical

oscillations around a horizontal two dimensional flow, and allows the con-

sideration of wave-current interactions. Separately, currents are responsible
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for the advection of material suspended within the fluid. We consider the

procession of an inertial object through a fluid domain, which involves fluid

equations with the structure of a fractional order differential equation. It

is shown that the most commonly applied such equation, the Maxey-Riley

equation, is globally well-posed, a fact which was absent from the literature

prior to this thesis.
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1
Introduction

During the course of this project it has become apparent that research in

mathematics can be divided into two broad themes. One can attempt to

either solve problems, or to create problems. Whilst the answers to some

questions will be answered rigorously here, the introduction and exploration

of new concepts will also be a key theme. Considering this, the reader should

not expect this thesis to be a closed story which leaves few questions unan-

swered. Instead, we will pose new problems, introduce new modelling frame-

works, and provide new perspectives. In the following chapters, a number

of related concepts will be explored and we will be discussing mathematics

arising from a selection of physical problems in fluid mechanics. This content

will be arranged into three main sections.

Variational calculus is at the heart of contemporary mathematical interpre-
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tations of classical mechanics. The principle of stationary action may be

mathematically posed in an abstract setting, and has found application to

a plethora of problems. By considering the action of a Lie group on the

configuration manifold, it has been shown that this description contains a

rich geometric structure. The features of this structure which are relevant to

the work in this thesis will be summarised in Chapter 2. In particular, the

application of these ideas to fluid dynamics, initially made by Arnold [4], is

introduced in an abstract setting. This description of the dynamics of a fluid

allows us to summarise a methodology of introducing stochastic noise into a

fluid model which preserves its geometric structure, as introduced by Holm

[53] and named stochastic advection by Lie transport (SALT). In particular,

a stochastic perturbation of the transport vector field is made as a funda-

mental assumption of the model. As will become apparent, the development

of stochastic models will be a recurring theme in this thesis and, as such, it

is worth motivating their existence.

A numerical simulation of a fluid can inherit uncertainty from a number

of sources. Whilst the equations themselves involve making approximations

and assumptions which deviate from physical reality, operational models of

planetary scale fluid motion also develop errors as a result of technological

limitations. The assimilation of data introduces uncertainty as a result of

the quality or sparseness of the available data, and current computational

limitations are such that the grid on which the equations are discretised is

larger than ideal. Both of these examples apply to oceanography and atmo-

spheric physics, and are particularly prevalent in weather forecasting. Since

uncertainty is unavoidable in such models, it is worth considering methods of

uncertainty quantification. Common in weather forecasting, ensemble simu-

lations are used to account for error in the initial conditions. A stochastic

2



perturbation of the model equations themselves allows the calibration of the

model to the data, thus allowing the consideration of model uncertainty. This

can be achieved through an intelligent, data-driven, selection of the stochas-

tic terms in the model, where SALT ensures that the resulting equations

obey the fundamental geometry of fluid dynamics.

In Chapter 3, we will turn our focus to the dynamics of the surface of a fluid.

Due to its immediate visibility in the natural world, the free upper surface

of a body of water has long attracted attention from leading thinkers. This

system has an abundance of nonlinear features and interactions between vari-

ables and represents a surprisingly challenging problem for mathematicians.

As we will see explicitly, the projection of three dimensional dynamics onto

its upper boundary is more involved than considering the evaluation of the

variables on the free surface. In order to derive a closed system of equations,

approximations are needed such as irrotational flow or vertical averaging.

For the case of irrotational flow, the evaluation of the Euler momentum

equation onto the free surface, together with the kinematic boundary, com-

prise a closed pair of boundary equations known as the classical water wave

equations. Despite the fact that free boundary problems such as these have

been extensively studied mathematically, there are still a number of physical

examples of wave current interaction for which we have no adequate math-

ematical model. Indeed, satellite oceanography observations provide infor-

mation on the interactions between physical variables on the surface of the

ocean. Whilst classical theory provides a methodology to close the problem

in terms of quantities on the surface only, the modification of existing meth-

ods of closure to include additional physics, such as inhomogeneous density

and salinity, is a significant obstacle. The limitations of existing models are

particularly stark when interpreting regions of the sea surface with notice-
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able thermal gradients, including those exhibiting frontogenesis. With this

in mind, new approaches to free surface dynamics are necessary to overcome

some of these modelling challenges.

The movement of inertial particles through a fluid domain has many applica-

tions in environmental sciences. Often, it is the debris near or on the surface

of a fluid which has the most devastating impact [102]. The development

of equations to understand the influence of mass on the dynamics of such

objects has a long history, which is summarised in Chapter 4. The Maxey-

Riley equation [77] has emerged as the most popular equation amongst the

literature surrounding this. Despite this, its mathematical properties have

received little attention. In Chapter 4, we give an in-depth analysis of the

Maxey-Riley equation. Here, we expand on known results, as well as state

and prove a number of previously unknown properties. Inertial particle equa-

tions with memory, such as this one, are nonlinear fractional order differential

equations. Whilst this inhibits them from having a variational structure, as

the other models featured in this thesis do, it is noteworthy that their ana-

lytical properties do not differ from those of an ordinary differential equation

as much as one might expect.

Contribution of the thesis

Here, we will precisely describe the new results presented in this thesis, and

how they relate to the above story. Many of these have appeared in recent

papers together with my collaborators D. Crisan [34, 95], D. D. Holm [33],

and R. Hu [57].

• In Section 2.2, we introduce a new framework [95] which clarifies the

proper formulation of a stochastic action integral. This will involve the
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definition of a semimartingale driven variational principle.

• We will prove that the fundamental lemma of calculus of variations ex-

tends to the case of stochastic time integration, in Lemma 2.31. Thus,

it is mathematically well defined to derive stochastic models in this

way.

• In Theorem 2.35, we give the Euler-Poincaré equations for incompress-

ible fluids with stochastic advection by Lie transport. Here, the semi-

martingale form of the pressure follows from its role as a Lagrange

multiplier within a semimartingale driven variational principle. This

extends the work of Holm [53], and allows us to infer the stochastic

Euler equations as an example.

• In Section 3.3.1, we will present a new stochastic perturbation of the

classical water wave equations, using the approach of stochastic advec-

tion by Lie transport. Here, the stochastic terms will not be bound

by the same potential flow assumption as the deterministic part of the

transport.

• In Section 3.3.2, we will show that our stochastic classical water wave

equations have a Hamiltonian structure analogous to that found by Za-

kharov in 1968 [106] for the deterministic theory. This further demon-

strates the fact that the SALT noise added to the Euler equations in

Chapter 2 is structure preserving.

• In Proposition 3.13, we will show that, as was claimed by Zakharov

[106], a variation of the free surface variable induces a variation in the

velocity potential. We will show that this is in fact a consequence of

the Lie chain rule.
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• In Section 3.4, we will present a novel modelling approach to derive

closed systems of equations for free surface fluid problems which en-

compass a wider collection of physical variables. This will be based on

contributions made during a collaboration with D. D. Holm and R. Hu

[57], and with D. Crisan and D. D. Holm [33]. This is founded upon a

characterisation of the dynamics as a composition of two maps, which

is made stochastic in Section 3.4.4.

• In Sections 3.4.2 and 3.4.3, model equations are derived which show

potential to model relationships between waves and thermal gradients

observable in the upper ocean.

• In Chapter 4, we analyse the Maxey-Riley equation. In particular, in

Theorem 4.13, the Maxey-Riley equation is shown to have global in

time weak solutions. In Theorem 4.17, we prove the conditions under

which these solutions are strong solutions.

• In Section 4.8, we go on to prove some properties of the solution of the

Maxey-Riley equation as a function of its initial conditions. Namely, in

Proposition 4.18 we prove that the distance between a pair of trajecto-

ries is limited by their initial conditions, as well as prove a non-collision

property in Proposition 4.22.
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2
A variational approach to

deterministic and stochastic

modelling

Lagrangian mechanics formulates classical mechanics in terms of the principle

of least action, associating a configuration space and a Lagrangian to a physi-

cal system. The mathematical description of the physical system corresponds

to critical points of the action functional, defined as the time integral of the

Lagrangian. In one of the many graceful interrelations in applied mathemat-

ics, these critical points may be identified as being equivalent to solutions

of the much celebrated Euler-Lagrange equations. Rather than Newton’s

laws, this may be considered to be the crux of the mathematical framework
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of mechanics. Indeed, when considering systems with conservative forces,

the Euler-Lagrange equations are analogous to Newton’s second law, in that

they are equivalent when the Lagrangian is taken to be the difference be-

tween kinetic and potential energies. This concept was, in the 19th century,

reformulated into Hamiltonian mechanics through the Legendre transform,

whereby the problem is written in terms of phase space coordinates. Here,

rather than ‘velocities’, the motion is considered in terms of ‘momenta’ and

corresponds to solutions of Hamilton’s equations.

As these ideas have evolved with time, the natural connection between ge-

ometry and mechanics has been developed mathematically. We may view

Lagrangian and Hamiltonian mechanics through the lens of differential ge-

ometry, thus describing mechanics in a generalised coordinate-free manner.

The resulting framework is both powerful and beautiful, and the correspond-

ing field of study is known as geometric mechanics.

In contemporary applied mathematics, stochastic equations of motion are

used to represent uncertainty in the modelling process. Whilst a large num-

ber of papers published in this direction incorporate the noise into the model

at the level of the equations, in an unphysical manner, geometric mechanics

gives us a framework through which we can incorporate a stochastic noise in

a way which preserves the mathematical structure of the model. The earliest

instance of a stochastic geometric framework is attributed to Bismut in 1981

[13], which was done through the Hamiltonian formulation. Indeed, stochas-

tic Hamiltonian mechanics has been thus far developed more thoroughly than

the Lagrangian case [68]. Using a stochastic Lagrangian approach, a frame-

work for deriving stochastic models for fluid mechanics which preserve the

Kelvin-Noether circulation theorem was introduced by Holm in his seminal

2015 paper [53]. This approach, known as stochastic advection by Lie trans-
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port, or SALT, has since been much studied and will form the backbone of

the stochastic models we will consider here.

This chapter will be broken into two main sections:

• In Section 2.1, we will give a summary of some key results from geomet-

ric mechanics, which we will subsequently make use of in the following

sections on wave current interactions. This summary, whilst not fully

comprehensive, will include some elementary notions before giving a

discussion of semidirect product Euler-Poincaré theory and fluid me-

chanics. An introduction to stochastic fluid mechanics will be given

from a variational perspective.

• Secondly, in Section 2.2, we will report on the findings of original

work conducted for this thesis [95], where a framework for formulat-

ing stochastic action principles is introduced. This framework will al-

low us to properly formulate stochastic Lagrange multipliers in a man-

ner which ensures that the resulting equations make sense mathemat-

ically. In particular, this allows for the proper formulation of pressure

in stochastic fluid models.

2.1 A review of Geometric Mechanics

In this section, together with Appendix A, we will summarise the main re-

sults from geometric mechanics necessary for us to later interpret fluid me-

chanics problems from this perspective, and we will attempt for this to be

as self-contained as possible. Naturally, a complete summary of geometric

mechanics, where everything is carefully defined, is neither possible nor ap-

propriate here and it is recommended that the reader consult some of the
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more comprehensive texts [51, 52, 63, 73]. The concepts we will introduce

represent tools with which we can interpret nature, much in the same way as

paints and a canvas. Since one must paint a picture with these tools to fully

appreciate their potential, we will be providing some examples along the way

to illustrate the geometric mechanics framework. The examples we will be

using are classical, and can be found in many papers and summaries, includ-

ing [62] for example. Those examples which are relevant to the subsequent

chapters will be contained here, and those which are purely illustrative are

found in Appendix A. Furthermore, we will introduce a framework through

which some of the ideas from geometric mechanics can be made stochastic.

For elaboration on any concepts from stochastic calculus used, it is recom-

mended that the reader consult a textbook on stochastic calculus, such as

Karatzas and Shreve [66]. Whilst the full history of the development of these

ideas is outside of the scope of this work, we will begin with a brief summary

of some of the more important developments below. For a more thorough

overview of the development of geometric mechanics, see one of the compre-

hensive texts mentioned above, or [72] for a summary of geometric mechanics

for fluids.

The concept behind geometric mechanics dates back to a famous note by

Henri Poincaré in 1901 [86], in which the foundations for the Euler-Poincaré

equations were laid in just two pages. Given a mechanical system where

a Lie algebra acts transitively on the configuration space, the note shows

that rather than the governing equations being on the tangent bundle to

the configuration space, they can be rewritten on the product of the config-

uration space with the Lie algebra. These equations are equivalent to the

Euler-Lagrange equations, but are written in terms of different variables on a

different space. This structure underpins what is today known as the Euler-
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Poincaré theorem. A key feature of geometric mechanics is the identification

of conserved quantities of the physical system, the identification of a con-

servation law corresponding to each differential symmetry of the action was

made by Emmy Noether in 1918 [80].

There are many problems which have been considered from the perspective

of geometric mechanics, ranging from magnetohydrodynamics to quantum

chemistry, and certainly many more which have not yet been imagined. An

early application, which has received much attention, was Arnold’s remark-

able observations on fluid mechanics in 1966 [4]. Arnold noticed a profound

connection between the motion of an ideal incompressible fluid and the ge-

ometry of infinite dimensional Lie groups. Namely, the flow given by the

Euler equations for an incompressible fluid is a geodesic on the Lie group

of volume preserving diffeomorphisms, with respect to the metric given by

the kinetic energy. Shortly after, Ebin and Marsden [38] carefully analysed

the diffeomorphism group needed for formulations such as Arnold’s, mak-

ing some revealing analytical remarks about the Euler equations. Following

decades of progress from a large community of authors, the Euler-Poincaré

equations for continuum mechanics with advected quantities was formulated

in 1998 [62]. This provided the general framework needed for the full power

of the geometric perspective to be unleashed.

2.1.1 A variational formulation of classical mechanics

This section will briefly describe many of the ideas discussed thus far, and lay

the foundations for us to apply these ideas to problems in fluid mechanics.

Firstly, we will define the degrees of freedom necessary to describe a physical

system.
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Space and time. We first introduce the idea of the space in which the

dynamics occurs. By space, we mean a manifold, Q, with points denoted by

q P Q. The manifold may, on occasion, be considered as a Lie group, G, in

which case configurations are given by the Lie group action on a reference

configuration GˆQ0 ÞÑ Q. This gives us a mechanism to describe the state,

or configuration, of a physical system at a given moment in time. We must

define a notion of time in order to describe the dynamics on this space. In

the most general sense, time is represented by a point in a manifold, T . In

most cases, and in all of the examples described in this thesis, the manifold

will be taken to be R, though it is worth noting that other manifolds are

possible and the mathematical framework is valid with more general notions

of time.

Motion. By a motion, we mean a time dependent map into the configu-

ration manifold, i.e. φt : T ˆ Q ÞÑ Q. The motion is a curve, parametrised

by time, given by qt “ φtq0. The motion is called a flow if it satisfies the

so called flow property. That is, if φ0 “ Id and if, for any s, t P R, we have

φt`s “ φt ˝φs. If the configuration is identified with a Lie group, G, then the

motion is a curve, T ˆGÑ G, on the Lie group manifold.

Given some curve, qptq in Q, there is a space of vectors, TqQ, which sit atop

of this curve. The velocity along this flow is given by the tangent lift vector ,

9qptq “ vq P TqQ, which, at time t, is one particular vector from this space.

Hamilton’s principle and the Euler-Lagrange equations

In order to derive governing equations for the dynamics of a system, we may

apply Hamilton’s principle to an action. We will now define the objects

12



necessary to substantiate this statement mathematically.

A Lagrangian is a functional L : TQ ˆ R ÞÑ R, where TQ denotes the

tangent bundle to the configuration manifold. The Lagrangian is commonly

chosen to be the kinetic energy minus the potential energy, and the choice

of the Lagrangian dictates the form of the model which will result from

the application of Hamilton’s principle. The action, S, is defined by the

time integral of the Lagrangian, with the addition of any desired constraints

enforced by Lagrange multipliers. We will here introduce the mathematical

definitions necessary to apply Hamilton’s principle, δS “ 0, in practice. In

particular, variational derivatives of functionals are necessary.

The mathematics of variational calculus. In order to define the

variational derivative, we must first understand the concept of a Radon-

Nikodym derivative [12].

Definition 2.1. Let pX,Σq be a measurable space and suppose we have

two σ-finite measures µ and ν. We say that ν is absolutely continuous with

respect to µ if

µpAq “ 0 ùñ νpAq “ 0 ,

for all A P Σ, in which case we write ν ! µ.

Theorem 2.2. Let µ and ν be two measures as defined in Definition 2.1. If ν

is absolutely continuous with respect to µ, then there exists some measurable

non-negative function f : X Ñ r0,8q such that for any measurable set A Ď

X, we have

νpAq “

ż

A

f dµ .

Definition 2.3. In the above theorem, the function f is called the Radon-

Nikodym derivative of ν with respect to µ and is denoted by dν
dµ

.
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Let X be a compact Hausdorff space and let F be a functional F : CpXq Ñ R.

We can now define the variational derivative.

Definition 2.4. Suppose ρ, φ P CpXq, then we define the Gâteaux variation

of F at ρ by

δF pρ;φq “ lim
εÑ0

F pρ` εφq ´ F pρq

ε
“

d

dε

ˇ

ˇ

ˇ

ˇ

ε“0

F pρ` εφq . (2.1)

Definition 2.5. We can think of δF pρ;φq as a continuous functional with

respect to φ, hence by the Riesz representation theorem there exists some

measure, µ, such that

δF pρ;φq “

ż

φ dµ . (2.2)

We then define the variational derivative of F with respect to ρ to be the

Radon-Nikodym derivative of this measure with respect to the Lebesgue

measure. We call the function φ the ‘variation of ρ’ and denote this by

δρ.

Remark 2.6. This definition implies the following relation,

δF pρq “

B

δF

δρ
, δρ

F

,

where the angled brackets denote an L2 pairing. This can be interpreted as

an operational definition of the functional derivative δ, which we will later

apply in practice when considering variations of an action.

Remark 2.7. A rigorous analysis of this definition and the conditions under

which it holds is presented in [47].

These compacts allow us to introduce the Euler-Lagrange equations.
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Theorem 2.8. For any differentiable Lpq, 9qq, we have that Hamilton’s prin-

ciple implies the Euler-Lagrange equations

d

dt

BL

B 9qj
“
BL

Bqj
, for j “ 1, . . . , n , (2.3)

where q P Q is assumed to be n dimensional.

In the proof of the above theorem, found in Appendix A, we conveniently

ignore the detail of what happens to the endpoint term. An identical endpoint

term will occur when we derive Hamilton’s canonical equations. Noether’s

theorem will explain what happens in relation to this term.

Remark 2.9. Hamilton’s principle means, informally, that the physical path

that the system takes is such that an infinitesimal variations of that path does

not change the action, up to first order. Suppose that the Lagrangian does

not depend on some component of q, call this qj. Since the Euler-Lagrange

equations (2.3) result from Hamilton’s principle, we have that

d

dt

BL

B 9qj
“
BL

Bqj
“ 0 ,

and the momentum pj “ BL{B 9qj is conserved. The symmetry of the La-

grangian in this case is the simplest kind, where it does not depend on a

variable. Noether’s theorem is a more abstract generalisation of this idea,

where a far richer class of symmetries is permitted.

Theorem 2.10 (Noether’s theorem). Suppose that the Lagrangian is invari-

ant under a smooth infinitesimal transformation

δq “ Φξpqq P TQ , (2.4)
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of a 1-parameter Lie group acting on the manifold, Q, taken at some point

q P Q. This transformation depends on an element of the Lie algebra∗, ξ P g,

since it is a transformation infinitesimally close to the identity. The Noether

quantity, defined by

Jξpq, pq :“ xp,ΦξpqqyT˚QˆTQ , (2.5)

where the angled brackets denote a pairing on T ˚Q ˆ TQ, is a constant of

motion.

Remark 2.11. By associating the Lagrangian with the equations which cor-

respond to them through Hamilton’s principle, Noether’s theorem says that

the Noether quantity is a conserved function of the variables pp, qq, the phase

space variables, when the equations of motion hold.

Proof (of Noether’s theorem). By assumption, the Lagrangian is invariant

under q Ñ q ` εΦξpqq. We have that δS “ 0 for δq of this form, since

the Lagrangian is invariant. By Hamilton’s principle, the Euler-Lagrange

equations hold and thus the endpoint term xp,Φξpqqy|
t1
t0 is zero. Q.E .D .

In the statement of Noether’s theorem, we have used the idea of a Lie group.

This will be expanded upon in Section 2.1.2, and the Noether quantity will

be used to segue into the action of a Lie group on the configuration manifold.

The Hamiltonian formulation and Hamilton’s equations

In order to transition to the Hamiltonian formulation of classical mechanics,

we must introduce the Legendre transform. This will enable us to formu-

∗The Lie algebra can be interpreted as the tangent space at the identity of the Lie
group, as we will see later.
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late the problem on phase space. The Lagrangian perspective enables us to

interpret the dynamics as solutions of the Euler-Lagrange equations, which

are equations on TQ written in terms of coordinates pq, 9qq. The Legendre

transformation will take us onto the phase space, T ˚Q, which is defined to

be the cotangent bundle of the configuration manifold.

The Legendre transformation may be considered as a map, pq, 9qq ÞÑ pq, pq,

from the tangent bundle to the cotangent bundle, where p is a momentum

defined through the Lagrangian, Lpq, 9qq, as follows

p :“
BL

B 9q
. (2.6)

This expression is the fibre derivative of L, and is on T ˚Q. This allows us to

define the Hamiltonian as follows.

Definition 2.12 (The Hamiltonian). In terms of the variables pq, 9q, pq de-

fined above, the Hamiltonian of a physical system is a mapping, H : T ˚Q ÞÑ

R, which may be defined in terms of the Lagrangian as follows

Hpq, pq :“ xp, 9qy ´ Lpq, 9qq , (2.7)

where the angled brackets denotes a pairing which maps T ˚Qˆ TQ to R.

Theorem 2.13 (Hamilton’s canonical equations). Applying Hamilton’s prin-

ciple to the action written on the phase space in terms of the Hamiltonian,

as follows,

0 “ δ

ż t1

t0

xp, 9qy ´Hpq, pq dt , (2.8)

implies Hamilton’s canonical equations

9q “
BH

Bp
, and 9p “ ´

BH

Bq
. (2.9)
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For a proof and discussion of this, see Appendix A.

2.1.2 Lie groups and reduction by symmetry

Whilst the previous section summarised the variational approach to classical

mechanics, we will now discuss the lift of the mechanics on the manifold,

Q, to the mechanics on a Lie group, G, which acts on Q. This is the idea

introduced by Poincaré [86] and is at the heart of geometric mechanics.

Definition 2.14. A Lie group, G, is a manifold which also has a group

structure.

Definition 2.15. A Lie algebra, g, is a vector space together with a Lie

bracket, r¨, ¨s : g ˆ g ÞÑ g, which is a bilinear, skew-symmetric operation

which satisfies the Jacobi identity

rf, rg, hss ` rg, rh, f ss ` rh, rf, gss “ 0 , for all f, g, h P g .

Remark 2.16. A Lie algebra, g, is (isomorphic to) the tangent space of the

corresponding Lie group, G, at its identity element. For a description of this,

see Lee [69] or a similar text.

For our purposes, we may think of a Lie group as a group of transformations

which depend smoothly on a set of parameters

qptq Ñ qpt, εq P Q , where qpt, 0q “ qptq ,

which defines the group action of the Lie group on the configuration manifold,

GˆQ ÞÑ Q. We can denote this group action by concatenation,

qt,ε “ gεqt , where gε P G , and g0 “ Id .
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The infinitesimal transformation of q under this group is the tangent at the

identity

δq “
d

dε

ˇ

ˇ

ˇ

ˇ

ε“0

gεqt , (2.10)

since this term multiplies the group parameter, ε, in the Taylor expansion of

qt,ε around ε “ 0. Notice that such a variation is taken at fixed time t. This

enables us to return to the Noether quantity, and interpret it in terms of the

Lie algebra corresponding to the Lie group action.

Definition 2.17 (Cotangent lift momentum map). With the introduction

of a pairing, x¨, ¨y : g˚ ˆ g ÞÑ R, we may define the Noether quantity from

Theorem 2.10 in terms of this pairing,

Jξ “ xp,ΦξpqqyT˚QˆTQ “: xJpq, pq, ξyg˚ˆg , (2.11)

for any fixed ξ P g. The map Jpq, pq is the cotangent lift momentum map

associated with the infinitesimal transformation δq “ Φξpqq and its cotangent

lift.

Note that we will often employ the useful notation of Jpq, pq :“ ´p ˛ q P g˚.

When we consider partial differential equations for continuum dynamics, the

Lie algebra becomes the space of vector fields on the domain and the above

infinitesimal transformation will be identified as the Lie derivative.

For physical systems where such a Lie group action defines the motion, we

may consider an element of the Lie group, gt, as a map from some reference

configuration q0, to the current configuration qt. The configuration of the

system is therefore described by an element of the Lie group, and the dy-

namics can be considered to be a curve in the Lie group parametrised by

time.
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Adjoint actions. The adjoint representation of a Lie group provides a

representation of the elements of the group as linear transformations of the

Lie algebra corresponding to the tangent space of the Lie group at its identity

element. We can consider the adjoint action of a Lie group on itself, on its

Lie algebra, and the action of a Lie algebra on itself, which we will denote

by AD, Ad, and ad respectively. For simplicity, we will define these actions

for matrix Lie algebras which, by Ado’s theorem, is equivalent to the class

of all finite dimensional Lie algebras over a field of characteristic zero.

The adjoint action of a Lie group on itself, AD : GˆG ÞÑ G, is defined, for

g, h P G, by the inner automorphism associated with g

ADgh :“ ghg´1 . (2.12)

To define Ad : Gˆ g ÞÑ g, we take the derivative of this with respect to h at

the identity

Adgη :“ gηg´1 , where η “ h1p0q . (2.13)

Similarly, we may define ad : gˆ g ÞÑ g by differentiating as follows

adξη “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

Adgtη “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

ˆ

gtηg
´1
t

˙

“

ˆ

d

dt

ˇ

ˇ

ˇ

ˇ

t“0

gt

˙

ηg´1
0 ´ g0ηg

´1
0

ˆ

d

dt

ˇ

ˇ

ˇ

ˇ

t“0

gt

˙

g´1
0

“ ξη ´ ηξ “: rξ, ηs , where g0 “ Id and ξ “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

gt .

(2.14)

Reduction by symmetry. We will look at reduction by symmetry on

the Lagrangian side, as was done by Marsden and Scheurle [74]. We will

be first discussing the concepts informally, before stating the Euler-Poincaré

theorem. In this case, the dynamics on the configuration manifold, qt “ gtq0,
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are lifted to a curve, gt P G, with tangent 9g :“ v P TgG. The Euler-Lagrange

equations naturally hold for the Lagrangian Lpg, vq : TQ ÞÑ R, as well as

Hamilton’s canonical equations. Reduced Euler-Poincaré dynamics occur

on the dual to the Lie algebra, g˚, and correspond to the case when the

Lagrangian is invariant under the action of G. We say that a Lagrangian, L,

is left invariant under the action of any element g̃ P G if

Lpg, vq “ Lpg̃g, g̃vq . (2.15)

Right invariance is also possible, and will be used in the case of fluid dynam-

ics. Choosing g̃ “ g´1, we can define the restriction of the Lagrangian to g

by

`pξq :“ Lpe, ξq , where ξ “ g´1 9g . (2.16)

The application of Hamilton’s principle to the reduced Lagrangian implies

the Euler-Poincaré equations for the left invariant case

d

dt

ˆ

δ`

δξ

˙

“ ad˚ξ
δ`

δξ
. (2.17)

For a discussion of this, and how this changes in the case of right invariance,

see Appendix A, where an illustrative example may also be found.

Semidirect product reduction. We now consider the extension of the

Euler-Poincaré equations to the case where the invariance of the Lagrangian

L under the action of G is broken by the dependence of the Lagrangian on

some parameter a0 P V
˚, where V is a vector space. In this case we say

that the symmetry of the Lagrangian is broken, since it is only invariant on

a subset of the Lie group. As before, we have a curve gt P G and define
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ξ “ g´1 9g. There exists a left† representation of G on V , and G acts on

TG ˆ V ˚ by hp 9g, aq “ ph 9g, haq. Note that, for simplicity, we have denoted

the actions of groups and Lie algebras by concatenation. For example, the

action of g on V ˚, which is minus the dual of the action of g on V , is denoted

by ξa for ξ P g and a P V ˚. This provides a definition of the diamond

operator, which can be identified as the momentum map from Definition

2.17, through this notation as

x´ξa, vy “ xv ˛ a, ξy , (2.18)

for v P V .

Suppose we have a Lagrangian, L : TQˆ V ˚ ÞÑ R, which is left invariant on

G. We then define family of Lagrangians, La0 : TG ÞÑ R, parametrised by

a0, by

La0pg, 9gq “ Lpg, 9g, a0q . (2.19)

The symmetry of this Lagrangian is thus reduced from the group G to the

isotropy subgroup, which is defined to leave a0 invariant under left action.

By the G invariance of L, we can define a reduced Lagrangian

`pξ, atq :“ Lpe, g´1 9g, g´1a0q , (2.20)

where at is the solution of 9at “ ´ξta0, which may be written as at “ g´1
t a0.

This relationship for at is inherited from the left invariance of L. As we

will see in the following theorem, by applying Hamilton’s principle to the

Lagrangian 2.20 we derive Euler-Poincaré equations which are not simply

the standard Euler-Poincaré equations (2.17) on the semidirect product Lie

†We could similarly define this for the right invariant case.
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algebra g˙ V ˚. We have the following theorem.

Theorem 2.18 (Semidirect product Euler-Poincaré theorem [62]). With the

notation introduced above, the following are equivalent:

a. Hamilton’s principle

0 “ δ

ż t1

t0

La0pg, 9gq dt ,

holds for fixed a0 and for variations of g vanishing at the endpoints.

b. The curve gt satisfies the Euler-Lagrange equations for La0 on G.

c. The variational principle on gˆ V ˚

0 “ δ

ż t1

t0

`pξ, atq dt ,

holds for variations of the form

δξ “ 9η ` rξ, ηs , δa “ ´ηa ,

where η vanishes at the endpoints.

d. The following Euler-Poincaré equations hold

d

dt

δ`

δξ
“ ad˚ξ

δ`

δξ
`
δ`

δa
˛ a . (2.21)

For a full proof, see Holm, Marsden and Ratiu [62]. We will here illustrate

the relationship cq ùñ dq. This follows from taking variations of the action
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corresponding to cq as follows

δ

ż t1

t0

`pξ, aq dt “

ż t1

t0

B

δ`

δξ
, δξ

F

`

B

δa,
δ`

δa

F

dt

“

ż t1

t0

B

δ`

δξ
, 9η ` rξ, ηs

F

´

B

ηa,
δ`

δa

F

dt

“

ż t1

t0

B

´
d

dt

δ`

δξ
` ad˚ξ

δ`

δξ
`
δ`

δa
˛ a, η

F

dt .

Euler-Poincaré equations for deterministic and stochastic fluid

dynamics

After the remarkable observation by Arnold in 1966 [4], described earlier in

this chapter, the mathematical perspective on the dynamics of a fluid was

forever changed. Following Holm, Marsden, and Ratiu [62], we will demon-

strate how the machinery of geometric mechanics (in the semidirect product

case) can be applied to this problem. For a more complete summary of how

the above definitions are modified for the specific case of fluid dynamics, in-

cluding the definitions of the adjoint actions of the Lie group and algebra,

see Luesink [72].

We take a domain, D, which is an n-dimensional compact manifold with

boundary, and let DiffpDq denote the group of diffeomorphisms from D to

itself. Whilst there are a number of technicalities concerning the form of this

group [38, 72], the above framework is valid for right invariant Lagrangians

and right representations. The motion will be considered as a curve gt P

DiffpDq, which maps an initial, or reference, configuration x0 P D to xt as

xt “ gtx0 . (2.22)
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The time derivative of this allows us to define the velocity field, u, as follows

9xt “ 9gtx0 “: utpgtx0q .

Since this is true for any x0, the velocity field is related to the flow map by

ut “ 9gtg
´1
t . (2.23)

We denote by XpDq the space of vector fields on D, which is the algebra

corresponding to our group. The adjoint action of this Lie algebra on itself

is given, for u1, u2 P X, by adu1u2 “ ´ru1, u2s, and the dual of ad is the Lie

derivative, defined as follows.

Definition 2.19 (Lie derivative). Suppose we have a k-form, f , on the con-

figuration manifold, Q, and let u be a vector field with the associated smooth

flow, φε. Then the Lie derivative of f along u is given by

Luf “
d

dε

ˇ

ˇ

ˇ

ˇ

ε“0

φ˚ε f , (2.24)

where φ˚ε denotes the pull back of f by φε. This a particular case of the Lie

chain rule, which states that

φ˚εLuf “
d

dε
φ˚ε f , (2.25)

which is equivalent to the definition of the Lie derivative when ε “ 0.

This is known as the dynamic definition of a Lie derivative, it may be defined

instead by Cartan’s formula from exterior calculus as follows

Luf “ u ⌟ df ` dpu ⌟ fq , (2.26)
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where d and ⌟ denote the exterior derivative and interior product respectively.

It’s important to note the Cartan’s formula can be used only as a definition

of the lie derivative on the space of differential forms.

Using the same notation as in Definition 2.19, note that the pullback relation,

known as the Lie chain rule is given by

d

dε
pφ˚ε fq “ φ˚εLuf .

Evaluating this at ε “ 0 gives the definition of a Lie derivative.

The semidirect product group for fluid dynamics with advected quantities is

this group structure together with a vector space of advected quantities‡. As

in the general case, we have a representation of G on V , which induces a rep-

resentation on V ˚. The advected quantities are taken to be in V ˚, which is a

representation space of DiffpDq. The representation space of the diffeomor-

phism group is a subset of tensor field densities [62] and the representation

is by pullback. Comparing the dynamic definition of the Lie derivative with

equation (2.10), we see that the Lie derivative is the infinitesimal transfor-

mation associated with the differential of the representation of DiffpDq on

tensor fields, and is the right action of the Lie algebra XpDq on V ˚. The

diamond operation becomes a mapping, ˛ : V ˆ V ˚ : ÞÑ XpDq˚, defined, for

v P V , by

xv ˛ a, uyX˚ˆX “ ´xLua, vyV ˚ˆV . (2.27)

The diamond operator may be interpreted as the dual of the Lie derivative

when considered as a map Lp¨qa : XpDq ÞÑ V ˚.

We will thus have a reduced Lagrangian, ` : XpDq ˆ V ˚ ÞÑ R, and the

‡For a thorough overview of this group and its actions, see [72]
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evolution of an advected quantity, a P V ˚, is given by

9a “ ´Lua . (2.28)

Note that the mass density, which we will discuss later, will always be an

advected variable in V ˚. The Euler-Poincaré theorem does not differ radically

from Theorem 2.18, so will not be repeated in full here. However it should

be noted that the Euler-Poincaré equation itself becomes

B

Bt

δ`

δu
` Lu

δ`

δu
“
δ`

δa
˛ a , (2.29)

where a is advected according to equation (2.28).

Notice that we have presented this structure in a coordinate free manner. For

our purposes, we will be working in Euclidian space with the corresponding

Euclidian metric. The basis for the vector space corresponding to the tangent

space to the manifold at some point is given by partial derivatives with

respect to the local coordinates xi. We may therefore express a vector field

u P XpDq as

u “ u1 B

Bx1
` ¨ ¨ ¨ ` un

B

Bxn
“: u ¨∇ , (2.30)

where ∇ :“ p B
Bx1
, . . . , B

Bxn
q is the aforementioned local coordinate basis. Here,

we note that u represents the vector field relative to the coordinate system.

When taking variations, we will see that the velocity also appears as a 1-

form. Indeed, we have an isomorphism, 5 : TD ÞÑ T ˚D and its inverse,

7 : T ˚D ÞÑ TD, known as the musical isomorphisms. The definition of

these is, in general, given in terms of the pseudo-Riemannian metric, g,

corresponding to the manifold. Here we will discuss these ideas in terms of

Euclidian space, where the components of the (Euclidian) metric, gE, are
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given by the Kronecker delta, gEij “ δij. Note that the components of

the Euclidian metric are related to the dual basis, dx “ pdx1, . . . , dxnq, by

gE “ δijdx
i b dxj. In Euclidean space we have that, for the notation as

described above, a 1-form may be associated with the vector field (2.30) by

u5 :“ gEiju
idxj “: uidx

j . (2.31)

This is known as lowering the index, since the index has been lowered in the

final line of the above definition. For the Euclidean metric, we further note

that lowering the index has no effect on the functions ui, indeed

uidx
j
“ uidxj , (2.32)

due to equation (2.31) and the definition of the Kronecker delta. We therefore

see that for the vector field u “ u ¨∇, the corresponding 1-form is u5 “ u ¨dx.

The inverse isomorphism, 7, is defined similarly and associates a vector field

with a given 1-form.

An important concept in fluid theories is that of mass density. The manifold

of diffeomorphisms, when the specific Sobolev regularity of the mapping is

considered, inherits a Riemannian structure from the metric of the underly-

ing manifold, D, as shown by Ebin and Marsden [38]. The measure which

corresponds to the bilinear form on the tangent space of DiffpDq is expressed

in terms of the mass density in the reference configuration, D0, which we

take to be strictly positive. The Eulerian description then corresponds to

the pushforward by the flow, and we have a measure D̄ “ Ddnx. Here, the

notation D is used for the mass density, rather than the commonly used no-

tation ρ, since we can consider D to be the determinant of the Lagrange to

Euler map. The mass density is therefore an intrinsic part of the formulation
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of a fluid theory and, since it is an element of V ˚, the semidirect product

formulation is natural for a variational continuum theory.

The definition of this measure allows us to elaborate on the form of the

variation of the reduced Lagrangian with respect to the vector field, which

is a 1-form density as follows

δ`

δu
“

δ`

δu
¨ dxb dnx P X˚pDq . (2.33)

We define by C the space of continuous closed loops in D. For an arbitrary

1-form density, we may produce a 1-form by dividing it by a volume form.

This division is defined as follows.

Definition 2.20. The 1-form corresponding to the division of a 1-form den-

sity, m “ m ¨ dx b dnx P X˚, by a volume form, D̄ “ Ddnx, is denoted by

m{D̄ and defined as

m “
1

D
m ¨ dxbDdnx “

m

D̄
b D̄ .

We define the circulation map, K : C ˆ V ˚ ÞÑ X˚˚, by the integral of the

1-form, m{D̄, around a material loop moving with the flow as

xKpcptq, aptqq,my :“

¿

cptq

m

D̄
. (2.34)

Theorem 2.21 (Abstract Kelvin-Noether circulation theorem). For cptq P

C, let u and a satisfy the Euler-Poincaré equation (2.29) and the advection

equation (2.28). The Kelvin-Noether circulation map, I : C ˆ V ˚ ˆ X ÞÑ R,
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is defined by

Ipc, a, uq :“

B

Kpc, aq, δ`
δu

F

, (2.35)

and satisfies the following equation

d

dt
Iptq “

¿

cptq

1

D̄

δ`

δa
˛ a . (2.36)

Proof. Since the loop, cptq, is moving with the flow, the time derivative of

the loop integral is equal to the loop integral of the advective derivative of

the integrand. We thus have

d

dt
xKpcptq, aptqq,my “ d

dt

¿

cptq

m

D̄
“

¿

cptq

pBt ` Luq
m

D̄
.

The volume form, D̄, passes through the operator, pBt ` Luq, since it is

advected. Indeed

pBt ` Luqpm ¨ dxb dnxq “ pBt ` Luq
ˆ

1

D
m ¨ dxbDdnx

˙

“ pBt ` Luq
ˆ

1

D
m ¨ dx

˙

bDdnx .

Considering Definition 2.20, the above equations imply

d

dt
xKpcptq, aptqq,my “

¿

cptq

1

D̄
pBt ` Luqm.

This calculation with m “ δ`
δu

gives our result. Q.E .D .

Remark 2.22. Advected quantities can take many structural forms, our ex-

amples will include advected scalar functions, b, and volume forms§, Ddnx.

§We have used notation corresponding to an n dimensional fluid for the volume form,
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It is therefore worth commenting on the form of the Lie derivative of these

objects, and the definition of the ‘diamond’ term in the Euler-Poincaré equa-

tion (2.29). Beginning with Lie derivatives, the Lie derivative of each of these

quantities with respect to u is given by

Lub “ u ¨∇b ,

LupDdnxq “ ∇ ¨ pDuqdnx .

The diamond terms are defined by integrating by parts, for a vector field

η P X, as

B

δ`

δb
˛ b, η

F

“ ´

ż
ˆ

δ`

δb
∇b

˙

¨ η dnx “ ´

B

δ`

δb
dbb dnx, η

F

,

B

δ`

δD
˛D, η

F

“

ż

D∇ δ`

δD
¨ η dnx “

B

Dd
δ`

δD
b dnx, η

F

.

We will also take a Lie derivative of 1-forms, A ¨ dx, which has the form

LupA ¨ dxq “
`

u ¨∇A` Aj∇uj
˘

¨ dx .

This will be necessary since a 1-form will result from taking variational deriva-

tives of the kinetic energy term, which in the examples to follow will be writ-

ten as the spatial integral of |u|2 “ u ¨ u. At face value, the kinetic energy

in this may give the impression that the coordinate free description has been

abandoned. Instead, this form of the kinetic energy results from the following

relationship between the basis of the tangent space and its dual basis

B

Bxi
⌟ dxj “ δij . (2.37)

though it is worth noting that n is usually two or three.
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The kinetic energy can be associated to an inner product through its bilin-

earity as

u ⌟ u5 “ pu ¨∇q ⌟ pu ¨ dxq

“

ˆ

u1 B

Bx1
` ¨ ¨ ¨ ` un

B

Bxn

˙

⌟ pu1dx
1
` ¨ ¨ ¨undx

n
q

“ u1u1 ` ¨ ¨ ¨ ` u
nun “ u ¨ u .

(2.38)

That is, the interior product between a vector field and the one form asso-

ciated to another vector field is equivalent to the inner product between the

two vector fields, where this inner product corresponds to the metric tensor.

When taking variational derivatives of the kinetic energy with respect to the

vector field u, we see that the result will, formally, be in terms of the 1-form

u5. This will not necessarily be made explicit through the notation at every

step, but should be evident from the context.

Example (The Euler equations for incompressible flow [4]). For the flow

to be incompressible, we may use a Lagrange multiplier, π, to enforce the

volume element to be constant, D “ 1. This Lagrange multiplier, which is the

pressure, will itself play a central role in the dynamics since it is maintaining

an algebraic relationship between the variables. The action, complete with

this constraint, is

ż t1

t0

ż

D

D

2
|u|2 ´ πpD ´ 1q dnxdt . (2.39)

The variational derivatives of the Lagrangian are given by

δ`

δu
“ Du5 b dnx ,

δ`

δD
“

1

2
|u|2 ´ π ,

δ`

δπ
“ D ´ 1 . (2.40)

The left and right hand sides of the Euler-Poincaré momentum equation are
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given by

B

Bt

δ`

δu
` Lu

δ`

δu
“ D pBt ` Luq pu ¨ dxq b dnx

δ`

δD
˛D “ D∇

ˆ

1

2
|u|2 ´ π

˙

¨ dxb dnx .

Combining these gives the Euler momentum equation for incompressible flu-

ids

Btu` u ¨∇u “ ´∇π , (2.41)

where we have used the relationship

Lupu ¨ dxq “ pu ¨∇uq ¨ dx` p∇uqT ¨ uq ¨ dx “:

˜

u ¨∇u`
n
ÿ

i“1

ui∇ui

¸

¨ dx .

The momentum equation is closed by incompressibility, which follows from

the advection of the mass density together with the constraint that it is

constant, i.e.

BtD ` divpDuq “ 0

D “ 1

*

ùñ ∇ ¨ u “ 0 .

Notice also that the Kelvin-Noether circulation theorem for the Euler equa-

tions is
d

dt

¿

cptq

u ¨ dx “ 0 . (2.42)

Stochastic Advection by Lie Transport (SALT). A reason for

which stochastic equations of motion are desirable is their ability to represent

uncertainty that exists within a model of fluid dynamics, as well as their ca-

pacity to model the mean effect of fluctuating phenomena. Uncertainty when

modelling can be inherited from inexact observations or, more relevantly to
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this approach, from ‘subgridscale’ motions, which occur on a scale smaller

than the resolution of a simulation and thus cannot be modelled using a

discrete deterministic system. Upon inspection, data for Lagrangian trajec-

tories takes the form of a deterministic mean flow with fluctuations around

this. Following Holm [53], we may find stochastic equations of motion for

a fluid system by creating a stochastic analogue of the semidirect product

Euler-Poincaré framework above. For a discussion of stochastic geometric

mechanics for fluids, see Holm and Luesink [60]. This can be considered

preferable to adding noise to the system at the level of the equations since it

ensures that the system has a Kelvin-Noether circulation theorem, as we will

see. Motivated by data, we make the system by stochastically perturbing the

velocity field, u, by introducing a collection of vector field ξi. This will lead

to equations which feature a transport type noise, and we will be assuming

from the outset that fluid particles follow stochastic trajectories. We do this

by assuming that xt is a solution of

dxt “ dgtx0 “ put ˝ gtqx0 dt`
8
ÿ

i“1

pξi ˝ gtqx0 ˝ dW
i
t

“ utpxtq dt`
8
ÿ

i“1

ξipxtq ˝ dW
i
t ,

where ˝ denotes Fisk-Stratonovich integration and W i
t are independent, iden-

tically distributed Brownian motions. We can therefore define the Lie deriva-

tives with respect to a stochastic vector field, for which we will use the no-

tation dxt “ u dt`
ř

ξt ˝ dW
i
t .

Suppose at is invariant under the flow, meaning that it is an advected quan-

tity. Then

a0px0q “ atpxtq “ pat ˝ gtqx0 “ pg
˚
t atqx0,
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and hence, by an application of the stochastic Kunita-Itô-Wentzell formula,

as in Bethencourt de Léon et al. [11],

0 “ da0px0q “ dpat ˝ gtqx0

“ dpg˚t atqx0

“ g˚t pdatpx0q ` Luatpx0q dt`
ÿ

i

Lξiatpx0q ˝ dW
i
t q

ùñ 0 “ datpxtq ` Luatpxtq dt`
ÿ

i

Lξiatpxtq ˝ dW i
t

:“ datpxtq ` Ldxtat .

(2.43)

We have introduced a new notation in the final line of (2.43) for a more

convenient way of writing the Lie derivative terms. Namely, we absorb the

notation for temporal integration into the vector field with which we are

taking a Lie derivative with respect to

Ldxtat :“ Luatpxtq dt`
ÿ

i

Lξiatpxtq ˝ dW i
t .

We will now derive the Euler-Poincaré equations in the stochastic case. We

will not be concerned with the reduction by symmetry for the stochastic case,

instead only considering reduced Lagrangians. For a discussion on stochastic

Euler-Poincaré reductions for the Hamilton-Pontryagin principle, see Takao

[96]. The action in this case will be formulated using the Clebsch approach,

where the advection of the advected quantities is constrained by a Lagrange

multiplier. Note that, formally, the collection of advected quantities must be

sufficiently large to ensure that we have a complete Clebsch representation

of the velocity field, we will return to this point following the theorem.

Theorem 2.23 (A stochastic Euler-Poincaré theorem). The following are

equivalent, where there are implicit sums over the terms corresponding to
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advected quantities.

a) The variational principle

0 “ δ

ż t1

t0

`pu, aq dt` xλ, da` Ldxtay ,

holds on XˆV ˚, where the collection of advected quantities is of dimen-

sion greater than or equal to n, the dimension of the spatial domain.

b) The stochastic Euler-Poincaré equations

d
δ`

δu
` Ldxt

δ`

δu
“
δ`

δa
˛ a dt , (2.44)

hold on Xˆ V ˚, together with the advection equation

da` Ldxta “ 0 .

Proof. Taking variations of the action integral yields

δu :
δ`

δu
´ λ ˛ a “ 0 ,

δa :
δ`

δa
dt´ dλ` L˚dxtλ “ 0 ,

δλ : da` Ldxta “ 0 .

For an arbitrary vector field, η P X, we have

B

d
δ`

δu
´
δ`

δa
˛ a dt, η

F

“

B

dλ ˛ a` λ ˛ da´
δ`

δa
˛ a dt, η

F

,

where we have used the relationship corresponding to the variation in u.
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Making use of the remaining relationships then gives

B

d
δ`

δu
´
δ`

δa
˛ a dt, η

F

“
@

L˚dxtλ ˛ a´ λ ˛ Ldxta, η
D

“ x´LdxtLηa` LηLdxta, λy “ ´
@

Lrdxt,ηsa, λ
D

“ xλ ˛ a,´addxtηy “

B

´ad˚dxt
δ`

δu
, η

F

,

and, since coajoint action is equivalent to the Lie derivative for vector fields

acting on 1-form densities, this completes our proof. Q.E .D .

Remark 2.24. As noted previously, the mass density is a crucial advected

quantity in fluid dynamics, As we can see from the variation in the velocity

field, u, in the above proof, if we include only one advected quantity, then

we obtain only one term featuring the diamond operator in the variational

derivative of the Lagrangian with respect to the velocity field. This would re-

duce the model to a potential flow, and we would have an incomplete Clebsch

representation. We need at least n scalar Lagrange multipliers enforcing the

Clebsch constraints for our variational principle to encapsulate all possible

solutions to the resulting momentum equation. A more in depth discussion of

this can be found in Cendra and Marsden [20]. It has been noted that a Cleb-

sch variational principle can describe fluid motion fully by using Lagrange

multipliers to enforce the advection of the Lagrangian labels, following the

approach of Holm and Kupershmidt [59]. For a more contemporary discus-

sion of this issue which, as in this thesis, illustrates this principle using the

Euler equations, see Cotter and Holm [28].

Let it be noted that, whilst additional advected quantities are needed for the

variational principle to formally represent the full collection of possible solu-

tions to the model, the Euler-Poincaré equation itself only features advected
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quantities which appear in the Lagrangian, `pu, aq. Thus, when working with

the Euler-Poincaré equations in practice, we need only consider the advected

quantities present in the Lagrangian to write down the equation of motion.

In the deterministic case, we used an alternative approach where the form of

the variations was externally determined. The resulting constraints on the

form of permissible variations are known as Lin constraints. This approach

can also be used in the stochastic case, as has been done in multiple other

studies [11, 60, 72]. For the stochastic case, the Euler-Poincaré equations are

identical to those found in Theorem 2.23, the action,
ş

`pu, aqdt, is analogous

to the deterministic action, and the variations are constrained to be of the

form

δu dt “ dv ` rdxt, vs ,

δa “ ´Lva ,

where v P X is arbitrary and vanishes at the endpoints. See Holm, Marsden,

and Ratiu [62] for details.

In the upcoming section, we will discuss the mathematics of variational prin-

ciples of this type in more detail, as well as properly formulate how such a

stochastic model can be constrained to be incompressible.

2.2 Semimartingale driven variational principles

In order to derive the Euler-Poincaré equation for the case of stochastic ad-

vection by Lie transport (SALT), we considered a stochastic version of a

variational principle. The addition of stochasticity into the process of apply-

ing Hamilton’s principle to some action has attracted attention elsewhere in
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the literature also, and there are numerous ways of achieving this. For exam-

ple, one may take the action to be the expected value of an integral [2] or, as

in the above section, the action can be defined as a stochastic integral. This

second approach has attracted interest from a number of research groups

(see e.g. [15, 22, 53, 103]), and is the methodology we will be considering

in this section. This typically involves action integrals involving stochastic

constraints or, equivalently, one for which variations are assumed to have a

particular stochastic form. Here, we will properly formulate this and prove

that it is permitted to take variational derivatives of such actions in the

standard way. We will be working within the framework of semimartingale

driven variational principles, first introduced by Crisan and Street [95], with

a particular focus on reduced variational principles with Lagrangians which

take the form of a spatial integral, as found in continuum dynamics. As such,

this section will closely follow the form of this paper [95] and use much of the

same notation. For a discussion of the unreduced Euler-Lagrange equations

corresponding a semimartingale driven variational principle, see Takao [96].

The purpose of this section is to introduce a rigorous theoretical framework

for adding stochasticity into a system through Hamilton’s principle, using

concepts from stochastic analysis. Lagrange multipliers, which must corre-

spond to the stochastic noise chosen, may be used to constrain a physical

model to behave in a certain way as observed in the physical system of choice.

The action function appearing in Hamilton’s principle can be defined as an

integral with respect to a given measure which in the stochastic case can

be chosen to be random. The framework introduced below clarifies how to

make these concepts stochastic in a consistent manner, i.e., the dynamical

variables, the Lagrange multipliers, as well as the integrator measure can all

be chosen to be random as long as they remain compatible with an exoge-
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nously chosen semimartingale. Subsequently, this will define what we mean

when we say that the variational principle is semimartingale driven.

As a consequence, we will show that, in the case of stochastic fluid dynamics,

pressure must be thought of as a stochastic Lagrange multiplier which has

the role of ensuring that the volume element remains constant and thus the

flow is incompressible. This will work in a manner analogous to the example

of the incompressible Euler equations found in Section 2.1.2. We will demon-

strate the case of the stochastic Lagrange multiplier by again considering the

Euler equations for incompressible fluids, and deduce an explicit stochastic

differential equation for the pressure.

The introduction of stochasticity presented here generalises the approach

taken by Holm [53]. After the initial publication of this framework, the

driving semimartingale was replaced by a rough path [32], leading to the

introduction of a new class of rough path driven variational principles.

The form of the action. We can consider the action to be an integral

of a space-time domain, which we call D̄ with elements x̄ P D̄. The action

then takes the form
ż

D̄
lpvpx̄qq dµ̄px̄q , (2.45)

where µ̄px̄q is a measure on the given domain D̄ and v encompasses the

physical variables as well as the Lagrange multipliers used to constrain them.

Outside of the examples and particular cases, to preserve generality we will

not be discussing the specific space that elements of v are in. We can unravel

this action into a more recognisable form in the following way. Typically one

separates D̄ into a time component and a space component and considers

it to be a product space. This space is most commonly chosen to be of the
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form rt0, t1s ˆ D for 0 ď t0 ă t2 ď 8, where D is the spatial manifold in

which our dynamics occurs. Similarly, we unpack µ̄ into a product between

a measure µ on D and the Lebesgue measure, dt, for the time variable. The

action integral can then be identified with the familiar form found in the case

of continuum dynamics, where the Lagrangian, `, is the spatial integral of

some Lagrangian ‘density’, l, as follows

`pvq “

ż

D
lpvqµpdxq ,

and the action is
ż t1

t0

`pvq dt . (2.46)

Note that we have used the notation µpdxq to denote integration in the spatial

variable x P D with respect to the measure µ. The alternative notation,

dµpxq, where the ‘d’ is positioned outside of the measure, will be reserved

for the temporal integration. The reason for this will become clear, where

it will be particularly necessary to distinguish between spatial and temporal

integration.

The action can be made stochastic through the time integral. This has the

effect of altering how the system evolves in time, changing from deterministic

integration to stochastic, without changing the definition of space. Regard-

less of the source of stochasticity, the action function will be assumed to be

compatible with a given semimartingale S, see Definition 2.25. The form of

the action will become
ż t1

t0

`pvq ˝ dSt , (2.47)

where both rt0, t1s Q t ÞÑ v and rt0, t1s Q t ÞÑ `pvq will be assumed to be

semimartingales. This choice of the action integral (2.47) is justified for the
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following reasons.

• The action defined by (2.47) is a natural generalisation of (2.46) in

that, by choosing the semimartingale to be given by St ” t, t P rt0, t1s,

the stochastic case reduces to the classical deterministic case.

• The stochastic calculus rules governing the Stratonovitch integral, as

opposed to the Itô integral, coincide with the classical rules of deter-

ministic calculus. We may therefore expect that the technical details

introduced through the stochasticity will be natural extensions of their

deterministic counterparts.

• This generalisation is a natural extension of the approach introduced

by Holm [53], since the actions needed for deriving equations of this

type are special cases of the action integral (2.47), where the driving

semimartingale is given by St “ pt,W
1
t , ...,W

n
t , ...q. In other words, St

is an infinite dimensional stochastic process with the first component

identically equal with the time variable and the rest of the components

being given by independent Brownian motions. In particular, it incor-

porates models where the advected quantities are constrained to follow

stochastically perturbed trajectories.

• By a judicious choice of the driving semimartingale, one can introduce

non-independent noise increments (for example through an Ornstein-

Uhlenbeck process, as in [54]) in order to incorporate effects, such as

memory, into the fluid dynamic model.

• The new framework lends itself easily to extensions to manifolds, where

the Itô based stochastic calculus does not have an intrinsic develop-

ment, see Hsu [64].

42



• It is a natural precursor of a new class of rough path driven variational

principles, see Crisan et al. [32].

We will now introduce the mathematical concepts necessary to understand

stochastic action integrals of this form, from the perspective of the mathe-

matics of stochastic processes.

Let pΩ,F , P q be a probability space endowed with a filtration tFtutě0 that

satisfies the usual conditions. For an arbitrary Banach space, B, a tFtutě0-

adapted stochastic process, X, is said to be B-valued if it is a family of

random variables pXtqtě0, where Xt : Ω ÞÑ B, parameterised by t ě 0 such

that for all t ě 0, Xt is Ft measurable. The standard notions of probability

theory (integration, conditional expectation, etc.) are easily extended to B-

valued random variables and processes. Similarly, all notions of stochastic

calculus are extended from finite dimensional Euclidean spaces to B-valued

stochastic processes. In order to generalise our action integral we will consider

function valued stochastic processes, which can be thought of as a specific

class of B-valued stochastic processes, and measure valued processes.

We introduce a suitably chosen, but here left arbitrary, space of functions,

FpDq, over our spatial domain. This space is a Banach space when equipped

with a norm, } ¨ }FpDq. The space of n-dimensional versions of these functions

is denoted by FpDqn where, by this notation, we mean that the functions have

n components rather than referring to the dimension of their domain. The

‘driving’ semimartingale, from which all others will inherit their stochasticity,

will be taken to be RN-valued, meaning that it has an unspecified number of

real components which may be infinite, as indeed is the case with stochastic

advection by Lie transport.

Definition 2.25. An FpDqn-valued semimartingale, gt, is said to be compat-
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ible with respect to a (continuous) RN-valued semimartingale, St “ tS
j
t , j ě

1u, if there exists a set of FpDq-valued continuous semimartingales Gt “

tGi,j
t : i “ 1, . . . , n, j “ 1, 2, . . . u such that

git “ gi0 `
ÿ

j

ż t

0

Gi,j
s ˝ dS

j
s , i “ 1, . . . , n, (2.48)

and, in the case where the sums in (2.48) are infinite sums, the semimartin-

gales Gi,j are such that the sums converge.

Remark 2.26. The system of identities (2.48) is written componentwise in

integral form, and can be compactly re-written in differential form as

dgt “ Gt ˝ dSt, (2.49)

where the above equation encompasses all the relevant summation and all

components. Note that it is not necessary that the continuous semimartin-

gales Gi,j
t are also compatible with respect to St. We can think of Gt as a

stochastic generalisation of the derivative of gt, where the time evolution of

the process gt is defined by a stochastic integral with respect to St, rather

than a Lebesgue integral.

The notation found in (2.48) and (2.49), where upper cases and lower cases

are used, will consistently be used for objects which are compatible with a

semimartingale St.

Remark 2.27. In the case where the sums in (2.49) are infinite sums, we need

to impose constraints on the choice of the semimartingales Gi,j, j “ 1, 2, . . .

i “ 1, . . . , n to ensure that the sums make sense. Let us identify the finite

variation parts and the martingale parts of Sj j “ 1, 2, . . . , through the
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Doob-Meyer decomposition of each component, as

Sj “ Bj
`M j , (2.50)

where Bj and M j are the finite variation and martingale parts of Sj respec-

tively. We will assume that Gi,j will be integrable with respect to Bj for all

j ě 1 and that

E

»

–

˜

8
ÿ

i“1

ż t

0

}Gi,j
}FpDq dVBj

¸2
fi

fl ă 8 , (2.51)

where VBj is the variation process corresponding to Bj, and E denotes the

expectation. Separately we will assume that

E

«

8
ÿ

i“1

ż t

0

}Gi,j
s }

2
FpDq drM

j
ss

ff

ă 8 , (2.52)

where rM js is the quadratic variation of the martingale M j. Considering the

equations (2.51) and (2.52), together with the assumption that }gi0}FpDq ă

8, we have that the semimartingales gis are well defined and are square

integrable. More precisely

E

«

sup
sPr0,ts

}gi}FpDq

ff

ă 8 .

We will henceforth refer to conditions such as these as ‘integrability con-

straints’ on Gi,j, since we will need similar conditions on other objects.

Definition 2.28. The process St in Definition 2.25, which we assume to be

continuous, will be called the driving semimartingale of the system.

In the following, when formulating the stochastic action integral, we will

assume, without loss of generality, that all the finite variation terms of the
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semimartingale St are collected into one of its components, with all other

components consisting of (continuous) martingales.

To relate these ideas to the stochastic action integral, we first notice that,

for gt as defined in Definition 2.25, the process

tÑ

ż t

0

gjt ˝ dS
i
t ,

is a well defined square-integrable one-dimensional semimartingale, for each

i and j. Here we have assumed that gjt each satisfy similar integrability

conditions to those in Remark 2.27. The stochastic action takes a similar

form. For a driving semimartingale St, we assume that vptq is compatible with

St. The Lagrangian, `, is then assumed to be a RN-valued semimartingale

such that the process t ÞÑ `pvq is compatible with St, then

ż t1

t0

`pvq ˝ dSt, (2.53)

is a well defined square integrable one-dimensional semimartingale, where `

is assumed to satisfy the relevant integrability conditions.

Definition 2.29. By a semimartingale driven variational principle, we mean

the application of the principle of stationary action to a well defined stochas-

tic action integral of the form (2.53) in order to derive the corresponding

stochastic governing equation for the chosen physical system.

In the case of continuum dynamics, where the Lagrangian takes the form

of a spatial integral, the above formulation of the stochastic integral is ad-

equate for the case where the Lagrangian takes the form of a deterministic

spatial integral and the stochasticity appears in the time integration. This

case can, however, be thought of as a particular case of the more general
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framework in which the measure on the space-time domain is itself taken

to be a stochastic process. We will define here the class of measures which

are suitable for our requirements, for a thorough summary of the theory of

random measures, see Kallenberg [65]. Using a notation analogous to the

function valued semimartingales, let MpDq be the space of finite measures

over D endowed with the total variation norm andMpDqn denotes the space

of n-dimensional versions of such measures. Note that this methodology can

be extended to spaces of non-finite measures.

Definition 2.30. AnMpDqn-valued semimartingale νt, is called compatible

with respect to a given RN-valued semimartingale, St, if νt “ pν
i
tq
n
i“1 has a

representation of the form

νit “ νi0 `
ÿ

j

ż t

0

µi,js ˝ dS
j
s , i “ 1, . . . , n, (2.54)

where µi,jt are continuousMpDq-valued semimartingales for every i “ 1, . . . , n,

j “ 1, 2, . . . . As in Definition 2.25, the system of equations (2.54) can be

re-written in the following compact form:

dνt “ µs ˝ dSs . (2.55)

Similar integrability constraints to those imposed on Gi,j in Remark 2.27 are

needed here to ensure that the νi are well defined.

Now suppose that gt and νt are function and measure valued semimartingales

respectively, which are compatible with the driving semimartingale St and
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are as in Definitions 2.25 and 2.30. Then

ż

D
gitpxqν

i
tpdxq “

ż

D
gi0pxqν

i
0pdxq `

ÿ

j

ż t

0

ż

D
Gi,j
t ν

i
tpdxq ˝ dS

j
t

`
ÿ

j

ż t

0

ż

D
gisµ

i,j
s pdxq ˝ dS

j
t ,

where we have assumed that the relevant integrability conditions are satis-

fied. We may interpret this as a stochastic version of the product rule for

differentiation dpgitν
i
tq “ pdg

i
tqν

i
t ` g

i
tdpν

i
tq. This implies that the processes

tÑ

ż t

0

ż

D
gtpxq

i
˝ dνitpdxq , (2.56)

and

tÑ

ż t

0

ż

D
gtpxq

iµi,jt pdxq ˝ dS
j
t , (2.57)

are equivalent and are well defined one dimensional semimartingales. When

reading (2.56), recall that spatial integration is represented by writing ‘dx’

as the argument of the measure ν. The integration in the time variable is

achieved by integrating with respect to νt as a stochastic process. We thus

have defined a stochastic version of the action integral,

ż t1

t0

ż

D
lpvq ˝ dνtpdxq “

ż t1

t0

ż

D
lpvqµtpdxq ˝ dSt . (2.58)

Comparison between deterministic and stochastic cases. The

semimartingale driven action principle defined above is a true generalisation

of the classical deterministic case since, when the driving semimartingale is

taken to be St “ t, the system reverts back to the standard deterministic the-

ory. Although it should be noted that the addition of stochasticity introduces

subtleties and complexities into the problem which will become evident when
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looking at examples and Lagrange multipliers. For a differentiable function

of time, vptq, the object dv is a stochastic generalisation of the object 9v dt,

where 9v is the time derivative of v. This can be thought of as a variable

together with the measure with respect to which the time integral is defined,

and is an object which can be integrated. In the deterministic case, this is an

uninteresting and trivial object, since the integration is standard Lebesgue

integration and the equations are most commonly written in a differential

form which negates the need for this notation. In the stochastic framework,

the variables are not necessarily differentiable in time, thus it is essential

that our equations are interpreted in integral form. The framework of semi-

martingale driven variational principles enables the clear understanding of

how the time integration is defined, which permeates each part of the model.

In the case where the driving semimartingale is St “ t, the definition of

compatibility has an interesting deterministic analogue. In particular, it

reduces to

vt “ v0 `

ż t

0

Vs ds ,

where v is some function and V is continuous. Thus, in this case, it is

apparent that we have Bv{Bt “ V . The compatibility of the function valued

process v with respect to t is therefore equivalent to the requirement that the

function is differentiable in time and that the derivative is continuous. The

compatibility of a process with the driving semimartingale can therefore be

thought of as a stochastic generalisation of this concept.

The validity of stochastic variational calculus. Recall that Hamil-

ton’s principle enables us to find equations from an action by taking varia-

tions and considering the relations that arise from the condition that the first
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variation of the action is zero. Recall that, in this section, we are considering

the addition of stochasticity into this process by taking the action integral to

be a stochastic integral, rather than any other methodology. We will present

here a stochastic version of the so-called ‘fundamental lemma of the calculus

of variations’, designed for stochastic variational methods corresponding to

our approach. If the action is semimartingale driven and takes the same form

as that in equation (2.58), then Hamilton’s principle implies

0 “ δ

ż t1

t0

`pvq ˝ dSt “ δ

ż t1

t0

ż

D
lpvqµtpdxq ˝ dSt

“

ż t1

t0

ż

D

δ`

δv
δv µtpdxq ˝ dSt .

In order to derive equations from this concept, we need to prove that the

fundamental lemma of the calculus of variations is valid in this framework.

This lemma is the following.

Lemma 2.31 (A fundamental lemma of stochastic calculus of variations

[95]). Suppose fpt, xq is a FpDqN-valued semimartingale. If for any FpDqN-

valued semimartingale, ψpt, xq, we have

ż t1

t0

ż

D
fpt, xqψpt, xqµpdxq ˝ dSt “ 0 , (2.59)

then, for any α, β such that t0 ď α ă β ď t1, we have

ż β

α

fpt, xq ˝ dSt “ 0 , (2.60)

µ-almost everywhere on the set D.

Remark 2.32. When applying this in practice, the equations (2.33) which

result from Hamilton’s principle can be stochastic partial differential equa-
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tions, or algebraic relationships between variables. This will be evident from

the examples.

Proof. The proof of this is as in Crisan and Street [95]. Since (2.59) holds

for any such ψ, it holds for semimartingales of the form

ψpt, xq “ pψ0
pt, xq, ψ1

pt, xq, . . . q “ pφpxqϕ0
ptq, φpxqϕ1

ptq, . . . q “ φpxqϕptq ,

where ϕ : rt0, t1s Ñ RN is a smooth function such that ϕpt0q “ ϕpt1q “ 0

and φ : D Ñ R belongs to a class of functions, S , which represents a total

set. By this we mean that the class of functions, S , is such that if, for some

function g : D Ñ R, we have

ż

D
gpxqφpxqµpdxq , @φ P S ,

then µ-almost surely we have that g “ 0.

We now define Fφ : rt0, t1s Ñ RN by

Fφptq “

ż

D
fpt, xqφpxqµpdxq .

Then Fφ is a semimartingale and, moreover, the covariation process rFφ, Sst

is well defined. In particular,

rFφ, Sst “

ż

D
rf, Sstpxqφpxqµpdxq .

Since ϕ is smooth, Fφϕ is also a semimartingale and rFφϕ, Sst is well defined

with

rFφϕ, Sst “

ż t1

t0

ϕptq drFφ, Sst .
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It follows that

0 “

ż t1

t0

ż

D
fpt, xqψpt, xqµpdxq ˝ dSt “

ż t1

t0

Fφptqϕptq ˝ dSt

“

ż t1

t0

Fφptqϕptq dSt `
1

2

ż t1

t0

Fφptqϕptq drFφ, Sst .

For arbitrary α and β such that t0 ď α ă β ď t1, choose ϕ “ 1rα,βs where

1 is the indicator function. Let pϕnq
8
n“1 be a uniformly bounded sequence of

smooth functions such that

ϕn Ñ 1rα,βs ,

where this convergence is pointwise. Then, by the Itô isometry and the

bounded convergence theorem, we have

E

„ˆ
ż t1

t0

Fφptqpϕnptq ´ 1rα,βsptqqdSt

˙2

“ E

„
ż t1

t0

`

Fφptqpϕnptq ´ 1rα,βsptqq
˘2
drSst



Ñ 0 ,

and
ż t1

t0

|Fφptq||ϕnptq ´ 1rα,βsptq| drFφ, Sst Ñ 0 .

Therefore, we have

0 “

ż t1

t0

Fφptqϕnptq dSt `
1

2

ż t1

t0

Fφptqϕnptq drFφ, Sst

Ñ

ż t1

t0

Fφptq1rα,βsptq dSt `
1

2

ż t1

t0

Fφptq1rα,βsptq drFφ, Sst “
ż β

α

Fφptq ˝ dSt .
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The stochastic Fubini theorem then gives

0 “

ż β

α

Fφptq ˝ dSt “

ż β

α

ż

D
fpt, xqφpxqµpdxq ˝ dSt

“

ż

D

ż β

α

fpt, xqφpxq ˝ dSt µpdxq “

ż

D

ˆ
ż β

α

fpt, xq ˝ dSt

˙

φpxqµpdxq ,

and the total set property then gives our result. Q.E .D .

Remark 2.33. Should we wish to consider equation componentwise, then we

will need to place additional assumptions on the driving semimartingale St.

If we were to do this, from Hamilton’s principle we could obtain relations

δ`i{δv “ 0, @i. Whilst this may feel more analogous to the deterministic

case, in our examples we will see that, in practice, the components of ` may

have little to no physical meaning.

Lagrange multipliers. In the stochastic case, care must be taken when

formulating constraints imposed by a Lagrange multiplier. Suppose we have

some variable from our collection of physical variables, c P tviu, by the com-

patibility of v with the driving semimartingale we know that dc “ C ˝ dSt “
ř

iCi ˝ dS
i
t , for some continuous C. Suppose we wish to impose the form of

C as a constraint, then a Lagrange multiplier may be done to achieve this

by writing the action in the form

ż t1

t0

ż

D

`

lpvq ˝ dSt ` λpdc´ C ˝ dStq
˘

µpdxq ,

where each component of C is not necessarily nonzero.

Suppose that, rather than a dynamical constraint, we wish to impose a rela-

tionship between our variables which does not feature time integration and

is true for each time t. We represent this by fpvq “ 0, for some function f .
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This constraint can be imposed by a Lagrange multiplier in a manner which

is compatible with the driving semimartingale, dλ “ Λ ˝ dSt. The action

then takes the form

ż t1

t0

ż

D

`

lpvq ˝ dSt ` pdλqfpvq
˘

µpdxq “

ż t1

t0

ż

D

`

lpvq ` Λfpvq
˘

µpdxq ˝ dSt .

Crucially, when imposing such constraints, integration must be performed

with respect to the entire driving semimartingale, as we will illustrate with

the pressure term in incompressible stochastic fluid dynamics.

Remark 2.34. We must be careful with semantics in the stochastic case. Each

component of the object Λ is a Lagrange multiplier, even though it may be

tempting to refer to λ or even dλ as such. Furthermore, when we say that a

Lagrange multiplier is compatible with a semimartingale St, we mean that λ

is compatible with St. This is despite the fact that, formally, the Lagrange

multipliers Λi may not be compatible with St.

2.2.1 Incompressible stochastic fluid dynamics

In Section 2.1.2, we illustrated the deterministic case with the example of the

incompressible Euler equations, and introduced the stochastic Euler-Poincaré

theorem (Theorem 2.23) corresponding to the approach of modelling contin-

uum dynamics using stochastic advection by Lie transport. In the example

of the Euler equations, a Lagrange multiplier is used to enforce that the

volume element is constant. The framework of semimartingale driven varia-

tional principles has highlighted that the incompressibility constraint cannot,

in the stochastic case, be thought of as part of the deterministic Lagrangian

and must instead be formulated as a stochastic constraint. If we consider

fluid dynamics in the framework of stochastic advection by Lie transport,
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the volume element, D, satisfies the following equation

dD `∇ ¨ pDu dt`
ÿ

i

Dξi ˝ dW
i
t q “ 0 , (2.61)

and this, together with the constraint D “ 1, implies

ż t

0

∇ ¨ us ds`
ÿ

i

ż t

0

∇ ¨ ξi ˝ dW i
t “ 0 . (2.62)

The uniqueness of the Doob-Meyer decomposition then implies that∇¨ξi “ 0

for each i and ∇ ¨ u “ 0. This incompressibility constraint, D “ 1, can be

imposed into the stochastic Euler-Poincaré theorem by using a Lagrange

multiplier, as follows.

For the following theorem we maintain the notation which we have been

using throughout this paper, in particular at denotes the set of all advected

quantities of which the volume element, D, is one.

Theorem 2.35 (A stochastic Euler-Poincaré theorem for incompressible dy-

namics). With notation as in Theorem 2.23, we let a denote the collection of

advected variables, to which D belongs, and we use the pressure as a Lagrange

multiplier to enforce D “ 1. The following are equivalent

a) The variational principle

0 “ δ

ż t1

t0

`pu, aq dt´ xdπ,D ´ 1y ´ xΛ, da` Ldxtay

“ δ

ż t1

t0

`pu, aq dt´ xdπ,D ´ 1y ´ xΛ, da` Lua dty

`
ÿ

i

xΛ ˛ a, ξipxqy ˝ dW
i
t ,

holds on Xˆ V ˚.
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b) The stochastic incompressible Euler-Poincaré equations

d
δ`

δu
` Ldxt

δ`

δu
“
δ`

δa
˛ a dt´ dπ ˛D ,

da` Ldxta “ 0 ,

D “ 1 ,

(2.63)

hold on Xˆ V ˚.

The proof of this is analogous to that of Theorem 2.23.

Remark 2.36. The stochastic Lagrange multiplier, which defines the pressure,

has the structure, dπ “ P ˝ dSt, which reflects its compatibility with the

driving semimartingale. The advected quantities will use the capitalisation

notation to denote compatibility, as in Definition 2.25.

The action integral corresponding to the Theorem 2.35 is of the form (2.47)

with St “ pt,W
1
t , ...,W

n
t , ...q and

` “ p`pu, atq ´ P0pD ´ 1q ´ ΛA0
t ´ ΛLuat,´PipD ´ 1q ´ ΛAit ´ ΛLξiatq,

where da “ A ˝ dSt and ` has infinitely many components represented by

indexing them by i.

Remark 2.37. Where the action integral is written as above, where the in-

tegrand contains a Lagrange multiplier of the form dπ, then it is technically

improper to refer to a variational derivative with respect to π. Instead we per-

form variational derivatives with respect to P , as is consistent with Lemma

2.31. Nonetheless, when considering the pressure terms of this form, to ease

notation we will refer to variations with respect to π rather than P , and we

here define these variations to be equivalent.
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Example (Stochastic Euler equations for incompressible flow). As discussed

in the example of the deterministic Euler equations for incompressible flow,

the Lagrangian corresponding to the structure discovered by Arnold [4] takes

the form

`pu,Dq “

ż

D

D

2
|u|2 dnx .

Notice that the diamond terms from the Euler-Poincaré equation for incom-

pressible dynamics take the form

δ`

δa
˛ a dt “ D∇

ˆ

δ`

δD

˙

¨ dxb dnx dt ,

dπ ˛D “ D∇pdπq ¨ dxb dnx ,

and the variational derivatives of the action are, similarly to the deterministic

case, given by
δ`

δu
“ Du5 b dnx ,

δ`

δD
“

1

2
|u|2 .

Note that, by comparing this to the variational derivatives of the Lagrangian

in the deterministic example (2.40), we see a fundamental difference in how

the pressure is treated. In particular, the incompressibility constraint is

considered as a part of the Lagrangian, `, in the deterministic Euler-Poincaré

framework. In the stochastic case, this cannot happen since the Lagrange

multiplier needs to be compatible with the entire driving semimartingale

and thus cannot be defined under the deterministic Lebesgue time integral

only, as is the case with the remainder of the physics encoded within the

Lagrangian, `, for a model featuring stochastic advection by Lie transport.

The left hand side of the Euler-Poincaré momentum equation is, for the Euler
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Lagrangian,

dpDu5 b dnxq ` LdxtpDu
5
b dnxq “ D

`

du5 ` Ldxtu
5
˘

b dnx ,

where this is true since Ddnx is an advected variable. This implies that, after

setting D “ 1, the Euler-Poincaré momentum equation is

du` pdxt ¨∇qu` p∇dxtq ¨ u “
1

2
∇|u|2 dt´∇dπ .

Notice now that the deterministic part of p∇dxtq ¨ u cancels with 1
2
∇|u|2 dt

to give

du` pdxt ¨∇qu`
8
ÿ

i“1

p∇ξiq ¨ u ˝ dW i
t “ ´∇dπ .

To clarify this equation we notice that, ∇v is a second order tensor for

any vector v, and thus by p∇vq ¨u we mean
ř

j uj∇vj. The stochastic Euler

equations for incompressible fluids with stochastic advection by Lie transport

are therefore given by

du` u ¨∇u dt`
8
ÿ

i“1

ˆ

ξi ¨∇u`
n
ÿ

j“1

uj∇ξji
˙

˝ dW i
t `∇dπ “ 0 , (2.64)

∇ ¨ dxt “ 0 . (2.65)

To illustrate the necessity for the pressure term to have this stochastic struc-

ture, and the need for the framework of semimartingale driven variational

principles to see that the pressure takes this form, we will calculate explicitly

the equation satisfied by the pressure. Physically, the pressure ensures that

the fluid remains incompressible. Mathematically, we can therefore expect

to find this equation by using the incompressibility constraint. Taking diver-

gence of the stochastic Euler momentum equation (2.64) in its integral form,
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we have

∇ ¨ put ´ u0q `

8
ÿ

k“1

ż t

0

p∆ξkq ¨ u`
n
ÿ

i,j“1

ˆ

Bξik
Bxj

Bui
Bxj

`
Bξik
Bxj

Buj
Bxi

˙

˝ dW k
s

`

ż t

0

n
ÿ

i,j“1

Bui
Bxj

Buj
Bxi

ds`∆πt ´∆π0 “ 0 .

The incompressibility constraint then implies that pressure satisfies the fol-

lowing

dπ̃ “ ´
n
ÿ

i,j“1

Bui
Bxj

Buj
Bxi

dt

´

8
ÿ

k“1

ˆ

p∆ξkq ¨ u`
n
ÿ

i,j“1

ˆ

Bξik
Bxj

Bui
Bxj

`
Bξik
Bxj

Buj
Bxi

˙˙

˝ dW k
t ,

π “ ∆´1π̃ .

Remark 2.38 (The need for the stochastic pressure.). If we considered the

Lagrange multiplier of D´1 in the derivation of the stochastic Euler equation

to simply be π dt, or similar, even if we considered π to be a stochastic

process then this would be insufficient to derive meaningful equations. This is

observable in the above equation for the stochastic pressure, since a Lagrange

multiplier of π dt would imply that a sum of Lebesgue integrals is equal to

a stochastic integral. This is despite the fact that the action integral would

seem reasonable and would not hint at the nonsensical equations that it

would produce, since the difficulties only make themselves known at the level

of the equations. This example provides an explicit illustration of why the

Lagrange multiplier needs this more general form, and why the identification

of the driving semimartingale is crucial for deriving equations from stochastic

variational principles of this form.
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3
The dynamics of a free

surface

3.1 Introduction

The mathematics behind the dynamics occurring on the free surface of a

fluid has been an active field of study for the best part of two centuries.

Following John Scott Russell’s now famous observation of a ‘wave of trans-

lation’ on the Union Canal, mathematicians became interested in developing

an understanding of the behaviour of such waves from the perspective of

hydrodynamics. The wave observed by Scott Russell was propagating suffi-

ciently fast to ensure that his horse could not keep up, yet the Union Canal

is not known for a rushing current. It was therefore well understood that
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disturbances on the free surface can be distinct from material transport and

have their own behaviour. These waves are perhaps more akin to a field of

crops rippling in the wind, or the agitation of a large crowd of people. Indeed,

Scott Russell noted in his 1845 Report on Waves [92] that these three phe-

nomena were linked together in Book II of Homer’s Iliad, following a speech

by Agamemnon. Due to the limited language available to historic authors

to refer to colour, this connection predates references to the sea being ‘blue’.

Despite the distinction between material transport of fluid and the propaga-

tion of a wave on its surface being evident, potentially for thousands of years,

mathematical progress on modelling the interactions between these two con-

cepts proved to be challenging. Indeed, a complete theory of wave-current

interaction does not exist and there are phenomena on the free surface for

which we still have no sound explanation, several of which are explained and

illustrated in Sections 3.3.5 and 3.4.

We will begin this chapter with a summary of some mathematical preliminar-

ies, including the evaluation of the three dimensional Euler equations onto

the free surface. This will be followed by a novel stochastic perturbation of

classical water wave theory for a potential flow, which preserves the Hamil-

tonian structure of the deterministic case. Under an additional assumption

on the structure of the noise, this Hamiltonian structure will be rewritten

entirely in terms of the Dirichlet to Neumann operator. Following this, a new

geometric framework with which we may interpret wave current interactions

is presented. Here, the dynamics of waves and currents are separated into

two maps, which makes a clear distinction between horizontal and vertical

motions.
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3.1.1 A brief review of literature

The mathematics of a fluid with free boundary is a classical problem with a

long history. As such, there are a number of different approaches present in

the literature, many of which are often labelled as wave-current interaction.

There are numerous approaches to the interactions between waves and cur-

rents, and the definition of a ‘wave’ and a ‘current’ can differ depending on

one’s perspective.

A classical approach to modelling geophysical flows with a free upper bound-

ary is by integrating from the bathymetry to the free surface, and consid-

ering vertically averaged variables and columnar motion. This involves the

shallow water approximation, and culminates in popular equations such as

the shallow water and Green-Naghdi [43] models. This methodology can

produce models for wave-like motion on the free surface, though to study

wave-current interactions there is often an additional assumed distinction

between slow currents and fast waves. The development of the generalised

Lagrangian mean (GLM) approach by Andrew and McIntyre [3] was an influ-

ential advancement in this field, in which the fluid motion is decomposed into

a mean part and an oscillatory part. This is achieved through a slow/fast

decomposition of a Lagrangian trajectory into a Lagrangian mean trajectory

and a fluctuating displacement with zero Eulerian mean. Quite differently,

the Craik-Leibovich approach to wave-current interaction concerns itself with

the interaction between wind driven rapidly oscillating waves and the mean

fluid velocity [30]. The expression derived is known as the Stokes vortex

force, which generates structures similar to Langmuir circulation in the up-

per oceanic boundary layer. We may think of this as a three dimensional

effect related to air-sea interaction. An extensive body of literature can be
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found on both of these perspectives on wave-current interaction. It can be

shown that both the Craik-Leibovich [48] and GLM [41, 50] approaches have

geometric interpretations and variational structures, through which stochas-

tic versions of the respective theories have been formulated [56].

Whilst we will not be exploring the aforementioned models of wave-current

interaction, we will be working with the closure of the water wave problem

provided by a potential flow assumption, which we will be referring to as

the classical water wave equations. As discussed above, we will be deriving

a stochastic version of this theory by exploiting the geometric structure of

these equations [106] and, by doing so, will be filling in a gap in the literature.

The new approach to wave-current interaction introduced in this chapter will

differ from those found in the literature in some fundamental ways. In partic-

ular, rather than defining a wave and a current by a slow/fast decomposition

of the fluid motion, we will be considering a distinction between horizontal

and vertical motion on the fluid surface. Since the currents will be repre-

sented by a purely two dimensional fluid theory, this approach is inherently

different to those designed to explain explicit three dimensional effects such

as Langmuir circulations. Instead, we will seek to design a framework in

which we can study the interactions of wave like vertical motions with a

two dimensional fluid flow, reminiscent of the data obtained from satellite

oceanography. We will have distinct maps for the horizontal and vertical

motions, and a general Euler-Poincaré theory will be presented. By design-

ing a preliminary example Lagrangian within this modelling framework, we

will illustrate the structure and potential of the equations resulting from this

approach. Note that the wave component of this Lagrangian will give os-

cillating wave like behaviour, and does not directly give the same solution

properties as more familiar models of water wave motion. We will give a dis-
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cussion and stochastic perturbation of a more classical approach to surface

gravity waves in Section 3.3, before deviating from this in Section 3.4.

3.2 Preliminaries and perspective

The problem of waves on the surface of a three dimensional fluid is, despite

the intrinsic three dimensionality of reality, one which features natural two

dimensionality [43]. This comes from the fact that the upper boundary of

a fluid such as a river, sea, or lake is a two dimensional submanifold in

R3. Furthermore, waves propagate in a two dimensional manner, and many

of the observational remarks of these problems surround two dimensional

transport along the surface. Therefore, when deriving models to explain

certain wave phenomena, an attempt is often made to reduce the dimension

of the problem such that we are left with a two dimensional momentum

equation. This is usually done by some sort of vertical averaging. Instead of

vertical averaging, we will instead look at the evaluation of variables on the

free surface to attempt to close the system in terms of quantities which are

observable and measurable from satellite imagery. We will proceed here with

a discussion of the three dimensional problem, before discussing the trace or

‘shadow’ of these dynamics on the free surface. This is used to motivate a

closed two dimensional model found by applying Hamilton’s principle to an

action integral. The structure of this model is then investigated.

3.2.1 The three dimensional beginnings

We will begin from the non-homogeneous three dimensional Euler equa-

tions. Assume we have a three dimensional spatial domain with coordinates
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x “ pr, zq “ px, y, zq, where we have given additional notation for the two

dimensional horizontal coordinates and the vertical coordinate. We will de-

note the velocity field of the fluid inside this domain by u “ pv, wq. Note

that, again, we have provided the notation necessary for a decomposition of

horizontal and vertical velocities, given by v and w respectively. The incom-

pressible Euler equations for a three dimensional fluid with a gravitational

forcing term may be found by applying Hamilton’s principle to the following

action integral

ż ż

Dρ

ˆ

1

2
|u|2 ´ gz

˙

´ πpD ´ 1q

` ϕpBtD ` divpDuqq ` γpBtρ` u ¨∇ρq d3x dt .

(3.1)

In the above, u denotes the three dimensional velocity field, π the pressure,

ρ the thermal buoyancy, and D the volume element given by the determinant

of the Lagrange to Euler map. The three dimensional operator ∇ is defined

by pBx, By, Bzq, and as expected g represents acceleration due to gravity. We

will later use the notation ∇r “ pBx, Byq to denote the two dimensional ver-

sion of this operator. Notice the presence of Lagrange multipliers ϕ, and γ

which constrain the relevant advection constraints. Notice also that we have

not used the coordinate free description of the advection constraints, instead

using the equation corresponding to our choice of coordinates. The coordi-

nate free description is still relevant, and Section 2.1.2 should be consulted in

order to properly understand the mathematics behind variational principles
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of this form. Taking variations of the action (3.1) gives

δD : pBt ` Luqϕ “ ρ

ˆ

1

2
|u|2 ´ gz

˙

´ π ,

δρ : pBt ` Luq
´ γ

D

¯

“
1

2
|u|2 ´ gz ,

δϕ : pBt ` LuqpDd3xq “ pBtD ` divpDuqqd3x “ 0

δπ : D ´ 1 “ 0

,

.

-

ùñ divu “ 0 ,

δγ : pBt ` Luqρ “ 0 ,

δu : ρu ¨ dx “ dϕ´
γ

D
dρ .

Since the Euler equations are so well studied and understood, we will not

extrapolate on the full geometric structure of this model here. We notice

that the above relations can be assembled into the momentum equation for

the system as follows

ρpBt ` Luqpu ¨ dxq “ dpBt ` Luqϕ´ pBt ` Luq
´ γ

D

¯

dρ

“ d

ˆ

ρ

ˆ

1

2
|u|2 ´ gz

˙

´ π

˙

´

ˆ

1

2
|u|2 ´ gz

˙

dρ

“ ρd

ˆ

1

2
|u|2 ´ gz

˙

´ dπ .

A free boundary problem may be formulated by assuming that our three

dimensional spatial domain has an upper boundary, z “ ζpr, tq, which is a

function of time and space. This will be considered as a boundary condition

on the equations derived from the above variational principle, though it is

worth noting that it is possible to embed such conditions into the variational

principle itself [24]. We now introduce a convenient notation with which we

will be able to cleanly represent conditions on the free boundary.
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Definition 3.1 (Evaluation on a free surface). The evaluation of a time

dependent object fpx, tq “ fpr, z, tq, which depends on all three spatial

coordinates, on the free surface, z “ ζpr, tq, is an object which is independent

of the vertical coordinate, z, and is denoted by the following

pfpr, tq :“ fpr, ζpr, tq, tq . (3.2)

Definition 3.2 (Evaluation on a free surface as a pullback). The evaluation

of a variable, fpx, tq, on the free surface defined in Definition 3.1 may be

written in terms of the pullback by a time dependent function Zt : R3 ÞÑ R3

as

Z˚t f “ pf ˝ Ztqpx, y, zq “
pf , (3.3)

where Zt is defined by

Ztpx, y, zq “ px, y, ζpt, x, yqq . (3.4)

Notice that the following vector, n, is normal to the surface

n “

¨

˝

´∇rζ

1

˛

‚ , (3.5)

where, as mentioned earlier, ∇r :“ pBx, Byq is the two dimensional gradient

operator in the horizontal components. This normal vector may be used

to interpret the following, commonly used, boundary condition at the free

surface.

Definition 3.3 (The kinematic boundary condition). The kinematic bound-

ary condition states that a particle on the free surface remains on the free
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surface. This is described mathematically as

pBt ` u ¨∇qpζ ´ zq “ 0 , on z “ ζ .

Using the notation from Definition 3.1, we have that

Btζ ` pv ¨∇rζ “ pw . (3.6)

Notice that this is equivalent to

Btζ “ u ¨ n , on z “ ζpr, tq ,

which is a sensible statement on how the rate of change of the free surface

relates to the velocity.

A model may be formulated where the dynamics of the interior of the three

dimensional domain is governed by the homogeneous Euler equations, where

buoyancy is constant, and the upper surface has a kinematic boundary con-

dition, as follows

Btu` u ¨∇u “ ´g ´
1

ρ0

∇π , (3.7)

∇ ¨ u “ 0 , (3.8)

Btζ “ u ¨ n , on z “ ζpr, tq , (3.9)

where g “ p0, 0, gq. This system may be closed by the inclusion of a dy-

namic boundary condition on the pressure, which requires that the stress is

continuous across the boundary.
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3.2.2 Evaluation of the Euler equations onto a free surface

In order to determine what these equations look like on the free surface,

we first look at what happens to advected variables. Since the kinematic

boundary constraint ensures that the evaluation of an advected variable on

the free surface does not stray from the surface, it is natural to attempt to

understand how this evaluation is advected. We begin by determining the

difference between evaluating the derivative of a variable on the surface, as

opposed to taking a derivative of the evaluation.

Proposition 3.4. The difference between exchanging the order of differen-

tiation and evaluation on the free surface is as follows,

Bt
pf ´ xBtf “yBzfBtζ ,

∇r
pf ´ y∇rf “yBzf∇rζ ,

∇r ¨
pf ´ {∇r ¨ f “ yBzf ¨∇rζ ,

where fpx, tq and fpx, tq “ pf1px, tq, f2px, tqq are used to denote arbitrary

variables with values in R and R2 respectively.

Remark 3.5. The equations above are a comment on exchanging the order

of differentiation and pullback, when the evaluation on the free surface is

interpreted as in Definition 3.2. Using the notation from this definition, the

equations are equivalent to

BtpZ
˚
t fq ´ Z

˚
t pBtfq “ pZ

˚
t BzfqBtζ ,

∇rpZ
˚
t fq ´ Z

˚
t p∇rfq “ pZ

˚
t Bzfq∇rζ ,

∇r ¨ pZ
˚
t fq ´ Z

˚
t p∇r ¨ fq “ pZ

˚
t Bzfq ¨∇rζ .
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Proof. The proof of the first identity follows immediately by the chain rule,

viz.

Bt
pf “ Btfpr, ζpr, tq, tq

“ rBtfpx, tqs
ˇ

ˇ

z“ζ
`yBzfBtζ “ xBtf `yBzfBtζ .

The second identity follows by the same method and the third by applying

this method twice, as follows

∇r ¨
pf “ Bx pf1 ` By

pf2

“ yBxf1 `
yBzf1Bxζ ` yByf2 `

yBzf2Byζ “ {∇r ¨ f `yBzf ¨∇rζ .

Q.E .D .

These results imply the following remarkable property of advection on a free

surface.

Proposition 3.6. The advection operator, D :“ Bt ` u ¨∇, applied to some

quantity, f , satisfies the following free surface relationship

xDf “ pD pf . (3.10)

where pD “ Bt ` pv ¨∇r defines a two dimensional advection operator on the

free surface.

Remark 3.7. Proposition 3.6 implies that, on the free surface, the three di-

mensional advection of a scalar advected quantity is equivalent to the two

dimensional advection of the trace of that quantity on the free surface, by

the horizontal component of velocity only.
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Proof. The proof of equation (3.10) is by direct calculation, using the iden-

tities from Proposition 3.4 and the kinematic boundary condition (3.6), as

follows

yDf “ xBtf ` pv ¨ y∇rf ` pwyBzf

“ Bt
pf ´yBzfBtζ ` pv ¨ p∇r

pf ´yBzf∇rζq ` pwyBzf

“ Bt
pf ` pv ¨∇r

pf `yBzf
`

pw ´ Btζ ´ pv ¨∇rζ
˘

(by (3.6)) “ Bt
pf ` pv ¨∇r

pf “: pD pf .

Q.E .D .

As a result of this, despite the following equation looking unlikely, we have

Btu` u ¨∇u “ Btu` v ¨∇ru , on z “ ζpr, tq . (3.11)

Evaluation of the momentum equation on the free surface. Us-

ing the notation and results proven thus far, we may evaluate the Euler mo-

mentum equation (3.7) on the free surface. We first project the first two

components of Euler, the horizontal components, as follows

Btpv ` pv ¨∇rpv “ ´
1

ρ0

y∇rπ “ ´
1

ρ0

∇rpπ `
yBzπ

ρ0

∇rζ , (3.12)

and the same for vertical component

Bt pw ` pv ¨∇r pw “ ´g ´
yBzπ

ρ0

. (3.13)

Notice that several terms on the right hand size contain a z derivative, which

is inconsistent with a 2D theory, and an equation for pπ is needed to close the
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theory. The z derivatives also prevent us from being able to define a vari-

ational principle in two dimensions which captures the full unapproximated

dynamics of the free surface of a three dimensional Euler model. Further-

more, the equations (3.12) and (3.13), together with the kinematic boundary

condition (3.6) and incompressibility (3.8), are not a closed set of equations.

The terms featuring a z derivative may be eliminated by assembling the

momentum equations into Choi’s relation, which is an unapproximated re-

lationship between variables evaluated on the free surface and is defined as

follows.

Definition 3.8. By Choi’s relation, we mean the following equation

pDpv ` p pD2ζ ` gq∇rζ “ ´
1

ρ0

∇rpπ , (3.14)

which may be found by combining the equations (3.12) and (3.13). ∗

Remark 3.9 (A comment on pressure). A sensible boundary condition for

equations of this class is to assume that the trace of the pressure on the free

surface is constant. This is the dynamic boundary condition which ensures

that there is no jump in pressure between the incompressible fluid and the

external atmospheric pressure, which is assumed to not be variable. It is

worth noting that this does not imply that gradients of the pressure are zero

at the surface, which is a consequence of the fact that differentiation and

evaluation on the surface do not commute, as was shown in Proposition 3.4.

Indeed

0 “ ∇rpπ “ y∇rπ `yBzπ∇rζ ,

and thus y∇rπ is not necessarily zero.

∗A non-homogeneous version of Choi’s relation also exists, where ρ0 is simply replaced
by pρ.
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3.2.3 Impossibility of unapproximated closure

It is clear that making additional assumptions or approximations, such as

potential flow, is necessary to close the system. Thus, a two dimensional

framework can only hope to capture some essence of the full physics.

Finding a closed variational two dimensional theory. The equa-

tions (3.12) and (3.13) cannot be found by a two dimensional variational

principle, due to the fact that they are not closed and feature a z derivative.

As in Crisan et al. [33], taking variations of the action integral, where the

‘hat’ notation has been dropped on the advected variables for simplicity,

S “

ż

`ppv,D, pφ, pw, ζ, λqdt

“

ż ż

Dρ

ˆ

1

2

`

|pv|2 ` pw2
˘

´ gζ

˙

` λ
`

Btζ ` pv ¨∇rζ ´ pw
˘

` pφ
`

BtD ` divrpDpvq
˘

` γ
`

Btρ` pv ¨∇rρ
˘

´ πpD ´ 1q d2r dt ,

(3.15)

yields a closure of the equations (3.12) and (3.13). The integrand of the La-

grangian corresponding to this action is equivalent to that of the 3D action,

after evaluation on the free surface and addition of the kinematic boundary

condition, however the spatial integral is taken over two dimensions rather

than three. Notice that this approach will not produce the terms in yBzπ,

since no z derivatives are possible in this setup, and furthermore it similarly

does not capture the z derivative term in the incompressibility constraint

0 “ {∇r ¨ v `yBzw “ ∇r ¨ pv ` {Bzu ¨ n. Despite this, it achieves mathematical

closure into a closed two dimensional fluid theory. This transition toward

a two dimensional fluid theory, and two dimensional incompressibility, lim-
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its the ability of models of this class to capture the full picture seen in the

three dimensional equations. In particular, the pressure on the free surface

in this case must be allowed to vary and enforce incompressibility. As shown

in Crisan et al. [34], the action integral (3.15) is, after integration by parts,

equivalent to imposing the classical water wave equations, which we will see

in Section 3.3, as constraints by Lagrange multipliers, D and λ. The mathe-

matical closure this gives to Choi’s relation makes it an appealing framework

in which we can make approximations to model how wave dynamics can

interact with two dimensional free surface transport flows.

An assumption on vertical pressure gradients. When formulat-

ing the variational formulation of a fluid governed by the Green-Naghdi or

Great Lake equations, as in Holm and Luesink [61], including terms of the

same order as the aspect ratio squared gives that the pressure deviates from

hydrostatic balance by a term which is linear in the vertical coordinate. If,

rather than prescribing the form of this deviation, we assume that the de-

pendence of the pressure on the vertical coordinate is a linear perturbation

around hydrostatic balance, then a harmonic oscillator appears. Indeed, if

Bzπ “ ´gρ0 ´ εz , (3.16)

then the wave dynamics become a harmonic oscillator

Btζ ` pv ¨∇rζ “ pw ,

Bt pw ` pv ¨∇r pw “ ´
ε

ρ0

ζ .
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Moreover, this assumption on the dependence of the pressure on z implies,

by integration in z, that

π “ ´gρ0z ´
ε

2
z2
` ppr, tq . (3.17)

Thus, the right hand side of the equation for pv becomes

´
1

ρ0

∇rpπ `
yBzπ

ρ0

∇rζ “ ´
1

ρ0

∇r

`

´ gρ0ζ ´
ε

2
ζ2
` ppr, tq

˘

`
1

ρ0

`

´ gρ0 ´ εζ
˘

∇rζ

“ ´
1

ρ0

∇rppr, tq .

(3.18)

Notice that this is obviously equal to 1
ρ0
y∇rπ. The equations therefore become

Btpv ` pv ¨∇rpv “ ´
1

ρ0

∇rp , (3.19)

Bt pw ` pv ¨∇r pw “ ´
ε

ρ0

ζ , (3.20)

Btζ ` pv ¨∇rζ “ pw , (3.21)

∇r ¨ pv `yBzu ¨ n “ 0 . (3.22)

In this approximation, we have a momentum equation for the horizontal cur-

rents which does not involve the wave variables, and a pair of equations for

the vertical oscillations which occur in the frame of reference moving with the

horizontal flow. We do not have a complete separation between waves and

currents since the incompressibility constraint, and hence the equation for

the pressure, creates an interdependence between the horizontal and vertical

dynamics. The three dimensional incompressibility constraint is responsible

for the entanglement between the wave and current variables and, in partic-

75



ular, the effect of the waves on the current. However, the effects of the waves

on the current variables are, in the above equations, given by the kinematic

boundary condition and, in the thermal case, by variable thermal buoyancy

ρ ı ρ0.

3.3 The classical water wave equations (CWWE)

A well studied approach to closing the free surface problem is the so-called

classical water wave equations (CWWE). These equations have a Hamilto-

nian structure, as discovered by Zakharov [106]. Following Craig and Sulem

[29], the equations can be rearranged into a form which enables numerical

simulation by writing them in terms of the free surface and trace of the

potential on the free surface only, which is achieved using the Dirichlet to

Neumann map.

In order to achieve this closure, the bulk flow is assumed to be governed by

the Euler equations (3.7)-(3.9), where ρ “ ρ0 is constant, under the additional

assumption that the flow is irrotational. This translates mathematically to

an assumption that the curl of the (three dimensional) velocity field is zero,

∇ˆu “ 0. If we assume further that the spatial domain is simply connected,

then the velocity field is conservative. We thus have the existence of the

velocity potential, φ, which is defined as the potential corresponding to the

velocity field, and the incompressibility constraint implies that this satisfies

Laplace’s equation

u “ ∇φ ùñ ∆φ “ 0 . (3.23)
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In this case, we may rewrite the Euler momentum equation (3.7) as

Btφ`
1

2
|∇φ|2 ` gz “ ´ 1

ρ0

π , (3.24)

which is known as Bernoulli’s integrated form of the Euler equation. Note

also that, under the potential flow approximation, the kinematic boundary

condition becomes

Btζ “yBzφ´ y∇rφ ¨∇rζ “yBzφp1` |∇rζ|
2
q ´∇r

pφ ¨∇rζ . (3.25)

Here, we will derive a new stochastic formulation of the classical water wave

assumption. This will be achieved by assuming that the velocity field in the

bulk flow is governed by the incompressible Euler equations with stochastic

advection by Lie transport. Recall, from the example in Section 2.2.1, that

these equations are (2.64) and (2.65), with the addition of vertical gravita-

tional forcing. Since we are beginning with a stochastic perturbation which

preserves the geometric structure of the underlying flow, we may expect that

this leads us to a stochastic classical water wave equation with a reasonable

Hamiltonian structure. Indeed, we will see that this is the case.

Note that a stochastic perturbation of the water wave theory has recently

appeared in the literature [37]. Our approach here differs in that we will

begin with a structure preserving approach to the addition of noise in the

underlying fluid model. Thus, rather than fitting a Hamiltonian structure

to a stochastic equation, this approach will have a variational structure by

design.
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3.3.1 A stochastic perturbation of the water wave problem

Before we begin with the derivation of the model equations, the reader should

keep in mind that the well known deterministic theory may be recovered at

each point by setting the stochastic perturbation terms to zero. The stochas-

tic terms in this case represent transport noise in the equation governing the

the fluid below the free surface, which will be taken to be the stochastic Euler

equation from Section 2.2.1.

A stochastic kinematic boundary. Beginning with the kinematic bound-

ary condition, we will make the three dimensional theory stochastic. The

kinematic boundary condition with stochastic advection by Lie transport

can be written as

pd` dxt ¨∇qpz ´ ζq “ 0 .

Decomposing the noise into two dimensional horizontal and one dimensional

vertical components, we have that

dxt “

¨

˝

v

w

˛

‚dt`
8
ÿ

i“1

¨

˝

ξ
prq
i

ξ
pzq
i

˛

‚˝ dW i
t “:

¨

˝

drt

dzt

˛

‚ , (3.26)

where we have denoted the components of the perturbations as ξi “ pξ
prq
i , ξ

pzq
i q.

The kinematic boundary condition is therefore

pd` drt ¨∇qζ “ dzt , (3.27)

or, equivalently,

dζ “ pu ¨ n dt`
8
ÿ

i“1

pξi ¨ n ˝ dW
i
t . (3.28)
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The potential flow assumption. The N dimensional stochastic Euler

equations are given by equations (2.64) and (2.65), which we repeat here

with the addition of the vertical gravitational forcing

du` u ¨∇u dt`
8
ÿ

i“1

ˆ

ξi ¨∇u`
N
ÿ

j“1

uj∇ξji
˙

˝ dW i
t ` g dt “ ´∇dπ , (3.29)

∇ ¨ dxt “ 0 , (3.30)

where we have denoted the components of ξi as pξ1
i , ξ

2
i , . . . q and, as before,

g “ p0, 0, gq. In the case of incompressible fluids, the perturbations, ξi,

mirror the structure of the deterministic velocity field in that its divergence

is zero. In the case of irrotational fluids we will, for now, assume that the

velocity field, u “ ∇φ, is irrotational and the perturbations are only incom-

pressible. The kinematic boundary condition (3.27) becomes

dζ ` y∇rφ ¨∇rζ dt`
8
ÿ

i“1

y

ξ
prq
i ¨∇rζ ˝ dW

i
t “

yBzφ dt`
8
ÿ

i“1

x

ξ
pzq
i ˝ dW i

t . (3.31)

The Euler momentum equation becomes

d∇φ` p∇φ ¨∇q∇φ dt`
8
ÿ

i“1

ˆ

pξi ¨∇q∇φ`
3
ÿ

j“1

pBjφq∇ξji
˙

˝ dW i
t

` g dt`∇dπ “ 0 ,

where we have taken the dimension to be three, N “ 3, and by the sum

over the derivatives Bj we mean a sum over tBx, By, Bzu. Recall that the

nonlinearity simplifies into a gradient term

p∇φ ¨∇q∇φ “ 1

2
∇p|∇φ|2q ,
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but it is not immediately obvious that the same is true for each nonlinear

stochastic term. In order to simplify these terms, we return to the coordinate

free language of exterior calculus as discussed in Section 2.1.2. We notice

that each stochastic term corresponds to a Lie derivative of u5 “ u ¨ dx with

respect to the vector field ξi “ ξi ¨ ∇. Using Cartan’s formula, may relate

this to the interior product by

Lξiu5 “ ξi ⌟ du
5
` dpξi ⌟ u

5
q . (3.32)

Since we have a potential flow, the vector field u P X is related to its potential

φ by

u “ pdφq7 .

The Lie derivative then becomes

Lξippdφq7q5 “ Lξidφ

“ ξi ⌟ d
2φ` dpξi ⌟ dφq

“ dpξi ⌟ dφq , since d2φ “ 0 .

(3.33)

Returning to Euclidean coordinates, we see that this corresponds to

pξi ¨∇q∇φ`
3
ÿ

j“1

pBjφq∇ξji “ ∇pξi ¨∇φq , (3.34)

where the left hand side is the Lie derivative of a 1-form and the right hand

side is the exterior derivative of the interior product between a vector field, ξi,

and a 1-form, u5, associated to another vector field, u, through the musical

isomorphism 5. Whilst this calculation follows immediately from Cartan’s

formula in exterior calculus, it may also be performed, with some difficulty,

in Euclidean coordinates using vector calculus.
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As a result of this calculation, we have the following

d∇φ` 1

2
∇p|∇φ|2q dt`

8
ÿ

i“1

∇pξi ¨∇φq ˝ dW i
t ` g dt`∇dπ “ 0 .

The pressure here has the form discussed in Section 2.2.1, and can thus be

written in the form dπ “ P0 dt `
ř

Pi ˝ dW
i
t . In the deterministic case, it

was assumed that the pressure was constant in time and space along the

free surface. In the stochastic case, both the drift and diffusion parts of

the pressure must have such an assumption. This, roughly speaking, can be

interpreted as suggesting that the deterministic part of the pressure inherits

its structure from the deterministic assumption, and we have assumed that

there is no perturbation around this. We therefore have the ‘Bernoulli form’

of the stochastic Euler equation

dφ`
1

2
|∇φ|2 dt`

8
ÿ

i“1

ξi ¨∇φ ˝ dW i
t ` gz dt “ 0 . (3.35)

We immediately see promise at this stage in the calculation, since the stochas-

tic term is the Lie derivative of the scalar velocity potential along the vector

field ξi.

As is done in the deterministic case, we wish to evaluate this onto the free

surface. In the deterministic case, this is achieved simply by using the rela-

tionships from Proposition 3.4. In the stochastic case, this is more involved.

We begin by considering the map, Zt, as in Definition 3.2. Recall that this

map has the property that the evaluation of the free surface is a pullback by

this map

Z˚f “ pf ˝ Zqpx, y, zq “ fpx, y, ζpt, x, yqq “ pf , (3.36)

for an arbitrary function on the three dimensional spatial domain, f . We
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can therefore consider the evaluation onto the free surface by an application

of the stochastic Kunita-Itô-Wentzell formula [11].

Proposition 3.10. For a function, f , which is compatible with the driving

semimartingale as

df “ F0 dt`
ÿ

i

Fi ˝ dW
i
t ,

the evaluation of the function on the free surface, pf , satisfies

d pf ´yBzf dζ “xF0 dt`
ÿ

i

pFi ˝ dW
i
t . (3.37)

Remark 3.11. This is a stochastic generalisation of the relationship from

Proposition 3.4 corresponding to the derivative in the time variable.

Proof. Recall that the free surface, in the stochastic case, satisfies equation

(3.28) and Z therefore satisfies

dZt “ G0 dt`
ÿ

i

Gi ˝ dW
i
t “:

¨

˚

˚

˚

˝

0

0

pv ¨ n

˛

‹

‹

‹

‚

dt`
ÿ

i

¨

˚

˚

˚

˝

0

0

pξi ¨ n

˛

‹

‹

‹

‚

˝ dW i
t ,

where the vector field G “ G ¨∇ is defined through the above equation. The

Kunita-Itô-Wentzell formula is therefore

dpZ˚fq “ Z˚F0 dt`
8
ÿ

i“1

Z˚Fi ˝ dW
i
t

` Z˚LG0f dt`
8
ÿ

i“1

Z˚LGif ˝ dW i
t .

(3.38)

In this case, the Lie derivative of a function is a directional derivative, and
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hence

dpZ˚fq “ Z˚F0 dt`
8
ÿ

i“1

Z˚Fi ˝ dW
i
t

` Z˚ppu ¨ n Bzfq dt`
8
ÿ

i“1

Z˚ppξi ¨ n Bzfq ˝ dW
i
t .

Returning to the hat notation, we have that

d pf “xF0 dt`
ÿ

i

pFi ˝ dW
i
t `

yBzf dζ , (3.39)

and we have proven our claim. Q.E .D .

As an immediate consequence to this, we may evaluate equation (3.35) onto

the free surface to obtain

dpφ´yBzφ dζ `
1

2
|x∇φ|2 dt`

8
ÿ

i“1

pξi ¨
x∇φ ˝ dW i

t ` gζ dt “ 0 .

Substituting in the kinematic boundary condition equation (3.31), written in

terms of the velocity potential, we have

dpφ´yBzφ

˜

yBzφ dt´ y∇rφ ¨∇rζ dt`
8
ÿ

i“1

`

x

ξ
pzq
i ´

y

ξ
prq
i ¨∇rζ

˘

˝ dW i
t

¸

`
1

2
|x∇φ|2 dt`

8
ÿ

i“1

pξi ¨
x∇φ ˝ dW i

t ` gζ dt “ 0 .

After cancellations we have

dpφ`
1

2
|y∇rφ|

2 dt´
1

2
yBzφ

2
dt`yBzφpy∇rφ ¨∇rζq dt` gζ dt

`

8
ÿ

i“1

ˆ

y

ξ
prq
i ¨ y∇rφ`yBzφ

`

y

ξ
prq
i ¨∇rζ

˘

˙

˝ dW i
t “ 0 ,

(3.40)

and we see that the deterministic part of this equation is equivalent to the
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classical deterministic theory [106].

3.3.2 A stochastic Hamiltonian structure for water waves

We claim that our stochastic equations, (3.31) and (3.40), have a Hamilto-

nian formulation in the spirit of Bismut [13]. That is, there is a family of

Hamiltonians, tH,H1, H2, . . . u, such that the equations (3.31) and (3.40) can

be expressed as

dζ “
δH

δpφ
dt`

8
ÿ

i“1

δHi

δpφ
˝ dW i

t , and dpφ “ ´
δH

δζ
dt´

8
ÿ

i“1

δHi

δζ
˝ dW i

t .

As we will substantiate with the proof of Theorem 3.15, these Hamiltonians

are given by

H “

ż ż ζ

´8

1

2
|∇φ|2 dz d2r `

1

2
g

ż

ζ2 d2r ,

Hi “

ż ż ζ

´8

ξi ¨∇φ dz d2r .

To demonstrate that this is true, we must first consider how to take variations

of Hamiltonians of this form.

Remark 3.12. The key feature which complicates the calculation of variations

of the above Hamiltonians is the fact that a variation of the free surface

elevation deforms the potential yet, for ζ and pφ to be canonically conjugate

variables, we wish to keep one constant whilst taking variations with respect

to the other. By the definition of evaluation of the potential on the free

surface, pφ “ φpr, ζpr, tqq, it is evident that the variation in ζ will induce

a variation in pφ, and it can be proposed that the form of this variation

is pBφ{Bzqδζ. We prove this formally in the following proposition, which

84



illuminates a connection between this and the Lie chain rule. A corollary

to this proposition will illustrate how to take independent variations of our

Hamiltonians.

Proposition 3.13. Variations of the free surface elevation, ζ, induce a vari-

ation in the potential, δζφ, given by

δζ pφ “
Bφ

Bz
δζ , on z “ ζ . (3.41)

Proof. This relationship follows from the Lie chain rule pullback relation

introduced in Definition 2.19. Thus, in order to approach this problem, we

notice that the evaluation on the free surface may be defined as a pullback

by a smooth time dependent three dimensional map, Zt : R3 ÞÑ R3, defined

as

Ztpx, y, zq “ px, y, ζpt, x, yqq . (3.42)

This implies that for an arbitrary function on the three dimensional spatial

domain, f , we have

Z˚t f “ pf ˝ Ztqpx, y, zq “ fpx, y, ζpt, x, yq “ pf . (3.43)

We will be considering variations of Zt only, and will study the effect this

has on a functional of the pullback of φ by Zt. We are therefore interested

in the first variation of Zt, defined as

δZt “
d

dε

ˇ

ˇ

ˇ

ˇ

ε“0

Zt,ε , where Zt,ε “ gεZt , (3.44)

which is a vector field defined on the horizontal domain. Here, gε is a in-

finitesimal Lie group action of a diffeomorphism on R3. The above definition

is motivated by the Taylor expansion of Zt,ε around ε “ 0. We then seek a
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variational derivative of some functional of the composition, F pZ˚t φq, where

this can be interpreted as a functional of pφ. This variation, through its

relation to the Taylor series of Z˚t,εφ, may be written as

δF pZ˚t φq “
d

dε

ˇ

ˇ

ˇ

ˇ

ε“0

F pZ˚t φ` εδpZ
˚
t φqq

“
d

dε

ˇ

ˇ

ˇ

ˇ

ε“0

F

ˆ

Z˚t,0φ` ε
d

dε

ˇ

ˇ

ˇ

ˇ

ε“0

pZ˚t,εφq

˙

“
d

dε

ˇ

ˇ

ˇ

ˇ

ε“0

F pZ˚t,εφq .

We consider further the final derivative in the above equation, before eval-

uation at ε “ 0. To ease legibility, we will define the pullback as a map

depending on ε as fpεq “ Z˚t,εφ, and we have

d

dε
F pfpεqq “ lim

hÑ0

F pfpε` hqq ´ F pfpεqq

h

“ lim
hÑ0

F
´

fpεq ` h d
dh

ˇ

ˇ

ˇ

h“0
fpε` hq `Oph2q

¯

´ F pfpεqq

h

“:

B

δF

δfpεq
,
d

dh

ˇ

ˇ

ˇ

h“0
fpε` hq

F

“

B

δF

δfpεq
,
d

dε
fpεq

F

.

Returning to the variation, the above calculation implies

δF pZ˚t φq “

B

δF

δpZ˚t,εφq
,
d

dε
pZ˚t,εφq

F
ˇ

ˇ

ˇ

ˇ

ε“0

“

B

δF

δpZ˚t,εφq
, Z˚t,εpLXφq

F
ˇ

ˇ

ˇ

ˇ

ε“0

,

(3.45)

where the final equality makes use of the Lie chain rule (as defined in Def-

inition 2.19) and X “ d
dε

ˇ

ˇ

ε“0
gε is the vector field which generates the flow.

Having evaluated the equation (3.45) at ε “ 0, we find that

δF pZ˚t φq “:

B

δF

δpZ˚t φq
, δζpZ

˚
t φq

F

“

B

δF

δpZ˚t φq
, Z˚t pLXφq

F

, (3.46)

where the notation δζ is used to reflect the fact that this has resulted from the

variation of the free surface, and that the variation of the potential directly
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has not been considered. Noticing that δZt “
d
dε

ˇ

ˇ

ε“0
Zt,ε “ Z˚t X, and that

the Lie derivative is the directional derivative in local coordinates, we have

that

δζpZ
˚
t φq “ Z˚t pX ¨∇φq “ pZ˚t Xq ¨ Z˚t p∇φq “ δζZ˚t pBzφq , (3.47)

and we have proven our claim. Q.E .D .

Corollary 3.14. When considering variations of the water wave Hamiltoni-

ans with respect to the free surface ζ, we must also vary the potential accord-

ing to

δφ “ ´
Bφ

Bz
δζ , on z “ ζ . (3.48)

in order to ensure that the canonically conjugate variable, pφ, is untouched by

the variation in ζ.

Proof. The aim is to vary φ and ζ in such a manner that Z˚t φ “
pφ is constant.

Considering φεpr, zq “ φpr, zq`εδφpr, zq and ζεprq “ ζprq`εδζprq, where the

time dependence is not explicitly notated for brevity, then the composition

φεpr, ζεq “ Z˚t,εφε must be such that

φεpr, ζεq “ φpr, ζq “ pφ , for each ε . (3.49)

This is equivalent to the assertion that the canonically conjugate variable,

pφ, should not be altered by the variation of ζ. Mathematically, the first

variation of pφ “ Z˚t φ, when both φ and ζ are varied, has a contribution from

the variation in φ directly as well as a contribution from the variation in ζ

which is given in Proposition 3.13. That is,

φpr, ζq ` ε

ˆ

Bφ

Bz

˙

pr, ζqδζ ` εδφpr, ζq `Opε2q “ pφ , (3.50)
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which implies equation (3.48) and we have proven our claim.

Note that equation (3.50) may also be found by considering the Taylor expan-

sions of φpr, ζεq and δφpr, ζεq and substituting these into φεpr, ζεq. Q.E .D .

This corollary may be used to prove that our stochastic classical water wave

system is Hamiltonian.

Theorem 3.15. The equations (3.31) and (3.40) have a Hamiltonian struc-

ture

dζ “
δH

δpφ
dt`

8
ÿ

i“1

δHi

δpφ
˝ dW i

t , (3.51)

dpφ “ ´
δH

δζ
dt´

8
ÿ

i“1

δHi

δζ
˝ dW i

t , (3.52)

where the family of Hamiltonians are given by

H “

ż ż ζ

´8

1

2
|∇φ|2 dz d2r `

1

2
g

ż

ζ2 d2r , (3.53)

Hi “

ż ż ζ

´8

ξi ¨∇φ dz d2r . (3.54)

Proof. For this to be true, we will need to demonstrate that the variational

derivatives of these Hamiltonians are as follows

δH

δpφ
“ n ¨ x∇φ , (3.55)

δH

δζ
“

1

2
|y∇rφ|

2
´

1

2
yBzφ

2
`yBzφy∇rφ ¨∇rζ ` gζ , (3.56)

δHi

δpφ
“ n ¨ pξi , (3.57)

δHi

δζ
“

y

ξ
prq
i ¨ y∇rφ`yBzφ

`

y

ξ
prq
i ¨∇rζ

˘

. (3.58)
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Notice that the first two variational derivatives are akin to those found by

Zakahrov [106], we will use the same method here. We begin with the vari-

ation of H with respect to pφ. Since the velocity potential, φ, is a harmonic

function, we may use Green’s first identity on the kinetic energy term

1

2

ż ż ζ

´8

|∇φ|2 dz d2r “
1

2

ż

φp∇φ ¨ nq d2r . (3.59)

Note that the normal, n, given by equation (3.5) is not a unit normal, but the

factor through which it may be transformed into a unit normal also appears

in the following expression for an infinitesimal region of the free surface,

ds “
a

1` |∇rζ|2 d
2r. The integral on the right hand side is taken to be

over the free surface since the normal component of velocity is assumed to

vanish on all other boundaries. The existence of a symmetric Green’s function

relating pφ and x∇φ ¨n follows from the Dirichlet to Neumann map and, as in

Zakharov [106], this implies the variational derivative (3.55).

The variational derivative of H with respect to ζ is trivial for the potential

energy, and for the kinetic energy follows from the approach discussed in

Corollary 3.14. A variation of the kinetic energy gives

1

2

ż ż ζ`δζ

´8

|∇pφ` δφq|2 “ 1

2

ż

“

|∇φ|2
‰

δζ d2r `

ż ż ζ

´8

∇φ ¨∇δφ dz d2r

(by Green’s second identity) “
1

2

ż

“

|∇φ|2
‰

z“ζ
δζ d2r `

ż

rδφp∇φ ¨ nqsz“ζ d
2r

(by Corollary 3.14) “
1

2

ż

“

|∇φ|2
‰

z“ζ
δζ d2r

´

ż

yBzφ δζpyBzφ´ y∇rφ ¨∇rζq d
2r

“

ż
ˆ

1

2
|y∇rφ|

2
´

1

2
pyBzφq

2
`yBzφy∇rφ ¨∇rζ

˙

δζ d2r .

This implies the required variational derivative (3.56).
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The variational derivatives of the stochastic Hamiltonians, Hi, are performed

similarly. Beginning with the variational derivative of Hi with respect to pφ.

Rather than Green’s identity, we use the divergence theorem. Noting that

∇ ¨ pφξiq “ ξi ¨∇φ` φ∇ ¨ ξi “ ξi ¨∇φ ,

where we have used the fact that ξi are divergence free. The divergence

theorem implies that

Hi “

ż ż ζ

´8

ξi ¨∇φ dz d2r “

¿

z“ζ

φpξi ¨ nq
1

a

1` |∇rζ|2
ds

“

ż

φpξi ¨ nq d
2r .

(3.60)

The justification of this is the same as for the variation of H and, since ξi are

independent of φ, this immediately implies the variational derivative (3.57).

It only remains to calculate the variational derivative of Hi with respect to ζ.

This again invokes Corollary 3.14 and closely follows the deterministic case,

indeed

ż ż ζ`δζ

´8

ξi ¨∇pφ` δφq dz d2r “

ż

pξi ¨
x∇φ δζ d2r

`

ż ż ζ`δζ

ζ

ξi ¨∇δφ dz d2r

“

ż

pξi ¨
x∇φ δζ d2r `

ż

rδφpξi ¨ nqsz“ζ d
2r .

The final line of this calculation follows again from divergence theorem, since
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the divergence of ξi is zero. Continuing the calculation, we see that

ż ż ζ`δζ

´8

ξi ¨∇pφ` δφq dz d2r “

ż

pξi ¨
x∇φ δζ d2r

´

ż

yBzφ δζp
x

ξ
pzq
i ´

y

ξ
prq
i ¨∇rζq d

2r

“

ż
ˆ

y

ξ
prq
i ¨ y∇rφ`yBzφ

`

y

ξ
prq
i ¨∇rζ

˘

˙

δζ d2r ,

which gives our result. Q.E .D .

Remark 3.16. Notice that if we set ξi to be zero, this recovers the determin-

istic theory exactly.

3.3.3 The Dirichlet to Neumann map

We will rearrange the equations such that they are written in terms of the

free surface and trace of the potential on the free surface only. To do so,

we use relationships from Proposition 3.4 to rewrite the deterministic part

of equation (3.40) as

1

2
|y∇rφ|

2
´

1

2
yBzφ

2
`yBzφpy∇rφ ¨∇rζq ` gζ “

1

2
|∇r

pφ´yBzφ∇rζ|
2
´

1

2
yBzφ

2

`yBzφp∇r
pφ´yBzφ∇rζq ¨∇rζ ` gζ

“ gζ `
1

2
|∇r

pφ|2 ´
1

2
yBzφ

2
p1` |∇rζ|

2
q

The stochastic part of equation (3.40) may be rearranged as

y

ξ
prq
i ¨ y∇rφ`yBzφ

`

y

ξ
prq
i ¨∇rζ

˘

“
y

ξ
prq
i ¨ p∇r

pφ´yBzφ∇rζq `yBzφ
`

y

ξ
prq
i ¨∇rζ

˘

“
y

ξ
prq
i ¨∇r

pφ .
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As in Craig and Sulem [29], both the deterministic part of equation (3.40) and

the kinematic boundary condition can be written in terms of the Dirichlet

to Neumann map. This is convenient since it enables numerical integration,

as well as allowing the consideration of an asymptotic expansion of the map.

Given that the potential satisfies Laplace’s equation in the bulk of the fluid,

the map takes the Dirichlet boundary data and returns the Neumann bound-

ary condition which corresponds to the same solution. This map therefore

takes the trace of the potential, pφ, and returns the velocity in the normal

direction at the surface, n ¨pu. The map can be written in multiple equivalent

forms as

Gpζqpφ :“ p´∇rζ, 1q ¨ y∇φ “ ´∇rζ ¨ y∇rφ`yBzφ

“ ´∇rζ ¨∇r
pφ`yBzφ|∇rζ|

2
`yBzφ .

(3.61)

The stochastic kinematic boundary condition (3.31) may be rewritten as

dζ “ Gpζqpφ dt`
8
ÿ

i“1

`

x

ξ
pzq
i ´

y

ξ
prq
i ¨∇rζ

˘

˝ dW i
t . (3.62)

The stochastic Bernoulli boundary equation (3.40) becomes

dpφ` gζ dt`
1

2
|∇r

pφ|2 dt´
1

2
`

1` |∇rζ|2
˘

`

Gpζqpφ`∇rζ ¨∇r
pφ
˘2
dt

`

8
ÿ

i“1

ˆ

y

ξ
prq
i ¨∇r

pφ

˙

˝ dW i
t “ 0 .

(3.63)

The pair of equations (3.62) and (3.63) are a closed system of SPDEs for

the water wave problem, which is a stochastic generalisation of that found

by Craig and Sulem [29]. As has been noted in the deterministic case, the

Hamiltonian (3.53) found by Zakharov may be rewritten in terms of the
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Dirichlet to Neumann map as

H “
1

2

ż

pφGpζqpφ` gζ2 d2r . (3.64)

The equivalence of these Hamiltonians follows from applying Green’s first

identity to the kinetic energy term. Indeed, since φ is a harmonic function,

we have
1

2

ż ż ζ

´8

|∇φ|2 dx d2r “
1

2

ż

pφpx∇φ ¨ nq d2r ,

noting the relationship between the normal vector, n, its associated unit

normal, and the infinitesimal surface element, ds “
a

1` |∇rζ|2 d
2r, as dis-

cussed in the proof of Theorem 3.15.

For the Hamiltonians corresponding to the stochastic terms, Hi, we have that

Hi “

ż

pφppξi ¨ nq d
2r . (3.65)

This follows from the divergence theorem, and can also be found in the proof

of Theorem 3.15.

We have therefore found that our stochastic extension to the classical water

wave equations can be written purely in terms of the canonically conjugate

variables, pφ and ζ. Furthermore, its Hamiltonians may also be expressed in

this way.

3.3.4 On the structure of the noise

Thus far, we have been working under the assumption that the deterministic

part of the transport, u, is irrotational. We have made no further comment

on the structure of the stochastic perturbations, ξi, which are assumed to
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have the same divergence-free form as in the Euler equations. Whilst this

means that the large scale flow is irrotational, the whole dynamical portrait

encompasses small scale stochastic motions which may have nonzero vorticity.

This is desirable, since the lack of vorticity in the deterministic picture is a

significant limiting factor.

If we make a further assumption that the noise terms are also irrotational,

and each can be written in terms of a potential as

ξi “ ∇ϕi ,

then we see that the stochastic terms can, too, be written in terms of the

Dirichlet to Neumann operator. Indeed, the stochastic terms in equation

(3.63) become

y

ξ
prq
i ¨∇r

pφ “ z∇rϕi ¨∇r
pφ

“ ∇r
pφ ¨ p∇r pϕi ´ yBzϕi∇rζq

“ ∇r
pφ ¨∇r pϕi ´

∇r
pφ ¨∇rζ

1` |∇rζ|2
`

Gpζqpϕi ´∇r pϕi ¨∇rζ
˘

.

The stochastic classical water wave equation (3.63) can therefore be rewrit-

ten, fully in terms of the Dirichlet to Neumann map, as

dpφ` gζ dt`
1

2
|∇r

pφ|2 dt´
1

2
`

1` |∇rζ|2
˘

`

Gpζqpφ`∇rζ ¨∇r
pφ
˘2
dt

`

8
ÿ

i“1

∇r
pφ ¨∇r pϕi ´

∇r
pφ ¨∇rζ

1` |∇rζ|2
`

Gpζqpϕi ´∇r pϕi ¨∇rζ
˘

˝ dW i
t “ 0 .

(3.66)
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Similarly, the kinematic boundary condition (3.28) is

dζ `Gpζqpφ dt`
8
ÿ

i“1

Gpζqpϕi ˝ dW
i
t . (3.67)

To further illustrate that this stochastic perturbation of the water wave prob-

lem preserves the geometric structure of the deterministic case, we note that

the Hamiltonians, Hi, defined in equation (3.54) can be rewritten in terms

of the Dirichlet to Neumann map in the same manner as the deterministic

Hamiltonian (3.53) was transformed into an equivalent form (3.64). Indeed,

again using Green’s first identity we have

Hi “

ż

pφGpζqpϕi d
2r . (3.68)

Due to the properties of the Dirichlet-to-Neumann map, this may be bene-

ficial in some cases. It should be noted that this further assumption on the

structure of the noise is not required for a Hamiltonian structure to exist, and

making this assumption destroys the hope of vorticity within the stochastic

terms. This should be considered carefully since if we are calibrating the

stochastic terms using data, then it is unlikely that these will be irrotational.

3.3.5 Limitations of the classical water wave system

The classical water wave equations are adequate for a number of applications.

By considering expansions of the Dirichlet to Neumann map, a broad class of

wave equations can be found. However, they are not a perfect closure of the

system and are unsuited to many problems considered by mathematicians

and physicists today. In particular, the potential flow assumption is often a

poor approximation in reality and the equations cannot support thermal gra-
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dients and inhomogeneity. These limitations have been noted and attempts

have been made to circumvent them, in particular Castro and Lannes [19]

proposed an extension to the classical theory to allow for vorticity in the

bulk flow. The inability to apply these modelling approaches to fluid prob-

lems with thermal gradients is severely limiting when considering geophysical

flows. Contemporary satellite oceanographic data contains a plethora of such

features which must be interpreted, however a number of these features re-

main unexplained. Indeed, improvements in the quality and availability of

imagery of the ocean have revealed that the submesoscale ocean is a rich dy-

namical landscape, containing complex features that were not imagined until

photographed. Among these are the famous ‘spirals on the sea’, studied by

Munk et al. [79], which were observed by such photographs throughout the

second half of the 20th century. Despite being referred to as ‘perhaps the

most fundamental entity in ocean dynamics’ at their scale by Scully-Power

[93], the spirals on the sea remain elusive, like many other such interactions

between currents and surface disturbances on the sea surface. Understanding

these complex phenomena would be aided by models which feature a more

complete set of variables than the classical water wave equations.

3.4 A variational principle for free surface dynamics

As motivated above, we seek a new modelling framework in which we can in-

corporate thermal gradients and understand the relationships between waves

and currents observed on the free surface. In order to do this, the model

we seek will be written only in terms of observable quantities. We will be

deriving and presenting the model introduced in Holm, Hu, and Street [57],

before illustrating its geometric properties. The dynamics will take place on
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a two dimensional spatial domain, D P R2.

The observable quantities in which we are interested are the velocity evalu-

ated on the free surface, ppv, pwq, the free surface elevation, ζ, and the advected

buoyancy, ρ, associated with horizontal thermal gradients. As discussed ear-

lier in this section, the vertical components of the dynamics, pw and ζ, will

be considered as wave variables, and the currents will be represented by the

horizontal velocity field, pv “ pv ¨ ∇r P XpDq, and the variables associated

with its evolution. Through this approach, currents are understood to be

flows which transport physical properties, and waves are disturbances on the

surface which propagate due to a restoring force.

3.4.1 A composition of maps

The characterisation of the evaluation of a variable onto the free surface as a

pullback by the map Zt, as defined in Proposition 3.13, introduces the idea of

decomposing the flow into two maps. Namely, we consider a decomposition

into a flow map Φt : R2 ÞÑ R2, for the two dimensional currents and a

composition of maps, ζtΦt : R2 ÞÑ R, for the vertical free surface elevation.

We have Zt “ pΦtr0, ζtΦtr0q or, in components,

rt “ Φtr0 , and zt “ ζtΦtr0 “ ζtrt . (3.69)

For a horizontal spatial domain, D Ă R2, we have that the flow map is a

diffeomorphism, Φt P DiffpDq, and the free surface elevation is a function, ζ P

FpDq. The horizontal flow map, Φt, acts as usual for a two dimensional fluid,

where r0 is a Lagrangian coordinate. The vertical map, ζt, acts on the curve

Φtr0 in the two dimensional plane and the two dimensional dynamics acts as
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the Lagrangian coordinate for the vertical motion. Taking time derivatives,

we have

drt
dt
“

d

dt
pΦtr0q “ pvtpΦtr0q “: pvtprtq , ùñ pvt “

dΦt

dt
Φ´1
t ,

dzt
dt
“: pwtprtq “

d

dt

`

ζtpΦtr0q
˘

“ Btζtprtq `∇rζtprtq ¨ pvtprtq .

Notice that the first line of this is analogous to equation (2.23), meaning that

the horizontal flow has the standard geometric structure of a fluid motion.

The second line recovers the kinematic boundary condition (3.6). From a

modelling perspective, these equations say that if we have a suitable two di-

mensional model which models the two dimensional flow on the free surface,

then the composition of maps approach allows us to model how such a flow

affects the disturbances propagating on its surface. It is worth noting that,

without the inclusion of additional terms, this approach will not be able to

determine how those waves will affect the currents. In ocean scale flows, it

is not unreasonable to postulate that the small and fast oscillations on the

surface are affected more by the large and comparatively slow currents than

vice versa. In general, however, the existence of a two dimensional model

which fits the data available for flows on the free surface of the ocean is

an open problem. In some regions of the ocean, this flow is approximately

incompressible whereas in others, for example near strong thermal fronts,

the ocean currents are convergent or divergent due to the effects of down-

welling. Nonetheless, in what follows the two dimensional flow will be taken

to be incompressible and, despite the fact we will have horizontal gradients

of thermal buoyancy, will still enable us to understand the mechanisms at

play when waves interact with strong thermal fronts. Due to this, it is un-

likely that the model simulations will reproduce perfect replications of ocean
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flows since the currents at thermal gradients will, in general, have a differ-

ent structure. This approach will instead attempt to reveal the interactions

of the wave dynamics with the temperature gradients, from a mathematical

perspective.

Approaches similar to this one have been employed in a variational setting

to other problems with multiple interacting dynamical features, including

superfluids [58], complex fluids [49], and wave current interaction [55]. The

same structure may be applied to the dynamics of a swinging spring, as will

be seen in an upcoming work.

The geometry of two maps. Given a Lagrangian, L, which depends on

both the flow map, Φ†, and the composition of maps, ζ ˝Φ, it reduces under

right invariance as in the traditional setting. A variable which is advected

by the currents is given by a, where, at “ a0Φ´1
t . Note that this differs from

the introduction of a reduced Lagrangian for semidirect product Lie algebras

in Section 2.1.2, as in equation (2.20), in that the action of the inverse map

is a right action. We may define the reduced action, `, by using the right

invariance of the Lagrangian as follows

L

ˆ

Φ,
BΦ

Bt
, ζ ˝ Φ,

Bpζ ˝ Φq

Bt
, a0

˙

“ L

ˆ

e,
BΦ

Bt
Φ´1, pζ ˝ ΦqΦ´1,

Bpζ ˝ Φq

Bt
Φ´1, at

˙

“ Lpe, pv, ζ, pBt ` Lpvqζ, aq “: `ppv, ζ, pw, aq .

We therefore have a reduced Lagrangian to which we may apply Hamilton’s

principle, noting that in this case the variations must have the following

†The capital greek letter, Φ, is used for the flow map to distinguish it from the velocity
potential, φ, in previous sections.
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forms

δpv “ Btη ´ ad
pvη , δ pw “ pBt ` Lpvqδζ ` Lδpvζ , and δa “ ´Lηa ,

where η P XpDq vanishes at the endpoints, and the form of the variation

in pw is inherited from the kinematic boundary condition. We may derive

Euler-Poincaré equations by taking variations as follows

0 “

ż
B

δ`

δpv
, δpv

F

`

B

δ`

δζ
, δζ

F

`

B

δ`

δ pw
, δ pw

F

`

B

δ`

δa
, δa

F

dt

“

ż
B

δ`

δpv
, Btη ´ ad

pvη

F

`

B

δ`

δζ
, δζ

F

`

B

δ`

δ pw
, pBt ` Lpvqδζ ` Lδpvζ

F

`

B

δ`

δa
,´Lηa

F

dt

“

ż
B

´ pBt ` ad˚
pvq
δ`

δpv
`
δ`

δa
˛ a, η

F

`

B

p´Bt ` LT
pv q
δ`

δ pw
`
δ`

δζ
, δζ

F

`

B

´
δ`

δ pw
˛ ζ, Btη ´ ad

pvη

F

dt

“

ż
B

´ pBt ` ad˚
pvq

ˆ

δ`

δpv
´
δ`

δ pw
˛ ζ

˙

`
δ`

δa
˛ a, η

F

`

B

p´Bt ` LT
pv q
δ`

δ pw
`
δ`

δζ
, δζ

F

dt .

The Euler-Poincaré equations corresponding to the decomposition of maps

approach to wave-current interaction are therefore given by

pBt ` ad˚
pvq

ˆ

δ`

δpv
´
δ`

δ pw
˛ ζ

˙

“
δ`

δa
˛ a , (3.70)

p´Bt ` LT
pv q
δ`

δ pw
`
δ`

δζ
“ 0 , (3.71)

pBt ` Lpvqζ “ pw , (3.72)

pBt ` Lpvqa “ 0 , (3.73)
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where the quantities, a, are advected by the two dimensional flow of cur-

rents. The transpose of the Lie derivative, LT
pv , appears applied to the

variational derivative δ`{δ pw. Notice that this is obtained by noting that

L
pvδζ “ pv ¨∇rδζ and performing integration by parts, from which we see that

LT
pv pδ`{δ pwq “ ´Lpvpδ`{δ pwq. Note that equation (3.70) is a modified version of

the standard Euler-Poincaré momentum equation (2.28) for fluid dynamics

with advected quantities, and in general the wave variables do not decouple

from this. Revisiting Theorem 2.21, the abstract Kelvin-Noether circulation

theorem, we see that for the decomposition of maps approach we have

d

dt

¿

cptq

1

D

ˆ

δ`

δpv
´
δ`

δ pw
˛ ζ

˙

“

¿

cptq

1

D

δ`

δa
˛ a , (3.74)

where D is the advected mass density and cptq P C (see the preamble to

Theorem 2.21 for a discussion of these). From here, it is evident that we

have gained a contribution to the total momentum from the wave variables.

The structure of the momentum for this problem is more evident on the

Hamiltonian side, which is obtained through a Legendre transform

hpm,λ, ζ, aq :“ xm, pvy ` xλ, pwy ´ `ppv, ζ, pw, aq , (3.75)

The equation (3.70) can be rewritten as

pBt ` ad˚
pvq
δ`

δpv
“
δ`

δa
˛ a` pBt ` ad˚

pvq

ˆ

δ`

δ pw
˛ ζ

˙

“
δ`

δa
˛ a`

δ`

δζ
˛ ζ `

δ`

δ pw
˛ pw .

(3.76)
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We may then write the Lie-Poisson equations in matrix form as

Bt

¨

˚

˚

˚

˚

˚

˚

˝

m

a

λ

ζ

˛

‹

‹

‹

‹

‹

‹

‚

“ ´

¨

˚

˚

˚

˚

˚

˚

˝

ad˚˝m ˝ ˛ a ´λ ˛ ˝ ˝ ˛ ζ

L˝a 0 0 0

´LT˝ λ 0 0 1

L˝ζ 0 ´1 0

˛

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

δh
δm
“ pv

δh
δa
“ ´ δ`

δa

δh
δλ
“ pw

δh
δζ
“ ´ δ`

δζ

˛

‹

‹

‹

‹

‹

‹

‚

. (3.77)

Rather than writing the Lie-Poisson equations in terms of the momentum

of the currents, m, we may write them in terms of the total momentum

corresponding to the integrand of the Kelvin-Noether theorem, M :“ m´λ˛ζ.

This gives the untangled form of the Lie-Poisson equations in matrix form

Bt

¨

˚

˚

˚

˚

˚

˚

˝

M

a

λ

ζ

˛

‹

‹

‹

‹

‹

‹

‚

“ ´

¨

˚

˚

˚

˚

˚

˚

˝

ad˚˝M ˝ ˛ a 0 0

L˝a 0 0 0

0 0 0 1

0 0 ´1 0

˛

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

δh
δM
“ pv

δh
δa
“ ´ δ`

δa

δh
δλ
“ pw ´ L

pvζ

δh
δζ
“ ´ δ`

δζ
´ LT

pv λ

˛

‹

‹

‹

‹

‹

‹

‚

, (3.78)

where the variational derivatives of the Hamiltonian reflect this change since

the Hamiltonian given in equation (3.75) may be written in terms of M as

h “ xM ` λ ˛ ζ, pvy ` xλ, pwy ´ `ppv, ζ, pw, aq

“ xM, pvy ´ xλ,L
pvζy ` xλ, pwy ´ `ppv, ζ, pw, aq .

(3.79)

3.4.2 The interaction of waves with a two dimensional flow

Following this, we may seek an action integral of the form of equation (3.15),

as proposed by Crisan et al. [33], where the potential energy is chosen to give
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a harmonic oscillator structure to the wave dynamics

0 “ δ

ż

`ppv, ζ, pw,Dq

“ δ

ż ż

D

D

2

ˆ

|pv|2 ` σ2
pw2
´

ζ2

Fr2

˙

´ ppD ´ 1q d2r dt .

(3.80)

Here, we have introduced the ratio, σ, between horizontal and vertical length

scales and velocities, and the Froude number to represent the ratio of inertial

and gravitational forces. For the model corresponding to this action, the

vertical motion can be interpreted as advected dynamics, since we will see

that it will not influence the dynamics associated with the flow map, Φt,

and therefore extends the notion of an advected quantity‡. We calculate the

variational derivatives of this action as

δ`

δpv
“ Dpv ¨ dr b d2r , (3.81)

δ`

δ pw
“ Dσ2

pw , (3.82)

δ`

δζ
“ ´

D

Fr2
ζ , (3.83)

δ`

δD
“

1

2

ˆ

|pv|2 ` σ2
pw2
´

ζ2

Fr2

˙

´ p “: $ ´ p , (3.84)

In order to assemble these into the Euler-Poincaré equations (3.70)-(3.73),

we first note that the equation (3.70) is written in terms of the diamond

operator. Following Remark 2.22, we note the following

δ`

δ pw
˛ ζ “ ´Dσ2

pw ˛ ζ “ ´Dσ2
pwdζ b d2r ,

δ`

δD
˛D “ Dd

ˆ

δ`

δD

˙

b d2r “ Ddp$ ´ pq b d2r .

‡In general, the composition of maps approach does not have the property that the
vertical motion does not influence the horizontal dynamics, as can be seen from the Euler-
Poincaré equations. This is a property of this particular Lagrangian.
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The Euler-Poincaré equations are therefore given by

pBt ` Lpvq
`

pDpv ¨ dr `Dσ2
pwdζq b d2r

˘

“ Ddp$ ´ pq b d2r , (3.85)

pBt ` LpvqpDσ
2
pwq “ ´

D

Fr2
ζ , (3.86)

pBt ` Lpvqζ “ pw , (3.87)

pBt ` LpvqpDd2rq “ 0 , (3.88)

D “ 1 ùñ divrpv “ 0 . (3.89)

After dividing equation (3.85) through by the advected volume element, we

have

pBt ` Lpvq
`

pv ¨ dr ` σ2
pwdζ

˘

“ dp$ ´ pq , (3.90)

and we therefore have the Kelvin circulation theorem

d

dt

¿

cptq

pv ¨ dr ` σ2
pwdζ “

¿

cptq

dp$ ´ pq “ 0 , (3.91)

where cptq is a closed loop advected by the horizontal flow.

Taking a closer look at the momentum equation, it may be simplified by

instead considering the equation (3.76), which is obtained by combining our

Euler-Poincaré equations (3.70)-(3.73). To determine the form of this equa-

tion, we note that the terms featuring the diamond operator are

δ`

δζ
˛ ζ “ ´

δ`

δζ
dζ b d2r “

D

Fr2
ζdζ b d2r ,

δ`

δ pw
˛ pw “ ´

δ`

δ pw
d pw b d2r “ ´Dσ2

pwd pw b d2r .
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Substituting into equation (3.76) gives

pBt`LpvqpDpv ¨drbd2rq “ Ddp$´pqbd2r`
D

Fr2
ζdζbd2r´Dσ2

pwd pwbd2r ,

and dividing by the advected volume form gives

pBt ` Lpvqppv ¨ drq “ dp$ ´ pq `
ζ

Fr2
dζ ´ σ2

pwd pw

“ d

ˆ

1

2

ˆ

|pv|2 ` σ2
pw2
´

ζ2

Fr2

˙

´ p

˙

`
ζ

Fr2
dζ ´ σ2

pwd pw

“ d

ˆ

1

2
|pv|2

˙

´ dp .

The above equation may be recognised as the Euler-Poincaré equation for the

two dimensional incompressible Euler equations, and it is therefore appar-

ent that the dynamics decouples into a system of equations where no wave

variables are present in the equation for the currents. The equations may be

expressed in local coordinates as

Btpv ` pv ¨∇rpv “ ´∇rp ,

Bt pw ` pv ¨∇r pw “ ´
1

σ2Fr2
ζ ,

Btζ ` pv ¨∇rζ “ pw ,

∇r ¨ pv “ 0 .

(3.92)

This system corresponds to a horizontal flow given by a two dimensional

Euler equation, and wave dynamics given by a harmonic oscillation in the

frame of reference moving with the two dimensional flow. Whilst this is

detached from classical models of water wave motion, we have a set of equa-

tions which illustrates how the composition of maps approach allows us to

study the interactions between wave-like and current-like motions from a new
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perspective.

A potential vorticity formulation of this system may be obtained by taking

the exterior derivative of equation (3.90). Without the inclusion of ther-

mal effects, this potential vorticity is advected since the right hand side of

(3.90) vanishes when we take its exterior derivative. As we will see, including

thermal inhomogeneity creates a more complex potential vorticity structure.

(a) Sea surface temperature on April 1st 2010 near the Gulf
Stream, from the Envisat AATSR measurements.

(b) Sea surface glitter contrasts on April 1st 2010 near the Gulf
Stream, from the Envisar MERIS observations.

Figure 3.1: Visible here is the emergent coherence between sea surface temperature and
the glitter patterns. It is apparent that sea surface roughness is most dramatic along the
strongest thermal fronts. For an interpretation of sun glitter measurements, see Chapron et
al. [21], Rascle et al. [89], or Yurovskaya et al. [105]. Images courtesy of B. Chapron.
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Thermal effects. In the above system of equations, fluid elements are

all oscillating in phase with the same frequency across the domain. Satellite

imagery, such as in Figure 3.1, demonstrates that wave activity, as detected

by sea surface sun glitter, is closely correlated with thermal effects. This

motivates an approach for which wave activity is occurring in the frame

of reference moving with the currents, as we have with our composition

of maps. Coherence between wave activity and thermal gradients can be

achieved through a thermal desynchronisation of the kinetic and potential

energies. Indeed, consider the action given by

S “

ż

`

ppv, ζ,D, ρq dt

“

ż ż

D

Dρ

2

ˆ

|pv|2 ` σ2
pw2
´
ρref
ρ

ζ2

Fr2

˙

´ ppD ´ 1q d2r dt ,

(3.93)

where ρ is the variable thermal buoyancy. Notice that in the coefficient of the

potential energy, the dependence on the buoyancy is removed through the

introduction of a reference buoyancy, ρref . This approximation states that

thermal variations away from the reference density have a more significant

effect on the kinetic energy than the potential energy, and is discussed further
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in Holm et al. [57]. The variational derivatives of the action (3.93) are

δ`

δpv
“ Dρpv ¨ dr b d2r , (3.94)

δ`

δ pw
“ Dρσ2

pw , (3.95)

δ`

δζ
“ ´

Dρref
Fr2

ζ , (3.96)

δ`

δρ
“
D

2

ˆ

|pv|2 ` σ2
pw2

˙

“ D$̃ , (3.97)

δ`

δD
“
ρ

2

ˆ

|pv|2 ` σ2
pw2
´
ρrefζ

2

Fr2

˙

´ p “: ρ$̃ ´ p̃ ,

where p̃ “ p`
ρrefζ

2

2Fr2
,

(3.98)

and the Euler-Poincaré equations (3.70)-(3.73) give

pBt ` Lpvq
`

pDρpv ¨ dr `Dρσ2
pwdζq b d2r

˘

“ Ddpρ$̃ ´ p̃q b d2r

´D$̃dρb d2r ,
(3.99)

pBt ` LpvqpDρσ
2
pwq “ ´

Dρref
Fr2

ζ , (3.100)

pBt ` Lpvqζ “ pw , (3.101)

pBt ` Lpvqρ “ 0 , (3.102)

pBt ` LpvqpDd2rq “ 0 , (3.103)

D “ 1 ùñ divrpv “ 0 . (3.104)

From these equations, we can see that the wave-like dynamics now depend

on the thermal density. A comparison between equations (3.100) and (3.20)

reveals a similarity in the effect of density variations on the vertical velocity.

Similarly to the case without thermal buoyancy, and using notation consis-

tent with previous examples, this system of equations has a Kelvin-Noether
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circulation theorem

d

dt

¿

cptq

`

pv ¨ dr ` σ2
pw dζ

˘

“ ´

¿

cptq

1

ρ
dp̃ , (3.105)

where cptq is a closed loop moving with the horizontal flow. This follows

from dividing equation (3.99) through by the advected quantities Dd2r and

ρ, noting that
dpρ$̃ ´ p̃q

ρ
´
$̃dρ

ρ
“ ´

1

ρ
dp̃` d$̃ .

Proposition 3.17. The Kelvin-Noether theorem corresponding to equation

(3.105) decouples into one corresponding to the currents,

d

dt

¿

cptq

pv ¨ dr “ ´

¿

cptq

1

ρ
dp´ d

|pv|2

2
, (3.106)

and one corresponding to the waves

d

dt

¿

cptq

σ2
pw dζ “ ´

¿

cptq

ρref
ρFr2

ζdζ . (3.107)

Proof. Beginning with first equation (3.106), this may be shown by subtract-

ing the wave momentum terms to the right hand side of equation (3.99) as

d

dt

¿

cptq

pv ¨ dr “ ´

¿

cptq

1

ρ
dp̃` σ2

pBt ` Lpvq
`

pw dζ
˘

´ d$̃

“ ´

¿

cptq

1

ρ
dp̃` σ2

`

pBt ` Lpvq pw
˘

dζ ` σ2
pwd pw ´ d$̃

“ ´

¿

cppvq

1

ρ
drp´

ρref
Fr2ρ

ζdζ ` σ2
pwd pw ´ dr$ “ ´

¿

cppvq

1

ρ
dp´ d

|pv|2

2
.

The Kelvin-Noether theorem for the wave variables, equation (3.107), follows
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by combining equations (3.105) and (3.106) as

d

dt

¿

cptq

σ2
pw dζ “ ´

¿

cptq

1

ρ
dp̃´ d$̃ ´ pBt ` Lpvqpv ¨ drq

“ ´

¿

cptq

1

ρ
dp̃´ d$̃ `

1

ρ
dp´ d

|pv|2

2

“ ´

¿

cptq

1

ρ
pp̃´ pq “ ´

¿

cptq

ρref
ρFr2

ζdζ .

Q.E .D .

Remark 3.18. Notice that Proposition 3.17 implies that pv satisfies the ther-

mal Euler equations. It also implies that waves do note create circulation

in the currents, and vice versa, whilst the thermal buoyancy acts to create

circulation in both the waves and currents.

A potential vorticity formulation. A potential vorticity formula-

tion is possible here, since the equation (3.105) representing the Kelvin-

Noether circulation theorem has a nonzero right hand side, and thus the

exterior derivative of the right hand side of (3.99) is nonzero. As we will

demonstrate, the system closes for a thermally weighted potential vorticity.

The thermal weighting is expected due to the fact that the abstract Kelvin-

Noether theorem (Theorem 2.21) features a division by D through the Euler-

Poincaré equation analogous to (3.99) which, in this example, leaves behind

the thermal buoyancy multiplying the integrand of equation (3.105).

Noting the relationship between the exterior derivative and curl of a vector
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field, we thus define weighted potential vorticity by

q d2r :“ d
´

ρ
`

pv ¨ dr ` σ2
pwdζ

˘

¯

d2r

“ dρ^
`

pv ¨ dr ` σ2
pwdζ

˘

` ρ
`

pz ¨ curlpv ` σ2d pw ^ dζ
˘

d2r ,
(3.108)

where pz is the unit normal in the vertical direction. In the above, to transition

from the first line to the second we note that the multiplication of a scalar

function by a one form is the exterior (or wedge) product, and the exterior

derivative of such a product obeys a Leibniz rule. Upon the introduction of

a stream function for the currents, pv “ ∇Kψ, this can be decomposed into

potential vorticity for the currents, qc, and for the waves, qw, in the following

way

q d2r “ divpρ∇ψq d2r ` σ2Jpρ pw, ζq d2r “: pqc ` qwq d
2r . (3.109)

The equations in Proposition 3.17 then imply a pair of decoupled potential

vorticity equations

pBt ` Lpvqpqc d
2rq “

1

2
dρ^ d|pv|2 “

1

2
J
`

ρ, |∇ψ|2
˘

q d2r ,

pBt ` Lpvqpqw d
2rq “ σ2 1

2
dρ^ d pw2

“
1

2
J
´

ρ , σ2
pw2

¯

d2r .
(3.110)

The decoupling of the potential vorticity formulation is not surprising, given

the decoupling of the Kelvin-Noether circulation theorem. Noting that D “ 1

and the advection operator applied to the variables ρ, ζ, and pw becomes Bt ˝

`Jpψ, ˝q, the system of equations is evident. The combination of equations

(3.110) gives an equation for q

Btq ` Jpψ, qq “
1

2
Jpρ, $̃q . (3.111)
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3.4.3 The slowly varying envelope approximation

There is a distinct difference in time scales between wave oscillations and the

flow of currents in the upper ocean. The vertical motion is, usually, signif-

icantly quicker than the rate of change of horizontal current features. We

will use the Wentzel–Kramers–Brillouin (WKB) approximation, common in

mathematical physics, to account for this difference in time scale, a method-

ology which follows from Bretherton and Garrett [17] and, later, Gjaja and

Holm [42]. Note that there is a difference between the application of this

approximation here and how it is found elsewhere in the literature. Namely,

we define wave activity to be the dynamics occurring in the vertical direction,

rather than a rapid fluctuation around a mean flow. We therefore assume

that the surface elevation is of the form

ζpr, tq “ <
ˆ

apr, tq exp
´iθpr, tq

ε

¯

˙

, with ε ! 1 , (3.112)

where < denotes taking the real part. We have here introduced a pair of new

variables which are both permitted to vary slowly in space and time, the

complex amplitude, a, and the phase factor, θ. Notice that equation (3.112)

is equivalent to

ζ “
1

2
a exp

´iθ

ε

¯

`
1

2
a˚ exp

´

´
iθ

ε

¯

(3.113)

We will be substituting this expression into the action given in equation

(3.93), together with the kinematic boundary condition replacing the depen-

dence of the action on pw. Noting that the derivative of ζ is

dζ

dt
“

1

2

da

dt
exp

´iθ

ε

¯

`
ia

2ε

dθ

dt
exp

´iθ

ε

¯

`
1

2

da˚

dt
exp

´

´
iθ

ε

¯

´
ia˚

2ε

dθ

dt
exp

´

´
iθ

ε

¯

,
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the kinetic energy becomes

ż ż

D

Dρσ2

2

´dζ

dt

¯2

d2r dt “

ż ż

D

Dρσ2

2

„

1

2

ˇ

ˇ

ˇ

da

dt

ˇ

ˇ

ˇ

2

`
|a|2

2ε2

´dθ

dt

¯2

´
ia˚

2ε

da

dt

dθ

dt
`
ia

2ε

da˚

dt

dθ

dt



d2r dt

“

ż ż

D

Dρσ2

2

„

1

2

ˇ

ˇ

ˇ

da

dt

ˇ

ˇ

ˇ

2

`
|a|2

2ε2

´dθ

dt

¯2

`
1

ε

dθ

dt
=
´

a˚
da

dt

¯



,

where = denotes taking the imaginary part, and exponential terms are ne-

glected since ε ! 1. The potential energy term is simpler

ż ż

D
´
Dρref
2Fr2

ζ2 d2r dt “

ż ż

D
´
Dρref
2Fr2

|a|2

2
d2r dt . (3.114)

The action integral for the WKB approximation is therefore

S “

ż ż

D

Dρ|pv|2

2
´ ppD ´ 1q

`
Dρσ2

4

„

ˇ

ˇ

ˇ

da

dt

ˇ

ˇ

ˇ

2

`
2

ε

dθ

dt
=
´

a˚
da

dt

¯

`
|a|2

ε2

ˆ

´dθ

dt

¯2

´
ρrefε

2

ρσ2Fr2

˙

d2r dt

“

ż ż

D

Dρ|pv|2

2
´ ppD ´ 1q

`
Dρσ2|a|2

4ε2

ˆ

`

Btθ ` pv ¨∇rθ
˘2
´

ρrefε
2

ρσ2Fr2

˙

d2r dt ,

(3.115)

where only the leading order term in ε remains. This is a valid assumption

when ε ! 1 and ε2{pσ2Fr2q “ Op1q. According to satellite oceanography

data, these approximations are reasonable in many regions of interest in

the upper ocean [57]. As was shown in Holm, Hu, and Street [57], taking

variations of the action (3.115) yields
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δ`

δpv
“ Dρ

´

pv ¨ dr `Nddθ
dt

¯

b d2r with N :“
σ2|a|2

2ε2
,

δ`

δD
“
ρ

2
|pv|2 ´ p ,

δ`

δρ
“
D

2
|pv|2 ,

δ`

δ|a|2
“

Dρ

4Fr2

ˆ

´dθ

dt

¯2

´
ρref
ρ

˙

“ 0 , since
ε2

σ2Fr2
“ Op1q

ùñ
dθ

dt
“ ˘

?
ρρref

ρ
,

δ`

δθ
“ 0 , ùñ BtA` divpApvq “ 0 , with A :“ DρN dθ

dt
d2r ,

D “ 1 , ùñ Bt|a|
2
` pv ¨∇r|a|

2
“ 0 .

(3.116)

Despite the approximations made, we still have a Kelvin-Noether theorem

where

d

dt

¿

cptq

´

pv ¨ dr `Nddθ
dt

¯

“ ´

¿

cptq

1

ρ
dp . (3.117)

The calculation for this follows similarly to the other examples, noting thatN

and dθ
dt

are advected and the diamond terms emerging from δ`{δD and δ`{δρ

are as for the inhomogeneous Euler equations,. Indeed, the Euler-Poincaré

momentum equation is

pBt ` Lpvq
δ`

δpv
“ D∇r

δ`

δD
´
δ`

δρ
∇rρ ,

and dividing by the advected variables D and ρ gives

pBt ` Lpvq

´

pv ¨ dr `Nddθ
dt

¯

“ ´ρ´1dp` d
´1

2
|pv|2

¯

.
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Remark 3.19. It is immediately obvious from equation (3.117) that the de-

coupling between wave and current degrees of freedom observed before the

slowly varying envelope approximation is present also here. This follows from

the advection of the second term in the integrand of Kelvin’s theorem

pBt ` Lpvq

ˆ

Nddθ
dt

˙

“ 0 . (3.118)

Remark 3.20 (Alignment of gradients.). As was noted in [57], we have the

following advected quantity

pBt ` Lpvqpd|a|
2
^ dρq “ 0 ,

meaning that the alignment of gradients of |a|2 and ρ is preserved by the

flow.

Properties of the solution. Solutions to these equations were exam-

ined numerically in [57]. The approximated equations can be written into a

potential vorticity formulation in the same manner as the unapproximated

equations. The potential vorticity of the currents, qc, has the same structure

as in equation (3.110), however the potential vorticity for the waves is given

by

qw “
N
|a|2

Jp
?
ρρref , |a|

2
q ,

and is advected. The numerical integration of this demonstrates that there

is a synchronisation between thermal fronts and wave activity present within

the model [57]. This gives hope to the application of this modelling approach

to understand the phenomena illustrated in Figure 3.1. This illustrates the

potential for more sophisticated models of this class to reveal further informa-
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tion about the interaction of wave activity with horizontal thermal gradients.

3.4.4 A stochastic approach to decomposition of maps

Recalling the Euler-Poincaré approach to the decomposition of maps, pre-

sented in Section 3.4.1, we may introduce a stochastic perturbation of this

system again using stochastic advection by Lie transport. Since the modelling

assumption here is that the flow is decomposed into a horizontal part and

a vertical part, and the model is a continuum theory on a two dimensional

domain, we will be introducing a two dimensional noise into the currents.

Recall that in our stochastic formulation of the classical water wave equa-

tions, there is a vertical component of the noise appearing in the kinematic

boundary condition (3.27). To maximise generality, we will include such a

term in our reasoning here. We will therefore be considering the two dimen-

sional stochastic vector field, drt, and we will have vertical noise represented

by dzt, as defined in Section 3.3.1.

Working with the same reduced Lagrangian to which we applied a deter-

ministic version of Hamilton’s principle in Section 3.4.1, we note that in the

stochastic case the variations have the following forms

δpv dt “ dη ´ addrtη , δ pw dt “ pd` Ldrtqδζ ` Lδpvζ , and δa “ ´Lηa ,

where η P XpDq vanishes at the endpoints. For a discussion of the form of

these in the case of a standard fluid theory, see Luesink [72]. We may derive
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the stochastic Euler-Poincaré equations by taking variations as follows

0 “

ż
B

δ`

δpv
, δpv

F

`

B

δ`

δζ
, δζ

F

`

B

δ`

δ pw
, δ pw

F

`

B

δ`

δa
, δa

F

dt

“

ż
B

δ`

δpv
, dη ´ addrtη

F

`

B

δ`

δζ
, δζ

F

dt

`

B

δ`

δ pw
, pd` Ldrtqδζ ` Lδpvζ

F

`

B

δ`

δa
,´Lηa

F

dt

“

ż
B

´ pd` ad˚drtq
δ`

δpv
`
δ`

δa
˛ a dt, η

F

`

B

p´d` LTdrtq
δ`

δ pw
`
δ`

δζ
dt, δζ

F

`

B

´
δ`

δ pw
˛ ζ, dη ´ addrtη

F

“

ż
B

´ pd` ad˚drtq

ˆ

δ`

δpv
´
δ`

δ pw
˛ ζ

˙

`
δ`

δa
˛ a dt, η

F

`

B

p´d` LTdrtq
δ`

δ pw
`
δ`

δζ
dt, δζ

F

.

The Euler-Poincaré equations corresponding to the composition of maps ap-

proach to wave-current interaction are therefore given by

pd` ad˚drtq

ˆ

δ`

δpv
´
δ`

δ pw
˛ ζ

˙

“
δ`

δa
˛ a dt , (3.119)

p´d` LTdrtq
δ`

δ pw
`
δ`

δζ
dt “ 0 , (3.120)

pd` Ldrtqζ “ dzt , (3.121)

pd` Ldrtqa “ 0 , (3.122)

where the quantities, a, are advected by the two dimensional stochastic flow

of currents. Note that the equation for ζ here agrees with the kinematic

boundary condition for the classical water wave theory given by equation

(3.27). The inclusion of the vertical component of the noise in equation

(3.27) is due to the relationship between the kinematic boundary condition

and three dimensional advection, as discussed in Definition 3.3. The vertical
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noise component, found in dzt, does not permeate the rest of the model since

advected quantities are carried by the two dimensional flow of currents, which

is a two dimensional fluid theory.

We see that for the decomposition of maps approach we have a stochastic

Kelvin-Noether theorem represented by the equation

d

¿

cptq

1

D

ˆ

δ`

δpv
´
δ`

δ pw
˛ ζ

˙

“

¿

cptq

1

D

δ`

δa
˛ a dt , (3.123)

where the notation is largely inherited from the deterministic case.

We gain a new perspective on the structure of the noise by considering the

Hamiltonian formulation. In the stochastic case, we can observe this by

considering a Legendre transform to a phase space variational principle

0 “ δ

ż ż

D
xm, drty ` xλ, dzty ´ hpm, aq dt´

ÿ

i

hipm, aq ˝ dW
i
t ,

where m and λ are as in the deterministic case, and the stochastic vector

field drt is written in terms of the Hamiltonians as

drt “
δh

δm
dt`

ÿ

i

δhi
δm

˝ dW i
t .

We may the stochastic equations for the decomposition of maps approach

may therefore be expressed as Lie-Poisson equation in matrix form as

d

¨

˚

˚

˚

˚

˚

˚

˝

m

a

λ

ζ

˛

‹

‹

‹

‹

‹

‹

‚

“ ´

¨

˚

˚

˚

˚

˚

˚

˝

ad˚˝m ˝ ˛ a ´λ ˛ ˝ ˝ ˛ ζ

L˝a 0 0 0

´LT˝ λ 0 0 1

L˝ζ 0 ´1 0

˛

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

drt

´ δ`
δa
dt

dzt

´ δ`
δζ
dt

˛

‹

‹

‹

‹

‹

‹

‚

. (3.124)
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From here, it is evident that we may use this methodology to incorporate a

structure preserving noise into equations of this class, including those pre-

sented in this section.

3.5 Concluding remarks

Despite being a topic which has captured the imagination of the scientific

community for an extended period of time, the dynamics of a free surface

are by no means fully described by existing modelling techniques. In this

chapter, we have derived a structure preserving stochastic perturbation of

the classical theory. The perturbation is inspired by one which has been

shown to be compatible with a data driven approach to numerically mod-

elling fluid problems, as found in Cotter et al. [25, 26, 27]. Thus we can,

in theory, use this approach to account for uncertainty in the water wave

problem. Moreover, the stochastic perturbations of the velocity field need

not be irrotational, introducing the possibility of using such a model to ac-

count for the effects of vorticity. We have furthermore introduced a new

approach, making use of the composition of two maps, which can support

additional variables. This allows us to include variables such as thermal

buoyancy, which play an important role in large scale ocean dynamics. We

also demonstrated that models of this class can be made stochastic through

their variational structure.

We have developed several new concepts in this section and each of these

opens new research questions. In particular, the decomposition of maps ap-

proach enables the study of waves interacting with a two dimensional fluid

equation. Whilst we used an Euler equation with harmonic oscillations, there

is opportunity to allow the two maps to represent other models for the wave
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and current dynamics. Separately, one can find many papers about the clas-

sical water wave equations in the literature. Their analytical properties are

understood, their solutions numerically studied, and asymptotic expansions

have been considered. All of these topics are potential future research di-

rections for the stochastic classical water wave equations we have derived in

this chapter.
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4
The influence of memory on

inertial particle motion

There are pressing environmental reasons which give importance to under-

standing the motion of inertial particles on the free surface of a fluid. In

the language of the previous chapter, the currents are responsible for the

transport of material. This is related to the remarks of John Scott Russell

included in the introduction to Chapter 3. An object with mass will be car-

ried by this flow, although this is not straightforward due to the inertia of

the object. The inertia modifies the trajectory from that of a Lagrangian

trajectory, and the object’s procession alters the flow of the fluid in which it

resides.

As will become apparent, the governing equation for this will be a fractional
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order differential equation. These equations do not have a known variational

structure, unlike those studied thus far in this thesis. We will therefore

not be considering stochastic parameterisations. It is worth noting that,

borrowing language from discretised equations, stochastic equations change

how we move forward from one timestep to the next. This increment gains

a random component. Likewise, the equations we see here will differ from

the standard theory of differential equations in terms of how we move in

time from one step to the next. This is the second class of equations seen in

this thesis which changes the process of stepping through time, relative to

standard fluid theories. In this example, the equations have this structure

since they feature memory.

4.1 Summary of the chapter

Within the study of the trajectory of an inertial particle through a fluid

domain, the Maxey-Riley equation [77] is widely used. Since its initial publi-

cation, many analytical properties of this equation have remained unknown

and are nontrivial due to the nonlinear and fractional in time nature of the

model. In this section, we will feature the findings of a recent work [34] where

a comprehensive analysis of the Maxey-Riley equation is given.

The Maxey-Riley equation will be considered as a fractional order equation,

and results from fractional calculus will be applied to resolve difficulties posed

by the fractional derivative ‘Basset-Boussinesq’ term [97]. Despite the fact

that fractional calculus has an active research community, the Maxey-Riley

equation is a relatively rare example of a fractional order equation which is

adopted by the applied mathematics community. We will show that many of

the classical properties of ordinary differential equations (ODEs) also apply
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to this equation. In particular, the following will be covered.

• The notion of weak and strong solutions to the Maxey-Riley equation

is introduced, and the definition of a maximal solution is given.

• Given some conditions on the velocity field of the surrounding fluid,

the existence of a unique maximal weak solution is shown.

• We prove that a unique global in time weak solution exists, using a

fractional version of a Grönwall-type inequality.

• Under an additional assumption on the initial conditions, the global

solution is proven to be sufficiently regular to classify the solution as

strong.

• By considering the derivative of the solution with respect to its ini-

tial conditions, we show that inertial particle trajectories given by the

Maxey-Riley equation do not collide, and that two trajectories can be

chosen to be arbitrarily close together at time t by choosing suitable

initial conditions.

4.2 Motivation and historical overview

There is a vast quantity of data available demonstrating the dynamics of

the upper ocean. In particular, data can be obtained from drifter buoys

floating on the ocean’s surface, as seen in Figure 4.1. This data has been

collected since the early 1980s, and provides a rich dataset of surface ocean

currents over a relatively long time period. Moreover, as demonstrated in

Figure 4.2, modern satellite imagery can identify the trajectories of small

inertial particles, which may be used to provide quantitative data on the
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Figure 4.1: Visible here are trajectories of drifter buoys on the ocean surface, using data
from the Global Drifter Program of the National Oceanic and Atmospheric Administration’s
Atlantic Oceanographic and Meteorological Laboratory. The data is displayed such that the
path of each drifter is represented by a coloured line [70]. Thanks to the authors of [31],
where this image was also featured, for bringing this to my attention.

ocean’s dynamics. Due to the expensive nature of collecting this data, its

accurate interpretation is of importance. When considering how to interpret

it with accuracy, notice that both the satellite imagery and the drifter buoy

data both represent the path of an object with mass moving through the

ocean. Neither data set captures a pure Lagrangian trajectory. The effort

and expense of collecting all of this data is justified by the growing scientific

interest in the upper ocean, partially due to its role in weather and climate

systems. From this, it is apparent that understanding how objects with mass

move through the ocean is a matter of great scientific interest. For a review

of models of inertial particle motion and their history, see [78].

Often, when modelling the movement of inertial particles in the ocean, the

assumption is made that the object’s mass does not influence its trajectory

with no thorough justification of whether this is a good assumption or not. A

detailed summary of current methods in this field can be found in [101]. Our

124



(a) Imagery of the Solway Firth, or Tràchd Romhra, between
Dumfries and Galloway and Cumbria, showing the dynamics of
the firth in October 2019.

(b) A snapshot of Lake Winnipeg, Lake Winnipegosis, and Cedar
Lake, in Manitoba, Canada. Captured on 3rd November 2021.

Figure 4.2: The two images above are from the Landsat 8 satellite and are courtesy of the
U.S. Geological Survey. Both images capture inertial particles, in this case sediment, algae,
and other flotsam, which may be visually enhanced and used to illustrate the dynamics oc-
curring in the region of the ocean where the particles are present. The ability of satellites to
identify these particles provides a methodology for collecting data on ocean currents.
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present understanding of models which feature inertial effects is sufficiently

poor that purely data driven approaches, without any physical modelling, can

provide meaningful insight into environmental issues connected to this topic,

including ocean plastics [99]. Given the enormous environmental impact of

small plastic pollutants (see e.g. [100]), a better mathematical understanding

of models related to this phenomenon are crucial to give a more accurate

analysis of these issues. In this chapter, we will investigate a commonly used

mathematical model for the trajectory of an object with mass through a

fluid domain, and the results proven have implications on a wider class of

equations which share the same form.

In spite of the fact that inertial particles are increasingly relevant in con-

temporary applications of mathematics, their interest as a field of study is

nothing new. Indeed, the study of interactions between an inertial parti-

cle and its surrounding flow predates the publication of the Navier-Stokes

equations. As one can see upon observing the titles of many of the historical

works cited here, much of the early work in this direction relates to the forces

experienced by pendula. Interest in this direction was heavily motivated by

the desire to manufacture more accurate clocks. This was such a pressing

issue at the time that an act of Parliament, known as the Longitude Act [1],

was passed by the Parliament of Great Britain in 1714, which promised sig-

nificant financial rewards to scientists who advanced the ability to measure

longitude at sea. A solution to the ‘longitude problem’ was of international

interest; the ‘Board of Longitude’, founded in Britain to monitor progress in

this direction, awarded prizes to individuals working in a number of different

countries. Similar initiatives were established in other countries. Leading

thinkers developed interesting mathematics as a result of the consideration

of the forces acting on the sphere attached to the end of a pendulum. This
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work found wider application, since it applies to any sphere moving relative

to the fluid in which it is suspended. The idea of the ‘added mass term’,

which models the inertia resulting from the deflection of fluid around an ac-

celerating (or decelerating) body immersed in fluid, was proposed by Bessel

in 1828 [10]. The term itself was later formulated first, for a rigid sphere, by

Poisson [87], and shortly after for a rigid ellipse in potential flow by Green

[44]. This work was built upon by Clebsch [23], who considered the effect

of rotation of the ellipse. Observations on viscous effects for flow around a

sphere were made by Stokes [94], who considered this problem by solving

what are now widely known as the Stokes equations for creeping flow, also

known as Stokes flow. Thus, from our contemporary viewpoint, his work is

valid in the limit of zero Reynolds number, defined using the relative velocity

between the sphere and the fluid away from the sphere. These viscous effects

will be known to many readers as Stokes drag.

Several decades after the formulation of the added mass term and Stokes

drag, the influence of a particles history on its future was found. Again in

the context of creeping flow, Boussinesq [16], in 1885, formulated an equation

where the velocity of the sphere relative to the fluid is a function of time

which is permitted to be arbitrary. In the previously mentioned study, this

function was considered to be exogenous and usually fixed as sinusoidal.

The reclassification of this velocity as an independent variable is a shift in

modelling approach and generalises the problem away from periodic motions

and pendula. The force experienced by the sphere as a result of its motion

through the fluid was found to consist of an added mass term, a drag term,

and a viscous term which depends on the history of the sphere’s trajectory.

The viscous term appears as a time integral from the initial time through to

the present, and is due to the force corresponding to the formation of a lagging
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boundary layer. Shortly afterwards in 1888, Basset [6] published, in his book

on hydrodynamics, a calculation under the same assumptions which reached

the same conclusion. Whilst it is unclear who derived the term first, it is the

later author whose name commonly appears in the literature and the term

is known as the Basset history integral, or similar, and corresponds to the

Basset force. Alternatively, the term may be named the Basset-Boussinesq

term, which will be used in this section.

After the derivation of the main forces experienced by an inertial body as

it moves through a fluid medium, attempts were made to relax the assump-

tions under which the equations are valid. The creeping flow assumption

is restrictive and often unphysical in the applications of interest, thus there

was a desire to extend this work to the case where the Reynolds number is

greater than zero. The need for this was identified in the late 19th century

by Whitehead [104], although his solution was not valid far from the sphere.

This problem was solved by an improvement due to Oseen in 1910 [82]. Os-

een’s correction was shown to be valid asymptotically by Lamb in 1911 [67],

who used the same method to resolve the problem of two dimensional flow

past a cylinder which had eluded Stokes decades previously. For small posi-

tive Reynolds number, the drag coefficient was improved upon, also by Oseen

[83], and Faxén [40] offered a further improvement by including the effects of

the nonuniformity of the fluid flow around the sphere. This contribution is

commonly known as Faxén’s law, and the corresponding terms as the Faxén

corrections. A move towards more contemporary models was made Tchen’s

thesis [98], where the inertial particle was assumed to be within a time de-

pendent velocity field, as opposed to within a steady flow, and the resulting

model was used to investigate particles suspended in a turbulent fluid.

128



4.3 The Maxey-Riley equation

Work on inertial spherical particles culminated in a publication by Maxey

and Riley [77] in 1983, which clarified these previous contributions and pre-

sented an equation of motion which has dominated the literature since its

introduction [78]. After a modification, by Maxey [75, 76], allowing the par-

ticle’s initial velocity to be distinct from that of the fluid, and a correction

to the added mass term by Auton et al. [5], the equation reached the state

in which it is commonly used in the literature today. This equation is known

as the Maxey-Riley equation and has proven popular to researchers as an

‘off-the-shelf’ solution. Despite the seminal paper [77] shining a light on the

assumptions under which the equation is valid, thus raising awareness to the

community of its limitations, the Maxey-Riley equation has been applied to

a wide number of physical problems. Whilst the direct applicability of the

Maxey-Riley equation to problems such as the advection of drifter buoys is

questionable due to assumptions on the Reynolds number, its study is still

relevant since it has a distinctive mathematical structure inherited from the

Basset-Boussinesq term and it is well used in the wider research community.

Unfortunately, the equation is difficult to implement in practice. This is

in part due to the Basset-Boussinesq memory term, which presents severe

storage complications if attempting to numerically solve the equation for a

large scale operational fluid problem. The equation also poses mathematical

problems, it is nonlinear and features a nonlocal integral term. Since these

complications revolve around the Basset-Boussinesq term, some studies sim-

plify the equation by omitting the memory term to create a more usable

equation [78]. The Faxén corrections have also been omitted in the literature

to aid usability [46]. Whilst this is sometimes argued with scaling assump-

129



tions, a growing body of work in support of the Basset-Boussinesq term

[35, 36, 45] has made these simplifications look questionable. On the other

hand, the Basset-Boussinesq term implies that particles always retained a

dependence on their initial velocity, regardless of the viscosity of the fluid,

which may be argued to be unphysical since one expects viscous dissipation

to eradicate this memory [90]. It’s worth noting that making crude simplifi-

cations to the Maxey-Riley equation may appear reasonable on the surface,

however throwing away any term in the Maxey-Riley equation is equivalent

to ignoring the corresponding result from the historic literature. Nonethe-

less, returning again to motivation from Figures 4.1 and 4.2, authors have

attempted to use a simplified version of Maxey-Riley for ocean transport

applications [7]. Attempts have been made to circumvent the need for the

Basset history term by using a simplified Maxey-Riley equation and including

a stochastic noise to match the equation to experimental data [91]. Success-

ful attempts have been made to use the Maxey-Riley equation as inspiration

to create a framework more tailored to oceanography applications [8, 9, 81].

As a separate issue, the suitability of the Maxey-Riley equation for particles

in the ocean remains contentious due to the assumption on the size of the

Reynolds number in the seminal paper [77]. A new approach [88] has given

hope to the idea of numerically solving the ‘full’ Maxey-Riley equation with

memory, thus interest in the Basset-Boussinesq term is not fading.

We now concern ourselves with the mathematical analysis of the Maxey-Riley

equations and, more broadly, with nonlinear inertial particles featuring the

Basset-Boussinesq term. Indeed, little mention of this topic has appeared in

the literature. Recently, Farazmand and Haller [39] show the local existence

and uniqueness of weak solutions of the Maxey-Riley equation. This was the

only known result in this direction, prior to the publication corresponding to
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this chapter [34]. In the aforementioned study, [39], it is also shown that, if

the solution is differentiable at its initial time, the equations of motion can

be re-written into a form which does permit strong solutions. This chapter

will extend this work.

The equations of motion. The results we prove here extend those found

by Farazmand and Haller [39]. To ensure clarity we will use notation consis-

tent with theirs, which is equivalent to the model suggested in the seminal

work [77] with the commonly accepted corrections made by Auton [5] and

Maxey [75, 76].

Note that, unlike in previous sections, we will not be using bold characters to

denote vector quantities. This is because we will have vectors of dimension

2n as well as n, and the equations are more legible as they appear. It is clear

from the context which variables are vector valued, and this is stated where

necessary.

For a fluid moving in a domain D Ď Rn with velocity field u : Dˆr0,8q Ñ Rn,

we denote the trajectory of a inertial particle with mass released at time t0 by

y : rt0,8q Ñ Rn, and its velocity by v : rt0,8q Ñ Rn. Since physical applica-

tions have dimension three, we will nondimensionalise with the assumption

that our sphere and domain are three dimensional, which simplifies the form

of the constants. Note that the equations which result from this have a

higher dimensional generalisation of the same form. We nondimensionalise

our problem by length scale L, time scale T , and velocity U which are char-

acteristic to the ambient flow u. For this flow, we have a Reynolds number

(Re) and, for a particle of radius a, the problem corresponds to a Stokes

number (St) where these quantities are defined via the kinematic viscosity ν
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by

Re “
UL

ν
, St “

2

9

a2

νT
. (4.1)

In a frame of reference moving with the particle, the Maxey-Riley equation

may be written in the following form

9y “ v

9v “ R
Du

Dt
`

ˆ

1´
3R

2

˙

g `
R

2

D

Dt

´

u`
γ

10
µ´1∆u

¯

´ µ
´

v ´ u´
γ

6
µ´1∆u

¯

´ κµ1{2 d

dt

ż t

t0

wpsq
?
t´ s

ds ,

(4.2)

where u “ upyptq, tq, and wptq is defined by

wptq “ 9yptq ´ upyptq, tq ´
γ

6
µ´1∆upyptq, tq . (4.3)

The additional parameters are defined by

R “
2ρf

ρf ` 2ρp
, µ “

R

St
, κ “

c

9R

2π
, γ “

9R

2Re
, (4.4)

where ρf and ρp denote the densities of the fluid and particle respectively.

As in [39], we write equation (4.2) in the following form

9y “ w ` Aupy, tq ,

9w “ ´µw ´Mupy, tqw ´ κµ
1{2 d

dt

ż t

t0

wpsq
?
t´ s

ds`Bupy, tq ,
(4.5)

where Au, Bu : D ˆ rt0,8q Ñ Rn and Mu : D ˆ rt0,8q Ñ Rnˆn are defined
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by

Au “ u`
γ

6
µ´1∆u ,

Bu “

ˆ

3R

2
´ 1

˙ˆ

Du

Dt
´ g

˙

`

ˆ

R

20
´

1

6

˙

γµ´1 D

Dt
∆u

´
γ

6
µ´1

´

∇u` γ

6
µ´1∇∆u

¯

∆u ,

Mu “ ∇u`
γ

6
µ´1∇∆u .

(4.6)

Well-posedness properties. In order to study the desired analytical

properties of the equation, we first define what it means for a solution to

be sufficiently regular to be a strong solution. To do this, we consider the

integrated version of equation (4.5)

yptq “ y0 `

ż t

t0

wpsq ` Aupypsq, sq ds ,

wptq “ w0 `

ż t

t0

ˆ

´ µwpsq ´Mupypsq, sqwpsq

´ κµ1{2 wpsq
?
t´ s

`Bupypsq, sq

˙

ds .

(4.7)

Remark 4.1. The equation (4.7) is not a standard ordinary differential equa-

tion, since the integrand of the equation in w has t as an argument. The

classical theory of ordinary differential equations therefore cannot be applied,

and in order to study this equation we need to develop all notions and results

from the classical theory in the new context.

Definition 4.2. A solution of (4.5) is called weak if it satisfies the integrated

formulation (4.7). A solution of (4.5) is called strong if it satisfies (4.7) and

also is also differentiable with respect to the time variable.

Remark 4.3. One cannot determine whether a solution exists for the system

of equations (4.5) from any general theorems known to the authors from the
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literature of both ordinary and fractional order differential equations (see e.g.

[85]). This is due to the specific nature of the nonlinearity of the system.

The analytical properties discussed here will consist of existence and unique-

ness of both weak and strong solutions, and the conditions under which these

solutions exist. We will summarise the existing literature results, before

building on them [34]. Before this, however, we will explore the mathemati-

cal structure of the integral term which diverts this equation away from the

theory of ordinary differential equations.

4.4 The Basset-Boussinesq fractional integral term

As first observed by Tatom [97] and eluded to in Remark 4.3, the Basset-

Boussinesq history integral is a ‘semiderivative’, meaning a fractional deriva-

tive of order 1{2. Thus the Maxey-Riley equation, and similar inertial particle

models such as the Basset-Boussinesq-Oseen equation, are fractional differen-

tial equations. The notion behind the definition of a derivative of fractional

order dates back to a 17th century letter between L’Hôpital and Leibniz,

who speculated that ‘useful consequences’ would come from its study. De-

spite this, most research and development of fractional calculus has been per-

formed relatively recently and the formulation of the history integral term

by Boussinesq and Basset is a very early example of fractional calculus is

the applied sciences, though they did not know this. The remark that the

Basset-Boussinesq term is a fractional derivative has been made by a number

of authors whilst writing about the Maxey-Riley equation [35, 36, 39], though

its implications have been largely neglected and the equation is not currently

well known in fractional calculus research communities. To illustrate this

point, we recall a definition of the fractional derivative [85].
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Definition 4.4. For a real number p P R, define the integer n P Z to be

such that n ´ 1 ď p ă n. We may then define the left Riemann-Liouville

fractional derivative of order p by

aD
pfptq “

1

Γpn´ pq

dn

dtn

ż t

a

pt´ sqn´p´1fpsq ds . (4.8)

By comparing (4.8) with (4.5), we can immediately see that the history

integral is a Riemann-Liouville fractional derivative of order 1{2

t0D
1{2wptq “

1
?
π

d

dt

ż t

t0

wpsq
?
t´ s

ds . (4.9)

We may rewrite the Maxey-Riley equations (4.5) as a fractional order equa-

tion explicitly as follows

t0D
1yptq “ w ` Aupy, tq ,

t0D
1wptq “ ´µw ´Mupy, tqw ´ κµ

1{2
?
πt0D

1{2wptq `Bupy, tq .
(4.10)

To give a good definition of a fractional derivative, one hopes that the defini-

tion would extend the notion of regular calculus in a reasonable way. There

are multiple ways of defining such a derivative, each with their own desirable

properties, and here we will introduce another which has application to in-

ertial particle motion. An approach to fractional calculus was developed by

Caputo [18] which allows for initial value problems to be formulated to in-

volve only the values of integer derivatives of the variables at t0 (see e.g. [85]).

This means that, in general, initial value problems for Caputo-type fractional

differential equations feature physically interpretable initial conditions. The

definition of this derivative is as follows.

Definition 4.5. For a non-integer real number p P RzZ, define the integer
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n P Z to be such that n ´ 1 ă p ă n. We may then define the Caputo

fractional derivative of order p by

C
aD

p
t fptq “

1

Γpn´ pq

ż t

a

f pnqpsq

pt´ sqp`1´n
ds . (4.11)

As shown in [85], this derivative is a true interpolation between derivatives

of integer order, since

lim
pÑn

C
aD

p
t fptq “ f pnqptq . (4.12)

As we will see, there is a connection between Riemann-Liouville and Caputo

fractional derivatives and whether the solution of the Maxey-Riley equation

which exists is weak or strong.

4.5 Existing results and their extension

A summary of existing results. As mentioned above, we will be build-

ing on a previous study [39] which contained the following as its main result.

Theorem 4.6. If upx, tq is three times continuously differentiable in both x

and t and all of its partial derivatives are uniformly bounded and Lipschitz

continuous up to order three then, for any initial condition py0, w0q P DˆRn,

there exists some T ą t0 such that over the time interval rt0, T q the equations

(4.5) have a unique weak solution pyptq, wptqq with pypt0q, wpt0qq “ py0, w0q.

Proof. See [39] for full details, a sketch of the proof is given here. Recall that,

by the definition of a weak solution, the theorem is equivalent to proving that

the integral equation (4.7) has a unique solution. This may be done by a

fixed point argument by reformulating the problem into into a fixed point
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theorem for the map

pPΦqptq “

¨

˚

˚

˚

˚

˝

yt0 `

ż t

t0

ηpsq ` Aupξpsq, sq ds

wt0 `

ż t

t0

´

ˆ

µ`
κµ1{2

?
t´ s

`Mupξpsq, sq

˙

ηpsq `Bupξpsq, sq ds

˛

‹

‹

‹

‹

‚

(4.13)

where Φ :“ pξ, ηq. It can be shown that this map is a contraction mapping

on a complete metric space. Q.E .D .

Remark 4.7. Within the proof of this result, it is also shown that y, w have

continuous paths on the interval rt0, t0 ` T s, and are hence bounded.

It has been observed [39] that a weak solution of the Maxey-Riley equation

exists locally in time but, under additional assumptions, these solutions may

be strong. A further observation was made, though not proven, that solutions

to (4.7) are not necessarily (continuously) differentiable and hence are not,

in general, also solutions to (4.10). This relates to the fractional structure

of the model since, if continuously differentiable solutions to the differential

form of the equation (4.10) exist, then under the special initial condition

wpt0q “ 0 the Basset history term takes the form

d

dt

ż t

t0

wpsq
?
t´ s

ds “

ż t

t0

9wpsq
?
t´ s

ds . (4.14)

Reviewing Definitions 4.4 and 4.5, we see that this is equivalent to saying

that, in this special case, the Riemann-Liouville fractional derivative takes

the form of a Caputo fractional derivative of the same order. Thus, if con-

tinuously differentiable solutions to (4.10) exist and wpt0q “ 0, then (4.10)
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can be written as

t0D
1
t yptq “ w ` Aupy, tq ,

t0D
1
twptq “ ´µw ´Mupy, tqw ´ κµ

1{2
?
π C
t0
D

1{2
t wptq `Bupy, tq .

(4.15)

It has been shown, by using a similar fixed point argument, that the equations

(4.15) have a unique local in time solution.

Extending the known results. The analytical remarks on the Maxey-

Riley equation summarised above may be extended. Progress in this direction

has been made [34] during this project, which will constitute the remainder

of this section. In particular, the local in time weak solution corresponding

to Theorem 4.6 will be shown to exist globally in time. Furthermore, the

conditions under which this solution is differentiable with respect to the time

variable and is thus a strong solution will be rigorously proven.

4.6 Global existence and uniqueness of solutions

First notice that the existence of the solution in the previous section was

stated on a closed time interval. The result also holds on the half open

interval rt0, T q. Indeed, if we were to include the endpoint T we would have

complications defining the derivative at T due to the inability to define the

limit from above. Furthermore, the inclusion of the half open interval will

allow us to introduce the notion of a maximal solution. We will be extending

Theorem 4.6 to a global in time existence and uniqueness result, which will

be done by extending notions from the classical theory of ordinary differential

equations to the fractional case, as well as using a tailored Grönwall lemma

for fractional differential equations (see Appendix B). We will be working
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under the following assumptions.

The velocity field, u, and its derivatives are sufficiently smooth to

ensure that the first derivatives in time and space of Au and Bu are

continuous and uniformly bounded in time and space.

(˚)

In the assumptions (˚), the operators being ‘uniformly bounded’ means that

their supremum norms are bounded by some constant. Thus there exists

some constant Lb such that

}BtAu}8, }∇Au}8, }BtBu}8, }∇Bu}8 ă Lb .

Notice also that the assumptions (˚) are sufficient to ensure that Au and Bu

are Lipschitz in space uniformly in time. Therefore there exists some Lc ą 0

such that for any t P rt0, t0 ` T q and y1, y2 P D , we have

|Aupt, y1q ´ Aupt, y2q| ď Lc|y1 ´ y2| ,

|Bupt, y1q ´Bupt, y2q| ď Lc|y1 ´ y2| .

Note that Au and Bu are similarly Lipschitz in time. Notice that these

assumptions are more relaxed than those used in the proof of Theorem 4.6

[39], since we do not assume boundedness of Au and Bu. It can be shown

that the proofs of the lemmata in [39] can be modified to circumvent the

need for this boundedness, indeed the modifications needed are present in

the methodology we will use to prove the lemmata in this section. We will

now develop some notions and prove some results from ordinary differential

equations.
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4.6.1 The existence of a maximal solution

Definition 4.8. A solution pỹ, w̃q of (4.7) with domain rt0, T̃ q is called an

extension of the solution py, wq with domain rt0, T q if t0 ă T ă T̃ and the

solutions are identical on rt0, T q. The solution py, wq is called maximal if

there exists no such extension.

We will now prove that a maximal solution exists for the Maxey-Riley equa-

tion, which will require proving an initial proposition and lemma.

Proposition 4.9. Suppose py1, w1q and py2, w2q are two solutions to (4.7)

with domains rt0, T1q and rt0, T2q respectively, corresponding to the same ini-

tial condition py0, w0q, then the two solutions coincide on rt0,mintT1, T2uq.

Proof. For t in rt0,mintT1, T2uq we have

yiptq “ y0 `

ż t

t0

wipsq ` Aupyipsq, sq ds, i “ 1, 2 ,

wiptq “ w0 `

ż t

t0

ˆ

´ µwipsq ´Mupyipsq, sqwipsq

´ κµ1{2 wipsq?
t´ s

`Bupyipsq, sq

˙

ds , i “ 1, 2 .

Now consider the Euclidean norm of the differences }y1´ y2} and }w1´w2},

and we find a bound on these as follows:

}y1ptq ´ y2ptq} “

›

›

›

›

ż t

t0

w1psq ´ w2psq ` Aupy1psq, sq ´ Aupy2psq, sq ds

›

›

›

›

ď

ż t

t0

}w1psq ´ w2psq} ` Lc}y1psq ´ y2psq} ds ,
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and

}w1ptq ´ w2ptq} “

›

›

›

›

ż t

t0

´µpw1psq ´ w2psqq ´Mupy1psq, sqw1psq

`Mupy2psq, sqw2psq ´ κµ
1{2

ˆ

w1psq
?
t´ s

´
w2psq
?
t´ s

˙

`Bupy1psq, sq ´Bupy2psq, sq ds

›

›

›

›

ď

ż t

t0

µ}w1psq ´ w2psq} ` Lb}w1psq ´ w2psq}

´
κµ1{2

?
t´ s

}w1psq ´ w2psq} ` Lc}y1psq ´ y2psq} ds .

We have uniqueness from an application of the Grönwall result from Ap-

pendix B with ‘uptq’ equal to }y1ptq ´ y2ptq} ` }w1ptq ` w2ptq}, noting that

aptq “ 0 in the case of the above bounds. Q.E .D .

In the following lemma, we will show that the above result will allow us

to combine multiple local in time solutions into another solution. This will

enable us to prove that a maximal solution exists.

Lemma 4.10. Let tpyαptq, wαptqquαPA be a family of solutions to (4.7) with

initial condition py0, w0q, where A is an arbitrary index set. Let the domain

of pyα, wαq be rt0, Tαq. We define T such that rt0, T q “
Ť

αPArt0, Tαq, and

define a function on rt0, T q by

pyptq, wptqq “ pyαptq, wαptqq, if t P rt0, Tαq . (4.16)

Then pyptq, wptqq is also a solution to (4.7) with the same initial condition.

Proof. We must justify first that (4.16) gives a consistent definition of py, wq,

i.e. that pyptq, wptqq does not depend on the choice of α. For t P rt0, Tα1q,
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(4.16) gives that pyptq, wptqq “ pyα1ptq, wα1ptqq. If t also belongs to rt0, Tα2q,

then t P rt0,mintTα1 , Tα2uq and therefore our uniqueness result Proposition

4.9 implies that pyα1ptq, wα1ptqq “ pyα2ptq, wα2ptqq for this value of t.

Now we prove that py, wq defined by (4.16) defines a solution to (4.7) on

rt0, T q. We know that t0 P rt0, Tαq for any α and therefore

pypt0q, wpt0qq “ pyαpt0q, wαpt0qq “ py0, w0q , (4.17)

since pyα, wαq is a solution to (4.7) with initial condition py0, w0q. Further-

more, for any t P rt0, T q there exists α such that t P rt0, Tαq. We know that

pyα, wαq solves (4.7) on rt0, Tαq, py, wq “ pyα, wαq on rt0, Tαq, and therefore

py, wq solves (4.7) at any t P rt0, T q. Q.E .D .

Proposition 4.11. Assume that u satisfies the conditions in (˚), then we

have a unique maximal solution to (4.7) with initial condition py0, w0q.

Proof. We need only prove that the solution identified in Lemma 4.10 corre-

sponding to the family of all possible solutions to (4.7) with initial condition

py0, w0q is the unique maximal solution. We know that py, wq is indeed a

solution of (4.7) and it is maximal since its domain contains the domains of

all other possible solutions. It only remains to prove uniqueness.

Let pỹ, w̃q be another such maximal solution. Similar to Lemma 4.10, the

union of our two maximal solutions is a solution of (4.7) with initial condi-

tion py0, w0q and extends py, wq and pỹ, w̃q. By the definition of maximality,

this union must be identical to both py, wq and pỹ, w̃q and hence we have

uniqueness. Q.E .D .
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4.6.2 Existence of a global in time solution

Now that we have established the existence of a maximal solution, we will

now apply this to prove that a global solution exists. This will begin with

the following result.

Theorem 4.12. Assume that u satisfies the conditions (˚), then if pyptq, wptqq

is a maximal solution with domain rt0, T q and T is finite, then py, wq leaves

any compact set S Ă D ˆ Rn as t approaches T .

Proof. Let py, wq be a maximal solution of py, wq to (4.7) with domain rt0, T q

corresponding to an initial condition py0, w0q. Assume further that there

exists a compact set S Ă D ˆRn such that the solution remains inside S, i.e.

@τ P pt0, T q, Dt1 P pτ, T q s.t. pypt1q, wpt1qq P S. We will find a contradiction

and hence conclude that no such S exists.

Take a sequence tpyn, wnqunPN defined by pyn, wnq :“ pyptnq, wptnqq for a se-

quence tn Ñ T . Furthermore, we assume that pyn, wnq P S for all n. Since

S is compact, there exists a converging subsequence tpynk , wnkqukPN where

tnk Ñ T . We call the limit of this sequence pyT , wT q:

pynk , wnkq ÝÝÝÑ
kÑ8

pyT , wT q P S .

We may take an element of the sequence which is ‘arbitrarily close’ to pyT , wT q

in the following way: @ε ą 0 Dpyt1 , wt1q P S s.t. |T ´ t1| ă ε. We will pick

t1 close to T , and use this as an initial condition pyt1 , wt1q for a Maxey-Riley

equation with memory starting at a time before t1, at t0. In the setup,

we have that py, wq is given on rt0, t1q (and indeed beyond this to T) and by

construction our Maxey-Riley equation starting at t1 will be shown to extend

our solution beyond T , hence contradicting maximality.
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We have that w at t1 is given by

wpt1q “ w0 `

ż t1

t0

´µwpsq ´Mupypsq, sqwpsq `Bupypsq, sq ds

´ κµ1{2

ż t1

t0

wpsq
?
t1 ´ s

ds .

(4.18)

If w is extendable beyond T , then for t ą T we would have

wptq “ w0 `

ż t

t0

´µwpsq ´Mupypsq, sqwpsq `Bupypsq, sq ds

´ κµ1{2

ż t

t0

wpsq
?
t´ s

ds ,

(4.19)

and thus

wptq ´ wpt1q “

ż t

t1

´µwpsq ´Mupypsq, sqwpsq `Bupypsq, sq ds

´ κµ1{2

ż t

t0

wpsq
?
t´ s

ds` κµ1{2

ż t1

t0

wpsq
?
t1 ´ s

ds

“

ż t

t1

´µwpsq ´Mupypsq, sqwpsq `Bupypsq, sq ´ κµ
1{2 wpsq
?
t´ s

ds

` κµ1{2

ż t1

t0

wpsq
?
t1 ´ s

´
wpsq
?
t´ s

ds .

(4.20)

We will consider equation (4.20) together with

yptq “ ypt1q `

ż t

t1

wpsq ` Aupypsq, sq ds . (4.21)

We want to prove that this system has solutions on an interval of length δ

depending only the compact set S and not on t1. We define the map

pPΦqptq “

¨

˝

pPΦq1ptq

pPΦq2ptq

˛

‚ , (4.22)
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where

pPΦq1ptq “ yt1 `

ż t

t1

ηpsq ` Aupξpsq, sq ds ,

pPΦq2ptq “ wt1 `

ż t

t1

´

ˆ

µ`
κµ1{2

?
t´ s

`Mupξpsq, sq

˙

ηpsq `Bupξpsq, sq ds

` κµ1{2

ż t1

t0

wpsq
?
t1 ´ s

´
wpsq
?
t´ s

ds .

Note that a solution to equations (4.20) and (4.21) corresponds to a fixed

point of the map P . We define R to be such that S Ď B̄0pRq, then lemmata

C.1 and C.2 from Appendix C give that, for K “ 4 maxtR, 2R
?
T ´ t0u and

any δ chosen such that

δ ` µδ ` 2κµ1{2
?
δ ` Lbδ ă δ ` µδ ` 2κµ1{2

?
δ ` 3Lbδ ă 1{5 ,

p2`KqLcδ ă 1{4 ,

p2Lbδ ` Aup0, t0q `Bup0, t0qqδ ă K{4 ,

the map P has a unique fixed point.

To complete our proof, notice that δ here depends only on the Euclidean norm

of the initial conditions, i.e. on the compact set S. Hence we may choose t1 to

be within a distance δ from T and thus we have extended our solution beyond

the supposedly maximal domain. We have found the required contradiction

and proven our theorem. Q.E .D .

Theorem 4.13. Assume that u satisfies the conditions (˚), then for any

initial condition py0, w0q P D ˆ Rn, there exists a unique global solution

pyptq, wptqq (i.e. a solution on rt0,8q) to the integral equation (4.7) with

pypt0q, wpt0qq “ py0, w0q.
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To prove Theorem 4.13, we must first introduce a lemma which finds an

appropriate bound on the solution to (4.7).

Lemma 4.14. If u satisfies the conditions (˚) and py, wq satisfies (4.7), on

the interval rt0, T q, there exists some pCY , CW q depending on T, y0, w0, κ, µ

and Lb such that

sup
tPrt0,T q

|yptq| ď CY , (4.23)

sup
tPrt0,T q

|wptq| ď CW . (4.24)

Proof (of Lemma 4.14). We seek to apply a bound on the solution using the

integrated form of the equation. We first notice that, as in Appendix C, we

may bound the integral of Bupypsq, sq using the Lipschitz property. That is,

for any x1, x2 P Rn and τ1, τ2 P R, we have

|Bupx1, τ1q ´Bupx2, τ2q| ď |Bupx1, τ1q ´Bupx2, τ1q| ` |Bupx2, τ1q ´Bupx2, τ2q|

ď }∇Bu}8|x1 ´ x2| ` }BtBu}8|τ1 ´ τ2|

ď Lbp|x1 ´ x2| ` |τ1 ´ τ2|q .

Therefore, choosing x1 “ ypsq, τ1 “ s, and x2 “ τ2 “ 0, we have that

ˇ

ˇ

ˇ

ˇ

ż t

t0

Bupypsq, sq ds

ˇ

ˇ

ˇ

ˇ

ď

ż t

t0

Lbp|ypsq| ` |s|q ` |Bup0, 0q| ds

ď Lb

ż t

t0

|ypsq| ds` Lb

ż t

t0

|s| ds` |Bup0, 0q|pt´ t0q

ď Lb

ż t

t0

|ypsq| ds`
Lbpt

2 ´ t20q

2
` |Bup0, 0q|pt´ t0q .
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Beginning with the equation for w, we seek a bound on the solution as follows

|wptq| ď |w0| `

ż t

t0

ˇ

ˇ

ˇ
´ µwpsq ´Mupypsq, sqwpsq ´ κµ

1{2 wpsq
?
t´ s

`Bupypsq, sq
ˇ

ˇ

ˇ
ds

ď |w0| `

ż t

t0

|µ` Lb||wpsq| `
ˇ

ˇ

ˇ
κµ1{2 wpsq

?
t´ s

ˇ

ˇ

ˇ
` |Bupypsq, sq| ds

ď |w0| ` |µ` Lb|

ż t

t0

|wpsq| ds` |κµ1{2
|

ż t

t0

pt´ sq´1{2
|wpsq| ds

` Lb

ż t

t0

|ypsq| ds`
Lbpt

2 ´ t20q

2
` |Bup0, 0q|pt´ t0q .

We now proceed with the equation for y

|yptq| ď |y0| `

ż t

t0

|wpsq| ` |Aupypsq, sq| ds

ď

ż t

t0

|wpsq| ds` Lb

ż t

t0

|ypsq| ds`
Lbpt

2 ´ t20q

2
` |Aup0, 0q|pt´ t0q .

We then must consider the above inequalities for |ypsq| and |wpsq| as a pair.

In particular, we define apsq by

apsq “ |ypsq| ` |wpsq| ,

and then we have the following inequality

apsq ď apt0q ` Lbpt
2
´ t20q ` p|Aup0, 0q| ` |Bup0, 0q|qpt´ t0q

`maxt1, µ` Lbu

ż t

t0

apsq ds` |κµ1{2
|

ż t

t0

pt´ sq´1{2apsq ds .
(4.25)

A Grönwall-style result of S. Y. Lin [71], gives a bound on the solution as

required (see Appendix B). Q.E .D .

We are now prepared to prove Theorem 4.13.
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Proof (of Theorem 4.13). Let py, wq be the unique maximal solution from

Proposition 4.11 and rt0, T q its domain. We aim to show that rt0, T q “

rt0,8q. Assume the contrary is true, then T is finite. By Theorem 4.12,

py, wq leaves any compact set S P D ˆRn as tÑ T . Take a specific compact

set

S “ B̄0pr1q ˆ B̄0pr2q .

For t sufficiently close to T , we know }y} ą r1 and }w} ą r2. Since r1, r2

were chosen arbitrarily, we may deduce that

}y}, }w} Ñ 8, as tÑ T .

On the contrary, we have boundedness of y and w from Lemma 4.14. Thus

we have reached a contradiction and proven our theorem. Q.E .D .

4.7 Conditions under which a strong solution exists

The well-posedness results presented thus far have concerned themselves with

weak solutions. In general, the Maxey-Riley equation permits weak solu-

tions only. Under additional assumptions, however, we will show that the

solution is sufficiently regular to be classified as strong. Recall that, when

we assume the particular initial condition wpt0q “ 0, the Basset-Boussinesq

history integral takes a particular form as in equation (4.14), repeated here

for convenience.
d

dt

ż t

t0

wpsq
?
t´ s

ds “

ż t

t0

9wpsq
?
t´ s

ds .

Thus, the Maxey-Riley equations take the form of a fractional differential

equation of Caputo type (4.15). It is known [39] that this form of the equa-

tions permits a strong solution with ypt0q “ y0 and wpt0q “ 0.
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It remains to prove under which conditions the solution to (4.7) is differ-

entiable at t0. This will involve proving the necessary conditions for the

fractional integral
ż t

t0

wpsq
?
t´ s

ds , (4.26)

to be differentiable at t0. Without proving this, the expression (4.14) does not

make sense at t “ t0 and thus we cannot say that continuously differentiable

solutions to (4.15) are also continuously differentiable solutions to (4.10).

This integral is of interest since difficulties which arise when considering

the differentiability of solutions to (4.7) stem from the history term (4.26).

With the following results we clarify under what assumptions this term is

differentiable at t0.

We first study the smoothness properties of the integral (4.26) which may

assist in proving differentiability. Recall that since w is a solution to (4.7), it

satisfies the continuity and boundedness properties in Theorem 4.6. We can

certainly prove that the integral (4.26) is continuous at t0. Indeed, for every

ε ą 0 there exists δ ą 0 such that 2K
?
δ ă ε. For this ε, δ we have that for

|t´ t0| ă δ:

ˇ

ˇ

ˇ

ˇ

ż t

t0

wpsq
?
t´ s

ds´

ż t0

t0

wpsq
?
t0 ´ s

ds

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż t

t0

wpsq
?
t´ s

ds

ˇ

ˇ

ˇ

ˇ

ď K

ż t

t0

1
?
t´ s

ds

ď 2K
?
t´ t0 ă ε .

(4.27)

From this, one can deduce that the integral is 1/2-Hölder continuous.

Lemma 4.15. Assuming py, wq is a solution of (4.7), we have that

(i) the integral (4.26) is 1/2-Hölder, i.e. there exists some constant C ą 0
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such that for any t1, t2 with t0 ă t1 ă t2 we have

ˇ

ˇ

ˇ

ˇ

ż t2

t0

wpsq
?
t2 ´ s

ds´

ż t1

t0

wpsq
?
t1 ´ s

ds

ˇ

ˇ

ˇ

ˇ

ď C|t2 ´ t1|
1{2 , (4.28)

and

(ii) if wpt0q “ 0 then the following limit exists and is equal to zero

lim
tÑt0

wptq
?
t´ t0

“ 0 . (4.29)

Proof. We prove the two parts separately, beginning with part (i).

Part (i): We bound the left hand side of (4.28) as follows

ˇ

ˇ

ˇ

ˇ

ż t2

t0

wpsq
?
t2 ´ s

ds´

ż t1

t0

wpsq
?
t1 ´ s

ds

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ż t2

t1

wpsq
?
t2 ´ s

ds

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż t1

t0

wpsq
?
t2 ´ s

´
wpsq
?
t1 ´ s

ds

ˇ

ˇ

ˇ

ˇ

,

and it remains to prove that both terms on the right hand side are indeed

1/2-Hölder continuous. By the same argument as (4.27), the first term is

1/2-Hölder and so is the second term since

ˇ

ˇ

ˇ

ˇ

ż t1

t0

wpsq
?
t2 ´ s

´
wpsq
?
t1 ´ s

ds

ˇ

ˇ

ˇ

ˇ

ď K

ˇ

ˇ

ˇ

ˇ

ż t1

t0

1
?
t2 ´ s

´
1

?
t1 ´ s

ds

ˇ

ˇ

ˇ

ˇ

ď
ˇ

ˇ´2K
?
t2 ´ t1 ` 2K

?
t2 ´ t0 ´ 2K

?
t1 ´ t0

ˇ

ˇ

ď 2K
?
t2 ´ t1 ` 2K

ˇ

ˇ

?
t2 ´ t0 ´

?
t1 ´ t0

ˇ

ˇ

ď 2K
?
t2 ´ t1 ` 2K

|t2 ´ t1|
?
t2 ´ t0 `

?
t1 ´ t0

ď 2K
?
t2 ´ t1 ` 2K

|t2 ´ t1|
?
t2 ´ t1 `

?
t1 ´ t1

ď 4K
?
t2 ´ t1 ,
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where in the first line we have made use of the boundedness property of

solutions to the Maxey-Riley equation, see Theorem 4.6.

Part (ii): Recall that w satisfies

wptq “ wpt0q `

ż t

t0

ˆ

´ µwpsq ´Mupypsq, sqwpsq

´ κµ1{2 wpsq
?
t´ s

`Bupypsq, sq

˙

ds .

(4.30)

Dividing through by
?
t´ t0 and considering wpt0q “ 0, we have

wptq
?
t´ t0

“
1

?
t´ t0

ż t

t0

´

´ µwpsq ´Mupypsq, sqwpsq `Bupypsq, sq
¯

ds

´
κµ1{2

?
t´ t0

ż t

t0

wpsq
?
t´ s

ds .

(4.31)

We know that w is locally bounded and, under assumptions (˚), Mu is uni-

formly bounded and Bu is sufficiently smooth to ensure that it is locally

bounded on each interval rt0, ts. Hence, there exists some c1 which (locally)

bounds the integrand of the first integral on the right hand side and hence

1
?
t´ t0

ż t

t0

p´µwpsq ´Mupypsq, sqwpsq `Bupypsq, sqq ds ď c1

?
t´ t0 .

(4.32)

We may therefore deduce that

lim
tÑt0

1
?
t´ t0

ż t

t0

p´µwpsq ´Mupypsq, sqwpsq `Bupypsq, sqq ds “ 0 . (4.33)
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It remains to show the existence of the limit

lim
tÑt0

1
?
t´ t0

ż t

t0

wpsq
?
t´ s

ds “

lim
tÑt0

„

1
?
t´ t0

ż t

t0

1
?
t´ s

ż s

t0

´µwprq ´Mupyprq, rqwprq `Bupyprq, rq dr ds



´ lim
tÑt0

„

1
?
t´ t0

ż t

t0

κµ1{2

?
t´ s

ż s

t0

wprq
?
s´ r

dr ds



.

(4.34)

where to show the equality we have used the equation (4.7) for wpsq. We

may bound the middle line of (4.34) by

1
?
t´ t0

ż t

t0

1
?
t´ s

ż s

t0

´ µwprq ´Mupyprq, rqwprq `Bupyprq, rq dr ds

ď
c1

?
t´ t0

ż t

t0

s´ t0
?
t´ s

ds .

The integral on the right hand side may be calculated by making a suitable

substitution

ż t

t0

s´ t0
?
t´ s

ds “ ´

ż 0

?
t´t0

t´ t0 ´ u
2

u
2u du “

ż

?
t´t0

0

pt´ t0q ´ u
2 du

“ 2

ˆ

pt´ t0q
3{2
´

1

3
pt´ t0q

3{2

˙

“
4

3
pt´ t0q

3{2 .

Therefore, the limit in the second line of (4.34) is equal to 0. We now observe

the limit in the final line of (4.34), i.e.

lim
tÑt0

„

1
?
t´ t0

ż t

t0

1
?
t´ s

ż s

t0

wprq
?
s´ r

dr ds



. (4.35)

First recall that w is bounded by K, then we may bound and again calculate
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by making a series of suitable substitutions

1
?
t´ t0

ż t

t0

1
?
t´ s

ż s

t0

wprq
?
s´ r

dr ds ď
K

?
t´ t0

ż t

t0

1
?
t´ s

ż s

t0

1
?
s´ r

dr ds

ď
2K

?
t´ t0

ż t

t0

?
s´ t0
?
t´ s

ds

ď
2K

?
t´ t0

ż

?
t´t0

0

2u2

?
t´ u2 ´ t0

du

ď 4K
?
t´ t0

ż π{2

0

sin2 θ dθ

ď Kπ
?
t´ t0 ,

and thus

lim
tÑt0

„

1
?
t´ t0

ż t

t0

1
?
t´ s

ż s

t0

wprq
?
s´ r

dr ds



“ 0 .

Putting these calculations together, we have proven our claim. Q.E .D .

Lemma 4.16. A solution wptq of (4.7) is 1{2-Hölder on the interval rt0, t0`

εq and locally Lipschitz on rt0 ` ε,8q, for any ε ą 0.

Proof. By Lemma 4.15 (i), there exists some constant C ą 0 such that for

any t1, t2 with t0 ă t1 ă t2 we have that the memory term in (4.7) is 1{2-

Hölder on the interval rt0, t0 ` εq (see (4.28)). As all other terms in (4.7) are

Lipschitz continuous, we deduce the 1{2-Hölder continuity of w.

It remains to prove that wptq is Lipschitz on any interval rt0` ε, T s , for any

ε ą 0 and T ą t0 ` ε. Without loss of generality we will assume that t0 “ 0.

The definition of wptq is then

wptq “ wp0q `

ż t

0

ˆ

´ µwpsq ´Mupypsq, sqwpsq

´ κµ1{2 wpsq
?
t´ s

`Bupypsq, sq

˙

ds .
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For t, s P rε,8q, we aim to bound the difference between wptq and wpsq by

iterating an argument by which we multiply the time parameter by a number

in r0, 1s before taking the supremum. Indeed, for r0 P r0, 1s and t, s P rε,8q

we have

wpr0tq ´ wpr0sq “

ż r0t

r0s

p´µwpqq ´Mupypqq, qqwpqq `Bupypqq, qqq

´ κµ1{2

ˆ
ż r0t

0

wpqq
?
r0t´ q

dq ´

ż r0s

0

wpqq
?
r0s´ q

dq

˙

.

Making substitutions q “ r1r0t and q “ r1r0s in the penultimate and final

integrals in the above equation respectively, we have

wpr0tq ´ wpr0sq “

ż r0t

r0s

p´µwpqq ´Mupypqq, qqwpqq `Bupypqq, qqq

´ κµ1{2

„

?
r0t

ż 1

0

wpr1r0tq
?

1´ r1

dr1 ´
?
r0s

ż 1

0

wpr1r0sq
?

1´ r1

dr1



“

ż r0t

r0s

p´µwpqq ´Mupypqq, qqwpqq `Bupypqq, qqq

´ κµ1{2

„

p
?
r0t´

?
r0sq

ż 1

0

wpr1r0tq
?

1´ r1

dr1

`
?
r0s

ż 1

0

wpr1r0tq ´ wpr1r0sq
?

1´ r1

dr1



,

and from local boundedness of w and the assumptions (˚), this implies

|wpr0tq ´ wpr0sq| ď K0|t´ s| ` κµ
1{2?r0s

ż 1

0

|wpr1r0tq ´ wpr1r0s|q
?

1´ r1

dr1 .

To obtain the above estimate, we used the fact that (recall that r0 P r0, 1s)

|
?
r0t´

?
r0s| ď

?
r0

t´ s
?
t`

?
s
ď

1

2
?
ε
|t´ s| .

Within the integrand of the above inequality, we may iterate the argument
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by substituting in the definition of w to evaluate wpr1r0tq ´ wpr1r0sq. We

claim that after iterating k times we have

|wpr0tq ´ wpr0sq| ď Kk|t´ s|

` pκµ1{2?r0sq
k`1

ż 1

0

d

rk1
1´ r1

ż 1

0

d

rk´1
2

1´ r2

ż 1

0

¨ ¨ ¨

¨ ¨ ¨

ż 1

0

|wprk`1rk . . . r0tq ´ wprk`1rk . . . r0sq|
?

1´ rk`1

drk`1 . . . dr1 ,

(4.36)

where tKi, i P Nu, κ is an appropriately chosen collection of constants. We

will prove this by induction, where the above calculation acts as a base case.

Suppose our inductive hypothesis (4.36) is true, then we iterate once more

by substituting in the difference

ˇ

ˇwprk`1rk . . . r0tq ´ wprk`1rk . . . r0sq
ˇ

ˇ ď Kk|t´ s|

` κµ1{2

ˇ

ˇ

ˇ

ˇ

`
a

rk`1 . . . r0t´
?
rk`1 . . . r0s

˘

ż 1

0

wprk`2 . . . r0tq
?

1´ rk`2

drk`2

ˇ

ˇ

ˇ

ˇ

` κµ1{2

ˇ

ˇ

ˇ

ˇ

?
rk`1 . . . r0s

ż 1

0

wprk`2 . . . r0tq ´ wprk`2 . . . r0sq
?

1´ rk`2

drk`2

ˇ

ˇ

ˇ

ˇ

ď Kk`1|t´ s|

` κµ1{2?rk`1 . . . r0s

ż 1

0

|wprk`2 . . . r0tq ´ wprk`2 . . . r0sq|
?

1´ rk`2

drk`2 .

Using our inductive hypothesis (4.36), we get

|wpr0tq ´ wpr0sq| ď Kk`1|t´ s|

` pκµ1{2?r0sq
k`2

ż 1

0

d

rk`1
1

1´ r1

ż 1

0

d

rk2
1´ r2

ż 1

0

¨ ¨ ¨

¨ ¨ ¨

ż 1

0

|wprk`2 . . . r0tq ´ wprk`2 . . . r0sq|
?

1´ rk`2

drk`2 . . . dr1 ,

(4.37)

and hence we have proven our claim by induction.
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Noting that ri P r0, 1s for each i P N, we take supremum over tri, i P Nu to

deduce that

sup
αPr0,1s

|wpαtq ´ wpαsq| ď Kk|t´ s| ` Ik sup
αPr0,1s

|wpαtq ´ wpαsq| , (4.38)

where

Ik “ pκµ1{2?r0sq
k`1

ż 1

0

d

rk1
1´ r1

ż 1

0

d

rk´1
2

1´ r2

ż 1

0

¨ ¨ ¨

ż 1

0

drk`1 . . . dr1
?

1´ rk`1

. (4.39)

We now observe the integral

ak “

ż 1

0

c

xk

1´ x
dx “ 2

ż π{2

0

sink`1 θ dθ . (4.40)

Note that the sequence pakqk converges to zero as k tends to infinity, and

does so at the same rate as 1{
?
k. Indeed, note that

ak “ 2

ż π{2

0

sink´1 θp1´ cos2 θq dθ “ ak´2 ´
ak
k
,

where we have used that

0 “
2 sink θ

k
cos θ

ˇ

ˇ

ˇ

ˇ

π{2

0

“

ż π{2

0

2 sink´1 θ cos2 θ ´
2 sink`1 θ

k
dθ

“

ż π{2

0

2 sink´1 θ cos2 θ dθ ´
ak
k
.

Therefore we have that

ak “
k

k ` 1
ak´2 “

ˆ

1´
1

k ` 1

˙

ak´2 .
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Since 1´ y ď expp´yq for positive y, we have, for k odd

ak ď
π

2
exp

¨

˝´

k`1
2
ÿ

n“2

1

2n

˛

‚ ,

and the case where k is even is similar. Note that we have used the fact that

a1 “ π{2, in the case where k is even we would instead use a0 “ 2. Therefore

?
kak ď

π

2
exp

¨

˝

1

2
log k ´

1

2

k`1
2
ÿ

n“2

1

n

˛

‚ .

In the following we will use the fact that the sequence pbkqk defined as

bk “ log k ´
k
ÿ

n“1

1

n

converges to the Euler-Mascheroni constant γ. We have that

?
kak ď

π

2
exp

ˆ

1

2
log k ´

1

2

ˆ

logp
k ` 1

2
q ´ 1´ b k`1

2

˙˙

.

Observe that the limit on the right hand side converges to π
2

exp
`

logp2q
2
` 1

2
`

γ
2

˘

. In particular, the sequence on the right hand side is bounded, since it

converges, and hence the sequence
?
kak is bounded above. The analysis for

the even terms is similar. We have found that there exists M such that

?
kak ďM ùñ ak ď

M
?
k
,

thus Ik Ñ 0 as

Ik ď pMκµ1{2?r0sq
k`1 1
?
k!
Ñ 0 as k Ñ 8 .
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Hence we choose k P N sufficiently large to ensure that

Ik ă 1 , (4.41)

and thus (4.36) implies

p1´ Ikq sup
αPr0,1s

|wpαtq ´ wpαsq| ď Kk|t´ s| . (4.42)

Rearranging gives

|wptq ´ wpsq| ď sup
αPr0,1s

|wpαtq ´ wpαsq| ď
Kk

1´ Ik
|t´ s| , (4.43)

and we have thus proven our claim. Q.E .D .

We may now approach the main result of the section.

Theorem 4.17. Under the assumptions (˚), there exists a strong solution

of the Maxey-Riley equation (4.5) if and only if wpt0q “ 0.

Proof. To prove this theorem, note that the existence of classical solutions

is equivalent to the differentiability of the integral (4.26) at t0, since the

differentiability of the remaining terms in (4.7) is trivial.

Firstly, assume that wpt0q ‰ 0. Then by adding and subtracting wpt0q to the

numerator of the integrand of (4.26), we have

ż t

t0

wpsq
?
t´ s

ds “

ż t

t0

wpsq ´ wpt0q
?
t´ s

ds`

ż t

t0

wpt0q
?
t´ s

ds

“

ż t

t0

wpsq ´ wpt0q
?
t´ s

ds` 2wpt0q
?
t´ t0 .
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One may observe that the second term is not differentiable at t0, indeed

lim
tÑt0

2wpt0q
?
t´ t0

t´ t0
“ lim

tÑt0

2wpt0q
?
t´ t0

“ 8 .

Since, by Lemma 4.16, w is 1{2-Hölder as t approaches t0, we know that for

suitably small t´ t0 there exists some c2 such that

ˇ

ˇ

ˇ

ˇ

ż t

t0

wpsq ´ wpt0q
?
t´ s

ˇ

ˇ

ˇ

ˇ

ds ď

ż t

t0

|wpsq ´ wpt0q|
?
t´ s

ď c2

ż t

t0

?
s´ t0
?
t´ s

ds . (4.44)

We have calculated the integral on the right hand side in the proof of Lemma

4.15 (ii), and thus

1

t´ t0

ˇ

ˇ

ˇ

ˇ

ż t

t0

wpsq ´ wpt0q
?
t´ s

ds

ˇ

ˇ

ˇ

ˇ

ď
c2π

2
. (4.45)

We may conclude that if wpt0q ‰ 0, then the integral (4.26) is not differen-

tiable at t0 and thus solutions of (4.7) are not differentiable at t0 and are not

classical solutions. Hence the contrapositive is true, and if solutions of (4.7)

are classical solutions, then wpt0q “ 0.

We next prove the reverse implication, by assuming that wpt0q “ 0. By

Lemma 4.15 (i), for wpt0q “ 0 the following function is bounded

qpsq “
wpsq
?
s´ t0

,

since
|wpsq|
?
s´ t0

“
|wpsq ´ wpt0q|
?
s´ t0

ď C ,
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by the definition of Hölder continuity. In this case we have

ˇ

ˇ

ˇ

ˇ

1

t´ t0

ż t

t0

?
s´ t0 qpsq
?
t´ s

ds

ˇ

ˇ

ˇ

ˇ

ď
C

t´ t0

ˇ

ˇ

ˇ

ˇ

ż t

t0

?
s´ t0
?
t´ s

ds

ˇ

ˇ

ˇ

ˇ

ď
C

t´ t0

ˇ

ˇ

ˇ

π

2
pt´ t0q

ˇ

ˇ

ˇ
“
Cπ

2
.

(4.46)

By Lemma 4.15 (ii) the following limit exists

lim
sÑt0

qpsq “ 0 , (4.47)

and therefore for t suitably close to t0 we have

1

t´ t0

ż t

t0

?
s´ t0p0´ εq
?
t´ s

ds ď
1

t´ t0

ż t

t0

?
s´ t0 qpsq
?
t´ s

ds

ď
1

t´ t0

ż t

t0

?
s´ t0p0` εq
?
t´ s

ds ,

and thus

´
Cπ

2
ε ď

1

t´ t0

ż t

t0

?
s´ t0 qpsq
?
t´ s

ds ď
Cπ

2
ε .

Hence the integral (4.26) is differentiable at t “ t0, with value zero.

It remains to prove differentiability away from the initial time. By Lemma

4.16, wptq is Lipschitz and thus absolutely continuous, hence there exists a

locally bounded measurable function a : rt0,8q ÞÑ R such that

wpsq “ wpsq ´ wpt0q “

ż s

t0

aprq dr .
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By integrating by parts, we have the identity

0 “

ˆ

?
t´ s

ż s

t0

aprq dr

˙
ˇ

ˇ

ˇ

ˇ

t

t0

“

ż t

t0

d

ds

ˆ

?
t´ s

`

wptq ´ wpt0q
˘

˙

ds

“

ż t

t0

wpsq ´ wpt0q

2
?
t´ s

ds`

ż t

t0

apsq
?
t´ s ds ,

and we thus it suffices to prove the differentiability of

fptq “

ż t

t0

apsq
?
t´ s ds

“ ´

ż t

t0

wpsq ´ wpt0q

2
?
t´ s

ds “ ´

ż t

t0

wpsq

2
?
t´ s

ds .

(4.48)

Notice that if we prove that f is differentiable for any t ą t0, then the Basset

history term is differentiable and hence so is wptq. The proof is from first

principles, we have that

f 1ptq “ lim
εÑ0

fpt` εq ´ fptq

ε

“ lim
εÑ0

„

1

ε

ż t`ε

t0

apsq
?
t` ε´ s ds´

1

ε

ż t

t0

apsq
?
t´ s ds



“ lim
εÑ0

„

1

ε

ż t`ε

t

apsq
?
t` ε´ s ds



` lim
εÑ0

ż t

t0

apsq

ˆ
?
t` ε´ s´

?
t´ s

ε

˙

ds .

(4.49)

It remains to prove that the limit can be exchanged with the integral. For

ε ą 0, note that

ˇ

ˇ

ˇ

ˇ

1

ε

ż t`ε

t

apsq
?
t` ε´ s ds

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

1

ε

ż t`ε

t

apsq
?
ε ds

ˇ

ˇ

ˇ

ˇ

ď p sup
sPrt,t`εs

|apsq|q
?
ε ,
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the boundedness of apsq gives

lim
εÑ0

„

1

ε

ż t`ε

t

apsq
?
t` ε´ s ds



“ 0 ,

In the last term in (4.49) we can switch between the integration and the limit

with respect to ε by observing that, for any ε ą 0, we have

ˇ

ˇ

ˇ

ˇ

apsq

?
t` ε´ s´

?
t´ s

ε

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

apsq
t` ε´ s´ pt´ sq

εp
?
t` ε´ s`

?
t´ sq

ˇ

ˇ

ˇ

ˇ

ď
supsPrt0,ts |apsq|

2
?
t´ s

,

and the above upper bound is integrable on the interval rt0, ts.

For ε ă 0 sufficiently small so that t` ε ą t0 one shows in a similar manner

that

lim
εÑ0

„

1

ε

ż t

t`ε

apsq
?
t´ s ds



“ 0 ,

Also
ż t`ε

t0

apsq

„
?
t` ε´ s´

?
t´ s

ε



ds “

ż t

t0

apsqqps, εqds ,

where qps, εq “ 0 for s P rt` ε, ts and

0 ď qps, εq “

?
t` ε´ s´

?
t´ s

ε
“

t` ε´ s´ pt´ sq

εp
?
t` ε´ s`

?
t´ sq

ď
1

?
t´ s

,

and we have, for any s P rt0, ts,

ˇ

ˇ

ˇ

ˇ

apsq

?
t` ε´ s´

?
t´ s

ε

ˇ

ˇ

ˇ

ˇ

ď
supsPrt0,ts |apsq|?

t´ s
,

and the above upper bound is integrable on the interval rt0, ts.

Hence we have the required differentiability by the dominated convergence
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theorem, that is, we have explicitly that

f 1ptq “

ż t

t0

apsq

2
?
t´ s

ds .

Q.E .D .

4.8 Properties of the solution as a function of the initial

conditions

Suppose pyptq, wptqq denotes a solution of (4.5) corresponding to an initial

condition py0, w0q P R2n. We denote the derivatives of y and w with respect to

py0, w0q by Dy and Dw respectively. Note that these derivatives are matrix

valued and may be considered as a map rt0,8q Ñ Rnˆ2n.

The solution of the Maxey-Riley equation can be interpreted as a function

of its initial condition. Suppose pyptq, wptqq denotes a solution of (4.5) corre-

sponding to an initial condition py0, w0q P R2n, then we denote the derivatives

of y and w with respect to py0, w0q by Dy and Dw respectively. These deriva-

tives satisfy the following equation [39]

Dyptq “ pIn|Onq `

ż t

t0

´

Dwpsq `∇Aupypsq, sqDypsq
¯

ds ,

Dwptq “ pOn|Inq `

ż t

t0

ˆ

´ µDwpsq ´ Lpypsq, wpsq, sqDypsq

´Mupypsq, sqDwpsq ´ κµ
1{2Dwpsq?

t´ s

`∇Bupypsq, sqDypsq

˙

ds ,

(4.50)

163



where L is an n-dimensional square matrix with components defined by

Lijpypsq, wpsq, sq “
ÿ

k

BMik

Byj
pypsq, sqwkpsq ,

and In and On denote the n-dimensional identity and null matrices respec-

tively.

This interpretation will enable us to learn qualitative information about the

solution. In particular, we will prove results about the proximity of ‘nearby’

trajectories, a non-collision result, and give a discussion on time reversibility.

In this section, we will work under the following assumptions.

The velocity field, u, is four times continuously differentiable and

its partial derivatives are Lipschitz continuous up to order four.
(˚˚)

The Maxey-Riley equation is formulated to take a fluid velocity field and

return a single particle trajectory corresponding to a particle’s given initial

position and velocity. This raises the question of how two such particles

would interact if their initial conditions are similar.

Proposition 4.18. Under the conditions (˚˚), the distance between two tra-

jectories at any time t is controlled by the difference between their initial

conditions. Indeed, for two initial conditions x1, x2 P R2n, there exists some

constant M such that

}ypt, x2q ´ ypt, x1q} ďM}x2 ´ x1} ,

}wpt, x2q ´ wpt, x1q} ďM}x2 ´ x1} ,

where the notation ypt, xiq and wpt, xiq is used to reflect the dependence of

the solution on its initial conditions.
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Remark 4.19. An interpretation of this proposition is that that two trajecto-

ries can be chosen to be arbitrarily close at time t by selecting suitably close

initial conditions for them.

Proof. The equation (4.50) for the derivatives with respect to the initial

conditions has solutions under assumptions (˚˚). With a similar methodology

to that developed in Section 4.6, this result may be shown to hold globally

in time. Under assumptions (˚˚), we have that ∇Au, L, Mu, and Bu are all

bounded and we thus have sufficient conditions to apply a fractional Grönwall

argument as in Appendix B. Let

fptq “ sup
sPrt0,ts

n
ÿ

i“1

|Dyipsq| ` |Dwipsq| , (4.51)

then there exist constants C1, C2 such that

fptq ď 2n`

ż t

t0

C1fpsq ds`

ż t

t0

C2pt´ sq
´1{2fpsq ds . (4.52)

We may once again apply the Grönwall inequality from Appendix B. Hence

Dy and Dw are bounded above on intervals rt0, T q for all T ą t0. Suppose

M is such that Dy and Dw are bounded above by M . Then, for two initial

conditions x1, x2 P R2n we have

}ypt, x2q ´ ypt, x1q} “

ż x2

x1

Dypt, zq dz ďM}x2 ´ x1} ,

}wpt, x2q ´ wpt, x1q} “

ż x2

x1

Dypt, zq dz ďM}x2 ´ x1} .

Q.E .D .

Whilst the previous result implies that two particles can be chosen to be
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arbitrarily close to one another, the next may be interpreted as a non-collision

property that two particles cannot collide. To prove this result, we will first

need to comment on the evolution of an inverse matrix.

Remark 4.20 (Non-fractional evolution of an inverse matrix). If an n ˆ n

matrix, Mt, evolves according to

Mt “ In `

ż t

t0

AsMs ds ,

and another matrix, Nt, according to

Nt “ In ´

ż t

t0

NsAs ds .

Then we have

NtMt “ In `

ż t

t0

Ns
dMs

ds
ds`

ż t

t0

dNs

ds
Ms ds

“ In `

ż t

t0

NsAsMs ds´

ż t

t0

NsAsMs ds “ In .

Thus, detpNtMtq “ detpNtq detpMtq “ 1 and therefore detpMtq ‰ 0 and Mt

is invertible. Moreover, Nt is the inverse of Mt for all t.

In the fractional case, this is less straightforward and requires the usage of

left and right fractional derivatives [85].

Lemma 4.21 (Fractional evolution of an inverse matrix). Suppose that Mt

evolves according to the fractional equation

Mt “ In `
1
?
π

ż t

t0

AsMs
?
t´ s

ds . (4.53)
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Then its inverse satisfies

M´1
s “ In `

1
?
π

ż t

s

M´1
r Ar

?
r ´ s

dr . (4.54)

Proof. Recall that, from Definition 4.4, the evolution of the matrix Mt is

given in differential form by

dMt

dt
“t0 D

1{2
pAtMtq . (4.55)

Recall that the right Riemann-Liouville fractional derivative may be defined

similarly to the standard, or left Riemann-Liouville derivative in Definition

4.4, by instead changing the equation (4.8) to

Dp
bfptq “

1

Γpn´ pq

ˆ

´
d

dt

˙n ż b

t

ps´ tqn´p´1fpsq ds . (4.56)

We then note that, for continuous functions f and g, we have the following

result
ż b

a

fptqaD
αgptq ds “

ż b

a

gpsqDα
b fpsq ds . (4.57)

Suppose now that the matrix Ns evolves by

Ns “ In `
1
?
π

ż t

s

NrAr
?
r ´ s

dr , (4.58)

where this evolution depends on time. In differential form this is

dNs

ds
“ ´D

1{2
t pNsAsq . (4.59)
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Now suppose that At “ A is constant, then we have

NtMt “ In `

ż t

t0

Ns
dMs

ds
ds`

ż t

t0

dNs

ds
Ms ds ,

“ In `

ż t

t0

Nst0D
1{2
pAMsq ds´

ż t

t0

D
1{2
t pNsAqMs ds .

(4.60)

Now by the equation (4.57), we have

NtMt “ In , (4.61)

and thus we have determined the equation for the inverse when Mt is a matrix

evolving according to a fractional differential equation. Q.E .D .

Proposition 4.22 (Non-collision of inertial particles). Under conditions

(˚˚), the distance between two trajectories is always strictly positive if their

initial conditions are distinct.

Proof. Define the matrix Dϕ by

Dϕptq :“

¨

˝

Dyptq

Dwptq

˛

‚ ,

then this matrix evolves according to the equation

Dϕptq “ I2n ´

ż t

t0

¨

˝

On On

On ´κµ1{2In

˛

‚Dϕpsq
ds

?
t´ s

`

ż t

t0

¨

˝

∇Aupypsq, sqIn In
`

∇Bupypsq, sq ´ Lpypsq, wpsq, sq
˘

In ´
`

µ`Mupypsq, sq
˘

In

˛

‚Dϕpsq ds .

Immediately following Lemma 4.21, the inverse of Dϕptq evolves according
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to

Dϕ´1psq “I2n ´

ż t

s
Dϕ´1prq

¨

˝

On On

On ´κµ1{2In

˛

‚

dr
?
r ´ s

´

ż s

t0

Dϕ´1prq

¨

˝

∇Aupyprq, rqIn In
`

∇Bupyprq, rq ´ Lpyprq, wprq, rq
˘

In ´
`

µ`Mupyprq, rq
˘

In

˛

‚dr .

Since left and right Riemann-Liouville derivatives are equivalent up to time

reversal, the same Grönwall argument from Appendix B may be applied. This

is valid since u is sufficiently smooth and bounded under the assumptions (˚˚)

for the coefficients to satisfy the required conditions for the Grönwall theorem

to hold. Hence there exists some ĂM which is an upper bound for Dy´1 and

Dw´1, and hence

0 ă
1

ĂM
ď Dy,Dw . (4.62)

Q.E .D .

4.9 Concluding remarks

Revisiting the promises made in Section 4.1, we have presented a thorough

analysis of the Maxey-Riley equation. This has built on the work of Faraz-

mand and Haller [39], and made use of the Grönwall theorem in Appendix

B. Most significantly, in this chapter we have shown that the solution of the

equation exists globally in time and we have rigorously proven the condi-

tions under which a strong solution exists. Therefore, despite the fact that

the Maxey-Riley equation is a fractional order differential equation, and is

nonlinear, this does not inhibit the solutions from being global in time or

differentiable.

Whilst we have answered many of the key questions surrounding the analysis

of this model, there are still questions that remain. It remains to study how
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the concept of time reversibility applies to the system, since the solution

depends on its history. This is key for determining the origin of an object

with mass, given its current location. It may also be possible to relax the

assumptions on the underlying velocity field.
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5
Conclusion

Within this thesis, we have introduced and developed a broad selection of

mathematical tools for the purposes of understanding problems in fluid dy-

namics. Along the way, we have seen and used concepts from stochastic anal-

ysis, fractional calculus, exterior calculus, differential geometry, Lie group

theory, and more. New methodologies have been introduced, and existing

concepts expanded on. We have revealed new properties of well established

methods, as well as proposed new approaches to overcome modelling chal-

lenges. In Chapter 2, we summarised some ideas from geometric mechanics

and how this may apply to fluids, as well as gave an in depth discussion

of how to formulate fluid problems from a stochastic variational principle.

We made use of this in Chapter 3, where we discussed both new and ex-

isting approaches to free surface dynamics from a variational perspective.
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This involved a novel stochastic version of classical water wave theory, as

well as a new deterministic and stochastic approach to wave current interac-

tion using a composition of two maps. This approach allows the free surface

problem to be closed with a larger set of physical variables compared to the

standard theories, which can aid in understanding complex wave current in-

teractions which have thus far remained elusive. Finally, in Chapter 4, we

considered the behaviour of an object which is carried by a flow of currents.

This involved a rigorous analysis of the Maxey-Riley equation. Since the

complications involved in this analysis surrounded the fractional order term,

the results found have implications on the solution properties of other such

inertial particles with memory.

Future research directions

The work presented in this thesis has raised a number of further questions.

These include topics which correspond to each chapter, questions of a mathe-

matical nature, and new challenges in physical modelling. Some particularly

interesting topics are the following.

• As found in Chapter 2, the definition of a semimartingale driven vari-

ational principle provides a framework for correctly interpreting and

formulating a given action integral, when the integral is a stochastic

integral. However it is unclear how many of the deterministic results

from geometric mechanics generalised to an arbitrary stochastic inte-

gral. For example, it is not immediately obvious what assumptions are

necessary on the driving semimartingale for an Euler-Poincaré reduc-

tion to be possible. The connection to an arbitrary stochastic Hamil-

tonian formulation is also unexplored. Stochastic advection by Lie
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transport gives a particular case of a semimartingale driven variational

principle where these notions may be shown to extend from the deter-

ministic case, as we illustrated with the water wave example in Chapter

3, but it is unclear what are the minimal assumptions necessary for this

to be true in general.

• The new stochastic extension of classical water wave theory, found in

Section 3.3, is yet to be fully explored. It is not known whether these

equations are well posed, in the same way as the deterministic case is

known to be. If it is well posed, does the noise improve or reduce the

regularity of the solutions?

• The deterministic classical water wave equations have been numerically

integrated, and asymptotically expanded. This remains to be done

with the stochastic case, where there is an opportunity to use the noise

coefficients to explore vorticity effects and model uncertainty.

• Introduced in Chapter 3 (and following on from [33] and [57]), the com-

position of maps approach to wave current interaction merits further

study. In particular, the identification of a more physical two dimen-

sional equation to represent the flow of currents observed from satellite

imagery is an important problem. This is a particular issue at thermal

fronts, where upwelling and downwelling effects can cause convergence

or divergence of the observed flow.

• The composition of maps approach is also attractive mathematically.

It has an interesting geometric structure, which may be applied to a

range of other systems. A detailed study of its structure would aid in

evaluating its potential for further application.

173



• The use of stochastic advection by Lie transport in the composition of

maps approach supports the matching of a model with satellite obser-

vations. This presents a significant data assimilation challenge.

• The well posedness of the Maxey-Riley equation was, in Chapter 4,

proven for some assumptions on the velocity field of the ambient fluid.

These assumptions are not claimed to be minimal, and the relaxing of

these assumptions would be desirable. It is not known whether these

equations are well posed in the case where the ambient fluid is given as

a solution to a stochastic fluid equation. It also not known whether the

solution of the Maxey-Riley equation gains (or loses) regularity when

the ambient fluid is assumed to be smoother (or rougher).

• The Maxey-Riley equation is only one example of an equation for mod-

elling an inertial particle with memory effects. It remains to prove that

the result extends to a more general class of equations which possess a

similar structure.
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[11] Bethencourt de Léon, A., Holm, D. D., Luesink, E., and Takao, S. (2020)
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[89] Rascle, N., Molemaker, J., Marié, L., Nouguier, F., Chapron, B., Lund,

B. and Mouche, A. (2017) Intense deformation field at oceanic front

inferred from directional sea surface roughness observations. Geophysi-

cal Research Letters. 44 (11), 5599–5608. https://doi.org/10.1002/

2017GL073473

[90] Reeks, M. W. and McKee, S. (1984) The dispersive effects of Basset

history forces on particle motion in a turbulent flow. The Physics of

Fluids. 27 (7), 1573–1582. https://doi.org/10.1063/1.864812

[91] Sapsis, T. P., Ouellette, N. T., Gollub, J. P., and Haller, G. (2011)

Neutrally buoyant particle dynamics in fluid flows: Comparison of ex-

periments with Lagrangian stochastic models. Physics of Fluids. 23 (9),

093304. https://doi.org/10.1063/1.3632100

[92] Scott Russell, J. (1845) Report on Waves. Report of the fourteenth meet-

ing of the British Association for the Advancement of Science; held at

York in September 1844. 311–390. London, John Murray.

[93] Scully-Power, P. (1986) Navy Oceanographer Shuttle observations, STS

41-G Mission Report. Naval Underwater Systems Center, NUSC Tech-

nical Document 7611.

[94] Stokes, G. G. (1851) On the Effect of the Internal Friction of

Fluids on the Motion of Pendulums. Transactions of the Cam-

bridge Philosophical Society. 9 (2), 8–106. Available at https://www.

biodiversitylibrary.org/bibliography/2348

187

https://doi.org/10.1017/jfm.2019.194
https://doi.org/10.1017/jfm.2019.194
https://doi.org/10.1002/2017GL073473
https://doi.org/10.1002/2017GL073473
https://doi.org/10.1063/1.864812
https://doi.org/10.1063/1.3632100
https://www.biodiversitylibrary.org/bibliography/2348
https://www.biodiversitylibrary.org/bibliography/2348


[95] Street, O. D. and Crisan, D. (2021) Semi-martingale driven variational

principles. Proceedings of the Royal Society A. 477, 20200957. https:

//doi.org/10.1098/rspa.2020.0957

[96] Takao, S. (2020) Stochastic Geometric Mechanics for Fluid Modelling

and MCMC. PhD thesis, Imperial College London.

[97] Tatom, F. B. (1988) The Basset term as a semiderivative. Ap-

plied Scientific Research. 45 (3), 283–285. https://doi.org/10.1007/

bf00384691

[98] Tchen, C. (1947) Mean value and correlation problems connected with

the motion of small particles suspended in a turbulent fluid. PhD thesis,

Technische Universiteit Delft.

[99] van Sebille, E., England, M. H., and Froyland, G. (2012) Origin, dy-

namics and evolution of ocean garbage patches from observed sur-

face drifters. Environmental Research Letters. 7 (4), 044040. https:

//doi.org/10.1088/1748-9326/7/4/044040

[100] van Sebille, E. et al. (2015) A global inventory of small floating plastic

debris. Environmental Research Letters. 10 (12), 124006. https://doi.

org/10.1088/1748-9326/10/12/124006

[101] van Sebille, E. et al. (2018) Lagrangian ocean analysis: Fundamen-

tals and practices. Ocean Modelling. 121, 49–75. https://doi.org/

10.1016/j.ocemod.2017.11.008

[102] van Sebille, E. et al. (2020) The physical oceanography of the trans-

port of floating marine debris. Environmental Research Letters. 15 (2),

023003. https://doi.org/10.1088/1748-9326/ab6d7d

188

https://doi.org/10.1098/rspa.2020.0957
https://doi.org/10.1098/rspa.2020.0957
https://doi.org/10.1007/bf00384691
https://doi.org/10.1007/bf00384691
https://doi.org/10.1088/1748-9326/7/4/044040
https://doi.org/10.1088/1748-9326/7/4/044040
https://doi.org/10.1088/1748-9326/10/12/124006
https://doi.org/10.1088/1748-9326/10/12/124006
https://doi.org/10.1016/j.ocemod.2017.11.008
https://doi.org/10.1016/j.ocemod.2017.11.008
https://doi.org/10.1088/1748-9326/ab6d7d


[103] Wang, L., Hong, J., Scherer, R., and Bai, F. (2009) Dynamics and

variational integrators of stochastic hamiltonian systems. International

Journal of Numerical Analysis and Modeling. 6 (4), 586–602.

[104] Whitehead, A. N. (1889) Second approximations to viscous fluid mo-

tion. A sphere moving steadily in a straight line. The Quarterly Journal

of Pure and Applied Mathematics. 23, 143–152. Available at https:

//catalog.hathitrust.org/Record/006024259

[105] Yurovskaya, M., Rascle, N., Kudryavtsev, V., Chapron, B., Marié,
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A
Further discussions on

Geometric Mechanics

In this appendix, we will be expanding on some of the concepts introduced

in the review of geometric mechanics in Section 2.1. This will involve prov-

ing some of the elementary results and elaborating on the Euler-Poincaré

theorem. We will also include some examples to illustrate the application

of a reduced variational principle, as well as the requirement for the semidi-

rect product Euler-Poincaré theorem (Theorem 2.18). We begin by proving

Theorems 2.8 and 2.13.

When considering how to apply Hamilton’s principle, δS “ 0, to an action

190



given by

S :“

ż t1

t0

Lpqptq, 9qptq, tq dt , (A.1)

a complication emerges when considering how to take variations of qptq and

9qptq independently. This may be overcome by the Hamilton-Pontryagin ap-

proach, where variations are taken of the Lagrangian depending on pp, vq P

TQ and v is identified with the tangent lift vector via a Lagrange multiplier,

p, which we will later define to be the canonically conjugate momentum.

Theorem 2.8. For any differentiable Lpq, 9qq, we have that Hamilton’s prin-

ciple implies the Euler-Lagrange equations

d

dt

BL

B 9qj
“
BL

Bqj
, for j “ 1, . . . , n , (2.3 revisited)

where q P Q is assumed to be n dimensional.

Proof. In this proof, we will drop the notation which makes explicit the

derivative with respect to each component of q, thus the proof will read as

if it is one dimensional. We will prove this using the Hamilton–Pontryagin

approach. In the following, we write the Lagrangian in terms of the coor-

dinates pq, vq P TQ, where we use a Lagrange multiplier to constrain that

v “ 9q. We take variations as follows

δS “ δ

ż t1

t0

Lpq, vq `

B

p,
dq

dt
´ v

F

dt

“

ż t1

t0

B

BL

Bq
´
dp

dt
, δq

F

`

B

BL

Bv
´ p, δv

F

`

B

δp,
dq

dt
´ v

F

dt`

B

p, δq

Fˇ

ˇ

ˇ

ˇ

t1

t0

.

The fundamental lemma of the calculus of variations then gives the following
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three relationships

BL

Bq
“
dp

dt
,

p “
BL

Bv
,

v “
dq

dt
.

These may be assembled into the Euler-Lagrange equations,

d

dt

BL

B 9q
“
BL

Bq
,

thus completing our proof. Q.E .D .

Theorem 2.13. Applying Hamilton’s principle to the action written on the

phase space in terms of the Hamiltonian, as follows,

0 “ δ

ż t1

t0

xp, 9qy ´Hpq, pq dt , (2.8 revisited)

implies Hamilton’s canonical equations

9q “
BH

Bp
, and 9p “ ´

BH

Bq
. (2.9 revisited)

Proof. The proof is by direct computation. We take variations of the action,

as follows

0 “ δ

ż t1

t0

xp, 9qy ´Hpq, pq dt

“

ż t1

t0

B

9q ´
BH

Bp
, δp

F

`

B

´ 9p´
BH

Bq
, δq

F

dt`

B

p, δq

Fˇ

ˇ

ˇ

ˇ

t1

t0

.

This directly implies Hamilton’s canonical equations, recalling Theorem 2.10.
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Q.E .D .

The Hamiltonian dynamics of a phase space function, F : T ˚Q ÞÑ R, defines

the canonical Poisson bracket as follows.

Definition A.1 (Canonical Poisson bracket). The canonical Poisson bracket,

t¨, ¨u, is a relationship which maps two smooth phase space functions to

another, which is defined for F : T ˚Q ÞÑ R as follows

dF

dt
“
BF

Bq
9q `

BF

Bp
9p

“
BF

Bq

BH

Bp
´
BF

Bp

BH

Bq
:“ tF,Hu ,

(A.2)

where we have used Hamilton’s canonical equations to compute the second

line.

Remark A.2. Hamilton’s canonical equations may be rewritten in terms of

the canonical Poisson bracket as

9q “ tq,Hu ,

9p “ tp,Hu .

As mentioned prior to the statement of Theorem 2.10, the endpoint term

arising during the derivation of Hamilton’s canonical equations is related

to Noether’s theorem in the same way as in the Lagrangian case. When

Noether’s theorem is formulated on phase space, it has different implications.

In particular, we have that

dJξ
dt

“ tJξ, Hu “
BLξ
Bq

BH

Bp
´
BLξ
Bp

BLξ
Bq

“ ´δH ,

which implies that Noether’s theorem for the Hamiltonian formulation follows

193



from the Lie symmetry of the Hamiltonian, H, under δH “ tH, Jξu. See

Holm [51] for further details.

The Euler-Poincaré equations and semidirect products

In the left invariant case, the Euler-Poincaré equations are found by applying

Hamilton’s principle to the action corresponding to the reduced Lagrangian,

`pξq, where variations are taken to be of the form

δξ “ 9η ` rξ, ηs “: 9η ` adξη , for η “ g´1δg , (A.3)

where r¨, ¨s is the commutator. See Bloch et al. [14] for a further details and

proof of the form of these variations. Hamilton’s principle then gives

0 “ δ

ż t1

t0

`pξq dt

“

ż t1

t0

δ`

δξ
δξ dt “

ż t1

t0

δ`

δξ

`

9η ` adξη
˘

dt

“

ż t1

t0

ˆ

´
d

dt

ˆ

δ`

δξ

˙

` ad˚ξ
δ`

δξ

˙

η dt

This implies the Euler-Poincaré equations for the left invariant case

d

dt

ˆ

δ`

δξ

˙

“ ad˚ξ
δ`

δξ
. (2.17 revisited)

This equation can be similarly derived from a reduced version of the Hamilton-

Pontryagin principle found in the proof of Theorem 2.8, which takes the form

0 “ δ

ż t1

t0

`pξq ` xµ, g´1 9g ´ ξy dt .
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This calculation is one part of the following theorem.

Theorem A.3 (Euler-Poincaré theorem [14, 62, 74]). Let G be a Lie group,

L : TQ ÞÑ R a left invariant Lagrangian, and `pξq : g ÞÑ R its restriction to

the tangent space of G at the identity. For a curve gt P G, let ξt “ g´1
t 9gt,

then the following are equivalent:

a. Hamilton’s principle

0 “ δ

ż t1

t0

Lpg, 9gq dt ,

holds for variations of g vanishing at the endpoints.

b. The curve gt satisfies the Euler-Lagrange equations for L on G.

c. The variational principle on g

0 “ δ

ż t1

t0

`pξq dt ,

holds for variations of the form

δξ “ 9η ` rξ, ηs ,

where η vanishes at the endpoints.

d. The Euler-Poincaré equations (2.17) hold.

For a proof of this, see Bloch et al. [14].
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Remark A.4. The right invariant case is similar, with the following changes:

ξ “ g´1 9g Ñ ξ “ 9gg´1 ,

δξ “ 9η ` rξ, ηs Ñ δξ “ 9η ´ rξ, ηs ,

d

dt

ˆ

δ`

δξ

˙

“ ad˚ξ
δ`

δξ
Ñ

d

dt

ˆ

δ`

δξ

˙

“ ´ad˚ξ
δ`

δξ
.

To illustrate the power of this system, we introduce the following classic

example.

Example (The rigid body). Rigid body motion is a classical example of a

system which lends itself to the reduced form. The configuration manifold

for this problem is the rotation group, G “ SOp3q. For this group, we have

an isometry for the Lie algebra, sop3q – R3. This is through the isomorphism

known as the hat map, which identifies the vector cross product of two el-

ements of R3 with the commutator on sop3q. In matrix form, for a vector

Ω P R3 we have that

Ω̂v “ Ωˆ v , for all v P R3 . (A.4)

For this reason, we can characterise rigid body dynamics by finding their

Euler-Poincaré form on the Lie algebra R3 using the Lagrangian

`pΩq “
1

2
xIΩ,Ωy “

1

2

`

I1Ω2
1 ` I2Ω2

2 ` I3Ω2
3

˘

where I is the moment of inertia tensor and Ω is the body angular velocity.

Variations of Ω are restricted to be of the form

δΩ “ 9Ξ`ΩˆΞ , (A.5)
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where Ξptq is a curve in R3 that vanishes at the endpoints in time [62]. Taking

variations, we have

0 “

ż t1

t0

xIΩ, δΩy dt “
ż t1

t0

xIΩ, 9Ξ`ΩˆΞy dt

“

ż t1

t0

x´
d

dt
IΩ,Ξy ` xIΩ,ΩˆΞy dt

“

ż t1

t0

x´
d

dt
IΩ` IΩˆΩ,Ξy dt` xIΩ,Ξy

ˇ

ˇ

ˇ

t1

t0
.

This implies Euler’s equation for the rigid body

I 9Ω “ IΩˆΩ . (A.6)

For a more thorough discussion of this example, together with the explicit

reduction from the Lagrangian on TSOp3q, see Holm, Marsden, and Ratiu

[62].

As was commented on in Section 2.1.2, when the symmetry of the Lagrangian

is broken by some variable, a semidirect product formulation emerges. This

culminated in the Euler-Poincaré theorem (Theorem 2.18 in Section 2.1.2).

The following example illustrates why this is natural.

Example (The heavy top). The heavy top is a classical system related to

the rigid body. It is defined as a rigid body of mass m rotating around a fixed

point of support, where the system feels a gravitational acceleration pointing

downwards, ´gẑ. The dynamics of a rigid body rotating around a point is

nontrivial and, as seen in Figure A.1, is sufficiently interesting to occupy even

the greatest of minds. This system introduces a slight complication which

does not arise during the rigid body example. Namely, the presence of the

gravitational field breaks the symmetry and the system is no longer SOp3q
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invariant. One needs to keep track of the direction which gravity acts in

relative to the body. We will see that the heavy top is a semidirect product

system on se˚p3q “ so˚p3q ˙ R3, but does not correspond to geodesic motion

on SEp3q. It can, however, be considered as geodesic motion on SEp3q ˆ R3

[52].

Indeed, the unit vector in the direction of gravity breaks the symmetry of

the Lagrangian. The kinetic energy of the problem is the same as for the

rigid body, which can be thought of as a reduction of a Lagrangian written

in terms of a curve Rt P SOp3q. Indeed, the body angular velocity Ω is

related to R by R´1 9Rv “ Ωˆ v for all v P R3. The reduced kinetic energy

is written in terms of elements of R3, which we recall may be interpreted as

elements of sop3q through the hat map.

The potential energy can be formulated as a map TSOp3q ˆ R3 ÞÑ R3. We

denote by g the acceleration due to gravity, by M the mass of the body

and by l its length. The vector χ denotes the unit vector pointing from

the point of rotation to the body’s centre of mass. The potential energy is

MglR´1v ¨ χ, where v P R3. This is left invariant, indeed for R̃ we have

MglR´1v ¨ χ “MglpR̃Rq´1R̃v ¨ χ .

We define a vector Γ “ R´1v which, for v “ pz, may be interpreted as the

orientation of the body relative to the vertical axis at time t. An application

of the Euler-Poincaré theorem (Theorem 2.18) for ` : sop3qˆR3 ÞÑ R defined

by

`pΩ,Γq “ IΩ ¨Ω´MglΓ ¨ χ ,
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gives the following equations for the motion of the heavy top

I 9Ω “ IΩˆΩ`MglΓˆ χ , (A.7)

9Γ “ ΓˆΩ . (A.8)

Figure A.1: Wolfgang Pauli and Niels Bohr with a ‘tippe top’. Photograph by Erik
Gustafson. Courtesy of the Niels Bohr Archive.
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B
A Grönwall lemma for

fractional differential

equations

The following version of Grönwall’s lemma may be found as Theorem 1.4 in

[71].

Theorem B.1. If, for any t P r0, T q, we have

uptq ď aptq `
n
ÿ

i“1

biptq

ż t

0

pt´ sqβi´1upsq ds, (B.1)

where all the functions are nonnegative and continuous, the constants βi are

positive, and bi pi “ 1, 2, . . . , nq are the bounded and monotonic increasing
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functions on r0, T s. Then, for any t P r0, T q, we have

uptq ď sup
tPr0,T s

#

aptq

`

8
ÿ

k“1

„ n
ÿ

11,21,,...,k1“1

śk
i“1rbi1ptqΓpβi1qs

Γp
řk
i“1 βi1q

ż t

0

pt´ sq
řk
i“1 βi1´1apsq ds



+

.

(B.2)

Remark B.2. For bounded bi and a, the infinite sum in (B.2) converges. To

show this, we assume that aptq ď A and biptq ď B for all i “ 1, . . . , n,

furthermore we may assume without loss of generality that βi are ordered

β1 ď β2 ď ¨ ¨ ¨ ď βn. We label the terms of this series ak, and for k ą 2{β1

we have

ak ď A
n
ÿ

11,21,,...,k1“1

Bkpmaxi Γpβiqq
k

Γp
řk
i βi1q

1

kβ1

maxtt, 1ukβn

ď Ank
xk

Γpkβ1qkβ1

where x :“ BmaxtT, 1uβn max
i

Γpβiq

ď A1
xk

Γpkβ1q
,

for a constant A1. Note that the inequality in the second line above is only

true for k ą 2{β1 since the gamma function is increasing on the interval r2,8q

however is decreasing nearer to 0. We split k into the following subsets Sm :“

tk : m ď kβ1 ď m ` 1u, and notice that on Sm we have Γpkβ1q ą pm ´ 1q!.

Thus we may bound ak by the terms of the following series

8
ÿ

m“2

ÿ

kPSm

A1
xk

pm´ 1q!
.

We have
ÿ

kPSm

xk ď
m` 1

β1

y
m`1
β1 , where y :“ maxtx, 1u,
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and the sum defined by

8
ÿ

m“2

A1
m` 1

β1

y
m`1
β1

pm´ 1q!

obviously converges. Hence the infinite sum in (B.2) converges as claimed.
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C
Lemmata for the map P

Proofs of the following lemmata, which are analogous to lemmata 1 and 2

from [39], are required to complete the proof of Theorem 4.12. We define the

following space of functions

Xδ,K :“ tf P Cprt1, t1 ` δq; R
m
q : }f} ď Ku

where m can be either n or 2n as required. Note that in the following we

will be dealing with the map P defined by (4.22), in the context of which Φ

is 2n-dimensional and η, ξ are n-dimensional.

Lemma C.1. For P as defined by equation (4.22), there exists a K ą 0

large enough and δ “ δpKq ą 0 small enough and independent of the initial

condition such that P maps functions from Xδ,K to Xδ,K.
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Proof. We must first prove that PΦ is continuous for continuous Φ, given as-

sumption (˚). This continuity is obvious with the exception of the continuity

of the integral
ż t

t1

ηpsq
?
t´ s

ds, (C.1)

for η P Xδ,K , as well as the integral

ż t1

t0

wpsq
?
t´ s

ds, (C.2)

for w P Xδ,K . Following same argument as in the proof of Lemma 4.15 (i), we

may see that (C.1) is continuous. It remains only to prove that (C.2) has the

required continuity. Recalling that R is such that w P S Ď B̄0pRq, we have

that (C.2) is continuous at τ since for all ε ą 0, if we have |t ´ τ | ă ε2

16R2 ,

then

ˇ

ˇ

ˇ

ˇ

ż t1

t0

wpsq
?
t´ s

ds´

ż t1

t0

wpsq
?
τ ´ s

ds

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż t1

t0

wpsq
?
t´ s

´
wpsq
?
τ ´ s

ds

ˇ

ˇ

ˇ

ˇ

ď R

ˇ

ˇ

ˇ

ˇ

ż t1

t0

1
?
t´ s

´
1

?
τ ´ s

ds

ˇ

ˇ

ˇ

ˇ

“ 2R| ´
?
t´ t1 `

?
t´ t0 `

?
τ ´ t1 ´

?
τ ´ t0|

ď 2R|
?
τ ´ t1 ´

?
t´ t1| ` 2R|

?
t´ t0 ´

?
τ ´ t0|

“ 2R
|τ ´ t|

?
τ ´ t1 `

?
t´ t1

` 2R
|t´ τ |

?
t´ t0 `

?
τ ´ t0

ď 2R
|τ ´ t|
a

|τ ´ t|
` 2R

|t´ τ |
a

|t´ τ |
ď 4R

a

|τ ´ t|

ă ε.
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We find a bound on P as follows

|pPΦqptq| ď }y0 `

ż t

t1

ηpsq ` Aupξpsq, sq ds}8

` }w0 `

ż t

t1

ˆ

µ`
κµ1{2

?
t´ s

`Mupξpsq, sq

˙

ηpsq `Bupξpsq, sq ds}8

` }κµ1{2

ż t1

t0

wpsq
?
t1 ´ s

´
wpsq
?
t´ s

ds}8.

Let us examine the integral in the final term as follows

ż t1

t0

wpsq
?
t1 ´ s

´
wpsq
?
t´ s

ds “

ż t1

t0

wpsq
?
t´ s

?
t1 ´ s

p
?
t´ s´

?
t1 ´ sq ds

“

ż t1

t0

wpsqpt´ t1q
?
t´ s

?
t1 ´ sp

?
t´ s`

?
t1 ´ sq

,

and we can bound this using |t ´ t1| ă δ,
?
t´ s ě

?
t´ t1 and

?
t´ s `

?
t1 ´ s ě

?
t´ t1 ą

?
δ

›

›

›

›

ż t1

t0

wpsq
?
t1 ´ s

´
wpsq
?
t´ s

ds

›

›

›

›

8

ď

›

›

›

›

ż t1

t0

wpsqδ
?
t´ s

?
t1 ´ s

?
δ
ds

›

›

›

›

8

ď

›

›

›

›

ż t1

t0

wpsq
?
t1 ´ s

ds

›

›

›

›

8

ď R

›

›

›

›

ż t1

t0

1
?
t1 ´ s

ds

›

›

›

›

8

ď 2R
a

T ´ t0.

Recall that, from assumption (˚), we have for any x1, x2 P Rn and τ1, τ2 P R

|Aupx1, τ1q ´ Aupx2, τ2q| ď |Aupx1, τ1q ´ Aupx2, τ1q| ` |Aupx2, τ1q ´ Aupx2, τ2q|

ď }∇Au}8|x1 ´ x2| ` }BtAu}8|τ1 ´ τ2|

ď Lb p|x1 ´ x2| ` |τ1 ´ τ2|q ,

|Bupx1, τ1q ´Bupx2, τ2q| ď Lb p|x1 ´ x2| ` |τ1 ´ τ2|q ,
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by the mean value theorem. By integrating from t1 to t,

›

›

›

›

ż t

t1

Aupξpsq, sq

›

›

›

›

8

ď

ż t

t1

Lb p|ξpsq| ` |s´ t0|q ` |Aup0, t0q| ds

ď Lb}ξ}8pt´ t1q ` Lbδpt´ t1q ` |Aup0, t0q|pt´ t1q
›

›

›

›

ż t

t1

Bupξpsq, sq

›

›

›

›

8

ď Lb}ξ}8pt´ t1q ` Lbδpt´ t1q ` |Bup0, t0q|pt´ t1q

Hence we may improve our bound

|pPΦqptq| ď |yt1 | ` |wt1 | ` }Φ}8

„

pt´ t1q ` µpt´ t1q ` 2κµ1{2
?
t´ t1

` Lbpt´ t1q ` 2Lbpt´ t1q



` 2R
a

T ´ t0

` pt´ t1q
“

2Lbδ ` Aup0, t0q `Bup0, t0q
‰

.

Setting K “ 4 maxtR, 2R
?
T ´ t0u and choosing δ such that

δ ` µδ ` 2κµ1{2
?
δ ` 3Lbδ ă 1{4, p2Lbδ ` Aup0, t0q `Bup0, t0qqδ ă K{4 ,

we have our result and hence our lemma holds. Q.E .D .

Lemma C.2. For P as defined by equation (4.22), there exists δ such that

for any Φ1,Φ2 P Xδ,K we have

}PΦ1 ´ PΦ2}8 ď
1

2
}Φ1 ´ Φ2}8. (C.3)

Proof. The proof of this is as in Lemma 2 in [39], since in PΦ1 and PΦ2 the

integral from t0 to t1 is the same and thus cancels. Thus the proof exactly

follows that of the standard Maxey-Riley system without additional memory,

with no modifications necessary since the boundedness of Au and Bu is not
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used. Thus this lemma holds for δ sufficiently small to ensure that

δ ` µδ ` 2κµ1{2
?
δ ` Lbδ ă 1{4, p2`KqLcδ ă 1{4 . (C.4)

Q.E .D .
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chain rule, 25

derivative, 25, 31

group, 18

Maxey-Riley equations, 132, 135

maximal solution, 139

motion, 12

musical isomorphisms, 27

Noether’s theorem, 15

normal vector, 67

phase space, 16

Radon-Nikodym derivative, 13
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