
VEHICLE DISPATCH IN HIGH-CAPACITY
SHARED AUTONOMOUS

MOBILITY-ON-DEMAND SYSTEMS

By

CHENG LI

A thesis submitted to
the University of Birmingham

for the degree of
DOCTOR OF PHILOSOPHY

School of Computer Science
College of Engineering and Physical Sciences

University of Birmingham
January 2022

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

UNIVERSITYDF
BIRMINGHAM

ABSTRACT

Ride-sharing is a promising solution for transportation issues such as traffic congestion

and parking land use, which are brought about by the extensive usage of private vehicles.

In the near future, large-scale Shared Autonomous Mobility-on-Demand (SAMoD) systems

are expected to be deployed with the realization of self-driving vehicles. It has the potential

to encourage a car-free lifestyle and create a new urban mobility mode where ride-sharing is

widely adopted among people. This thesis addresses the problem of improving the efficiency

and quality of vehicle dispatch in high-capacity SAMoD systems.

The first part of the thesis develops a dispatcher which can efficiently explore the

complete candidate match space and produce the optimal assignment policy when only

deterministic information is concerned. It uses an incremental search method that can

quickly prune out infeasible candidates to reduce the search space. It also has an iterative

re-optimization strategy to dynamically alter the assignment policy to take into account both

previous and newly revealed requests. Case studies of New York City using real-world data

shows that it outperforms the state-of-the-art in terms of service rate and system scalability.

The dispatcher developed in this part can serve as a foundation for the next two parts,

which consider two kinds of uncertain information, stochastic travel times and the dynamic

distribution of requests in the long-term future, respectively.

The second part of the thesis describes a framework which makes use of stochastic

travel time models to optimize the reliability of vehicle dispatch. It employs a candidate

i

match search method to generate a candidate pool, uses a set of preprocessed shortest path

tables to score the candidates and provides an assignment policy that maximizes the overall

score. Two different dispatch objectives are discussed: the on-time arrival probabilities of

requests and the profit of the platform. Experimental studies show that higher service rates,

reliability and profits can be achieved by considering travel time uncertainty.

The third part of the thesis presents a deep reinforcement learning based approach to

optimize assignment polices in a more far-sighted way. It models the vehicle dispatch problem

as a Markov Decision Process (MDP) and uses a policy evaluation method to learn a value

function from the historic movements of drivers. The learned value function is employed to

score candidate matches to guide a dispatcher optimizing long-term objective, and will be

continually updated online to capture the real-time dynamics of the system. It is shown by

experiments that the value function helps the dispatcher to yield higher service rates.

ii

ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest gratitude to my supervisor,

Prof. David Parker. Without his encouragement, support, guidance and enthusiasm, this

thesis would never have been completed. The second thanks are given to Prof. Jeremy

Wyatt, for guiding me along on the start of my research journey. I would also like to thank

Prof. Qi Hao for his support along with the journey and the thesis group members, Dr.

Peter Hancox and Dr. Mohan Sridharan, for their helpful discussions and advice. Lastly, I

want to thank my parents for their unconditional support and love, and my friends for their

companionship.

iii

Contents

Abstract i

Page

1 Introduction 1

1.1 Background . 1

1.1.1 Trends in Personal Urban Mobility 1

1.1.2 Shared Autonomous Mobility-on-Demand 3

1.2 Research Problem and Questions . 5

1.2.1 Efficient and Optimal Dispatch . 8

1.2.2 Reliability-Aware Dispatch . 9

1.2.3 Long-Term Service Optimization . 10

1.3 Contributions . 11

1.4 Publications Resulting from the Thesis . 12

1.5 Thesis Structure . 13

2 Literature Review 14

2.1 Efficient Vehicle-Request Matching in Dynamic Ride-Sharing 15

2.1.1 Peer-to-Peer Ride-sharing . 16

2.1.2 Shared Autonomous Mobility-on-Demand 19

2.2 Ride-Sharing Under Travel Time Uncertainty 24

2.2.1 Stochastic Shortest Path Finding . 24

iv

CONTENTS

2.2.2 Vehicle Routing with Stochastic Travel Times 25

2.2.3 Ride-Sharing with Stochastic Travel Times 27

2.3 Predictive Vehicle Dispatch . 29

2.3.1 Demand Forecast Based Dispatch . 30

2.3.2 Value Based Dispatch . 32

2.4 Chapter Summary . 35

3 Optimal Online Dispatch in High-Capacity Ride-Sharing 37

3.1 Introduction . 38

3.2 Preliminaries . 41

3.2.1 Definitions . 41

3.2.2 Problem Statement . 43

3.2.3 System Framework . 43

3.3 Optimal Online Dispatch Scheme . 45

3.3.1 Optimal Schedule for a Single Ride-Sharing Trip 45

3.3.2 Optimal Schedule Pool for a Vehicle Fleet 49

3.3.3 Re-Optimization and Iterative Updating 52

3.3.4 Constrained Allocating Based on Optimal Schedule Pool 55

3.3.5 Discussion of Optimality and Correctness 57

3.4 Experimental Study . 57

3.4.1 Simulation Details . 58

3.4.2 Algorithm Comparison . 59

3.4.3 Results . 60

3.4.4 Discussion . 68

3.5 Chapter Summary . 68

4 Vehicle Dispatch with Stochastic Travel Times 70

4.1 Introduction . 71

v

CONTENTS

4.2 Preliminaries . 74

4.2.1 Definitions . 74

4.2.2 Problem Statement . 75

4.2.3 Multi-Phase Dispatch Scheme . 76

4.3 Reliability Optimization . 79

4.3.1 On-time Arrival Probability Estimation 79

4.3.2 Reliable Allocating . 86

4.4 Profit Optimization . 87

4.4.1 Profit Estimation . 88

4.4.2 Profit-Aware Allocating . 89

4.5 Experimental Study . 90

4.5.1 Simulation Details . 91

4.5.2 Algorithm Comparison . 92

4.5.3 Results . 94

4.5.4 Discussion . 105

4.6 Chapter Summary . 106

5 Learning-Based Dispatch for Long-Term Optimization 107

5.1 Introduction . 108

5.2 Preliminaries . 111

5.2.1 Definitions . 112

5.2.2 Problem Statement . 114

5.2.3 System Framework . 115

5.3 Value-based Vehicle Dispatch Scheme . 117

5.3.1 Offline Policy Evaluation With Neural Networks 118

5.3.2 Online Learning With Value Ensemble 121

5.3.3 Re-Optimization and Value-Based Allocating 123

vi

5.4 Experimental Study . 125

5.4.1 Simulation Details . 126

5.4.2 Algorithm Comparison . 127

5.4.3 Results . 128

5.4.4 Discussion . 137

5.5 Chapter Summary . 138

6 Conclusions 139

6.1 Summary . 139

6.2 Future Directions . 141

References 143

vii

List of Figures

1.1 Architecture of an SAMoD system with two vehicles and four requests, where

vehicle 1 is assigned to serve requests 1 and 4 following schedule 1, and vehicle

2 is assigned to serve requests 2 and 3 following schedule 2. 4

3.1 An example of assigning two requests to two vehicles (a) in a FCFS queue or

(b) in a batch planning manner. 39

3.2 All possible schedules for a ride-sharing trip containing two requests. 42

3.3 Framework of the optimal dispatch logic. 44

3.4 An example of optimal schedule computation for a vehicle to serve three re-

quests, where the optimal one is marked in bold. By extending the two feasible

schedules for trip {r1, r2}, {o2, o1, d1, d2} and {o2, o1, d2, d1}, only 26 possible

schedules for trip {r1, r2, r3} need to be considered to check its feasibility and

find its optimal schedule. 49

3.5 An example of joint trip searching and optimal scheduling for a vehicle to

serve four requests. Possible schedules for trip {r1, r2, r3, r4} can be directly

built on its sub-trip’s feasible schedules. 51

3.6 An example of online assignment, where r1 and r2 are revealed at t and r3

is revealed at t + ∆T . Considering re-optimization, all three requests can be

served. 53

viii

LIST OF FIGURES

3.7 An example of constrained allocating for three vehicles and three requests.

(a) The generated optimal schedule pool, where each schedule is represented

by a link that connects a vehicle and a trip. (b) The final assignment made

by the dispatcher. 55

3.8 A comparison of performance metrics during the whole day for varying vehicle

capacities (|R| = 400k, |V | = 2000, Ω = 300 sec, ∆T = 30 sec). 61

3.9 A comparison of performance metrics during the peak hour for varying values

of maximum waiting time constraint (|R| = 400k, |V | = 2000, κ = 8, ∆T =

30 sec). 61

3.10 A comparison of performance metrics during the peak hour for varying lengths

of batch period (|R| = 400k, |V | = 2000, κ = 8,Ω = 300 sec). 62

3.11 A comparison of performance metrics during the peak hour for varying in-

stance scales (κ = 8, Ω = 300 sec, ∆T = 30 sec). 62

3.12 Number of feasible trips, each of them representing a candidate vehicle-trip

match, found for all vehicles (upper plot) and number of matched new sub-

mitted requests (lower plot) at different dispatch epochs during 19:30-20:00

(|R| = 800k, |V | = 3200, κ = 8, Ω = 300 sec, ∆T = 30 sec). 64

3.13 A visualization of candidate vehicle-trip matches found for 32 vehicles by dif-

ferent algorithms at 19:30 (|R| = 800k, |V | = 3200, κ = 8, Ω = 300 sec, ∆T =

30 sec). 65

ix

LIST OF FIGURES

4.1 An example with five requests r1, r2, r3, r4, r5 and one vehicle v1. Triangles (4)

and inverted triangles (5) represent the origins and destinations, respectively.

There are three possible dispatch policies for v1 and they exhibit no difference

in service rate when travel time uncertainty is not considered. When taking

stochastic travel time into account, it may be found that serving r2 and r3

is the best allocation as it has the highest reliability in terms of arrival. Or,

considering the penalty costs due to late arrivals, serving r1 and r2 yields the

highest profit and is the best allocation to make. 72

4.2 Schematic overview of our proposed multi-phase approach. (a) An epoch with

three vehicles and three requests. The solid lines present the current planned

routes for vehicles and the dashed lines present the shortest paths for requests.

(b) A candidate schedule pool that connects vehicles to servable ride-sharing

trips. Each link represents a schedule. (c) Scored candidate schedules with

reliability information. Each schedule is associated with its stochastic optimal

route. (d) Allocation of requests to vehicles that maximizes the sores, where

requests r1 and r2 are served by vehicle v1 and request r3 is served by vehicle v3.

(e) Vehicles travelling on the stochastic optimal routes following the assigned

schedules. 77

4.3 Projection of various α-shortest paths onto a mean-variance plane. Each one

lies on a parabola. The optimal route is the one with the smallest curvature

and has the highest probability of arriving before the deadline. 81

4.4 Illustration of the search tree of Algorithm 6, where np denotes the nthp drop-

off location and each link denotes a running of function FindαOptimalRoute,

i.e., Algorithm 5. Each path from the root node qv to a leaf node np represents

a possible combination of different α values. Red links represent the added

computation caused by the nthp location, compared to when there are only

np − 1 locations in the schedule. 85

x

LIST OF FIGURES

4.5 Graphical illustration of expected shortfall, the conditional expectation of a

request’s travel time given that the travel time is beyond the compensation

level. 88

4.6 A comparison of performance metrics during the peak hour for varying fleet

sizes (|R| = 400k, κ = 6,Ω = 300 sec). 93

4.7 A comparison of performance metrics during the peak hour for varying values

of maximum waiting time constraint (|R| = 400k, |V | = 2000, κ = 6). 96

4.8 A comparison of performance metrics during the peak hour for varying vehicle

capacities (|R| = 400k, |V | = 2000, Ω = 300 sec). 98

4.9 A comparison of performance metrics during the peak hour for varying in-

stance scales (κ = 6, Ω = 300 sec). 99

4.10 A comparison of performance metrics during the peak hour for varying stochas-

tic levels (|R| = 400k, |V | = 2000, κ = 6, Ω = 300 sec). 99

4.11 A comparison of the results of DVD, RVD and PVD under 10 simulation runs

(|R| = 400k, |V | = 2000, Ω = 300 sec, ∆T = 30 sec). 101

5.1 An example with one vehicle, three revealed requests and two requests that

will arrive in the future but are not known at present. Triangles (4) and

inverted triangles (5) represent the origins and destinations, respectively.

When myopically optimizing over the current epoch, the vehicle will go to-

wards the top right of the map to serve requests 1 and 2 and earn a reward

of 2. However, if it chooses to serve request 3 and instead travels towards the

bottom left of the map, it will eventually earn a reward of 3. 109

5.2 Framework of the long-term optimization logic. 116

5.3 Structure of the value network. 119

xi

5.4 A schematic comparison of how many dispatch epochs are considered for op-

timization by different algorithms. The epochs considered are marked in light

orange, and the intensity of the color indicates how much the information

within that epoch contributes to the optimization. 128

5.5 A comparison of service rate (%) during the peak hour for varying vehicle

capacities (m = 1500, Ω = 300 sec, ∆T = 30 sec). 129

5.6 A comparison of service rate (%) during the peak hour for varying fleet sizes

(κ = 6, Ω = 300 sec, ∆T = 30 sec). 129

5.7 A comparison of service rate (%) during the peak hour for varying values of

maximum waiting time constraint (m = 1500, κ = 6, ∆T = 30 sec). 133

5.8 A comparison of service rate (%) during the peak hour for varying lengths of

batch period (m = 1500, κ = 6, Ω = 300 sec). 133

5.9 Temporal patterns in the learned values for varying time discount factors. . . 135

xii

List of Tables

3.1 Parameter settings (defaults in bold). 59

3.2 Number of schedules searched by different algorithms 66

3.3 A comparison of service rate (%) during the peak hour for varying instance

scales (κ = 8, Ω = 300 sec, ∆T = 30 sec). 67

4.1 Parameter settings (defaults in bold). 92

4.2 A comparison of performance metrics for different methods during the hour

with lowest number of requests. (|R| = 400k, |V | = 2000, κ = 6, Ω = 300 sec) 95

4.3 A comparison of performance metrics during the peak hour for varying penal-

ties for PVD (|R| = 400k, |V | = 2000, κ = 6, Ω = 300 sec). 100

4.4 Statistical measures of service rates (%) for different algorithms (|R| = 400k, |V | =

2000, Ω = 300 sec, ∆T = 30 sec). 102

4.5 Statistical measures of violation rates ($) for different algorithms (|R| =

400k, |V | = 2000, Ω = 300 sec, ∆T = 30 sec). 102

4.6 Statistical measures of profits (103 $) for different algorithms (|R| = 400k, |V | =

2000, Ω = 300 sec, ∆T = 30 sec). 102

4.7 A comparison of standard deviation of violation rates (RVD) for varying num-

bers of vehicles (|R| = 400k, Ω = 300 sec, ∆T = 30 sec). 102

4.8 A comparison of service rate (%) during the peak hour for varying vehicle

capacities (|R| = 400k, |V | = 2000, Ω = 300 sec, ∆T = 30 sec). 104

xiii

4.9 A comparison of violation rate (%) during the peak hour for varying vehicle

capacities (|R| = 400k, |V | = 2000, Ω = 300 sec, ∆T = 30 sec). 104

4.10 A comparison of profit (103 $) during the peak hour for varying vehicle ca-

pacities (|R| = 400k, |V | = 2000, Ω = 300 sec, ∆T = 30 sec). 104

4.11 Computation time (sec) of different procedures during the peak hour for vary-

ing vehicle capacities (|R| = 400k, |V | = 2000, Ω = 300 sec, ∆T = 30 sec). . 105

5.1 Parameter settings (defaults in bold). 126

5.2 A comparison of service rate (%) during the peak hour for using online learning

(m = 1500, κ = 6, Ω = 300 sec, ∆T = 30 sec). 132

5.3 A comparison of service rate (%) during the peak hour for varying discount

factors (m = 1500, κ = 6, Ω = 300 sec, ∆T = 30 sec). 134

5.4 A comparison of computation time (sec) of different procedures during the

peak hour for varying vehicle capacities (m = 1500, Ω = 300 sec, ∆T = 30 sec).136

xiv

Acronyms

A2C Advantage Actor-Critic. 34

ADP Approximate Dynamic Programming. 33, 34, 110

ALNS Adaptive Large Neighborhood Search. 26

CMCA Cerebellar Model Arithmetic Computer. 33

DP Dynamic Programming. 48

DQN Deep Q-Network. 33, 34, 110

DVD Deterministic Vehicle Dispatch. 92, 94, 95, 97, 100, 103, 105

FCFS First-Come-First-Served. viii, 19–22, 28, 35, 38, 39, 59, 68

GI Greedy Insertion. 59, 60, 66, 68

ILP Integer Linear Program. 23, 30, 34, 56, 57, 78, 79, 86, 87, 90, 124

LSTM Long Short-Term Memory. 119

LTO Long-Term Optimization. 125, 127, 128, 130–132, 134, 136, 137

MDP Markov Decision Process. ii, 32, 33, 111, 112, 114, 117

xv

Acronyms

MILP Mixed Integer Linear Program. 23, 25, 38

MIP Mixed Integer Program. 23, 28

MoD Mobility-on-Demand. 1–3

MPC Model Predictive Control. 32

OPE Offline Policy Evaluation. 107, 110, 115, 116, 118, 120

OSP Optimal Schedule Pool. 37, 57, 59, 60, 63, 66–68, 77, 78, 90, 103, 126–128, 130–132,

136, 137

P2P Peer-to-Peer. 14, 16, 19, 22, 28

PVD Profit-aware Vehicle Dispatch. xiii, 73, 74, 87, 89, 92, 94, 95, 97, 100, 103, 105

RL Reinforcement Learning. 111, 112, 125

RNN Recurrent Neural Network. 28

RTV Request Trip Vehicle graph. 59, 60, 63, 66–68, 77, 103

RVD Reliability-aware Vehicle Dispatch. 73–75, 87, 89, 92, 94, 95, 97, 100, 103, 105

SAMoD Shared Autonomous Mobility-on-Demand. i, 1, 3, 4, 11, 14, 16, 17, 19, 20, 28,

37–40, 46, 55, 58, 68, 70, 107, 108, 110, 111, 113, 114, 117, 119, 128, 138, 139, 141, 142

SBA Single-request Batch Assignment. 59, 60, 66–68

SSP Stochastic Shortest Path. 24, 25, 79, 80, 82

TD Temporal Difference. 32, 116, 118–121

VMT Vehicle Miles Travelled. 2, 3, 5

xvi

Acronyms

VRP Vehicle Routing Problem. 14, 25, 26, 28

VRPPD Vehicle Routing Problem with Pickup and Deliver. 15

xvii

Chapter One

Introduction

This thesis studies the optimization of vehicle assignment policies in high-capacity Shared

Autonomous Mobility-on-Demand (SAMoD) systems at city scale, where thousands of cen-

trally routed self-driving vehicles transport passengers using ride-sharing in an urban environ-

ment. Unlike current Mobility-on-Demand (MoD) systems (e.g., Uber, Lyft, DiDi and Grab),

SAMoD systems use autonomous vehicles, which are amenable to centralized control, to en-

able deployment of fleet-wide policies and to provide lower operational costs than employing

human drivers [1–4]. Additionally, through ride-sharing, SAMoD systems are transforming

urban transportation in a more environmentally-friendly and more economically-feasible way

[5–9].

1.1 Background

1.1.1 Trends in Personal Urban Mobility

Private automobiles have become the dominant form of the mobility landscape by providing

fast travel and considerable personal convenience. However, the extensive usage of private

1

Introduction

vehicles also causes some serious issues: traffic congestion, energy consumption, parking land

use, car accidents and exhaust pollution. In 2017, the loss of urban residents in rich countries

is almost $1000 while sitting in traffic [10]. Thus, the private vehicle based transportation

system is widely acknowledged as unsustainable and a new form of urban mobility is needed.

Taxis provide a relatively convenient transportation choice when people do not have

a car or it is inconvenient to drive. With the large-scale popularization of smartphones,

MoD systems have been introduced to transform the taxi industry and people can hail a

taxi in a more efficient way. MoD systems provide passengers with on-demand and reliable

transportation by pairing them with idle vehicles via mobile apps. Passengers input their

origin and destination locations, and the systems immediately assign the nearest vehicles to

pick them up in a short time. By providing a flexible transportation choice to passengers,

MoD systems are shifting "vehicle as a product" to "vehicle as a mobility service".

Although ride-hailing in MoD systems is potentially more efficient than street-hailing

and is expected to reduce parking requirements, there is evidence from studies that current

MoD systems have increased motorised traffic and congestion [11–15]. Besides the substitu-

tion for other car trips, current MoD systems actually add more new cars to the road and

increase the Vehicle Miles Travelled (VMT) of the city. Yet up to 50% of ride-hailing VMT

in New York is wasted due to unoccupied driving. Moreover, since most drivers live outside

the city, their commutes into the city and back home may add more VMT and increase

congestion [14]. Another shortcoming commonly observed in current MoD systems is the

low vehicle occupancy rate. According to an experiment on ride-hailing rides in Denver, the

capital of Colorado, the distance weighted average passenger per ride is 1.3 and would drop

down to approximately 0.8 when accounting for unoccupied driving miles [12]. The vehicle

occupancy rate of ride-hailing is key to sustainability and ride-sharing (i.e., carrying two or

more passengers in one trip) is encouraged to increase it [13]. It is found that a 1% increase

in the occupancy rate would lead to around a 1.15% decrease in VMT [15].

2

Introduction

A recent study in Manhattan shows that up to 80% of taxi trips can be pairwise

shared with very little increase in travel time, which translates into a 40% reduction of

the taxi fleet [7]; the effectiveness of ride-sharing is also suggested with sparse taxi fleets

and is later validated in multiple cities [16]. In addition, it is estimated in Lisbon that

full-scale shared mobility deployment would reduce VMT and CO2 emissions by up to 50%

and reduce parking needs by up to 95% [13]. But the tremendous growth potential for

ride-sharing services brings the challenge of expanding the supply scale of MoD systems [3].

Recently, research on autonomous driving has attracted a lot of attention both from

academia and industry. Autonomous vehicles can free humans from tedious driving and

increase transportation safety. While most of the research has been done on operating a

single vehicle running on highways, less attention has been paid to how autonomous driving

will affect urban mobility. As autonomous vehicles can increase traffic efficiency by enabling

system-wide coordination and rebalancing themselves, they hold great promise for shared

mobility [1]. Fully self-driving vehicles would also reduce the cost of taxi trips, by saving on

drivers’ wages [5, 13]. An estimate in Zurich, Switzerland shows a reduction of around 85%

[17]. This reduction is around 50% even if we reduce drivers’ salaries to one-fifth.

1.1.2 Shared Autonomous Mobility-on-Demand

Using self-driving vehicles to provide personal on-demand mobility in ride-sharing trips is

a transformational technology that is emerging now [18–20]. In SAMoD systems, a prede-

termined number of multi-occupancy vehicles are dispatched from multiple depots at the

beginning of the day to satisfy on-demand requests on a road network. The requests are

revealed throughout the day and their arrival times and locations are uncertain. To allevi-

ate the low utilization of available seats in current MoD systems, passengers that travel in

similar directions are merged into a ride-sharing trip and served by a single vehicle. Em-

3

Introduction

ploying ride-sharing service can serve more requests and reduce passenger costs, but at the

cost of user experience. To ensure the quality of service, constraints are placed on maximum

request waiting times and detour times. Other constraints, such as passenger gender, age,

pet allowance and social tendencies, may also be considered for tailor-made matching.

 AUTONOMOUS.

Dispatch
Server

schedule1 : o4 − o1 − d4 − d1

schedule2 : o2 − o3 − d3 − d2

sche
dule1

vehi
cle1schedule

2

vehicle
2

assign1 request1

requ
est2

request3
assi

gn2
request

4

assign
4

assign3

receive assignments

schedule1Send status/demands

schedule2

o1-o4-d1-d4

o2-o3-d3-d2

AUTONOMOUS.

Figure 1.1: Architecture of an SAMoD system with two vehicles and four requests, where

vehicle 1 is assigned to serve requests 1 and 4 following schedule 1, and vehicle 2 is assigned

to serve requests 2 and 3 following schedule 2.

Figure 1.1 shows the structure of an SAMoD system, the key component of which is a

central dispatch server that controls the system in a rolling horizon manner. At each dispatch

window (also known as batch window, batch period or epoch), vehicles update their status

and passengers submit their transportation demands to the dispatch server, as depicted

by broken arrows. The dispatch server will then compute feasible ride-sharing schedules

for all vehicles, i.e., satisfying the constraints discussed above. Each schedule indicates a

candidate match between a vehicle and a request (or a group of requests that can be served

together with minimum detours), and represents the order for the vehicle to pick up and

drop off passengers (e.g., o1 − o4 − d1 − d4: pick up passenger 1, pick up passenger 4, drop

off passenger 1, drop off passenger 4). Taking all candidate schedules into consideration, the

dispatcher server assigns each vehicle a particular schedule in a cooperative way to optimize

4

Introduction

the objective of the system. Optimization objectives can include number of served requests,

the profit of the platform, overall VMT and average request wait time. After receiving the

assignments, vehicles will follow the schedules serve passengers. Vehicles can continue to

be matched to new requests even if they have passengers onboard, as long as the maximum

detour constraint is satisfied and there are seats available. If requests cannot be immediately

matched to vehicles, they may choose to wait for another dispatch round or leave the system.

A centralized dispatcher is easy to deploy and is capable of enabling system-wide

coordination to reach a global optimum, i.e., utilizing every available seat of the vehicle fleet

to serve as many passengers as possible. Compared to decentralized approaches, although

centralized optimization may face a computational burden when the number of passengers

and vehicles is high, it is computationally feasible at a city-level, e.g., serving 400k passengers

a day in Manhattan. Furthermore, the successful deployment of large-scale ride-hailing

systems (e.g., Uber, DiDi and Grab) has demonstrated that centralized optimization is

preferred [21–23].

1.2 Research Problem and Questions

In this thesis, we study the ride-sharing dispatch problem for high-capacity vehicles, which

concerns computing matching policies between vehicles and passengers at the city scale,

where thousands of vehicles and hundreds of thousands of passengers are involved, with

the primary goal of maximizing the service rate (i.e., percentage of requests served). High-

capacity means that the vehicle has a seating capacity more than 4. Following the general

setup in the literature [7, 19, 20, 24–33], the general assumptions and constraints made about

the dispatch problem are: (1) The dispatcher controls a homogeneous fleet; (2) The number

of passengers included in each request is one; (3) A vehicle can be continuously matched to

5

Introduction

multiple requests, as long as the number of passengers on board does not exceed its capacity;

(4) A request can only be matched to a vehicle when two constraints on maximum waiting

time and total travel delay are satisfied, such a match is called a feasible match; (5) Once

a match is assigned, both the vehicle and the passenger(s) will accept and complete it; (6)

If a request cannot be matched it will wait for five epochs before walking away; (7) The

dispatcher cannot reject any requests, unless there is no vehicle available.

The assumptions and constraints outlined above are intended to focus the develop-

ment of the algorithm on the generic characteristics of the optimization for the dispatch

problem. The algorithms developed based on them can be extended to more complex as-

sumptions and constraints. For example, extending the second assumption to support the

scenario where a request contains multiple passengers requires only one additional variable

indicating the number of passengers, which defaults to one in this thesis. In practice, a

passenger may reject a match or cancel the request when the vehicle is traveling toward

the pickup location. In the industry, a model to estimate the the likelihood of acceptance

and/or cancellation is trained separately and incorporated within the object function of the

optimization problem [34, 35], so as to relax the fifth assumption. Such an adaptation also

applies to the algorithms developed in this thesis.

To illustrate the dispatch problem, we present a motivating example. Imagine that

we have 100 four-seat vehicles operating for one hour and receive 10 requests every 30 sec,

i.e., the dispatch window is 30 sec; our goal is to fulfill as many of these 1200 requests

as possible. At each dispatch epoch, we have 30 sec to compute a matching policy that

assigns the received requests to the vehicles. To put it intuitively and simply, the matching

policy is produced in two parts: the search for candidate matches that computes the possible

options for each vehicle that match it to any no more than 4 out of 10 passengers, and the

selection of candidate matches that assigns each vehicle one of its options to maximize the

total number of matched passengers and ensure that the options assigned to the 100 vehicles

6

Introduction

are conflict-free, e.g., no passenger is matched to two vehicles.

Because of the real-time requirements of the dispatch problem (i.e., the matching

policies need to be ready within the dispatch window, which in reality is generally no greater

than 30 sec), it is difficult to find all options (i.e., candidate matches) when the capacity of

vehicles and the number of requests are large. If the dispatcher does not know all the options,

then there is no guarantee of the quality of the decisions made (i.e., matching policies), and

there is room for improvement. In addition, the assessment of the options will also affect

the quality of the decision, especially when there is uncertain information involved, e.g.,

stochastic travel time and demand.

This thesis works to improve the efficiency and quality of high-capacity vehicle dis-

patch. Specifically, we focus our attention on three problems: (1) efficient and optimal

dispatch, (2) reliability-aware dispatch and (3) long-term service optimization. The first

problem concerns efficiency, by tackling at each epoch the complete search of the candidate

match space in real-time, to compute the optimal matching policy. The term "optimal"

implies that, for the given inputs, the output matching policy is the best regardless of the

computation time, e.g., having the highest service rate, with no chance of improvement.

Taking the motivating example mentioned above, assuming that the optimal outcome is to

serve 1100 out of 1200 passengers, i.e., a service rate of 91.67%, it means that there is no

possibility for the dispatcher to increase the number of passengers it can serve to 1101 if

it has no more new information (e.g., the distribution of future requests) as input at each

dispatch epoch than the 10 new requests it receives. The latter two concern quality, by

tackling the evaluation of candidate matches when considering uncertainty information (i.e.,

stochastic travel times and future requests), to produce more sophisticated dispatch policies.

7

Introduction

1.2.1 Efficient and Optimal Dispatch

If the dispatcher knows all possible candidate matches, the optimal match policy can be

obtained by solving a maximum (or minimum) matching problem, which is easy to solve

using existing algorithms or commercial software. In the single-occupancy vehicle dispatch

problem, let n and m denote the number of requests and vehicles at each epoch, respec-

tively, there are only n ·m possible candidate matches, We can easily traverse them to find

the feasible ones, then use the Hungarian maximum matching algorithm [36] to get the op-

timal assignment policy. However, in ride-sharing, the number of possible matches grows

exponentially with vehicle capacity and the number of requests, making it difficult to com-

pute the optimal match policy in real-time. In terms of the motivating example mentioned

above with a 100-vehicle fleet, the number of all possible candidate matches can be up to

100 · (10C1 + 10C2 + 10C3 + 10C4) = 38, 500, whereas when ride-sharing is not considered, that

number is only 100∗10 = 1000. Moreover, when using high-capacity vehicles, a new problem

called scheduling has also emerged, which concerns the ordering of picking and dropping re-

quests for candidate matches. The scheduling problem also suffers from a large search space,

if it is not properly tackled, we may mistakenly reject some feasible candidate matches and

miss the optimal assignment policy. Thus comes the first research question:

After receiving a batch of requests at each epoch, how can we find all possible candi-

date matches in real-time and compute the optimal match policy that maximizes the service

rate(Question 1)?

Intuitively, the matching policy would be better if multiple orders could be considered

together. However, considering the passenger waiting time, we have to make the assignment

at the current epoch when receiving the requests. But when receiving new requests, there

are still passengers in the previous epochs who have not yet boarded, which gives us the

possibility for re-optimization, i.e., to consider the previous and new requests together to

8

Introduction

compute the matching policy. Once again, the re-optimization suffers from an explosion

of the search space, since the number of passengers being considered simultaneously may

increase a lot. Consider the motivating example mentioned above, where the number of

requests being considered per epoch is 10, but when re-optimization is enabled, this number

may grow to 40-50. Thus comes the second research question:

When the dispatcher receives a batch of new requests, how can we efficiently alter the

current matching policy and keep it optimal for all requests (Question 2)?

1.2.2 Reliability-Aware Dispatch

In urban transportation, in addition to travel cost, the most important considerations for

passengers also include waiting times and delays caused by ride-sharing. In particular, travel

time uncertainty has a significant impact on the effectiveness of ride-sharing dispatch [37].

In some unfortunate cases, a feasible match and routing policy may become infeasible due

to a deviation in travel time, which means that passengers may arrive at their destinations

exceeding the delay constraint. This will create a bad experience for passengers and reduce

their willingness to take ride-sharing trips [38]. In terms of the motivating example mentioned

above where 10 passengers are received per epoch, if passengers are always delivered after the

delay constraints have been exceeded, we may only receive 5 requests per epoch afterwards.

Therefore, in addition to chasing the service rate, we also need to seek the reliability of

service, i.e., not exceeding the delay constraint, to increase the willingness of passengers

to participate in ride-sharing. Formally, service quality is measured as the probability of

on-time arrival. Thus comes the third research question:

If a stochastic travel time model is given, how can we incorporate it into the ride-

sharing dispatch problems to optimize the reliability of service (i.e., the on-time arrival prob-

9

Introduction

abilities of passengers) (Question 3)?

Another way to increase the willingness of passengers to participate in ride-sharing is

to offer compensation to increase tolerance of passengers for late arrivals. In this case, we

need to consider the profit of the platform, in addition to the service rate. Thus comes the

fourth question:

If passengers accept late arrival when compensation is applied, how can we optimize

the profit of the platform (Question 4)?

1.2.3 Long-Term Service Optimization

The "optimal dispatch" discussed earlier can enables a "global" optimization for each dis-

patch epoch, but is short-sighted in nature, since only known requests are taken into account.

This problem is called reactive dispatch. Because of the lack of future information in the

following batch windows, an "optimal" assignment decision at present may cause potential

efficiency losses in the future [23, 39]. The most straightforward solution is to incorporate

predicted future requests into the candidate search procedure, but this would make the prob-

lem more complex and may not be solvable in real-time, with the same issues as the example

given in the discussion of re-optimization. A more suitable approach for deployment is to

learn the longer-term impact of candidate matches to guide the dispatch. Thus comes the

fifth research question:

Given historical data and a simulation environment, how can we learn the longer-

term impact of matching policies and make more far-sighted decisions without increasing the

computational complexity of online matching (Question 5)?

10

Introduction

1.3 Contributions

The objective of this thesis is to develop algorithms that can make vehicle dispatch in

SAMoD systems more efficient, reliable and far-sighted. By addressing the research questions

discussed in Section 1.2, the contributions of this thesis include:

1. A method to efficiently compute all feasible candidate schedules in real-time, so that

we can get an optimal allocation and scheduling policy that maximizes the service rate,

based on the information collected in the dispatch window. (Question 1 in Section

1.2.1, Chapter 3.)

2. A re-optimization strategy to dynamically alter the assignment policy when receiving

new requests, so that we can always have an optimal matching policy up to date, where

all known requests are considered. (Question 2 in Section 1.2.1, Chapter 3.)

3. A method to leverage stochastic travel time models to compute the reliability scores

of the schedules, so that we can, while chasing the service rate, route the vehicles to

serve requests with the highest on-time arrival probabilities. (Question 3 in Section

1.2.2, Chapter 4.)

4. A method to consider the penalty costs due to late arrivals under travel time uncer-

tainty, so that we can, while chasing the service rate, route the vehicles to the most

profitable trips to optimize the profit of the platform. (Question 4 in Section 1.2.2,

Chapter 4.)

5. A reinforcement learning based method to predict long-term impact scores of the can-

didate matches, so that we can dispatch vehicles to optimize the overall service rate

over a long horizon, instead of the current dispatch epoch. (Question 5 in Section

1.2.3, Chapter 5.)

11

Introduction

6. Case studies to validate the above methods and provide a deeper understanding of the

impact of parameter tuning in vehicle dispatch in real world scenarios. We contribute

two open-source repositories on GitHub for case studies: AMoD (https://github.com/

Leot6/AMoD) and AMoD2 (https://github.com/Leot6/AMoD2).

1.4 Publications Resulting from the Thesis

Some parts of this thesis are contained in the following publications. Paper [1] is associated

with Chapter 3 and paper [2] is associated with Chapter 4. Besides, paper [3] (associated

with Chapter 5) is to appear in IROS 2022 in October.

[1] C. Li, D. Parker and Q. Hao, "Optimal Online Dispatch for High-Capacity Shared

Autonomous Mobility-on-Demand Systems," 2021 IEEE International Conference on

Robotics and Automation (ICRA), 2021, pp. 779-785.

(DOI: 10.1109/ICRA48506.2021.9561281.)

[2] C. Li, D. Parker and Q. Hao, "Vehicle Dispatch in On-Demand Ride-Sharing with

Stochastic Travel Times," 2021 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2021, pp. 5966-5972.

(DOI: 10.1109/IROS51168.2021.9636499.)

[3] C. Li, D. Parker and Q. Hao, "A Value-based Dynamic Learning Approach for Vehicle

Dispatch in Ride-Sharing" 2022 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2022. (To appear in October.)

12

https://github.com/Leot6/AMoD
https://github.com/Leot6/AMoD
https://github.com/Leot6/AMoD2
https://doi.org/10.1109/ICRA48506.2021.9561281
https://doi.org/10.1109/IROS51168.2021.9636499

Introduction

1.5 Thesis Structure

The remaining content of the thesis is arranged as follows. In Chapter 2, we review existing

research work on the research topics of efficient vehicle-request matching, ride-sharing under

travel time uncertainty and predictive vehicle dispatch. The purpose is to identify relevant

methods and gaps within the field of research and how this thesis contributes to it. In

Chapter 3, we study the problem of computing the optimal assignment policy for high-

capacity ride-sharing in real-time, and develop a dispatcher that is able to dynamically

keep the optimal assignment policy updated when new requests are received. In Chapter 4,

we consider the impact of travel time uncertainty for ride-sharing, and propose a multi-

phase dispatch scheme to optimize the assignment policy considering requests’ probabilities

of on-time arrival and the platform’s profit. In Chapter 5, we turn our attention to long-

term service optimization, and present a value-based dynamic learning solution for vehicle

dispatch in ride-sharing. In Chapter 6, we draw the conclusions of this research and highlight

several directions for future work.

13

Chapter Two

Literature Review

This chapter gives a synoptic review of the literature related to the topics of this thesis, which

primarily concerns the following characteristics of the approaches reviewed: large-scale (i.e.,

the number of vehicles dispatched is in the thousands), high-capacity (i.e., the capacity of

the vehicle is greater than four), real-time (i.e., the computation time of the matching policy

is shorter than the dispatch window) and optimal (i.e., the output matching strategy cannot

be further improved for a given input, regardless of the computation time). Specifically,

the review includes three research topics. First, Section 2.1 summarizes studies focusing

on efficiently finding a good matching policy between vehicles and requests, including ap-

proaches in P2P ride-sharing and SAMoD. Although P2P ride-sharing is a little different

from SAMoD in terms of its problem definition, the algorithms in P2P have a lot in common

with the algorithms in SAMoD, which could provide some reference and inspiration. Second,

Section 2.2 presents approaches that take travel time uncertainty into account to optimize

the reliability of matching and routing. As there is a paucity of literature on ride-sharing, we

also investigate some work on the Vehicle Routing Problem (VRP) for insights into the role

of stochastic travel times. Third, Section 2.3 reviews proactive solution methods that aim

to optimize the long-term effectiveness of dispatch. Depending on how future information is

considered in assignment, they are classified into two groups: forecast based approaches and

14

Literature Review

value based approaches. Finally, Section 2.4 summarizes this chapter.

2.1 Efficient Vehicle-Request Matching in Dynamic Ride-

Sharing

The dynamic ride-sharing problem can be viewed as a special case of the dynamic Vehicle

Routing Problem with Pickup and Deliver (VRPPD), which involves scheduling and routing

a fleet of vehicles with a given capacity to satisfy transportation requests at different locations

[40]. The dynamic setting means that people can send transportation requests at any time

and the input data of the problem are not all known in advance, but revealed over time.

Therefore, a solution to the problem must be capable of using the revealed information to

continuously update the schedules and routes as time goes by. There are two main types of

solutions: exact methods and heuristic methods. Exact methods attempt to repeatedly solve

an optimal static problem with newly revealed requests [41, 42]. Finding optimal solutions is

normally too time consuming and inadequate for real-time deployments. Heuristic methods

choose to update the current solution by inserting new requests and interchange moves [43,

44]. By compromising a little on the solution objective, heuristic methods achieve better

efficiency for deployment in real-time. The quality of an algorithm is typically measured by

the proportion of served requests (i.e., the service rate), the travel distance (or time) of the

vehicles and the computation time of the algorithm [45, 46].

The dynamic ride-sharing problem differs from the general VRPPD in that it focuses

on transporting passengers and concerns tight constraints on the quality of service, such as

door-to-door transportation, maximum travel detour and tight time windows [40]. Depend-

ing on whether the vehicles (drivers) are treated as one-time private independent entities like

requests (riders) or long-time continuous service providers, the problem can be classified as

15

Literature Review

P2P ride-sharing or SAMoD. In terms of the motivating example mentioned in Chapter 1,

P2P ride-sharing refers that the fleet size is no longer a fixed 100, but varies according to

the number of drivers to participate.

In terms of the example in the previous chapter, carpooling means that the fleet size

is no longer a fixed 100, but varies according to the number of drivers involved

2.1.1 Peer-to-Peer Ride-sharing

P2P ride-sharing systems work on establishing ride-sharing matches between drivers and

riders. The system objectives are maximizing the number of satisfied participants (both

drivers and riders) [47] and minimizing system-wide vehicle-miles and travel time [40, 48].

Drivers in P2P ride-sharing have their own travel plans with distinct origin and destination

locations. They are willing to share the available seats during the trips to split the cost

and will normally leave the system after arriving at their own destination. Therefore, the

vehicles have narrow travel time windows, different vehicle types and are not available for

later ride requests [49].

Agatz et al. [40] provide a survey discussing the challenges faced in dynamic P2P ride-

sharing problems and suggesting that researchers work on decomposing the problem. Based

on whether a vehicle can be shared by a single rider or multiple riders and whether a rider

is willing to travel with a single vehicle or multiple vehicles by transfer, P2P ride-sharing

problems can be distinguished into four variants: one-to-one, one-to-many, many-to-one, and

many-to-many [40, 49].

16

Literature Review

One-to-One

In one-to-one matching, a single driver is only matched with a single rider, and vice versa.

The capacity of the vehicles is set to one and at most two more stops are allowed for each

vehicle, one for pickup and one for drop-off. For a driver-rider match, the travel cost savings

can be calculated by the sum of the cost of two separate trips minus that of the sharing

trip. The objectives of maximizing the number of matches and minimizing the travel cost

can be converted to maximizing the total travel cost savings. Since the routing problem

in one-to-one matching is quite simple, the literature mainly focuses on decomposing the

matching to achieve high computational efficiency. Najmi et al. [50] introduce a clustering

heuristic, based on k-means and using spatial coordinates, to divide drivers and riders into

small groups. As a result, the original matching problem is decomposed into a set of smaller

sub-problems and can be solved more efficiently. Using a similar approach, Ketabi et al.

[51] apply spectral clustering to generate meaningful spatio-temporal clusters. They propose

a similarity measure to calculate both spatial and temporal proximities between two trips,

using the average of the point-wise distances. Unlike others, Tafreshian et al. [48] use a

dissimilarity measure to develop a graph partitioning methodology. They use a bipartite

graph to represent the one-to-one matching problem and partition the graph into smaller

sub-graphs to reduce the overall computational complexity. Because searching for candidates

can be done easily in one-to-one matching, the above literature is devoted to further improve

the efficiency of selecting candidates, which is not the concern in this thesis. When the scale

of the instance considered in SAMoD becomes much larger, say tens or hundreds of thousands

of vehicles are dispatched, the partitioning methods mentioned may serve as a reference.

17

Literature Review

One-to-Many

In one-to-many matching, a single driver can serve multiple riders, as they may have sufficient

time flexibility. Allowing more stops and detours to be made during a trip, a vehicle would

have a longer schedule and a more complex routing problem. Herbawi et al. [52] adapt the

model of pickup and delivery problem with time windows and propose a genetic algorithm.

They use Solomon’s insertion method [53] to create initial solutions and improve the solution

with a crossover operator and five mutation operators. Xia et al. [54] present two heuristic

methods, one based on Tabu search (smart interchange) and another based on simulated

annealing (correlates to natural processes). They initially generate carpooling routes by

randomly selecting rides and then try to refine them by searching for neighbouring solutions.

However, these evolutionary approaches are normally not capable of converging to a good

matching policy in a short time. The computation time can be up to hours. Thus, they are

not applicable to large-scale or high-capacity problems. Borrowing the method from [55], Ma

et al. [56] propose a recursive algorithm to compute feasible rider sets. Riders that can be

served by a single vehicle are grouped together and the one-to-many matching is simplified to

one-to-one matching. A delete operator is then performed to reduce the size of the decision

region to speedup the model solving. With a small sacrifice in system-wide performance,

they can provide matching solutions with good efficiency. Although more efficient than the

previous two evolutionary approaches, it still cannot handle large-scale instances in real-time.

The computation time for an instance with 1000 double-seat vehicles and 2000 rides is over

2 min. Moreover, optimality is not ensured.

Many-to-One and Many-to-Many

In many-to-one matching and many-to-many matching, riders are allowed to switch between

different vehicles. In this setting, riders may sacrifice some convenience to increase match

18

Literature Review

success rates. Riders and drivers can be matched even when they do not share similar di-

rections [57]. These two matching problems are normally considered together and are called

a multi-hop ride-sharing problem [49]. Herbawi et al. [58] consider that drivers have fixed

routes and use these routes to form a time-expanded graph. They formulate the multi-hop

ride-sharing problem as a multi-objective shortest path finding problem, and propose an

evolutionary algorithm to minimize the cost, time and number of transfers. Masoud et al.

[47] present a binary problem formulation in a time-expanded network. They attempt to

decompose the problem into a set of passenger matching problems and solve them itera-

tively. In each iteration, the sub-problems are solved independently and merged into groups

if any conflicting matches are found among them. When there is no conflict, the algorithm

converges and outputs a feasible solution. For real-time deployment, Masoud et al. [59]

consider matching riders in a First-Come-First-Served (FCFS) manner. A pre-processing

procedure is proposed to reduce the search space of each rider, by restricting potentially

available drivers in a narrow elliptical area. They then introduce a ride exchange mecha-

nism to further improve the number of matches, by alleviating the negative impact of the

FCFS approach. Allowing transfer significantly increases the complexity of matching, thus

the existing approaches are focused on computational efficiency. Although transfer is not

considered in this thesis, the literature above may serve as a reference for public transit

interaction with SAMoD, which is a future direction.

2.1.2 Shared Autonomous Mobility-on-Demand

SAMoD systems work on dispatching a fleet of autonomous vehicles to travel around the city

to transport passengers. The key component is assigning suitable vehicles to serve requests.

Unlike P2P ride-sharing, the number of vehicles is normally predetermined and all of the

vehicles are fully controlled by a central planner to maximize the overall objectives coordi-

19

Literature Review

nately, e.g., the number of satisfied requests [19] and the total profit of the platform [60].

The vehicles are available during the entire operation time and they can wait at particular

locations or be rerouted to different destinations. In some work, this may be called a shared-

taxi problem [8]. SAMoD systems are initially studied with unit capacity vehicles and then

extended to allow passengers travelling in ride-sharing with multiple capacity vehicles.

Unit Capacity Vehicle

Lee et al. [61] study a unit capacity taxi dispatch system with the simplest assignment

heuristic. On an FCFS basis, they put the incoming requests in a queue and find the nearest

vehicle for each request. Seow et al. [62] argue that assigning requests in an FCFS fashion

ignores the global optimality, as it merely increases individual passenger satisfaction and

the effects of the assignment on other awaiting passengers in the queue are not considered.

They propose a multi-agent collaboration architecture to consider the match between vehicles

and requests in a cooperative way. But their solution is limited to a local optimal with a

small number of vehicles due to communication burdens [63]. Zhang et al. [35] present a

batch assignment approach to simultaneously match all available vehicles and requests. The

vehicle-request matching problem is formulated as a combinatorial optimization problem and

optimized over the current batch window, to maximize the probability of request acceptance.

A driver-select-order dispatch mode is initially used in [35] and switched to a centralized

platform-assign-order dispatch mode in [64]. The switch brings a significant improvement

(over 10%) on the request completion rate. Within a batch window, every potential match

between a vehicle and a request is represented by an edge, weighted by a desired objective,

to generate a bipartite graph. An optimal matching policy can then be found by solving

a weighted bipartite matching problem. The results from the literature above suggest that

batch assignment is preferred over FCFS, as considering multiple requests simultaneously

can output the optimal solution within the batch window.

20

Literature Review

Multiple Capacity Vehicle

For increasing efficiency in transportation, a natural option is to enable ride-sharing. Due

to the high computational complexity, it is intuitive to choose FCFS matching methods to

give a low algorithmic response time. Widdows et al. [65] present a real-time ride-sharing

service that assigns one request at a time to the best-matched vehicle. For each request, the

dispatcher considers the nearest candidate vehicles, enumerates all possible travel schedule

insertions and scores each of them using some predefined features, e.g., pickup travel time

and overlap between requests. According to the score ranking, the request is assigned to the

candidate vehicles in order until it is accepted.

Ma et al. [24] introduce a grid-based index to accelerate the search for candidate

vehicles, where a request only checks its nearby areas. Both the spatio-temporal factors on

the origin and destination locations of the requests are considered to reduce the search space

by pruning out the obviously infeasible vehicles. Zhu et al. [25] try to do the candidate search

from the aspect of vehicles. They propose a limited potential search area based algorithm

to accelerate the search. Requests out of the area are considered to violate some predefined

quality of service constraints and filtered out. This search algorithm is similar to the one

used by Masoud et al. [59].

Tong et al. [26] argue that the insertion of a new request into the schedule of a vehicle

is the efficiency bottleneck, and propose a dynamic programming algorithm to speed this

up. It can compute the minimal increased distance route without enumerating all possible

insertions. The time complexity of insertion is reduced from cubic to linear. Cheng et al.

[66] propose a bilateral arrangement algorithm that tries to use a replacement procedure

to achieve better match quality, by considering two requests at a time. It assigns a greedy

candidate vehicle for each request and, if that vehicle is not feasible, it will attempt to

replace an unpicked request in the schedule to make the assignment feasible. The time

21

Literature Review

complexity remains the same as in normal FCFS based approaches. The above approaches

are efficient for the real-time deployment of large fleet and even high-capacity ride-sharing

systems. However, similar to the FCFS based approaches that consider unit capacity vehicles,

the global optimality is ignored.

To achieve system-wide coordination, batch assignment is also introduced for multiple

capacity vehicles. Incoming requests are collected over batch windows and assigned simul-

taneously. Potentially better performance can be achieved, but at the cost of much higher

computational complexity. The simplest approach is quite similar to the unit capacity ve-

hicle batch assignment solutions (e.g., [35, 64]), where only one-to-one matching between

requests and vehicles is considered in each batch window. Simonetto et al. [27] compute

all possible insertions of each individual request into the current schedule of vehicles, then

find an optimal assignment of such insertions. They enforce that all new requests cannot be

combined with each other but only share trips with those received during previous windows

to have a low computational complexity. However, when passengers travelling in similar

directions send their requests in the same batch window, the quality of matches for them are

sacrificed for computational efficiency.

To allow assignment of multiple requests to one vehicle at the same time, Santos

et al. [67] use a greedy randomized adaptive search procedure to develop a solution that

can be used in practice. They compute a randomized initial assignment of requests to

vehicles, then perform a local search for additional possible solutions to improve the quality

of assignment. Jung et al. [68] propose a similar method using hybrid simulated annealing.

These methods try to find the optimal assignment by randomly exploring the search space,

but they cannot guarantee optimality as a maximum number of iterations is set to ensure

efficiency. Moreover, similar to the evolutionary approaches in one-to-many P2P ride-sharing,

they are not applicable to large-scale real-time systems.

22

Literature Review

Inspired by the concept of shareability networks, which translates the spatio-temporal

matching problem into a graph-theoretic framework [7], Alonso-Mora et al. [19] propose a

highly scalable algorithm. They incrementally find all possible matches between a vehicle and

a clique of requests to break down the computational burden, then solve an Integer Linear

Program (ILP) to match vehicles to requests in a one-to-many manner. Their method is

the first to be able to dispatch thousands of high-capacity vehicles in real-time, where up

to 3000 ten-seat vehicles are considered. However, some ad hoc heuristics (e.g., only 30

candidate vehicles for each request and a timeout of 0.2 s per vehicle to search feasible

cliques of requests) are applied to ensure efficiency and hence the candidate state space is

not guaranteed to be fully searched. To improve the candidate search procedure, Lowalekar

et al. [28] introduce zone paths to assist in generating more relevant cliques of requests and

Riley et al. [29] employ column generation to relax the waiting time constraint to provide

service guarantees for all requests. However, none of these solutions tackles the optimal

scheduling problem that finds the best orders of picking and dropping multiple requests for

high-capacity vehicles, so the optimality of real-time matching is not guaranteed.

The aforementioned approaches solve the problem by decomposition. They first search

for as many feasible candidates as possible, either from the aspect of requests or vehicles,

and then compute the best matching policy based on the cost of the candidates. There are

several other approaches based on mathematical programming. Hosni et al. [8] formulate the

ride-sharing match problem as a Mixed Integer Program (MIP) and present a solution based

on Lagrangian decomposition. Tsao et al. [20] develop a network flow model and formulate

a Mixed Integer Linear Program (MILP) to optimize the matching policy. However, due

to computational complexity, these methods are normally limited to small fleet sizes or low

ride-sharing trip sizes. For example, the problem instance solved in [20] only considers 400

double-seat vehicles.

23

Literature Review

2.2 Ride-Sharing Under Travel Time Uncertainty

Besides the development of computationally efficient matching algorithms, the explicit con-

sideration of uncertain travel time is also necessary for the widespread adoption of ride-

sharing [69]. If the travel time uncertainty is not properly captured, the travel of vehicles

may differ from the planned time schedules and have a negative effect on the flexibility of

passengers, which in turn affects the matching rate in ride-sharing [38]. As there are too

many unmeasurable traffic variables, rather than estimating a deterministic travel time, it

is more valuable to predict a probability distribution over travel time to capture the uncer-

tainty [70]. Taking the travel time distribution into account, one can plan reliable paths for

vehicles or provide high quality transportation service to passengers.

2.2.1 Stochastic Shortest Path Finding

Stochastic Shortest Path (SSP) finding works as a basis for capturing the uncertainty of

travel time in ride-sharing. It uses past observations of delays on roads to model travel

times as probability distributions, and finds paths between two points that maximize the

probability of arriving before a given deadline [71].

Assuming that the travel time of each road segment follows an independent normal

distribution, Nikolova et al. [72] propose a parametric approach to find the most reliable

path based on quasi-convex maximization. They project the path polytope onto a two-

dimensional plane and exhaustively enumerate all extreme points of the shadow dominant

by finding the parametric shortest paths. Although the optimal solution can be found,

the computational complexity is superpolynomial. Nikolova [73] later constructs a fully-

polynomial approximation scheme to efficiently search for relevant extreme points. Lim et

al. [71] give a graphical connection between the optimal reliable path and the parametric

24

Literature Review

path finding problem, which induces the idea of probe points to accelerate the search for

extreme points. By checking the value of probe points, the futile part of the search space can

be pruned quickly and therefore the number of parametric path findings is reduced. When

compared with the running time of the algorithm in [72], the reduction is by at least a factor

of ten. However, it is still impractical to deploy it in real-time city-scale path planning.

Lim et al. [74] further propose a two-phase algorithm that runs in poly-logarithmic time.

They develop a preprocessing procedure that computes a set of distance oracles for the road

network with some approximation related parameter values. With the precomputed oracles,

online querying a SSP is restricted to a small set of possible parametric path findings and runs

in sub-linear time with worst-case guarantees. Cao et al. [75] study a data-driven approach

that can handle various probability distributions. They formulate the SSP problem as a

cardinality minimization problem, which is then relaxed by `1 norm minimization. The

relaxed problem is transformed into an MILP to be solved with standard solvers.

In the case of transporting a single passenger, a vehicle needs to visit two locations

to finish the job. As the optimal substructure does not hold here, the SSP to the pickup

location may not yield the highest probability of visiting the drop-off location before the

deadline. To tackle this problem, Lim et al. [76] prove that the optimal path, maximizing

the probability of arrival at the destination through a fixed node sequence, is still an extreme

point of the shadow dominant. They present a multi-hop SSP finding algorithm based on

parametric optimal path finding. Compared to the simple SSP finding algorithm in [71], the

complexity is at most N-1 times higher when there are N visiting nodes in the path.

2.2.2 Vehicle Routing with Stochastic Travel Times

Research that takes travel time uncertainty into account mainly focuses on the VRP with

stochastic travel times, where a few vehicles leave from the depot to visit dozens (even

25

Literature Review

hundreds) of locations and return to the depot at the end. The durations of routes are

typically very long (up to hours), the capacity of vehicles is quite large (up to dozens) and

all of the information is known in advance. It is impossible to find the optimal solution, so

methods like Tabu search, simulated annealing and genetic algorithms are generally used to

find solutions in a reasonable amount of time.

Kenyon et al. [77] study routing for uncapacitated vehicles without time window con-

straints. The travel time distributions are assumed to be known and the objective is to

maximize the probability that all vehicles finish their job and return to the depot before the

deadline. They embed a branch-and-cut algorithm in a Monte Carlo solution procedure to

solve the routing problem. Li et al. [78] consider a time window constraint for each visiting

location and assume that travel times are normally distributed. A Tabu search based heuris-

tic algorithm is proposed to solve the problem, in which a stochastic simulation is performed

to compute the expected travel costs of trips. Taş et al. [79] study a similar problem and

aim to minimize both the operational cost and passenger inconvenience. They propose a

three phase approach that first adapts the Solomon’s insertion heuristic I1 [53] to construct

an initial feasible solution, then uses a Tabu search metaheuristic to improve the solution

and finally applies a post-optimization to further improve and generate the solution. They

later propose a branch-and-price solution approach, embedded with a column generation

procedure, to generate exact solutions for the problem [80]. Li et al. [81] consider a problem

where passengers and parcels are simultaneously served by the same vehicle fleet. They de-

velop an Adaptive Large Neighborhood Search (ALNS) heuristic to maximize the expected

profit. The ALNS iteratively improves a randomly generated initial solution through request

selection and perturbation, until the solution converges. In general, the solution approaches

to VRP usually employ evolutionary methods. They can find a feasible solution at any

given time, but are limited to the dispatch of dozens of vehicles, and cannot be applied to

real-time systems due to long computation times (up to hours). They show examples of how

26

Literature Review

stochastic travel times are taken into account when dispatching vehicles, e.g., maximizing

the probability of arriving before the deadline and minimizing the travel costs.

2.2.3 Ride-Sharing with Stochastic Travel Times

There has been very little literature regarding travel time uncertainty in the ride-sharing field.

Yan et al. [82] are the first to study carpooling with stochastic travel times and formulate it

as an integer multiple commodity network flow problem. They present a heuristic algorithm

that employs a constraint relaxation technique to solve the problem. The algorithm first

generates an initial solution by solving a linear relaxation problem, and then adopts a local

improvement method to improve the solution. Long et al. [83] propose a static stochastic

ride-sharing model, where a generalized trip cost is introduced and analyzed for both driving-

alone and ride-sharing trips. They develop a Monte Carlo simulation method to estimate the

cost and a bi-objective ride-sharing matching model to maximize both the number of matches

and the trip cost savings yield by ride-sharing. It is assumed that all participants announce

their travel plans one day before departure. Li et al. [69] study a static mathematical model

to provide computationally tractable methods for real life-size problems. They first present a

tabu search based heuristic algorithm which adopts an extended insertion algorithm to find

initial solutions. For large scale problems with thousands of participants, they then develop

a cluster-first-route-second method that uses two clustering technologies, greedy heuristic

and k-means clustering, to decompose the problem into multiple small problems for quick

matching and routing. The hybrid heuristic approach could serve as a prerequisite to dynamic

ride-sharing and could be solved repeatedly to handle dynamic problems. However, evolution

based approaches (e.g., tabu search and local improvement) normally do not support solving

large-scale problems in real-time, where the number of vehicles for dispatch is thousands.

Li et al. [84] propose a data-driven robust optimization approach to determine the

27

Literature Review

optimal vehicle-request matching policy and find an optimal route for each vehicle. The

objective aims to minimize the total travel costs of vehicles and the number of unmatched

requests. They adopt a Recurrent Neural Network (RNN) to predict the nominal and devi-

ation of travel times, use a one-stage optimization model to formulate the decision-making

problem, and introduce a robust counterpart reformulation to solve that problem. How-

ever, the VRP based MIP formulation yields a long computation time and is not capable of

handling large-scale instances.

The scenarios studied in the above approaches are one-to-many P2P ride-sharing

and normally compute the cost caused by travel time uncertainty from the perspective of

drivers. In SAMoD systems, the objectives are more relevant to the effect of travel time

uncertainty on passengers. Liu et al. [85] introduce a reliable path concept and work on

improving the reliability of on-time arrival for passengers. For computational efficiency, they

assign the vehicle with the maximal on-time arrival probability to each request in an FCFS

fashion. The assignment consists of three steps: searching for available vehicles, estimating

their reliabilities by leveraging a k-shortest path algorithm [86, 87], and selecting the vehicle

with the highest reliability. Besides the most reliable path model, they also investigate a

α-reliable path model that minimizes the travel cost while keeping a minimum threshold

(e.g., 0.9) of the on-time arrival probability for passengers. However, both the FCFS setting

and the k-shortest paths based search ignore global optimality. Moreover, the number of

vehicles considered in their work is less than 200, suggesting that the approach may not be

applicable to real-time large-scale instances.

28

Literature Review

2.3 Predictive Vehicle Dispatch

Due to the spatial imbalances of the requests from passengers, simply using the revealed

request information to optimize the immediate objective function could lead to a spatio-

temporal mismatch between vehicles and requests in the future. This mismatch means that

some passengers will not be served because there are very few vehicles nearby, while some

vehicles are struggling to find passengers in other locations. Therefore, it is desirable to

dispatch vehicles in a more far-sighted way to further improve the operational efficiency.

There are two different approaches to working on predictive optimization: demand

forecast based dispatch and value based dispatch. The former leverages a forecast of requests

in the near future to maximize the number of requests that can be served [30], and the

latter considers the long-term impact of the matching policy to balance the distribution

of vehicles across the city [23]. Depending on how the forecast information or long-term

value is incorporated, an approach can be further classified as anticipatory vehicle-request

matching or idle vehicle repositioning. Anticipatory matching would induce the vehicles

to give up the best immediate assignments or detour from the minimum cost schedules to

increase the chance of serving more requests in the future. For example, a vehicle is assigned

to a low immediate reward trip as it ends at a "hot" area [88], or dispatched to visit an

"unnecessary" location before picking up its passengers to serve an extra passenger [30]. Idle

vehicle repositioning is also called rebalancing in some work. As vehicles tend to build up

in low-demand zones, repositioning focuses on guiding idle vehicles to high-demand zones to

reduce the idle time of vehicles and the waiting time of passengers [31, 89].

29

Literature Review

2.3.1 Demand Forecast Based Dispatch

Forecast based approaches usually partition the road network into zones and estimate the

future demand distribution over the zones at each time step. The predicted future travel

demand is then used to generate a set of artificial requests to compute far-sighted matching

and scheduling policies, or used to identify high-demand zones to reposition idle vehicles to

balance the match between vehicles and requests.

Anticipatory Vehicle-Request Matching

Alonso-Mora et al. [90] construct a probability distribution based on historical demand to

sample future requests. Building on their myopic batch assignment approach [19], they

take into account the sampled future requests to enhance the search for candidate cliques

of requests and the scheduling of vehicles. Then an ILP is solved to maximize the number

of requests that can be served, consisting of both the real requests and the predicted ones.

However, with a significant increase in computation time, only a small improvement in

service rate is obtained. Huang et al. [91] argue that the demand distribution used in [90]

is inefficient. Using the Lebesgue measure based on a Euclidean space approximation of

the road network, they propose a network partition algorithm to characterize the demand

distribution. They then regularize the distribution and put it into the objective function

to balance the assigning of current requests and future ones. The instance addressed in the

paper considers 900 four-seat vehicles. Fielbaum et al. [30] propose an approach that does

not rely on any exogenous information, but only utilizes the current and recent requests

received during operations. They modify the cost function of each candidate assignment by

introducing a reward when the vehicle reaches zones with high request generation rates or

high rejection rates. They then adopt the method in [90] and combine it with the modified

cost function to diminish the mismatch between vehicles and requests. However, the instance

30

Literature Review

addressed in the paper only includes 1000 three-seat vehicles, which is much smaller than

that in [90]. Tsao et al. [20] develop a similar method to [90] that leverages forecasts of future

demand to improve service quality. They solve the vehicle-request matching problem in a

coupled way based on a network flow model. However, as discussed earlier, the computational

efficiency of this approach is not high enough to handle large-scale instances.

Lowalekar et al. [92] argue that, even without adding future requests, the search

for all possible candidate assignments and the scheduling for vehicles are computationally

intractable. They present a two-stage stochastic approximation to handle the extra compu-

tational burden brought by introducing future information into the system. In the first stage,

candidate generation and assignment are executed solely based on the current information,

using their previous matching method in [28]. The second stage employs future information

with approximations to efficiently evaluate the assignment results made in the first stage, by

simulating the movement of vehicles. Finally, the assignments for vehicles to serve requests

are conducted by accounting for future returns. Their approach is similar to a value based

approach, but estimates values using forecasts in the near future. However, compared to

their previous myopic approach [28], the computation time is 3 times longer.

Idle Vehicle Repositioning

Also building on [19], Wallar et al. [31] present a different approach from Alonso-Mora et al.

[90] to utilize demand estimation to improve efficiency. They focus on the proactive assign-

ment of idle vehicles. They use a particle filter to compute the rates of request demand at

different zones, solely based on the real-time request stream, and try to relocate idle vehicles

to maximize the expected number of requests that would be observed. Liu et al. [93] build

a probability distribution of the appearance of requests and introduce a probabilistic rebal-

ancing method, which formulates the assignment of idle vehicles as a one-to-one matching

31

Literature Review

problem to guarantee computational efficiency. Riley et al. [94], building on their previous

column generation based method [29], adopt the Model Predictive Control (MPC) algorithm

of [95] to jointly consider the movements of both idle and non-idle vehicles to compute the

rebalancing policy. In general, the number of idle vehicles is much lower than the total

number of vehicles and some inefficient matches in assignment process cannot be corrected

through repositioning [30]. Thus, idle vehicle repositioning is not considered in this thesis.

But the literature above may serve as a reference for future research.

2.3.2 Value Based Dispatch

Similar to forecast based approaches, value based approaches also use zones to do dispatch.

Instead of predicting the demand distribution, they learn a spatio-temporal value function

to evaluate the future return of an assignment, e.g., the potential number of requests that

can be served or the total income in several hours or a day. The learned value function can

later assist in finding the best matching or repositioning policies.

Anticipatory Vehicle-Request Matching

Most of the literature on value based dispatch has focused on unit capacity vehicle fleets.

Xu et al. [64] are the first to employ reinforcement learning in large-scale vehicle dispatch

systems to optimize long-term efficiency of vehicle dispatch systems. They model the move-

ment of each vehicle as a Markov Decision Process (MDP) and adopt a policy iteration

method to learn a tabular state value function using a Temporal Difference (TD) update.

The vehicle-request matching problem is transformed into a bipartite graph matching prob-

lem which can be efficiently solved by the Hungarian algorithm [36]. The weight of each edge

is computed with a tabular value and an instant reward. However, this tabular approach is

susceptible to data sparsity and does not support knowledge transfer. Wang et al. [96] adopt

32

Literature Review

the deep reinforcement learning framework [97] and employ a Deep Q-Network (DQN) to

estimate the state-action value function of the vehicle. The network is trained from a single

vehicle perspective to maximize the total reward throughout the day. A transfer learning

method is also introduced to increase the learning efficiency for multiple city deployments.

Building upon [64], Tang et al. [88] model the activities of each vehicle as a semi-MDP

that uses temporally extended actions. They propose a cerebellar value network, based on

Cerebellar Model Arithmetic Computer (CMCA) [98], that considers coordinations among

multiple vehicles to provide a more accurate spatio-temporal value estimation. The histor-

ical training data (i.e., vehicle trajectories) is combined with contextual information (i.e.,

supply and demand conditions) to learn a better state-action representation than the one

in [96]. To capture the variations of real-time dynamics, Tang et al. [99] later propose an

ensemble method that augments the offline training scheme [88] with a fast online learning.

They maintain a centralized value function that is continuously updated with new online ex-

periences and periodically ‘reinitialize’ it with an offline trained value function that records

general time varying patterns.

Due to the huge action space and complex movements of vehicles in ride-sharing,

only a few studies on value based dispatch consider multiple capacity vehicle fleets. Jindal

et al. [100] consider a scenario where at most two requests can share a vehicle. They define

three optional actions for each vehicle: staying at the current location, assigning a single

passenger trip and assigning a ride-sharing trip. A double-DQN [101] is used to learn the

state-action value function for vehicles. But the action space is not granular enough for

complex vehicle-trip matching. Yu et al. [102] model dynamic ride-sharing as a multistage

stochastic program and apply Approximate Dynamic Programming (ADP) to solve it. They

focus on studying the structure of value functions and prove that the optimal value function

is monotone, which indicates that a vehicle will have a higher expected value in step t+ 1 if

starting with a higher expected value in step t. They also assume that a vehicle can be shared

33

Literature Review

by no more than two requests at a time, meaning that the approach may not be applicable

to high-capacity vehicles. Shah et al. [32] adopt DQN to learn value functions based on an

ADP formulation of the vehicle-request matching problem. They use post-decision state to

decompose the value function to fit it into an ILP that computes the assignments. The value

function is then learned through a general Bellman update. The assignment framework,

similar to the one in [64], is built on the candidate search algorithm in [19] to dispatch

high-capacity vehicles. However, the value function is trained in a simulation environment,

which is a time-consuming process (it takes around one week [92]) and faces a "reality gap"

when deployed in the real world. Moreover, computing matching policies simply on a value

function trained on historical data does not handle dynamic environments very well [92, 99].

Idle Vehicle Repositioning

When working on the rebalancing of idle vehicles, the capacity of vehicles has very little

impact on the problem formulation and complexity, as each vehicle can only visit one repo-

sitioning location at a time. Wen et al. [103] divide the neighbouring area of each vehicle

into grids and consider nine actions that either stay or move to an adjacent grid. A DQN

agent is trained to select actions for vehicles to maximize the savings in passenger waiting

time, compared to the case without rebalancing. Jiao et al. [89] consider a hexagonal grid

system and use a similar training framework to [88] for learning a state-action value func-

tion. They differ from [88] by maintaining and updating two value networks to account for

both dispatched and idle states of vehicles. Tang et al. [99] later propose a unified value

function that tackles both vehicle-request matching and repositioning tasks. Gammelli et al.

[104] argue that repositioning can be considered as a node-wise decision-making problem

and leverage graph neural networks to exploit the connectivity of the road network. They

employ the Advantage Actor-Critic (A2C) algorithm [105] to learn the state value function

aggregating information across nodes in the road network.

34

Literature Review

2.4 Chapter Summary

This chapter provides an overview of various research topics that relate to or motivate

the research of this thesis. Considering efficient vehicle-request matching, approaches can

be categorized to three types. The first type concerns efficiency most and uses greedy

algorithms that assign one request at a time to the best-matched vehicle to reduce the

computational complexity (e.g., [24, 26, 65]). These FCFS based solutions are good for

initial deployment because of their simplicity, but not for long-term operation as the notions

of global optimality are ignored. The second type investigates batch assignment for system-

wide optimization. Batch assignment has been extensively employed in real-world large-

scale ride-hailing platforms (e.g., Uber and DiDi [64]) and shown to yield optimal matching

in each batch window [23], but ride-sharing is normally not allowed on these commercial

platforms. To overcome computational burdens, literature considering ride-sharing employs

heuristic algorithms to accomplish the computation of matching policies in meeting real-time

requirements (e.g., [19, 27, 68]). Although some approaches can theoretically obtain optimal

matching policies if given sufficient time, similar to evolutionary algorithms, the optimum

cannot be achieved in a reasonable amount of time. The third type formulates the vehicle

dispatch problem as a network flow model and guarantees optimality of the solution, but

are limited to solve small-scale instances in real-time (e.g., [20]). By contrast, we employ

the batch assignment and focus on improving the efficiency of generating candidate matches

while guaranteeing a complete search, to allow the optimal dispatch of large-scale fleet (i.e.,

thousands of vehicles) with high-capacity (i.e., up to 10 seats) in real-time to fully utilize the

benefits of ride-sharing (Chapter 3).

In the context of ride-sharing under travel time uncertainty, only limited research has

been conducted. There have been some approaches focusing on the vehicle routing problem

with stochastic travel times (e.g., [78, 79, 81]), but they are limited to dispatching tens of

35

Literature Review

vehicles, and cannot be applied to real-time systems because the computation time is up to

5 hours. Several studies consider ride-sharing with stochastic travel times (e.g., [69, 83–85]).

However, they either assume all passengers announce their trip schedules one day before,

only support ride-sharing with no more than two passengers, or are limited to small-scale

problems. Our work differs from them by considering large-scale high-capacity on-demand

ride-sharing. In addition to optimizing the on-time arrival probibilities of passengers, we

also consider the optimization of the profit of the service provider (Chapter 4)

The literature on predictive vehicle dispatch is categorized into two groups: forecast

based and value based dispatch. Forecast based dispatch uses a predicted distribution of

requests in the near future to compute sophisticated matching policies that serve more re-

quests than myopic approaches (e.g., [30, 90, 92]). However, inserting future requests into

the computing process results in a huge computational burden and makes it difficult to solve

problems in real-time. Moreover, the lookahead duration is normally limited to several min-

utes, because considering more future requests yields higher computational complexity that

requires tighter heuristics to solve the problem, which would in turn reverse the improvement

achieved by lookahead [30, 92]. Value based dispatch runs in a far-sighted way by leveraging

a value function to evaluate the potential return of matching policies throughout the day

and does not affect the computational complexity of matching. But most of them do not

allow ride-sharing (e.g., [64, 88, 99]). The only one that considers high-capacity ride-sharing

(i.e., [32]) relies on training with a simulator and suffers from a long training time. Our work

focuses on using historical taxi trajectories to efficiently learn a value function and combin-

ing that value function with a re-optimization procedure to optimize long-term objectives of

high-capacity ride-sharing better (Chapter 5).

36

Chapter Three

Optimal Online Dispatch in

High-Capacity Ride-Sharing

Shared Autonomous Mobility-on-Demand (SAMoD) systems hold great promise for improv-

ing the efficiency of urban transportation, but are challenging to implement due to the

huge scheduling search space and highly dynamic nature of requests. In this chapter, we

develop a novel Optimal Schedule Pool (OSP) assignment approach to optimally dispatch

high-capacity ride-sharing vehicles in real-time, including: (1) an incremental search algo-

rithm that can efficiently compute the exact lowest-cost schedule of a ride-sharing trip with

a reduced search space; (2) an iterative online re-optimization strategy to dynamically al-

ter the assignment policy for new incoming requests, in order to maximize the service rate.

Experimental results based on New York City taxi data show that our proposed approach

outperforms the state-of-the-art in terms of service rate and system scalability.

37

Optimal Online Dispatch in High-Capacity Ride-Sharing

3.1 Introduction

The basic idea behind SAMoD systems is to assign suitable vehicles to each request and

group multiple requests into ride-sharing trips if they are travelling in similar directions.

There are several technical challenges that need to be addressed for the significant adoption

of SAMoD systems:

1. Large-scale. A typical urban taxi system has over ten thousand vehicles. The state

space of ride-sharing combinations and routes grows exponentially as the number of

requests or the capacity of vehicles increases. Dispatching large fleets is a major com-

putational challenge.

2. Time-sensitive. Passengers are sensitive to the time of service. Each request needs

to be assigned within a few seconds and completed as soon as possible. Matching

decisions are made on-the-fly.

3. Dynamic. Requests are received continuously throughout the day, instead of being

known in advance. An optimal assignment at a given time may not be the best when

considering additional new requests.

Many approaches to controlling and analyzing SAMoD systems have been studied,

such as multi-commodity flow models [20], queuing network models [106] and search-based

models [19, 26]. Due to computational complexity, most existing work is restricted to small-

scale and double-occupancy fleets for optimal assignments. Algorithms for optimal assign-

ment usually formulate the problem as a MILP, which is impractical when thousands of

vehicles are needed. For practical applications, greedy methods have been used to accelerate

the computation for large fleet ride-sharing. The most straightforward and most popular

solution is assigning requests to the vehicle fleet in a FCFS queue, where passengers are

38

Optimal Online Dispatch in High-Capacity Ride-Sharing

sequentially assigned to their best-matched vehicles. The FCFS based methods are very

efficient but may not be effective. As the optimality of assignment is not guaranteed, the

benefits of ride-sharing cannot be fully achieved. Figure 3.1(a) shows a case where a bad

assignment would be produced if request 1 is sent to the dispatch server ahead of request 2.

r2 r1
AUTONOMOUS.AUTONOMOUS.

(a) Best assignment only for request 1

r2 r1
AUTONOMOUS.AUTONOMOUS.

(b) Best assignment for both request 1 & request 2

Figure 3.1: An example of assigning two requests to two vehicles (a) in a FCFS queue or (b)

in a batch planning manner.

Batch planning is a promising approach to producing high quality and even optimal

online assignment policies. Compared to the FCFS based greedy methods, system-wide

coordination between vehicles is considered to improve the quality of assignments, as shown

in Figure 3.1(b). The key component of batch assignment is solving a one-to-many matching

problem between vehicles and requests, and the quality of matching greatly depends on two

problems: candidate filtering and vehicle scheduling [107, 108]. The former, searching for

feasible ride-sharing trips that each vehicle is able to serve, has attracted a lot of study

(e.g., [19, 28]). While the latter, computing the best orders of picking and dropping multiple

requests and verifying the feasibility of a ride-sharing trip for each vehicle, has received

very little attention. Existing work either uses greedy insertion or exhaustive search to

compute schedules, which in practice cannot produce good solutions. The state-of-the-

art batch assignment method proposed by Alonso-Mora et al. [19] theoretically guarantees

optimality if all steps are executed until termination, but this method cannot converge in

real-time settings as the vehicle scheduling problem is not properly tackled.

This chapter proposes an efficient and optimal online batch assignment scheme that

optimizes the service rate for dispatching high-capacity SAMoD systems in a practical time-

39

Optimal Online Dispatch in High-Capacity Ride-Sharing

frame. We use an incremental computation heuristic to reduce the search space of scheduling,

and an iterative re-optimization procedure to dynamically and efficiently alter the assignment

policy for better performance. The proposed approach is executable in real-time settings and

can guarantee the optimality of the assignment at each dispatch epoch, for all received re-

quests. Optimality means that the service rate cannot be further improved based on the

information already revealed. To summarize the work in this chapter, we:

1. Develop an incremental search algorithm to efficiently compute the optimal schedule

of a ride-sharing trip, which reduces global search to local search through heuristics

while ensuring optimality. (Section 3.3.1.)

2. Combine the optimal schedule search algorithm with the feasible trip search algorithm

of [19] to generate all possible ride-sharing trips for each vehicle, along with the optimal

schedule for each trip. (Section 3.3.2.)

3. Develop an iterative re-optimization strategy to avoid myopic optimality, which takes

into account both previous and new requests to optimize long-term system effectiveness.

(Section 3.3.3, 3.3.4.)

4. Perform simulations with large-scale taxi data to evaluate our proposed approach and

compare it to three representative algorithms. (Section 3.4.)

The remainder of the chapter is arranged as follows. In Section 3.2, we introduce

the definition of an SAMoD system, formulate the optimal dispatch problem and give an

overview of the online dispatch framework. In Section 3.3, we present the technical details

of the proposed dispatch method. In Section 3.4, we evaluate our approach using the taxi

data in New York City. In Section 3.5, we draw our conclusions.

40

Optimal Online Dispatch in High-Capacity Ride-Sharing

3.2 Preliminaries

As passenger requests appear throughout the day, the vehicle dispatch method presented in

this chapter adopts the industrial practice [23, 35] where submitted requests are periodically

packed and allocated together to suitable vehicles.

3.2.1 Definitions

A central dispatcher computes vehicle-request matches in a rolling horizon framework, the

time window length of which is ∆T .

The dispatcher controls a fleet of m vehicles V = {v1, . . . , vm}, of which the capacity

of each one is κ. The state of each vehicle is defined as a tuple 〈qv, sv〉, where qv is its current

position and sv is a planned schedule consisting of a sequence of pick-up and drop-off tasks

to serve assigned requests.

At each epoch, the dispatcher considers a set of n requests R = {r1, . . . , rn} submitted

by passengers. Each request is defined as a tuple 〈or, dr, tr〉, where or is the origin (i.e., pick-

up location), dr is the destination (i.e, drop-off location) and tr is the time when the request

is submitted. To measure the quality of passenger experience, a waiting time ωr (i.e., the

difference between when it is actually picked up and when it is submitted) and a total travel

delay δr (i.e., the difference between when it is actually dropped off and when it is expected

to arrive if travelling alone) are associated with each request.

A group of requests that can be assigned to a single vehicle via ride-sharing is presented

as a trip Γ = {r1, . . . , rnΓ
}. A trip might have more than one candidate vehicle to serve it

and vice versa. For example, trip {r1, r2} may be served either by vehicle v1 or by v2; vehicle

v1 may either serve {r1, r2} or {r2, r3}.

41

Optimal Online Dispatch in High-Capacity Ride-Sharing

r2

r1
AUTONOMOUS.

v1

d1

d2
r2

r1
AUTONOMOUS.

v1

d1

d2

r2

r1
AUTONOMOUS.

v1

d1

d2 r2

r1
AUTONOMOUS.

v1

d1

d2

(a) o1-o2-d1-d2 (b) o1-o2-d2-d1

(c) o2-o1-d1-d2 (d) o2-o1-d2-d1

Figure 3.2: All possible schedules for a ride-sharing trip containing two requests.

For a specific vehicle-trip match, the order for the vehicle v to pick up and drop off

requests in the trip Γ is defined as a schedule sv,Γ = {o1, . . . , o2, . . . , d1, . . . , dnΓ
}. There

might be more than one feasible schedule; the set of all feasible schedules is denoted by

Sv,Γ and the optimal one is denoted by s∗v,Γ, i.e., the one serving the requests with the

minimum delay. For example, there are four possible schedules for a two request sharing

trip, as shown in Figure 3.2; we may find that Sv1,{r1,r2} = {schedule (c), schedule (d)} and

s∗v1,{r1,r2} = {o2, o1, d1, d2}. A feasible schedule must satisfy the following constraints:

• Capacity constraint. For each vehicle, the number of onboard passengers cannot be

larger than its capacity.

• Delay constraint. For each request, its waiting time ωr and total travel delay δr must

be lower than two thresholds, Ω and Λ, respectively.

• Precedence constraint. For each request in a schedule sv,Γ, its origin must be visited

before its destination.

42

Optimal Online Dispatch in High-Capacity Ride-Sharing

3.2.2 Problem Statement

Based on the batched requests and the current statuses of vehicles, the dispatcher works

on serving as many requests as possible with a minimum travel detour resulting from ride-

sharing. Using Rmiss to denote the set of requests that cannot be matched during the current

dispatch epoch, we define the cost of a dispatch policy as:

CDelay =
∑
v∈V

delay(sv) +
∑

r∈Rmiss

pmiss (3.1)

where delay(sv) is the sum of travel delays of the requests included in a schedule and pmiss

is a very large penalty for rejecting a request.

Problem 1 (Optimal online dispatch) Given a set of requests R and a set of vehicles V

at an epoch with a length of ∆T , the problem of optimal online dispatch is to find maximum

ride-sharing allocations for requests and compute feasible schedules for vehicles in real-time,

so that the cost function (i.e., Equation (3.1)) is minimized, subject to the constraint that

each request must be served by exactly one vehicle.

3.2.3 System Framework

The dispatcher runs an assignment planner, as shown in Figure 3.3, periodically every ∆T

(e.g., 30 sec), where all unpicked-up requests R = Rnew ∪Rprev and all vehicles V are pooled

and matched simultaneously. Not only requests received at the current epoch, denoted by

Rnew, but also requests received earlier but not yet picked up by vehicles, denoted by Rprev,

are considered to compute the best assignment policy.

At each dispatch epoch, the dispatcher considers the locations and delay constraints of

requests R = Rnew ∪Rprev, which are depicted as "New Request Pool" and "Not Yet Picked

Up Request Pool", as well as the latest "Statuses" (locations and routes) of all vehicles

43

Optimal Online Dispatch in High-Capacity Ride-Sharing

Assignment Planner

Optimal
Schedule

Pool

Possible Trip Search

Vehicle Statuses

Vehicle FleetPassengers

submit
on demand

New Request Pool

valid

assign vehicle / reject

collect
every ΔT

assign scheduleincrem
ental search

serve

Optimal Schedule Search

N
ot Yet Picked U

p Request Pool
Previous
Optimal

Schedule
Pool

com
bine previous

and new
 requests

store

update

re-optimize

Figure 3.3: Framework of the optimal dispatch logic.

V , to search for all possible candidate vehicle-trip matches, which is depicted as "Possible

Trip Search". The search is processed independently for each vehicle and incrementally by

increasing the size of shared trips. For each possible candidate match considered by "Possible

Trip Search", the dispatcher solves a vehicle scheduling problem to verify whether or not

it is feasible, which is depicted as "Optimal Schedule Search". If any feasible schedules are

found, this candidate match is marked valid and its optimal schedule s∗v,Γ is added to the

"Optimal Schedule Pool". After the search for candidate matches is finished, the dispatcher

will have a complete candidate space for each vehicle, denoted by z∗v = {s∗v,Γ1
, s∗v,Γ2

, . . . },

where each s∗v,Γ is called a candidate schedule that represents a candidate vehicle-trip match

and contains the optimal routing policy for the match. In addition, a "Previous Optimal

Schedule Pool" is maintained and updated to save repetitive computations.

44

Optimal Online Dispatch in High-Capacity Ride-Sharing

After the optimal schedule pool has been generated, the dispatch assigns each vehicle a

suitable schedule, ensuring that the assignment policy is conflict-free, to maximize the system

performance, i.e., minimizing Equation (3.1). Considering all received requests together

makes it possible to reject some requests assigned from the previous epoch to achieve a higher

service rate, but this is not allowed in this thesis to ensure the satisfaction of passengers.

3.3 Optimal Online Dispatch Scheme

We introduce an incremental search algorithm to reduce the search space of the optimal

vehicle scheduling problem, which is further coupled with the possible trip search algorithm

of [19] to efficiently generate the optimal schedule pool. We then present a re-optimization

strategy with speed-up heuristics to improve long-term system performance. Based on the

optimal schedule pool, a constrained optimization problem is formulated to produce the

optimal allocation policy.

3.3.1 Optimal Schedule for a Single Ride-Sharing Trip

Computing the optimal schedule for a vehicle serving all requests in a trip is computation-

ally expensive in general, as it is a generalization of the Travelling Salesman Problem with

Precedence Constraints [107]. The search space of possible schedules increases exponentially

with the trip size. For example, a ride-sharing trip of two requests only has four possible

schedules, shown in Figure 3.2, but a trip of three requests has 52 possible schedules, while

a trip of four requests has more than 576 possible schedules. The minimum-cost sched-

ule for a low-capacity ride-sharing trip can be computed via exhaustive search, but it is

computationally intractable for large trips.

45

Optimal Online Dispatch in High-Capacity Ride-Sharing

In SAMoD systems, the tight constraints on maximum travel delay of passengers

naturally narrows the solution space [109], which means that the number of feasible schedules

for each possible vehicle-trip match is normally small. If we can identify that a certain set

of schedules is infeasible, the optimal schedule for a ride-sharing trip can be quickly found

without an exhaustive and time-consuming search. The following observation leads us to

the idea of incrementally searching for all feasible schedules, where the optimal one lies, for

a large ride-sharing trip.

Lemma 1 A schedule sv,Γ can be feasible only if any sub-schedule sv,Γ\{or, dr} (obtained by

removing one request) of it is feasible, where sv,Γ\{or, dr} ∈ Sv,Γ\r. Therefore, a schedule sv,Γ

only needs to be checked for feasibility if, for any r in the schedule, the schedule set Sv,Γ\r is

not empty.

Using Lemma 1, it is found that all sv,Γ ∈ Sv,Γ can be obtained by inserting a request r

into some sv,Γ\r ∈ Sv,Γ\r. We propose Algorithm 1 to efficiently compute the exact minimum-

cost schedule of a high capacity ride-sharing trip Γ by only searching potentially feasible

schedules instead of all schedule permutations. It generates the feasible schedule set Sv,Γ

incrementally by extending the initial schedule set and returns the optimal schedule s∗v,Γ or

an empty schedule if there is no feasible schedule. Sav and Sbv are defined as two sets of all

feasible schedules for vehicle v to serve size k−1 and size k trips. In lines 6-7, it computes the

set of all feasible schedules Sbv by extending schedules in Sav . The function InitScheduleSet(v)

returns all the feasible schedules for the vehicle dropping passengers on board. For example,

if a vehicle has two passengers onboard and it is feasible to drop either one first, the initial

schedule set will be {{d1, d2}, {d2, d1}}. This is to ensure that all possible schedules are

considered in the subsequent schedule searches. Since the onboard passengers have already

been picked up, we cannot re-assign them to other vehicles, and the init schedule set will not

be empty. The function BasicScheduleInsersion(schedule, r), detailed in Algorithm 2, tries

46

Optimal Online Dispatch in High-Capacity Ride-Sharing

Algorithm 1 Optimal Schedule Computing
Input : A vehicle v and a trip Γ.

Output: The new optimal schedule s∗v,Γ for the vehicle v.

1: Sav ← InitScheduleSet(v);

2: k ← 1;

3: while k <= nΓ do

4: Sbv ← ∅;

5: r ← Γ.pop();

6: for each schedule ∈ Sav do

7: Sbv ← Sbv ∪BasicScheduleInsersion(schedule, r);

8: Sav ← Sbv;

9: k ← k + 1;

10: if Sav = ∅ then

11: break;

12: s∗v,Γ ← the minimum-cost schedule from Sbv;

to insert or and dr into all possible places to obtain new schedules and returns a set of all

feasible new schedules or an empty set.

Assuming an output schedule of Algorithm 1 has ns visiting locations, in the worst

case, the number of searched schedules is O(ns!), which is in line with the scheduling prob-

lem being a generalization of the Travelling Salesman Problem. Nonetheless, this can only

happen when passengers have unlimited tolerance for wait times and detours, which is not

possible in reality. The tight detour constraint means that the size of any schedule set Sv,Γ

is normally small. Algorithm 1 reduces finding the optimal schedule for a vehicle serving a

trip from enumeration to a couple of basic schedule insertion processes, by pruning out the

infeasible subset of all possible schedules. As a result, the search space of possible sched-

ules is significantly reduced and the feasibility of a vehicle-trip match can be quickly and

47

Optimal Online Dispatch in High-Capacity Ride-Sharing

Algorithm 2 Basic Schedule Insertion
Input : A vehicle’s current schedule sv with length n and a request r.

Output: A set of all new feasible schedules Sv for the vehicle v.

1: Sv ← ∅;

2: for i← 1 to n do

3: for j ← i to n do

4: s′v ← insert or and dr into the i− th and j − th locations of sv;

5: if s′v is feasible then

6: Sv ← Sv ∪ {s′v};

accurately verified. Figure 3.4 shows an example where the optimal schedule for vehicle v1

to serve trip {r1, r2, r3} is found by checking half of all possible schedules. In practice, the

number of searched schedules is orders of magnitude lower than O(ns!). The experimental

study in Section 3.4 shows that, when applying a maximum wait time constraint of 5 min

and a maximum travel delay constraint of 10 min, the average number of searched schedules

is less than 2000 for size 10 ride-sharing trips, where 10 < ns <= 20. Note that, when

travelling alone, the mean trip time is 10.5 min and about 90% of passenger trips have trip

times less than 20 min [110].

Algorithm 2 enumerates all possible insertions of or and od, and checks whether each

location is visited without constraint violation. The time complexity it is O(n3
s). The effi-

ciency of Algorithm 2 can be further improved by employing some heuristic search methods,

such as the Dynamic Programming (DP) based algorithm in [26]. As this is not the com-

putational bottleneck of the research problem discussed in this thesis, we refer the reader to

Tong et al. [26] for further interest.

48

Optimal Online Dispatch in High-Capacity Ride-Sharing

o1-o2-d1-d2

o1-d1

o1-o2-d2-d1

o2-o1-d1-d2 o2-o1-d2-d1

o2-o1-o3-d1-d3-d2

r1,r2,r3

r1,r2

v1

o2-o1-o3-d1-d2-d3

o2-o1-d1-o3-d3-d2

o2-o1-d1-o3-d2-d3o2-o3-o1-d3-d1-d2

o2-o3-o1-d1-d3-d2

o2-o3-o1-d1-d2-d3

o2-o1-o3-d3-d1-d2

o3-o2-d3-o1-d1-d2

o3-o2-o1-d3-d1-d2

o3-o2-o1-d1-d3-d2

o3-o2-o1-d1-d2-d3

o2-o3-d3-o1-d1-d2

AUTONOMOUS.

v1

AUTONOMOUS.

r1v1

AUTONOMOUS.

o3-o2-d3-o1-d2-d1

o3-o2-o1-d3-d1-d2

o3-o2-o1-d2-d3-d1

o3-o2-o1-d2-d1-d3

o2-o3-d3-o1-d1-d2

o2-o3-o1-d3-d2-d1

o2-o3-o1-d2-d3-d1

o2-o3-o1-d2-d1-d3

o2-o1-o3-d3-d2-d1

o2-o1-o3-d2-d3-d1

o2-o1-o3-d2-d1-d3

o2-o1-d2-o3-d3-d1

o2-o1-d2-o3-d1-d3

Figure 3.4: An example of optimal schedule computation for a vehicle to serve three requests,

where the optimal one is marked in bold. By extending the two feasible schedules for trip

{r1, r2}, {o2, o1, d1, d2} and {o2, o1, d2, d1}, only 26 possible schedules for trip {r1, r2, r3} need

to be considered to check its feasibility and find its optimal schedule.

3.3.2 Optimal Schedule Pool for a Vehicle Fleet

Generating the optimal schedule pool requires finding all candidate vehicle-trip matches,

which depends on two problems: candidate filtering and vehicle scheduling. To tackle the

candidate filtering problem, Alonso-Mora et al. [19] propose a feasible trip search algo-

rithm to incrementally compute candidate vehicle-trip matches. Based on the observation

in Lemma 2, an infeasible vehicle-trip match can be quickly identified without solving the

scheduling problem. However, their approach may mistakenly consider a vehicle-trip match

to be infeasible even if it passes the sub-trip feasibility check, as they only search for a limited

number of schedules for the sake of efficiency.

Lemma 2 A vehicle-trip match between v and Γ can be feasible only if any match between

v and Γ\r (i.e., a sub-trip of Γ, obtained by removing one request) is feasible.

49

Optimal Online Dispatch in High-Capacity Ride-Sharing

Algorithm 3 Optimal Schedule Pool Generating
Input : A vehicle v and a set of requests R.

Output: The optimal schedule pool z∗v for the vehicle v.

1: zk
v ← ∅,∀k ∈ {0, 1, . . . , κv};

2: Sv,{∅} ← InitScheduleSet(v);

3: z0
v ← z0

v ∪ {Sv,{∅}};

4: for each r ∈ R do

5: Sv,{r} ← SearchFeasibleScheduleSet(Sv,{∅}, r);

6: z1
v ← z1

v ∪ {Sv,{r}};

7: k ← 2;

8: while zk−1
v 6= ∅ and k <= κv do

9: for all Sv,Γi , Sv,Γj ∈ zk−1
v with |Γi ∪ Γj| = k do

10: Denote Γi ∪ Γj = Γk = Γi ∪ {rnew};

11: Sv,Γk ← SearchFeasibleScheduleSet(Sv,Γi , rnew);

12: zk
v ← zk

v ∪ {Sv,Γk};

13: k ← k + 1;

14: zv ← z1
v ∪ · · · ∪zκv

v ;

15: z∗v ← ExtractOptimalSchedule(zv);

Borrowing the algorithmic idea of sub-trip feasibility from [19], we develop a procedure

that can truly compute all feasible trips for a vehicle, along with the optimal schedule for

each trip. It is called joint trip searching and optimal scheduling, and is illustrated in

Algorithm 3, where zv = {Sv,Γ1 , Sv,Γ2 , Sv,Γ3 , . . . } is defined as the feasible schedule pool,

containing all feasible schedule sets for a vehicle v. Algorithm 3 incrementally computes zv

by increasing trip size and outputs the optimal schedule pool z∗v = {s∗v,Γ1
, s∗v,Γ2

, . . . }, which

contains all candidate optimal schedules of vehicle v serving all trips Γi ⊆ R. The function

SearchFeasibleScheduleSet(Sv,Γ, r) in lines 5 and 12, as in lines 6-7 of Algorithm 1, tries to

50

Optimal Online Dispatch in High-Capacity Ride-Sharing

compute schedules of trip Γ∪{r} and returns the set of feasible schedules Sv,Γ∪{r} if possible.

Algorithm 3 can be parallelized across different vehicles.

Algorithm 3 further reduces the computation of s∗v,Γ to |Sv,Γ\r| calls to function

BasicScheduleInsersion(schedule, r). Many repetitive computations are saved, as the feasi-

ble schedule set Sv,Γ does not need to be computed completely from scratch on each request

in trip Γ. Figure 3.5 shows an example of joint trip searching and optimal scheduling for a

vehicle-trip match between v1 and {r1, r2, r3, r4}. The optimal schedule s∗v1,{r1,r2,r3,r4} can be

found by two runs of the basic schedule insertion function. The search process for schedule

{o2, o1, o3, d1, d2, d3} and {o2, o1, o3, d2, d1, d3} does not need to be re-computed once more,

because it has been completed when computing the optimal schedule for vehicle v1 and trip

{r1, r2, r3}.

r1,r2,r3v1

AUTONOMOUS.

r1,r2,r4v1

AUTONOMOUS.

r1,r3,r4v1

AUTONOMOUS.

r2,r3,r4v1

AUTONOMOUS.

o2-o1-o3-d1-d2-d3

o2-o1-o3-d2-d1-d3 o2-o1-o4-d2-d1-d4

o2-o1-o4-d1-d2-d4 o1-o3-o4-d1-d3-d4

o1-o3-o4-d1-d4-d4

o1-o4-o3-d1-d3-d4

o2-o3-o4-d2-d4-d3

o2-o3-o4-d2-d3-d4

o2-o4-o3-d2-d4-d3

+ + +

=

Insert r4 into o2-o1-o3-d1-d2-d3 o2-o1-o3-d2-d1-d3and

r1,r2,r3,r4v1

AUTONOMOUS.

…

o2-o1-o3-o4-d1-d2-d3-d4 o2-o1-o4-o3-d2-d1-d3-d4

o2-o1-o3-o4-d2-d1-d3-d4

o2-o1-o3-o4-d1-d2-d4-d3

… …

… …

Figure 3.5: An example of joint trip searching and optimal scheduling for a vehicle to serve

four requests. Possible schedules for trip {r1, r2, r3, r4} can be directly built on its sub-trip’s

feasible schedules.

By considering all feasible schedules for each trip, Algorithm 3 generates a complete

candidate space for each vehicle. Although [19] can also theoretically generate a complete

candidate space if given enough computational time, it cannot do this in a reasonable time.

51

Optimal Online Dispatch in High-Capacity Ride-Sharing

To make the algorithm solverable in real-time, a set of timeouts are used to trade-off optimal-

ity for tractability. Therefore, some feasible vehicle-trip matches will be mistakenly ignored,

as discussed in Section 3.4. By tackling the scheduling problem, Algorithm 3 explores all

possible vehicle-trip pairs and finds more candidate matches than [19].

3.3.3 Re-Optimization and Iterative Updating

Although batch assignment approaches consider multiple requests simultaneously, there may

still be cases where a later request, that can be served if the length of the batch period is

larger, will be rejected due to the lack of feasible seat. Figure 3.6 (a) shows an example

that the best assignment for r1 and r2, when the appearance of r3 is not known, leaves no

available vehicle for r3. Yet, v1 and v2 have the chance to serve all 3 requests, as shown

in Figure 3.6 (b). Extending the length of the dispatch window to consider more requests

at the same time is an easy solution to think of, but some requests will waste their time

waiting for the response from the dispatcher and eventually have a bad service experience.

Therefore, re-optimization is introduced to escape from a local minimum by removing the

previous assignment and computing a new one for each vehicle based on all known requests.

Previously assigned requests are allowed to be re-assigned for a better system-wide match,

i.e., serving more requests, when the dispatcher receives new requests. Take the example in

Figure 3.6, r2 is assigned to v2 at t and re-assigned to v1 at t + ∆T , so that the dispatcher

can re-route v2 to serve r3. The dispatcher still computes the assignments for requests in

a short time window, and will continually alter the assignments in the following dispatch

periods until the requests are picked up for better performance.

However, it is very computationally expensive if we directly compute the optimal

schedule pool for all unpicked-up requests. So we design an updating heuristic to re-

duce computation by generating the optimal schedule pool from previous schedules z∗v,prev.

52

Optimal Online Dispatch in High-Capacity Ride-Sharing

r3

r2

r1
AUTONOMOUS.

v1

AUTONOMOUS.

v2

r3

r2

r1
AUTONOMOUS.

v1

AUTONOMOUS.

v2

(a) Without re-optimization (b) With re-optimization

Figure 3.6: An example of online assignment, where r1 and r2 are revealed at t and r3 is

revealed at t+ ∆T . Considering re-optimization, all three requests can be served.

The dispatcher does not need to re-compute the possible ride-sharing combinations among

Rprev. The procedure is shown in Algorithm 4. Function UpdatePreviousSchedule(z∗v,prev, v)

updates schedules in z∗v,prev based on the current status of the vehicle, removes the in-

feasible ones and outputs the feasible ones zv,prev = z1
v,prev ∪ · · · ∪ zκv

v,prev. Function

Size1ScheduleSet(v,Rnew) is equivalent to lines 4-6 in Algorithm 3 and computes the op-

timal schedule set z1
v for Rnew.

Only computing combinations between the new requests Rnew and the previous ones

Rprev, rather than between all known unpicked-up requests R = Rnew ∪ Rprev, makes the

algorithm more efficient. Suppose we have total nall unpicked-up requests and nnew of them

are newly submitted; the number of combinations for naive computation is 1/2·nall ·(nall−1),

while the number with the updating heuristic is 1/2 · (2nall − nnew − 1) · nnew. We define

z = nnew/nall, as normally nnew � 1, then:

1/2 · (2nall − nnew − 1) · nnew
1/2 · nall · (nall − 1)

=
2 · nnew
nall

− nnew · (nnew − 1)

nall · (nall − 1)

= 2z − z · nnew − 1

nall − 1

≈ 2z − z2

In our experiments (see Section 3.4), the number of new requests is normally less than

500 while the number of all unpicked-up requests is up to 2600. There are significantly fewer

combinations between 500 and 2600 requests than between 2600 and 2600 requests. Based

53

Optimal Online Dispatch in High-Capacity Ride-Sharing

Algorithm 4 Schedule Pool Updating
Input : A vehicle v with its previous optimal schedule pool z∗v,prev and a set of new requests

Rnew.

Output: The new optimal schedule pool z∗v.

1: zv,prev ← UpdatePreviousSchedule(z∗v,prev, v);

2: zk
v ← ∅,∀k ∈ {0, 1, . . . , κv};

3: z1
v ← Size1ScheduleSet(v,Rnew) ∪z1

v,prev;

4: k ← 2;

5: while zk−1
v 6= ∅ and k <= κv do

6: nnew_trip = len(zk−1
v)− len(zk−1

v,prev);

7: for Sv,Γi ∈ zk−1
v [0 : nnew_trip] do

8: for Sv,Γj ∈ zk−1
v [1 :] do

9: Denote Γi ∪ Γj = Γk = Γi ∪ {rnew};

10: zk
v ← zk

v ∪ SearchFeasibleScheduleSet(Sv,Γi , rnew);

11: zk
v ← zk

v ∪zk
v,prev;

12: k ← k + 1;

13: zv ← z1
v ∪ · · · ∪zκv

v ;

14: z∗v ← ExtractOptimalSchedule(zv);

on the following observation, z∗v, as generated by Algorithm 4, still contains all possible

optimal schedules and no feasible vehicle-trip match is missed. Lemma 3 describes a fact

that if no feasible schedule is found for a request r at t−∆T , it means that there is no vehicle

available to serve r in meeting the delay constraints, in either a solo trip or ride-sharing;

then no vehicle will be able to serve him at t either, unless some onboard passengers are

kicked out of the vehicle to free up seats.

Lemma 3 A schedule sv,Γ can be feasible at time t only if it is feasible at t−∆T . Thus, a

54

Optimal Online Dispatch in High-Capacity Ride-Sharing

feasible optimal schedule s∗v,Γ (∀ Γ ⊆ Rprev) at time t must is included in z∗v,prev.

With re-optimization, an SAMoD system can find a balance between the response

time for requests and the optimality of the system performance. A small period yields a

short response time, whereas considering all known requests makes the assignment policy

optimal at any given time.

3.3.4 Constrained Allocating Based on Optimal Schedule Pool

After all candidate schedules have been generated for the vehicle fleet, the dispatcher will

select a set of schedules for allocation to minimize Equation (3.1). Figure 3.7 shows an exam-

ple with three vehicles and three requests. The dispatcher finds 13 candidate schedules, each

one indicating a feasible vehicle-trip match, and selects sv1,r1,r2 and sv3,r3 for assignments.

Vehicle v2 is assigned to follow its current schedule or remain idle.

v1

v3

r1

r2

r3

r1,r2v2

AUTONOMOUS.

v1

v3

r1

r2

r3

v2

AUTONOMOUS.

r1,r2,r3

r1,r3

r1,r2

r2,r3

r1,r3

r1,r2,r3

r2,r3

(a) (b)

Figure 3.7: An example of constrained allocating for three vehicles and three requests. (a)

The generated optimal schedule pool, where each schedule is represented by a link that

connects a vehicle and a trip. (b) The final assignment made by the dispatcher.

Given a vehicle fleet V , a set of previously matched yet not served requests Rprev, a

batch of new incoming requests Rnew, and an optimal schedule pool z∗v, the dispatcher needs

55

Optimal Online Dispatch in High-Capacity Ride-Sharing

to assign each vehicle v a particular schedule s and the goal is to serve as many requests as

possible and minimize the overall travel cost raised by ride-sharing. This is formulated as

an Integer Linear Program (ILP), as shown in the following, because the assignment is all

about deciding whether each candidate should be selected or ignored, and the constraints

are linear. An ILP formulation can model this problem very well and can be solved very

efficiently. Additionally, an ILP formulation provides flexibility to add or remove constraints.

For example, by simply removing constraint (3.5) in the following formulation, the dispatcher

will be allowed to reject previously matched requests for a higher service rate.

argmin
xv,s,εr

∑
v∈V

∑
s∈z∗v

xv,s · c(s) +
∑

r∈Rnew∪Rprev

εr · pmiss (3.2)

s.t.
∑
s∈z∗v

xv,s = 1, ∀v ∈ V (3.3)

∑
v∈V

∑
s∈z∗v

xv,s ·Θs(r) + εr = 1, ∀r ∈ Rprev ∪Rnew (3.4)

εr = 0, ∀r ∈ Rprev (3.5)

where c(s) is the cost of the planned schedule s, pmiss is a very large penalty for rejecting

a request in Rnew and Θs(r) is an indicator function, i.e., Θs(r) = 0 if r /∈ s and Θs(r) = 1

otherwise. Binary variable xv,s ∈ {0, 1} indicates whether a schedule is ignored (xv,s = 0) or

assigned (xv,s = 1) to vehicle v. Binary variable εr ∈ {0, 1} indicates whether a request is

assigned (εr = 0) or ignored (εr = 1). Constraint (3.3) enforces that each vehicle is assigned

exactly one optimal schedule, constraint (3.4) enforces that each request can only be assigned

to at most one vehicle, and constraint (3.5) enforces that no previously assigned requests

will be rejected even if serving them yields a higher system cost. The cost of a schedule can

be the mileage driven, the travel time or the revenue [26]. In this chapter, the cost is defined

as the sum of wait times and travel delays of the requests: c(s) =
∑

r∈s(ωr + δr).

56

Optimal Online Dispatch in High-Capacity Ride-Sharing

3.3.5 Discussion of Optimality and Correctness

The generation of the optimal schedule pool explicitly explores all feasible combinations

of currently received requests Rnew ∪ Rprev and vehicles V . Yielded by pruning out the

infeasible schedules and reducing repetitive searches, the savings of redundant computations

make it possible to do this generation in real-time at a city-scale, i.e., the time consumed by

the generation is shorter than the dispatch window length. The computation of the optimal

schedule for each trip ensures that no vehicle-trip match is mistakenly ignored. Then, solving

the ILP presented above considers all possible assignment policies and returns the one that

produces the minimal value of the cost function, i.e., Equation (3.2).

3.4 Experimental Study

In this section, our method is evaluated and compared to the leading online dispatch algo-

rithm in [19] and two other representative algorithms [26, 27]. Since existing implementations

are unavailable, we reimplement all of the algorithms and run them on the same machine to

ensure a fair comparison. The performance measures include the service rate (i.e., percent-

age of requests served), the response time (i.e., mean computation time per batch period

epoch), and the number of candidates found at each epoch.

Experiments are designed to evaluate the following hypotheses: (H3.1) our OSP dis-

patcher can compute a complete candidate space in real-time and therefore has higher service

rates than the state-of-the-art (i.e., [19]), especially when the problem becomes more com-

plexity, e.g., high capacity and long delay constraints; (H3.2) our approach also scales well

to larger instances; and (H3.3) the improvement in service rate for our approach over the

simple ride-sharing algorithm is mainly contributed by the re-optimization, which relies on

having a complete candidate space.

57

Optimal Online Dispatch in High-Capacity Ride-Sharing

3.4.1 Simulation Details

The experiments are conducted on the the largest public taxi dataset from New York City

[111], which has been widely used in existing ride-sharing studies [7, 19, 26, 31, 32, 109]. The

complete road network of Manhattan presented in [7] is used here, containing 4,091 nodes

and 9,452 directed edges. We extracted request data from three Wednesdays: 11th, 18th

and 25th May in 2016. These have similar characteristics and we use them to synthesize five

scenarios of varying size (400k–800k requests) to test the scalability of these algorithms.

We simulate a ride-sharing environment following the settings in [19]. The initial

locations of vehicles are uniformly distributed over the road network at the start of the

experiment. Daily mean travel time for each road segment is used to calculate vehicle

movement. For detailed methods that computes the travel time based on data from a large

amount of taxi trips, we refer the reader to Santi et al. [7], Wang et al. [110], and Bertsimas

et al. [112]. The shortest paths between all nodes in the road network are pre-computed and

stored in look-up tables. So that the density of the network does not affect the online running

time of the algorithms. We assume the travel times on road segments are deterministic and

not affected by the dispatch policy. It is reasonable and commonly used in the literature, as

the number of taxi trips is a small percentage of all vehicle trips in the city. For example,

the number of taxi trips in London is less than one-tenth of the number of private car

trips [113]. But when SAMoD systems become dominant in urban traffic, this assumption

needs to be extended to tackle congestion-aware dispatch [33, 114]. Table 3.1 summarizes

the major experimental parameters. As well as increasing the number of requests, we also

increase the fleet size to have instances of realistic scale. The maximum travel delay is set

to be twice the maximum wait time Λ = 2Ω. For comparing performances with varying

capacities, we simulate the entire day. Then, for other parameters, we run the simulation for

the hour with peak demand (19:00-20:00). This is the most challenging part and is enough

58

Optimal Online Dispatch in High-Capacity Ride-Sharing

to show the characteristics of the algorithms. All experiments were run on a machine with 56

Intel(R) Xeon(R) E5 2.60GHz processors and 512GB RAM in Python 3.7. The simulation

implementation is single-threaded and the results are averaged over five experiment runs.

Table 3.1: Parameter settings (defaults in bold).

Parameters Settings

Instance Scale (|R|, |V |)
(400k, 2000), (500k, 2300), (600k, 2600),

(700k, 2900), (800k, 3200)

Vehicle Capacity κ 2, 4, 6, 8, 10

Maximum Waiting Time Ω (sec) 120, 180, 240, 300, 360, 420

Batch Period ∆T (sec) 2, 5, 10, 30, 60, 120

3.4.2 Algorithm Comparison

Our OSP algorithm is compared with the following representative algorithms:

• GI (Greedy Insertion) [26]: This assigns requests sequentially to the best available

vehicle in a FCFS manner (i.e., an exhaustive version of [24]).

• SBA (Single-request Batch Assignment) [27]: This takes the new requests for a batch

period and assigns them together in a one-to-one match manner, where at most one

new request is assigned to a single vehicle.

• RTV (Request Trip Vehicle graph) [19]: This is a more sophisticated batch assignment

algorithm that copes with multiple request assignments during the same batch period.

It uses ad hoc heuristics (e.g., only 30 candidate vehicles for each request, finding

optimal schedules for trips up to size 4 and a timeout of 0.2 sec per vehicle to search

for feasible trips) to make it run in real-time.

59

Optimal Online Dispatch in High-Capacity Ride-Sharing

All algorithms are equipped with the same simple rebalancing method from [19], which

repositions idle vehicles to the nearest locations of unassigned requests, under the assumption

that more passengers are likely to appear in the zones where not all requests can be served.

3.4.3 Results

(H3.1) Figure 3.8 shows the results of varying vehicle capacities. As the capacity increases,

all algorithms provide better service rates. Compared to double-occupancy, high-capacity

ride-sharing significantly increases the service rate. However, 10-capacity only brings a

0.21% improvement over 8-capacity, which is negligible compared to the increase in vehicle

investment. All batch assignment methods outperform GI. Our OSP algorithm has the

highest service rate and shows a 3.85% improvement over SBA at capacity 10. RTV is

marginally worse than OSP when the capacity is less than 6, but it only achieves a 1.99%

higher service rate than SBA at 10-capacity, which is only around half of the improvement

brought by OSP. SBA outperforms GI more at double-occupancy than high capacity, because

two seats would rarely allow multiple request assignments happen during the same batch

period. The gap between SBA and RTV/OSP at double-occupancy is mainly caused by re-

optimization. The response times of GI and SBA are almost unchanged at varying capacity,

while that of RTV and OSP increase linearly.

(H3.1) Figure 3.9 plots the results of varying values of the maximum waiting time

constraint. With longer waiting times, the service rates of all algorithms increase. The reason

is that a longer waiting time and travel delay allows a larger detour, and thus more requests

are served. Batch assignment approaches achieve significantly higher service rates than GI

when the maximum waiting time is low. But while the tolerance to delay increases, the

ability to leverage complex combinations of requests and their optimal schedules is needed

to maintain this advantage. The response time of GI and SBA is still stable. While the

60

Optimal Online Dispatch in High-Capacity Ride-Sharing

-1
1
3
5
7
9
11
13
15
17
19
21
23
25

2 4 6 8 10
R

es
po

ns
e

Ti
m

e
(s

)
Vehicle Capacity

GI SBA RTV OSP

66
68
70
72
74
76
78
80
82
84
86
88
90
92
94

2 4 6 8 10

Se
rv

ic
e

R
at

e
(%

)

Vehicle Capacity

GI SBA RTV OSP

0

4

8

12

16

20

24

28

32

36

40

44

120 180 240 300 360 420

R
es

po
ns

e
Ti

m
e

(s
)

Maximum Waiting Time (s)

GI SBA RTV OSP

56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90

120 180 240 300 360 420

Se
rv

ic
e

R
at

e
(%

)

Maximum Waiting Time (s)

GI SBA RTV OSP

0

5

10

15

20

25

30

35

40

45

50

55

2 5 10 30 60 120

R
es

po
ns

e
Ti

m
e

(s
)

Batch Period (s)

SBA RTV OSP

77

78

79

80

81

82

83

84

85

86

87

2 5 10 30 60 120

Se
rv

ic
e

R
at

e
(%

)

Batch Period (s)

SBA RTV OSP

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70

|R|=400k
|V|=2000

|R|=500k
|V|=2300

|R|=600k
|V|=2600

|R|=700k
|V|=2900

|R|=800k
|V|=3200

R
es

po
ns

e
Ti

m
e

(s
)

Instance Scale

GI SBA RTV OSP

78

79

80

81

82

83

84

85

86

87

|R|=400k
|V|=2000

|R|=500k
|V|=2300

|R|=600k
|V|=2600

|R|=700k
|V|=2900

|R|=800k
|V|=3200

Se
rv

ic
e

R
at

e
(%

)

Instance Scale

GI SBA RTV OSP

Figure 3.8: A comparison of performance metrics during the whole day for varying vehicle

capacities (|R| = 400k, |V | = 2000, Ω = 300 sec, ∆T = 30 sec).
-1
1
3
5
7
9
11
13
15
17
19
21
23
25

2 4 6 8 10

R
es

po
ns

e
Ti

m
e

(s
)

Vehicle Capacity

GI SBA RTV OSP

66
68
70
72
74
76
78
80
82
84
86
88
90
92
94

2 4 6 8 10

Se
rv

ic
e

R
at

e
(%

)

Vehicle Capacity

GI SBA RTV OSP

0

4

8

12

16

20

24

28

32

36

40

44

120 180 240 300 360 420

R
es

po
ns

e
Ti

m
e

(s
)

Maximum Waiting Time (s)

GI SBA RTV OSP

56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90

120 180 240 300 360 420

Se
rv

ic
e

R
at

e
(%

)

Maximum Waiting Time (s)

GI SBA RTV OSP

0

5

10

15

20

25

30

35

40

45

50

55

2 5 10 30 60 120

R
es

po
ns

e
Ti

m
e

(s
)

Batch Period (s)

SBA RTV OSP

77

78

79

80

81

82

83

84

85

86

87

2 5 10 30 60 120

Se
rv

ic
e

R
at

e
(%

)

Batch Period (s)

SBA RTV OSP

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70

|R|=400k
|V|=2000

|R|=500k
|V|=2300

|R|=600k
|V|=2600

|R|=700k
|V|=2900

|R|=800k
|V|=3200

R
es

po
ns

e
Ti

m
e

(s
)

Instance Scale

GI SBA RTV OSP

78

79

80

81

82

83

84

85

86

87

|R|=400k
|V|=2000

|R|=500k
|V|=2300

|R|=600k
|V|=2600

|R|=700k
|V|=2900

|R|=800k
|V|=3200

Se
rv

ic
e

R
at

e
(%

)

Instance Scale

GI SBA RTV OSP

Figure 3.9: A comparison of performance metrics during the peak hour for varying values of

maximum waiting time constraint (|R| = 400k, |V | = 2000, κ = 8, ∆T = 30 sec).

61

Optimal Online Dispatch in High-Capacity Ride-Sharing

-1
1
3
5
7
9
11
13
15
17
19
21
23
25

2 4 6 8 10

R
es

po
ns

e
Ti

m
e

(s
)

Vehicle Capacity

GI SBA RTV OSP

66
68
70
72
74
76
78
80
82
84
86
88
90
92
94

2 4 6 8 10

Se
rv

ic
e

R
at

e
(%

)

Vehicle Capacity

GI SBA RTV OSP

0

4

8

12

16

20

24

28

32

36

40

44

120 180 240 300 360 420

R
es

po
ns

e
Ti

m
e

(s
)

Maximum Waiting Time (s)

GI SBA RTV OSP

56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90

120 180 240 300 360 420

Se
rv

ic
e

R
at

e
(%

)

Maximum Waiting Time (s)

GI SBA RTV OSP

0

5

10

15

20

25

30

35

40

45

50

55

2 5 10 30 60 120
R

es
po

ns
e

Ti
m

e
(s

)
Batch Period (s)

SBA RTV OSP

77

78

79

80

81

82

83

84

85

86

87

2 5 10 30 60 120

Se
rv

ic
e

R
at

e
(%

)

Batch Period (s)

SBA RTV OSP

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70

|R|=400k
|V|=2000

|R|=500k
|V|=2300

|R|=600k
|V|=2600

|R|=700k
|V|=2900

|R|=800k
|V|=3200

R
es

po
ns

e
Ti

m
e

(s
)

Instance Scale

GI SBA RTV OSP

78

79

80

81

82

83

84

85

86

87

|R|=400k
|V|=2000

|R|=500k
|V|=2300

|R|=600k
|V|=2600

|R|=700k
|V|=2900

|R|=800k
|V|=3200

Se
rv

ic
e

R
at

e
(%

)

Instance Scale

GI SBA RTV OSP

Figure 3.10: A comparison of performance metrics during the peak hour for varying lengths

of batch period (|R| = 400k, |V | = 2000, κ = 8,Ω = 300 sec).

-1
1
3
5
7
9
11
13
15
17
19
21
23
25

2 4 6 8 10

R
es

po
ns

e
Ti

m
e

(s
)

Vehicle Capacity

GI SBA RTV OSP

66
68
70
72
74
76
78
80
82
84
86
88
90
92
94

2 4 6 8 10

Se
rv

ic
e

R
at

e
(%

)

Vehicle Capacity

GI SBA RTV OSP

0

4

8

12

16

20

24

28

32

36

40

44

120 180 240 300 360 420

R
es

po
ns

e
Ti

m
e

(s
)

Maximum Waiting Time (s)

GI SBA RTV OSP

56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90

120 180 240 300 360 420

Se
rv

ic
e

R
at

e
(%

)

Maximum Waiting Time (s)

GI SBA RTV OSP

0

5

10

15

20

25

30

35

40

45

50

55

2 5 10 30 60 120

R
es

po
ns

e
Ti

m
e

(s
)

Batch Period (s)

SBA RTV OSP

77

78

79

80

81

82

83

84

85

86

87

2 5 10 30 60 120

Se
rv

ic
e

R
at

e
(%

)

Batch Period (s)

SBA RTV OSP

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70

|R|=400k
|V|=2000

|R|=500k
|V|=2300

|R|=600k
|V|=2600

|R|=700k
|V|=2900

|R|=800k
|V|=3200

R
es

po
ns

e
Ti

m
e

(s
)

Instance Scale

GI SBA RTV OSP

78

79

80

81

82

83

84

85

86

87

|R|=400k
|V|=2000

|R|=500k
|V|=2300

|R|=600k
|V|=2600

|R|=700k
|V|=2900

|R|=800k
|V|=3200

Se
rv

ic
e

R
at

e
(%

)

Instance Scale

GI SBA RTV OSP

Figure 3.11: A comparison of performance metrics during the peak hour for varying instance

scales (κ = 8, Ω = 300 sec, ∆T = 30 sec).

62

Optimal Online Dispatch in High-Capacity Ride-Sharing

running time of OSP grows almost linearly, that of RTV increases exponentially. The rate

of growth in RTV’s running time decreases when Ω > 300 sec because the time limit slows

down the increase in computation time and in turn results in a bad performance.

(H3.1) Figure 3.10 shows the results of varying lengths of batch period. With a larger

period, more requests are processed at each epoch and thus the response time of batch

approaches grows. Considering more requests over the same period could theoretically have

a better matching quality. However, a longer period yields a longer wait and a lower detour

tolerance in practice, and results in a lower service rate. When the batch period is longer

than 60 s, the service rate decreases significantly.

(H3.2) Figure 3.11 plots the results of varying instance scales. All algorithms scale well

to large problem instances with a linear increase in response time. However, the service rate

of RTV has a considerable decrease compared to others. The difference between OSP and

RTV is expanded from 2.04% to 3.21%. This indicates that, although the ad hoc heuristics

used by RTV ensure a good scalability on response time, as optimality cannot be guaranteed,

they yield a worse matching performance at large instance scales.

(H3.1) Figure 3.12 shows the total number of feasible trips found and the number of

matched new requests by different algorithms from 19:30 to 20:00, where the average number

of incoming new requests is 438 per 30 sec. In each dispatch period, all algorithms are fed

with the exact same requests and vehicles to remove other distractions (e.g. the position

distribution of requests). RTV-FULL, without time limit and allowed to keep every feasible

vehicle for each request, is introduced to provide a comprehensive comparison between OSP

and RTV. It can be seen that OSP has the best performance at each dispatch epoch, as it

finds every feasible vehicle-trip match, along with the optimal schedule, and makes the best

match based on the complete candidate space. For all the requests that are waiting to be

picked up, RTV, RTV-FULL and OSP find an average of 11,954, 31,792 and 33,984 feasible

63

Optimal Online Dispatch in High-Capacity Ride-Sharing

5000
10000
15000
20000
25000
30000
35000
40000
45000
50000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Tr
ip

s F
ou

nd

Time Horizon (min)

RTV RTV-FULL OSP

305

310

315

320

325

330

335

340

345

350

355

360

365

370

375

380

385

390

395

400

405

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

R
eq

ue
st

s M
at

ch
ed

Time Horizon (min)

GI SBA RTV RTV-FULL OSP

Figure 3.12: Number of feasible trips, each of them representing a candidate vehicle-trip

match, found for all vehicles (upper plot) and number of matched new submitted requests

(lower plot) at different dispatch epochs during 19:30-20:00 (|R| = 800k, |V | = 3200, κ =

8, Ω = 300 sec, ∆T = 30 sec).

64

Optimal Online Dispatch in High-Capacity Ride-Sharing

Figure 3.13: A visualization of candidate vehicle-trip matches found for 32 vehicles by dif-

ferent algorithms at 19:30 (|R| = 800k, |V | = 3200, κ = 8, Ω = 300 sec, ∆T = 30 sec).

65

Optimal Online Dispatch in High-Capacity Ride-Sharing

trips. The difference between OSP and RTV-FULL is caused by the fact that RTV-FULL

only does exhaustive search for trips up to size 4. Despite this, the response time of RTV-

FULL is 763.98 sec, while that of RTV and OSP are 65.48 sec and 45.38 sec, respectively. If

we allow RTV-FULL to do exhaustive search for size 5 trips, the response time increases to

an incredible 3,734.77 sec.

(H3.1) Figure 3.13 shows a comparison of the number of candidate matches found by

different algorithms when fed the same information about requests and vehicles at 19:30. The

submission times of requests are in the 30 sec time window before 19:30. The computation

is carried out with 3,200 vehicles, but only 32 of those vehicles are plotted for visualization

purposes. During this epoch, the system receives 436 new requests. By optimizing across

multiple epochs and allowing many-to-one matching, OSP finds 28,542 candidate vehicle-

trip matches, while that of RTV, SBA and GI are only 9,925, 2,211 and 2,006, respectively.

Eventually, OSP serves 361 of 436 requests, and outperforms RTV, SBA and GI by 12, 13

and 13 requests, respectively.

Table 3.2: Number of schedules searched by different algorithms

Algorithms
Trip Size

3 4 5 6 7 8 9 10

Exhaustive Search 54 1,150 6,983 53,110 272,810 N/A N/A N/A

OSP 11 50 159 433 595 776 1468 1920

(H3.1) We further investigate the number of possible schedules considered by OSP to

see how much of the search space is pruned compared to exhaustive search. Table 3.2 shows

the counts from trips of size 3 to 7. Exhaustive search is unable to complete the search when

the trip size is larger than 7, while OSP only considers 1,920 schedules for size 10 trips.

(H3.3) Finally, we investigate the role of allowing many-to-one match for requests

66

Optimal Online Dispatch in High-Capacity Ride-Sharing

Table 3.3: A comparison of service rate (%) during the peak hour for varying instance scales

(κ = 8, Ω = 300 sec, ∆T = 30 sec).

Algorithms
Instance Scales (|R|, |V |)

(400k, 2000) (500k, 2300) (600k, 2600) (700k, 2900) (800k, 3200)

SBA 81.69 80.64 79.92 79.96 80.04

OSP-NR 82.24 81.21 80.67 80.53 80.56

OSP 86.12 84.55 84.30 84.05 84.14

OSP-FR 87.20 85.48 85.39 85.04 85.16

during the same dispatch epoch and the role of re-optimization across multiple epochs.

Two variants of OSP are introduced: (1)OSP-NR (No Re-optimization), only considering

the requests, Rnew, received at the current epoch to remove the effect of re-optimization;

(2) OSP-FR (Full Re-optimization), removing the constraint (3.5) to maximize the system

performance by allowing the rejection of assigned requests. Table 3.3 shows the service

rates of SBA, OSP-NR, OSP and OSP-FR, for varying instance scales. Compared to SBA,

OSP-NR only achieves an average of 0.6% increase in the service rate, while that of OSP

is 4.18%. OSP-FR further yields an average of 1.02% improvement over OSP. Therefore,

re-optimization, considering requests from multiple epochs together, is the key to improving

the performance of dispatch. But re-optimization requires a complete search for candidate

vehicle-trip matches, so as to make the optimal assignment; otherwise, when making an

assignment based on an incomplete candidate space, worse results will come when instance

scaling grows, as is shown by the performance of RTV in Figure 3.11.

67

Optimal Online Dispatch in High-Capacity Ride-Sharing

3.4.4 Discussion

Batch assignment provides better performance than the FCFS based approach, by assigning

requests together. During the peak hour, solely using batch assignment, SBA yields an

improvement of around 1% in the service rate compared to GI. Our proposed approach, OSP,

further achieves a service rate about 4% higher than SBA by optimizing the dispatch policy

across multiple epochs; while that of RTV, which cannot generate a complete candidate

space, is only around 2% higher than SBA. Our OSP’s optimal scheduling can achieve twice

the improvement of RTV over SBA. The improvement of OSP relative to RTV also increases

with the complexity of the instance. If OSP is allowed to reject previously assigned requests

to maximize the effectiveness of the system, it could yield an improvement over SBA in the

service rate of around 5%.

The incremental schedule search method and the iterative re-optimization strategy

together reduce the scheduling space to less than one percent of that of exhaustive search,

when the ride-sharing size is larger than six. These work as the foundation for OSP by

computing the complete candidate space in real-time. The computation of the schedule pool

is naturally parallelisable across different vehicles, thus OSP can be deployed in real-time

with even larger instance scales.

3.5 Chapter Summary

In this chapter, we have proposed an optimal online dispatch method for high capacity

SAMoD systems. Our work aims to study optimal batch assignment for SAMoD systems

running in real-time, and tries to reach the upper-bound of performance for reactive dis-

patch. An incremental search method is developed to speed up computing schedules and

find all feasible vehicle-trip matches by retaining the completed search space. An iterative

68

Optimal Online Dispatch in High-Capacity Ride-Sharing

re-optimization strategy is then developed to efficiently find better ride-sharing trips by look-

ing at long-term combinations of requests while keeping a prompt response to new requests.

Numerical experiments on real large-scale datasets show the proposed method improves the

state-of-the-art in terms of service rate (up to 3.21% at peak hour) and system scalability.

Typically, a 1% improvement is considered significant on real taxi systems [64].

69

Chapter Four

Vehicle Dispatch with Stochastic Travel

Times

In Shared Autonomous Mobility-on-Demand (SAMoD) systems, the quality of passenger

experience and the profit achieved by these platforms are strongly affected by the vehicle

dispatch policy. However, existing ride-sharing research seldom considers travel time uncer-

tainty, which leads to inaccurate dispatch allocations. In this chapter, we present a general

framework for dynamic vehicle dispatch that leverages stochastic travel time models to im-

prove the performance of a fleet of shared vehicles. The novelty of this work includes: (1) a

stochastic on-demand ride-sharing scheme to maximize the service rate (i.e., percentage of

requests served) and reliability (i.e., probability of on-time arrival); (2) a technique based on

approximate stochastic shortest path algorithms to compute the reliability for a ride-sharing

trip; (3) a method to maximize profit when a penalty for late arrivals is introduced. Based on

New York City taxi data, it is shown that by considering travel time uncertainty, on-demand

ride-sharing services achieve higher service rates, reliability and profits.

70

Vehicle Dispatch with Stochastic Travel Times

4.1 Introduction

When evaluating the feasibility and benefits of schedules for ride-sharing trips, the most im-

portant consideration is the timing of passengers, because travel delay is a more constraining

factor than others, e.g. spare capacity [40]. To have accurate estimations of the benefits from

on-demand ride-sharing and make the best vehicle dispatch policy, the following technical

challenges need to be properly tackled:

1. Travel time uncertainty. Due to various stochastic factors, travel times on roads can ex-

hibit considerable variability in urban environments. Solutions based on deterministic

routing may deteriorate when deployed in scenarios with stochastic travel times.

2. Reliability estimation. In reality, vehicles may not arrive at their planned destinations

on time, i.e, exceeding the delay times of passengers. Passengers are more concerned

about the reliability of their trip than its duration. A high frequency of violating

the delay constraint would result in the loss of passengers. Thus, estimation of the

probability of satisfying the delay constraint is needed to optimize reliability.

3. Profit estimation. Passengers may accept uncertainty if compensation is granted for

exceeding the delay times. However, the prices of trips are normally determined imme-

diately after the submission of requests and remain fixed, regardless of the allocation

policy or the actual travel time, while the travel costs and compensations are affected

by variability in travel times. Thus an assignment policy based on inaccurate estima-

tions of trips’ profits may differ from the profit-optimal solution.

Ride-sharing has been receiving increased attention from the academic community.

However, most previous studies fail to consider the uncertainty of travel time. They only

compute assignments and routes with the shortest expected time for the sake of simplicity,

71

Vehicle Dispatch with Stochastic Travel Times

and ignore the reliability of on-time arrival, which is of high value for passengers. When

addressing the uncertainty of travel time, the optimal dispatch policy may change. Figure 4.1

shows an example.

AUTONOMOUS.

v1

r4

r5

r1

r2

r3

Figure 4.1: An example with five requests r1, r2, r3, r4, r5 and one vehicle v1. Triangles (4)

and inverted triangles (5) represent the origins and destinations, respectively. There are

three possible dispatch policies for v1 and they exhibit no difference in service rate when

travel time uncertainty is not considered. When taking stochastic travel time into account,

it may be found that serving r2 and r3 is the best allocation as it has the highest reliability

in terms of arrival. Or, considering the penalty costs due to late arrivals, serving r1 and r2

yields the highest profit and is the best allocation to make.

A similar approach to our work, which also considers on-time arrival reliability in

on-demand ride-sharing, is presented in [85]. They introduce a reliable path concept for

selecting a vehicle with the maximum reliability for each request. However, the reliable

path is computed from the precomputed k-shortest paths, which may not be the optimal

one. Also, only pairwise sharing is allowed and the fleet size considered is less than 200.

72

Vehicle Dispatch with Stochastic Travel Times

Our work differs from [85] by providing high-capacity on-demand ride-sharing. For example,

we can dispatch a fleet of 3000 vehicles with a capacity of 6. The prices of requests and

the profits from trips, which are important concerns for the platform, have also received

little attention. A dispatcher considering request price is developed in [60] to maximize the

platform’s profit. But it does not take into account the penalty costs arising from failing to

arrive on time. In contrast, we optimize profit with stochastic travel times.

In this chapter, we study the role of travel time uncertainty in on-demand ride-

sharing services and propose a multi-phase constrained optimization scheme, which considers

stochastic travel time information to increase the passengers’ on-time arrival reliabilities,

and further incorporates the concept of late arrival compensation to optimize the platform’s

profit. To summarize the work in this chapter, we:

1. Develop a method for Reliability-aware Vehicle Dispatch (RVD), which takes travel

time uncertainty into account in both the allocating of requests to vehicles and the

routing of vehicles. (Section 4.2.3.)

2. Develop an algorithm to estimate the probability of on-time arrival for ride-sharing

trips (i.e., satisfying the delay constraint), which is then incorporated into the main

dispatch method to optimize the reliability of service. (Section 4.3.)

3. Develop a method for Profit-aware Vehicle Dispatch (PVD), which estimates the profit

of a trip and optimizes the profit of the platform, considering the penalty costs due to

late arrivals, i.e., exceeding the delay constraint. (Section 4.4.)

4. Conduct a case study on Manhattan data to investigate the benefits of our travel time

uncertainty aware dispatchers and compare them to the state-of-the-art deterministic

approach. (Section 4.5.)

The remaining content of the chapter is arranged as follows. In Section 4.2, we intro-

73

Vehicle Dispatch with Stochastic Travel Times

duce the notion of stochastic travel time, the problem statement and a multi-phase planning

scheme for reliability optimization. In Section 4.3, we present the details of reliability esti-

mation and allocation. In Section 4.4, we introduce the concept of late arrival compensation

and attempt to maximize the profit of vehicle dispatch based on the multi-phase planning

scheme. In Section 4.5, we evaluate our two approaches, RVD and PVD, using real-world

taxi data. In Section 4.6, we draw our conclusions.

4.2 Preliminaries

Similar to the approach presented in Chapter 3, the dispatchers proposed in this Chapter

solve a static problem repeatedly in a rolling-horizon framework, i.e., batch planning. For

the sake of brevity, the notion of re-optimization is not duplicated in this chapter, but re-

optimization is used.

4.2.1 Definitions

Following the definitions in Section 3.2 of Chapter 3, a dispatcher assigns requests at a time

epoch ∆T and batches a set of n new requests R. It considers a fleet of m vehicles V and

computes a candidate schedule pool zv for each vehicle, indicating all possible vehicle-trip

matches. A trip, denoted by Γ ⊆ R, is a set of requests that can be merged using ride-

sharing. A schedule, denoted by sv,Γ = {o1, . . . , d1, . . . , o2, . . . , dnΓ
} ∈ zv, is a sequence of

visiting positions for a vehicle v to pick up and drop off requests in a ride-sharing trip Γ with

minimum cost, i.e., the lowest expected travel delays for passengers. The expression "optimal

schedule", defined in Section 3.2 of Chapter 3, is not used in this chapter. Because the

minimum-cost schedule may not be the optimal one when considering travel time uncertainty.

For a schedule to be feasible, it must satisfy the capacity (κ), waiting time (Ω), total delay

74

Vehicle Dispatch with Stochastic Travel Times

(Λ) and precedence constraints.

Next, we introduce the notion of vehicle travel with stochastic travel times. Following

the assigned schedules, vehicles travel on a predefined road network G = (I, E). We define

two functions, τ(i1, i2) and %(i1, i2), to compute the mean travel time and the travel distance

of the minimum expected time path from i1 to i2, respectively. For the sake of simplicity,

the travel time for each edge is assumed to follow an independent Gaussian distribution

N(µe, σ
2
e). This assumption is commonly used in stochastic networks [71, 85, 115–117]. It

is shown in [71] that the independent Gaussian assumption is very similar to real world

taxi trajectories in Massachusetts and holds well for stochastic planning. The multi-phase

dispatch scheme introduced in the following sections is not limited to the independent Gaus-

sian assumption, and can be further enhanced by incorporating other fast stochastic routing

algorithms for more accurate estimations, such as [118, 119].

For a specific schedule sv,Γ, the detailed route that travels from qv to dnΓ
is denoted

by π. A portion of the route that travels from qv to dr (r ∈ Γ) is denoted by π(r). There is

more than one possible route for a specific schedule, of which the optimal one is denoted by

π∗, i.e., the one serving the requests with the highest reliability.

4.2.2 Problem Statement

Besides maximizing the service rate of the service, taking travel time uncertainty into consid-

eration, we also optimize the overall reliability for all passengers. Using Rmiss to denote the

set of requests that cannot be served at the current dispatch epoch, we define the objective

of Reliability-aware Vehicle Dispatch (RVD):

75

Vehicle Dispatch with Stochastic Travel Times

OReliab =
∑
v∈V

best_prob(sv)−
∑

r∈Rmiss

pmiss (4.1)

where best_prob(sv) is the maximum expected mean probability of dropping off requests on

time (i.e., satisfying the delay constraint) for a schedule and is affected by the routing policy

(discussed in Section 4.3.1) and pmiss is a large cost for not serving a request. Equation (4.1)

works on reliability optimization by finding the best matching policy that serves the largest

number of passengers with the highest probability of on-time arrival.

Problem 2 (Reliability-aware dispatch) Given a set of requests R and a set of vehicles

V at a dispatch epoch with a length of ∆T , the problem of reliability-aware dispatch is to

assign vehicles particular candidate schedules to serve as many requests as possible with the

highest reliability, so that the objective (i.e., Equation (4.1)) is maximized, subject to the

following constraints: (1) Each request must be served by exactly one vehicle. (2) Each

schedule must be feasible when considering the mean travel time.

4.2.3 Multi-Phase Dispatch Scheme

Figure 4.2 illustrates our proposed scheme to solve Problem 2. It is a multi-phase method

that breaks down the computational burden and can work as a general scheme for different

optimization purposes. The multi-phase method builds on the method in Chapter 3, which

works well on searching for candidate schedules (representing vehicle-trip matches). The

processes for schedule generation (b) and request allocation (d) are inspired by [19] and

have been discussed in Chapter 3. The stochastic travel time information is incorporated

in schedule scoring (c) and vehicle routing (e). The reliability of a schedule is affected by

the routing plan and the term
∑

v∈V best_prob(sv) in Equation (4.1) is affected by both the

76

Vehicle Dispatch with Stochastic Travel Times

r1

r2

r3

AUTONOMOUS.

 v2

AUTONOMOUS.

 v1

AUTONOMOUS.

 v3
(b) Schedule Pool

Generating

v1

v3

r1

r2

r3

r1,r2v2

AUTONOMOUS.

r1,r3

r1,r2,r3

r2,r3

v1 r1

v1

v3

r1,r2

(a) Information Gathering (c) Stochastic Scoring (d) Allocating

0.95

0.8

v1 r2
0.9

v3 r2,r3
0.7

r3
0.9

v1

v3

r1

r2

r3

v2

AUTONOMOUS.

r1,r2,r3

r1,r3

r1,r2

r2,r3

(e) Stochastic Routing

r3
AUTONOMOUS.

 v3

r1

AUTONOMOUS.

 v2

r2
AUTONOMOUS.

 v1

Figure 4.2: Schematic overview of our proposed multi-phase approach. (a) An epoch with

three vehicles and three requests. The solid lines present the current planned routes for

vehicles and the dashed lines present the shortest paths for requests. (b) A candidate schedule

pool that connects vehicles to servable ride-sharing trips. Each link represents a schedule.

(c) Scored candidate schedules with reliability information. Each schedule is associated with

its stochastic optimal route. (d) Allocation of requests to vehicles that maximizes the sores,

where requests r1 and r2 are served by vehicle v1 and request r3 is served by vehicle v3. (e)

Vehicles travelling on the stochastic optimal routes following the assigned schedules.

routing plan and the allocating results, which cannot be omitted. The main steps of the

method are:

• Based on the locations of requests and vehicles, the dispatcher computes feasible ride-

sharing combinations for each vehicle to generate the candidate schedule pool zv. This

is done by using the mean travel time to be efficient. Either the OSP method discussed

in Chapter 3, the RTV method proposed in [19], or other candidate vehicle-trip match

search methods can be employed for the generation of zv.

• Using the travel time distribution information, the dispatcher scores each candidate

schedule by solving a stochastic routing problem that maximizes the mean on-time

arrival probability. Additionally, the associated minimum mean travel time route for

77

Vehicle Dispatch with Stochastic Travel Times

each schedule is changed to the stochastic optimal one. A method to do so is discussed

later in Section 4.3.1.

• Considering the scored candidate schedules, the dispatcher allocates requests by solving

a maximum weight matching problem that maximizes the number of allocated requests

and reliability. This is formulated as an ILP and presented in Section 4.3.2

• Following assigned schedules, the dispatcher routes vehicles along the stochastic opti-

mal routes to pick up and drop off requests.

As stated in [19] and discussed in Section 3.3.5 of Chapter 3, given enough time,

all possible vehicle-trip matches can be found and the ILP-based allocations are optimal.

However, as travel time distributions are not considered when generating the schedule pool,

there are two limitations to the current multi-phase scheme. (1) Some potentially feasible

vehicle-trip matches may be mistakenly ignored [83]. In practice, longer delay constraints can

be set so that searching for feasible ride-sharing combinations has a probabilistic guarantee.

For example, setting the total travel delay constraint as Λ
′

= Λ + 3 · σπ, where σπ is the

largest standard variance of any possible ride-sharing route, will mean that less than 0.27%

trips can be ignored. Consequently, a longer computation time and more candidate vehicle-

trip matches will be produced. (2) The optimal schedule for a candidate vehicle-trip match

at the scoring step may be different from the one found at the pool generation step using

mean travel time. During the pool generation step, the dispatcher searches for candidate

vehicle-trip matches and only keeps the minimum mean delay schedules (e.g., F ∗v in Chapter

3). However, when considering the stochastic route during the scoring step, the minimum

mean delay schedule may not always be the one that has the highest probability of satisfying

the delay constraints of requests. In the future, we can further couple the stochastic scoring

procedure with OSP generation to search for candidate vehicle-trip matches in a unified way.

78

Vehicle Dispatch with Stochastic Travel Times

4.3 Reliability Optimization

Given a candidate schedule pool, we handle the scoring for each schedule by finding the

optimal route that has the highest mean probability of dropping off multiple requests under

the travel delay constraints. Then, considering the scored candidate schedule pool, an ILP

is solved for allocation of requests.

4.3.1 On-time Arrival Probability Estimation

To find the route that maximizes the reliability of a ride-sharing schedule, we adapt the ap-

proximate Stochastic Shortest Path (SSP) query algorithm in [74] and the multi-hop routing

algorithm in [76] to on-demand ride-sharing systems. The generalized method consists of

two procedures: preprocessing and online scoring. It precomputes a set of parametric short-

est paths offline and finds the optimal route online. By completing complex computations

offline, we can achieve high efficiency online path finding and meet real-time requirements

of vehicle dispatch. For each candidate schedule, the method computes the maximum mean

probability of dropping off all requests on time for scoring (step (c) in Figure 4.2) and re-

turns the corresponding optimal route for the routing procedure after allocation (step (e) in

Figure 4.2).

Preprocessing

Estimating the reliability of a schedule relies on computing the routes that maximize the

probability of on-time arrival for each request in the schedule. The problem of finding the

SSP between two locations is introduced first in the preprocessing part, based on which the

problem of finding the stochastic optimal route for a ride-sharing schedule is discussed in

the online scoring part.

79

Vehicle Dispatch with Stochastic Travel Times

Consider the road network G = (I, E) defined in Section 4.2, the edge weights of

which are stochastic rather than deterministic, and given an origin or, a destination dr and a

deadline τ(or, dr)+Λ, SSP algorithms commonly aim to find (1) the path with the maximum

probability of reaching the destination within the deadline, or (2) the path with the minimum

mean time and a probability of making the deadline larger than a predefined value [72, 74,

76]. In this chapter, our goal is to find the maximum probability path that arrives within

time τ(or, dr) + Λ, which is solving:

π∗ = argmax
π∈Π

Pr(travel time of π 6 τ(or, dr) + Λ)

= argmax
π∈Π

Φ(
τ(or, dr) + Λ− µπ

σπ
) (4.2)

where Π is the set of all possible routes from or to od, µπ is the mean travel time of route

π, σπ is the variance of travel time and Φ(·) is the cumulative distribution function of the

standard normal distribution. As Φ(·) is monotone increasing, finding the SSP for a request

r that travels alone with a travel delay constraint Λ is equivalent to solve:

π∗ = argmax
π∈Π

τ(or, dr) + Λ− µπ
σπ

(4.3)

Equation (4.3) can be converted to a parametric optimization problem [71, 72]. Denote

path π by a point (µπ, σπ) in a mean-variance plane, as shown in Figure 4.3, and denote

φ(π) = τ(or,dr)+Λ−µπ
σπ

, we will have:

σ2
π =

1

φ(π)2
[µπ − (τ(or, dr) + Λ)]2 (4.4)

Intuitively from Equation (4.4) and Figure 4.3, the SSP for Equation (4.3) is the one lying

on the parabola with the least curvature, at which point φ(π) has the maximum value.

The target point (i.e., the SSP) on the mean-variance plane can be found by enumer-

ating all of the extreme points, which is converted to iteratively finding the α-shortest path.

Consider setting the weight of each edge to a parameter dependent length α · µe + σ2
e , the

parametric shortest path for this edge weight is called the α-shortest path. The parametric

80

Vehicle Dispatch with Stochastic Travel Times

Mean

Va
ria

nc
e

All paths
Optimal route for deadline 1
Optimal route for deadline 2

Deadline 1 Deadline 2

Figure 4.3: Projection of various α-shortest paths onto a mean-variance plane. Each one lies

on a parabola. The optimal route is the one with the smallest curvature and has the highest

probability of arriving before the deadline.

optimization discussed in [71, 72] works on finding the parameter values α ∈ (0,∞) at which

the shortest path changes, so as to enumerate the extreme points. Computing the exact

solution to Equation (4.3) is computationally expensive, as there are nO(logn) extreme points

[120]. Also, the target α value varies when the origin-destination pair or deadline is different.

There is a
√

1− ε2/(2 + ε2)-approximation algorithm that runs in time polynomial

in 1/ε, for any user-specified level of accuracy 0 < ε < 1 [73, 74]. Generalized from [74],

the approximate solution can be found by enumerating α-shortest paths for α ∈ {L, (1 +

ξ)L, (1 + ξ)2L, . . . , U}. The values of ξ, L and U are determined as:

ξ = ε/2 (4.5)

L =
2 ·mine σ

2
e

dL
>

2 ·mine σ
2
e

maxr τ(or, dr) + Λ
(4.6)

U =
2 ·

∑
e σ

2
e

ε · dU
6

2 ·maxπ σ
2
π

ε ·mine µe
(4.7)

where mine σ
2
e is the smallest variance of any edge in the road network, maxr τ(or, dr) is the

81

Vehicle Dispatch with Stochastic Travel Times

largest mean travel time of any single request trip, maxπ σ
2
π is the largest variance of any

possible ride-sharing route and mine µe is the smallest mean travel time of any edge.

Denoting the set of the approximation parameters α as A, we precompute the shortest

paths for all values α ∈ A and store them in look-up tables. Therefore, the most reliable

route for a travel alone request can be found by checking the tables |A| times. In Section 4.5,

the experimental study, we set ε = 0.5 and find 21 different α values for preprocessing.

According to the experimental results in [74], the approximation ratio is less than 0.02,

which is a quality measure defined as the difference between the approximated solution and

the optimal solution, divided by the optimal one.

Online Scoring

Similar to finding the SSP between two locations, the maximum probability of visiting a

schedule’s last position sv,Γ[−1] and the corresponding route can be found by enumerating

α-shortest paths, as presented in [76]. But in ride-sharing, a vehicle normally visits more

than one dropoff point in a single trip. Not only the on-time arrival probability of the last

position, but also those of other requests’ destinations need to be optimized. We consider

maximizing the mean probability of on-time arrival for requests in one trip, which is denoted

by:

mean_prob(sv,Γ) =
1

|Γ|
∑
r∈Γ

Φ(
τ(or, dr) + Λ− µπ(r)

σπ(r)

) (4.8)

Adopted from the algorithm in [76], a method to find the α-optimal route for a sched-

ule is described in Algorithm 5. It tries to find the best α value that maximizes Equation (4.8)

by enumerating all α ∈ A. The pre-route πpre is a predefined route from qv to sv,Γ[0]. Func-

tion FindαShortestPath(sv,Γ) returns the α-shortest path that visits a series of locations

in the order determined by the schedule sv,Γ. Function ComputeMeanProbability(Γ, π) re-

82

Vehicle Dispatch with Stochastic Travel Times

turns the mean probability of on-time arrival when requests are served by a predefined route

π, defined as Equation (4.8).

Algorithm 5 Find α Optimal Route
Input : A schedule sv,Γ and its pre-route πpre.

Output: The mean probability of on-time arrival mean_prob and the α optimal route π∗α.

1: mean_prob← 0;

2: π∗α ← ∅;

3: for each α ∈ A do

4: π ← FindαShortestPath(sv,Γ, πpre);

5: prob← ComputeMeanProbability(Γ, π);

6: if prob > mean_prob then

7: mean_prob← prob;

8: π∗α ← π;

However, unlike the deterministic route planning that satisfies the optimal substruc-

ture property, the optimal route π∗ found by Algorithm 5, which aims to maximize Equa-

tion (4.8) with stochastic travel times, may be a concatenation of the α-optimal paths for

each request with different α values. Thus, we propose a recursive algorithm to explore

all possible combinations of different α values for the requests in a schedule, as shown in

Algorithm 6. It is built on Algorithm 5. Function GetRequestsInSchedule(sv,Γ) returns

the set of requests included in the schedule sv,Γ. Function CutSchedule(dr, sv,Γ) breaks the

schedule into two sub-schedules based on the drop-off position of r, the reliabilities and

routes of which are then computed by Algorithms 5 and 6, respectively. Besides the two

sub-schedules, it also outputs the number of drop-off visiting locations in both schedules,

denoted by n1 and n2, which will be used to calculate the mean probability in line 8. As

illustrated in the recursion tree, shown in Figure 4.4, n1 is the length of a link and n2 is the

number of remaining locations. For example, if we cut the schedule {qv, . . . , np} at the 2nd

83

Vehicle Dispatch with Stochastic Travel Times

Algorithm 6 Schedule Reliability Estimation (SRE)
Input : A schedule sv,Γ and its pre-route πpre.

Output: The maximum mean probability of on-time arrival best_prob and the optimal

route π∗.

1: Rs ← GetRequestsInSchedule(sv,Γ);

2: best_prob← 0;

3: π∗ ← ∅;

4: while (r ← Rs.pop()) 6= ∅ do

5: n1, s
1
v,Γ, n2, s

2
v,Γ ← CutSchedule(dr, sv,Γ);

6: prob1, π1 ← FindαOptimalRoute(s1
v,Γ, πpre);

7: prob2, π2 ← SRE(s2
v,Γ, π1);

8: mean_prob← (prob1 · n1 + prob2 · n2)/(n1 + n2);

9: if mean_prob > best_prob then

10: best_prob← mean_prob;

11: π∗ ← π1 + π2;

node, we will have n1 = 2, s1
v,Γ = {1, 2}, n2 = np − 2 and s2

v,Γ = {2, . . . , np}.

Assuming the input schedule of Algorithm 5 has nd drop-off visiting locations. Line

4-5 in Algorithm 5 takes O(nd) times to compute the α-shortest path and the on-time arrival

probability for each drop-off visiting location. As |A| is precomputed and independent from

the length of schedule, the time complexity of Algorithm 5 is O(nd).

Assuming the input schedule of Algorithm 6 has np passengers, i.e., np drop-off visiting

locations, Algorithm 6 produces a recursion tree, as shown in Figure 4.4. Considering the

84

Vehicle Dispatch with Stochastic Travel Times

qv

1

2

npnp-1

np

•••3

•••

np

np-1

npnp-1

np

•••

2

npnp-1

np

•••3

•••

np

np-1

npnp-1

np

••• np-2

np

np

np-1

Figure 4.4: Illustration of the search tree of Algorithm 6, where np denotes the nthp drop-off

location and each link denotes a running of function FindαOptimalRoute, i.e., Algorithm 5.

Each path from the root node qv to a leaf node np represents a possible combination of

different α values. Red links represent the added computation caused by the nthp location,

compared to when there are only np − 1 locations in the schedule.

complexity of Algorithm 5, we can tell that the recurrence relation in Algorithm 6 is:

T (np)

= T (np − 1) + [np − (np − 1)] ∗ 2np−2 + [np − (np − 2)] ∗ 2np−3 + · · ·+ (np − 1) ∗ 20 + np

= T (np − 1) + 2np−1 ∗ [1/2 + 2/22 + 3/23 + · · ·+ (np − 1)/2np−1] + np

= T (np − 1) + 2np−1 ∗ [2− (np + 1)/2np−1] + np

= T (np − 1) + 2np − 1 (4.9)

Thus, the time complexity of Algorithm 6 is O(2np). As Algorithm 6 explores all possible

combinations of different α values for the drop-off locations in a schedule to find the best

route, it has a high time complexity. Despite this, Algorithm 6 places only a small compu-

tational burden on the dispatcher. Note that np = 6 is considered a very large number in

85

Vehicle Dispatch with Stochastic Travel Times

real-time ride-sharing. Having too many passengers sharing the same trip may drastically

decrease user experience. The experimental study in Section 4.5 shows that the computation

time of the stochastic scoring procedure is less than 3 sec.

Given a set of candidate schedules zv for a vehicle, which is generated in step (b) in

Figure 4.2, it can be processed in parallel on-the-fly by Algorithm 6 to find the stochastic

optimal routes with the highest mean on-time arrival probabilities for scoring.

4.3.2 Reliable Allocating

At each round, the dispatcher considers the state of the fleet V , a set of requests R, and a

set of scored schedules zv for each vehicle. The goal is to serve as many requests as possible

and dispatch the vehicles towards the most reliable trips so that the overall probability of on-

time arrival is maximized. The allocating of requests is done by selecting a set of candidate

sechedules, illustrated in step (d) in Figure 4.2, and is formulated as the following ILP:

argmax
xv,s,εr

∑
v∈V

∑
s∈zv

xv,s · best_prob(s)−
∑
r∈R

εr · pmiss (4.10)

s.t.
∑
s∈zv

xv,s = 1, ∀v ∈ V (4.11)

∑
v∈V

∑
s∈zv

xv,s ·Θs(r) + εr = 1, ∀r ∈ R (4.12)

where best_prob(s) = maxπmean_prob(s).

A binary variable xv,s ∈ {0, 1} is introduced for each schedule in every zv, where

xv,s = 1 indicates that s is assigned to v. A binary variable εr ∈ {0, 1} is introduced for

each request, where εr = 1 indicates that r is ignored. An indicator function Θs(r) ∈ {0, 1}

is introduced to indicate whether r /∈ s or r ∈ s. Constraint (4.11) guarantees that each

vehicle is assigned exactly one schedule and constraint (4.12) guarantees that no requests

are double-assigned to two vehicles. After allocating, each vehicle travels via the maximum

86

Vehicle Dispatch with Stochastic Travel Times

reliability route π∗ to serve the requests.

4.4 Profit Optimization

In practice, profit is one of the main concerns of a platform and passengers may accept

longer travel times if there is compensation. In this section, we introduce the concepts of

request prices, travel costs and late arrival penalties to the multi-phase scheme to optimize

the profit of dispatch. Similar to RVD, PVD handles the scoring by finding the route with

the maximum expected profit and solves an ILP for allocation.

We consider that passengers will receive compensation for being late under the travel

delay constraint Λ, which could be caused by detour and travel time uncertainty. The

objective of PVD is to maximize the service rate and total profit, defined as:

OProfit =
∑
v∈V

best_profit(sv)−
∑

r∈Rmiss

pmiss (4.13)

where best_profit(sv) is the maximum expected profit for a vehicle-trip match and is af-

fected by the routing policy (discussed in Section 4.4.1). pmiss is a large rejection cost.

Equation (4.13) works on profit optimization by finding the best matching policy that serves

the largest number of passengers with the highest profit, while taking the compensation for

late arrivals into account.

Problem 3 (Profit-aware dispatch) Given a set of new requests R and a set of vehicles

V at a dispatch epoch with a length of ∆T , the problem of profit-aware dispatch is to assign

vehicles particular candidate schedules to serve as many as requests as possible with the

highest expected profit, so that the objective (i.e., Equation (4.13)) is maximized, subject to

the following constraints: (1) Each request must be served by exactly one vehicle. (2) Each

schedule must be feasible when considering the mean travel time.

87

Vehicle Dispatch with Stochastic Travel Times

4.4.1 Profit Estimation

Maximizing the platform’s profit requires assigning high profit schedules to vehicles. The

profit of a schedule is equal to the price sum of included requests minus the expenses of

vehicle travel and the compensation due to late arrivals, defined as:

profit(sv,Γ) =
∑
r∈Γ

[rev(r)− penalty(r)]− cost(sv,Γ) (4.14)

where rev(r) is the revenue of serving r, penalty(r) is the compensation for dropping r off

late, and cost(sv,Γ) is the expense of the service. They are estimated as:

rev(r) = β · %(or, dr) (4.15)

penalty(r) = γ · (ES(r)− τ(or, dr)− Λ) (4.16)

cost(sv,Γ) = η · %(π) (4.17)

where β is the charge per unit distance, γ is the compensation per unit time, η is the expense

per unit distance, ES(r) is the expected travel time for r when violating the travel delay

constraint, and %(π) is the travel distance of route π.

Expected Shortfall

Value at
Compensation
τ(or, dr) + Λ

Probability Distribution
of Travel Time tπ(r)

Expected Travel Time µπ(r)

Figure 4.5: Graphical illustration of expected shortfall, the conditional expectation of a

request’s travel time given that the travel time is beyond the compensation level.

The term ES(r) (expected shortfall of the request) is a risk measure proposed by

Artzner et al. [121]. As shown in Figure 4.5, we have the probability distribution of the

88

Vehicle Dispatch with Stochastic Travel Times

travel time of a request r, which follows a normal distribution N(µπ(r), σ
2
π(r)). Given a

maximum travel delay constraint Λ, the value at compensation is τ(or, dr)+Λ, meaning that

penalties will be applied for travel time larger than this threshold. Using the formulation for

expected shortfall of the Normal distribution in [122], the term ES(r) can be computed as:

ES(r) = E[tπ(r)|tπ(r) > (τ(or, dr) + Λ)] (4.18)

= µπ(r) +

σπ(r) · ϕ(
τ(or, dr) + Λ− µπ(r)

σπ(r)

)

1− Φ(
τ(or, dr) + Λ− µπ(r)

σπ(r)

)

(4.19)

where ϕ(·) is the probability density function of the standard normal distribution.

As rev(r) is normally an upfront fare and fixed regardless of the routing plan, and

τ(or, dr) and Λ are not affected by the routing plan, maximizing profit(sv,Γ) is equivalent

to solve:

π∗ = argmin
π

∑
r∈Γ

γ · ES(r) + η · µπ (4.20)

Equation (4.20) can be solved by enumerating the combinations of α-shortest paths,

for all α ∈ A, similar to Algorithm 6. Each schedule s ∈ zv will find its optimal route that

brings the maximum profit and will be scored with that profit by solving Equation (4.20).

4.4.2 Profit-Aware Allocating

The goal of allocating is to serve as many requests as possible and dispatch the vehicles

towards the most profitable trips so that the overall profit of the platform is optimized.

Similar to RVD, with a profit scored candidate schedule pool, the allocation policy in PVD

89

Vehicle Dispatch with Stochastic Travel Times

is formulated as the solution to the following ILP:

argmax
xv,s,εr

∑
v∈V

∑
s∈zv

xv,s · best_profit(s)−
∑
r∈R

εr · pmiss (4.21)

s.t. constraints (4.11) and (4.12)

where best_profit(s) = maxπ profit(s).

The objective (4.21) represents the sum of the expected profit each vehicle would

earn and the total number of allocated requests. Constraints (4.11) and (4.12) guarantee

the feasibility of the assignment, in which no conflict between requests and vehicles exists.

After allocating, each vehicle will travel on the maximum profitable route π∗ found in the

process of profit estimation.

4.5 Experimental Study

In this section, the proposed two methods are implemented and evaluated using historical

taxi request data from New York City [111]. They are compared to the state-of-the-art

deterministic approach [19]. Since the implementation of [19] is unavailable, we reimplement

it and run it on the same machine to ensure a fair comparison. Additionally, our two

dispatchers employ the method in [19] to generate the candidate schedule pool. The reason

we do not use the approach proposed in Chapter 3 for comparison is that, by the time we

were preparing the content of this chapter as a paper, the submission containing Chapter 3

was still under review. But the trends would remain the same if we employed OSP as the

candidate schedule pool generator. The performance measures include the service rate (i.e.,

percentage of requests served), the violation rate (i.e., percentage of late arrivals), the profit

(i.e., Equation (4.14)), the request distance served (related to the revenue from passengers),

the vehicle distance travelled (related to the expense of the platform), the vehicle mean

90

Vehicle Dispatch with Stochastic Travel Times

load (i.e., average number of passengers in a vehicle), and the additional computation time

yielded by considering the uncertainty of travel times (i.e., mean scoring time per dispatch

epoch).

Experiments are designed to evaluate the following hypotheses: (H4.1) our proposed

methods, reliability-aware and profit-aware dispatchers, can reduce the violations of delay

constraints and improve the profit of the platform than deterministic dispatcher, respectively;

(H4.2) the two methods can work well with different problem scales and levels of travel time

stochasticity; and (H4.3) the two methods can be deployed in real time.

4.5.1 Simulation Details

This chapter follows the experimental environment in Chapter 3, except that the travel

times are stochastic. The evaluations are conducted using request data from the 11th, 18th

and 25th of May 2016. These have similar characteristics and are synthesized into three

simulation scenarios of varying number of requests: 400k, 600k and 800k. Simulations are

run for the hour with peak demand (19:00-20:00). A stochastic model of Manhattan is

computed using the method in [7]. The complete road network contains 4,091 nodes and

9,452 directed edges. The travel times for each road segment for each hour of the day are

computed using the pick up / drop off times of taxi trips. These are then processed to

compute the daily mean and standard deviation for the travel time for each road segment.

Table 4.1 summarizes the major experimental control variables. Since the results

when the capacity is equal to 6 are sufficient to illustrate the performance of the algorithm

at high capacity ride-sharing, the default capacity of vehicles is set to 6 in the experiments

in this chapter to save the running time of the simulation. When analysing the results of

varying instance scales, it is designed to keep the service rates at the same level (i.e., the

91

Vehicle Dispatch with Stochastic Travel Times

Table 4.1: Parameter settings (defaults in bold).

Parameters Settings

Fleet Size |V | 1000, 2000, 3000

Max Waiting Time Ω (sec) 180, 300, 420

Vehicle Capacity κ 2, 4, 6, 8

Number of Requests |R| 400k, 600k, 800k

difference is less than 2%) and the fleet sizes chosen are a little different from Chapter 3, due

to the travel time being stochastic in this chapter. We set the maximum travel delay to be

twice the maximum wait time Λ = 2Ω. The charge, compensation and expense parameters

are set as β = $2/km, γ = $0.02/sec and η = $1/km. The dispatch epoch is set as ∆T = 30

sec. The results are averages of ten experiment runs. All experiments were run on a machine

with 56 Intel(R) Xeon(R) E5 2.60GHz processors and 512GB RAM in Python 3.7.

4.5.2 Algorithm Comparison

We examine the effectiveness of the following algorithms:

• DVD (Deterministic Vehicle Dispatch): A method that maximizes the service rate

without considering travel time uncertainty, i.e., the one presented in [19].

• RVD (Reliability-aware Vehicle Dispatch): The method from Section 4.3 that considers

the probability of on-time arrival for each request.

• PVD (Profit-aware vehicle Dispatch): The method from Section 4.4 that optimizes the

profit of the platform.

92

Vehicle Dispatch with Stochastic Travel Times

1

30

40

50

60

70

80

90

100

1000 2000 3000

Se
rv

ic
e R

at
e (

%
)

Fleet Size

DVD RVD PVD

2

4

6

8

10

12

14

16

1000 2000 3000

Vi
ol

at
io

n
R

at
e (

%
)

Fleet Size

50
60
70
80
90
100
110
120
130

1000 2000 3000

Pr
of

it
(1

0^
3

$)

Fleet Size

10
15
20
25
30
35
40
45
50

1000 2000 3000

Ve
hi

cl
e D

is
ta

nc
e

(1
0^

3
km

)

Fleet Size

35
40
45
50
55
60
65
70
75
80
85

1000 2000 3000

R
eq

ue
st

 D
is

ta
nc

e (
10

^3
 k

m
)

Fleet Size

2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0

1000 2000 3000

Ve
hi

cl
e M

ea
n

Lo
ad

Fleet Size

Figure 4.6: A comparison of performance metrics during the peak hour for varying fleet sizes

(|R| = 400k, κ = 6,Ω = 300 sec).

93

Vehicle Dispatch with Stochastic Travel Times

4.5.3 Results

(H4.1) Figure 4.6 shows the results of varying fleet sizes. The performance of all the al-

gorithms improves for larger fleet sizes. A larger fleet brings more seats and allows the

dispatcher to allocate more mid-size ride-sharing trips to reduce detours for passengers,

which reduces the violation rate. By dispatching vehicles to less uncertain trips and routes,

RVD achieves lower violation rates than DVD. It also has higher service rates and produces

greater profits than DVD. RVD achieves a 0.77% lower violation rate than DVD when there

are 1000 vehicles, and with more flexibility brought in by 3000 vehicles, this reduction is

increased to 7.30%. To achieve this significant reduction in the violation rate compared to

DVD, RVD tends to dispatch small-size ride-sharing trips, having a lower vehicle mean load

and has a longer vehicle distance travelled. To make more profit, PVD accepts late arrivals,

despite yielding high violation rates, and prefers allocating large-size ride-sharing trips to

save on vehicle travel costs. It achieves a 2.09% higher profit than DVD with a fleet of

1000 vehicles. Large fleet size also increases the improvement in profit brought in by PVD.

It makes 6.08% more profit than DVD when the fleet size is 3000. The vehicle mean load

of PVD is 2.62 when there are 3000 vehicle, this high occupancy rate yields a considerable

saving in expense, as vehicle distance travelled is much lower than the other two algorithms.

(H4.1) When the number of vehicles is sufficiently large, both RVD and PVD can

yield more improvements in reliability and profit, respectively, at the cost of profit and

reliability, respectively. As shown in Figure 4.6, when the number of vehicles is increased

from 2000 to 3000, the improvement of RVD relative to DVD in terms of profit decreases

from 2.40% to 0.75%, and the deterioration of PVD relative to DVD in terms of violation rate

widens from -0.44% to -2.82%. This is also validated in the results of simulations conducted

between 4:00-5:00, when the number of requests is only 6.85% of the peak hour. As shown

in Table 4.2, the service rates of all algorithms are very close to 100% due to a sufficient

94

Vehicle Dispatch with Stochastic Travel Times

Table 4.2: A comparison of performance metrics for different methods during the hour with

lowest number of requests. (|R| = 400k, |V | = 2000, κ = 6, Ω = 300 sec)

Metrics DVD RVD PVD

Service Rate (%) 99.57 99.81 99.43

Violation Rate (%) 4.29 0.27 8.26

Profit ($) 7,671.04 7,085.13 9,262.84

Request Distance (km) 7,375.03 7,378.08 7,359.96

Vehicle Distance (km) 7,009.79 7,665.62 5,304.61

Vehicle Mean Load 1.21 1.03 1.62

number of vehicles. RVD achieves a close to zero violation rate, but has a 7.64% lower profit

than DVD. Similarly, PVD makes a 20.75% higher profit than DVD, with a 3.97% higher

violation rate.

(H4.1) Figure 4.7 shows the results of varying values of the maximum waiting time

constraint. A longer travel delay constraint allows more detours and increases the occupancy

rate. Vehicles could serve more requests while reducing miles traveled, thus leading to higher

service rates and greater profits. The violation rates do not significantly change with waiting

time constraints, except that RVD yields a 0.84% increase when the maximum waiting time

constraint increases from 180 sec to 300 sec. When the constraint increases from 180 sec

to 420 sec, although the reduction in violation rate yielded by RVD over DVD has a small

decrease from 2.9% to 2.3%, the increase in service rate increases from 1.19% to 2.21%. This

change is in line with our expectations, as our primary optimization goal is the service rate.

If we simply seek to minimize the violation rate, the dispatcher will choose not to serve

a single passenger to keep the violation rate at zero. PVD utilizes the increase in detour

tolerance well and achieves higher improvements over DVD in both the service rate (from

1.23% to 4.22%) and the profit (from 3.43% to 6.01%), when the maximum waiting time

95

Vehicle Dispatch with Stochastic Travel Times

1

72
74
76
78
80
82
84
86
88
90

180 300 420

Se
rv

ic
e R

at
e (

%
)

Maximum Waiting Time (s)

DVD RVD PVD

10

11

12

13

14

15

180 300 420

Vi
ol

at
io

n
R

at
e (

%
)

Maximum Waiting Time (s)

80
85
90
95
100
105
110
115
120

180 300 420

Pr
of

it
(1

0^
3

$)

Maximum Waiting Time (s)

31

32

33

34

35

180 300 420

Ve
hi

cl
e D

is
ta

nc
e

(1
0^

3
km

)

Maximum Waiting Time (s)

60
62
64
66
68
70
72
74
76
78

180 300 420

R
eq

ue
st

 D
is

ta
nc

e (
10

^3
 k

m
)

Maximum Waiting Time (s)

2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0

180 300 420

Ve
hi

cl
e M

ea
n

Lo
ad

Maximum Waiting Time (s)

Figure 4.7: A comparison of performance metrics during the peak hour for varying values of

maximum waiting time constraint (|R| = 400k, |V | = 2000, κ = 6).

96

Vehicle Dispatch with Stochastic Travel Times

constraint increases from 180 sec to 420 sec. This is because service rates and profits are

usually positively correlated.

(H4.1) Figure 4.8 shows the results of varying vehicle capacities. All algorithms

achieve higher service rates and higher profits with higher capacity, as more seats allow more

requests to share their trips. The violation rate also increases as capacity rises, possibly due

to detours caused by more ride-sharing. The performance differences among DVD, RVD and

PVD are not significantly affected by differences in vehicle capacity, especially when it comes

to high-capacity (i.e., κ ≥ 4) ride-sharing, where the reductions in violation rates brought

in by RVD over DVD are around 2.30(± 0.05)% and the increases in profit brought in by

PVD over DVD are around 4.89(± 0.05)%. When the capacity of vehicles is 2, PVD achieves

a 4.43% higher profit than DVD, but uncommonly has a 0.85% lower violation rate and a

1.21% lower service rate. This is because the expense savings of low-capacity ride-sharing

are low and some requests might not be profitable considering the late arrival compensation,

thus PVD chooses to ignore them to maximize the profit. We also find that PVD yields

a 1.22% higher request distance than DVD when capacity is 2, which indicates that PVD

prefers long trips.

(H4.2) Figure 4.9 shows the results of varying instance scales. When the number of

requests increases, the fleet size is also increased to examine the scalability of the algorithms.

The reductions in violation rates brought in by RVD over DVD are 2.30%, 1.98% and 2.13%,

respectively. The improvements in profit produced by PVD over DVD are 4.87%, 5.69% and

6.40%, respectively. This indicates that a ride-sharing service can benefit from taking into

account the stochastic travel time, regardless of the instance scale. Moreover, as the size

of the problem grows, RVD and DVD achieve even more improvements. In terms of the

service rate, when the number of requests is doubled from 400k to 800k, the gain of RVD

over DVD increases from 1.77% to 2.61% and that of PVD increases from 2.41% to 4.19%.

This indicates that the information of travel time uncertainty is more valuable when the

97

Vehicle Dispatch with Stochastic Travel Times

1

50
55
60
65
70
75
80
85
90

2 4 6 8

Se
rv

ic
e R

at
e (

%
)

Vehicle Capacity

DVD RVD PVD

8

9

10

11

12

13

14

15

2 4 6 8

Vi
ol

at
io

n
R

at
e (

%
)

Vehicle Capacity

60
65
70
75
80
85
90
95
100
105
110
115

2 4 6 8

Pr
of

it
(1

0^
3

$)

Vehicle Capacity

32

33

34

35

36

2 4 6 8

Ve
hi

cl
e D

is
ta

nc
e (

10
^3

 k
m

)

Vehicle Capacity

45

50

55

60

65

70

75

2 4 6 8

R
eq

ue
st

 D
is

ta
nc

e (
10

^3
 k

m
)

Vehicle Capacity

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

2 4 6 8

Ve
hi

cl
e M

ea
n

Lo
ad

Vehicle Capacity

Figure 4.8: A comparison of performance metrics during the peak hour for varying vehicle

capacities (|R| = 400k, |V | = 2000, Ω = 300 sec).

98

Vehicle Dispatch with Stochastic Travel Times

1

79

80

81

82

83

84

85

86

0.5 1 2

Se
rv

ic
e R

at
e (

%
)

Stochastic Level

DVD RVD PVD

81
82
83
83
84
85
86
87
87
88
89

|R|=400k
|V|=2000

|R|=600k
|V|=2800

|R|=800k
|V|=3600

Se
rv

ic
e R

at
e (

%
)

Instance Scale

DVD RVD PVD

10

11

12

13

14

15

16

|R|=400k
|V|=2000

|R|=600k
|V|=2800

|R|=800k
|V|=3600

Vi
ol

at
io

n
R

at
e (

%
)

Instance Scale

80
100
120
140
160
180
200
220
240

|R|=400k
|V|=2000

|R|=600k
|V|=2800

|R|=800k
|V|=3600

Pr
of

it
(1

0^
3

$)

Instance Scale

4
6
8
10
12
14
16
18
20
22
24

0.5 1 2

Vi
ol

at
io

n
R

at
e (

%
)

Stochastic Level

94
96
98
100
102
104
106
108
110
112
114

0.5 1 2

Pr
of

it
(1

0^
3

$)

Stochastic Level

Figure 4.9: A comparison of performance

metrics during the peak hour for varying

instance scales (κ = 6, Ω = 300 sec).

1

79

80

81

82

83

84

85

86

0.5 1 2

Se
rv

ic
e R

at
e (

%
)

Stochastic Level

DVD RVD PVD

81
82
83
83
84
85
86
87
87
88
89

|R|=400k
|V|=2000

|R|=600k
|V|=2800

|R|=800k
|V|=3600

Se
rv

ic
e R

at
e (

%
)

Instance Scale

DVD RVD PVD

10

11

12

13

14

15

16

|R|=400k
|V|=2000

|R|=600k
|V|=2800

|R|=800k
|V|=3600

Vi
ol

at
io

n
R

at
e (

%
)

Instance Scale

80
100
120
140
160
180
200
220
240

|R|=400k
|V|=2000

|R|=600k
|V|=2800

|R|=800k
|V|=3600

Pr
of

it
(1

0^
3

$)

Instance Scale

4
6
8
10
12
14
16
18
20
22
24

0.5 1 2

Vi
ol

at
io

n
R

at
e (

%
)

Stochastic Level

94
96
98
100
102
104
106
108
110
112
114

0.5 1 2

Pr
of

it
(1

0^
3

$)

Stochastic Level

Figure 4.10: A comparison of performance

metrics during the peak hour for vary-

ing stochastic levels (|R| = 400k, |V | =

2000, κ = 6, Ω = 300 sec).

99

Vehicle Dispatch with Stochastic Travel Times

density of passengers is higher, as ride-sharing is more likely to happen.

(H4.2) Figure 4.10 shows the results of varying stochastic levels. We analyze the

robustness of algorithms with different variances, i.e., {0.5, 1, 2} · σ2
e . Although all algorithms

have worse performance with higher stochastic levels, the improvements yielded by RVD and

PVD over DVD are stable, e.g., {1.42%, 1.77%, 1.56%} (RVD) and {2.56%, 2.41%, 2.39%}

(PVD) regarding the service rate. This suggests that the proposed approaches are robust to

different stochastic travel time models.

Table 4.3: A comparison of performance metrics during the peak hour for varying penalties

for PVD (|R| = 400k, |V | = 2000, κ = 6, Ω = 300 sec).

Metrics
Penalty γ ($/sec)

0.02 0.04 0.06 0.08 0.10

Service Rate (%) 84.58 84.66 85.34 85.50 86.10

Violation Rate (%) 14.50 14.25 14.02 13.15 12.96

Profit (10^3 $) 109.67 107.06 105.19 103.20 101.50

Relative Profit Difference

With Respect to DVD (%)
4.87 5.07 6.03 6.90 8.13

We also investigate the effect of changing the penalty value considered by PVD. The

results are shown in Table 4.3. It is not a surprise to find that profit is dropping when

we raise the penalty for late arrivals, considering the growth in the compensation paid to

passengers. But raising the penalty improves all other metrics. PVD even yields a lower

violation rate than DVD when the penalty is larger than $0.06/sec. In practice, passengers

would prefer a lower delay constraint, under which PVD yields fewer improvements, as shown

in Figure 4.7. Large compensation for long detours could potentially increase passengers’

tolerance to delays and eventually increase the profit of the platform. For example, if raising

the penalty from $0.02/sec to $0.08/sec could increase the maximum waiting time constraint

100

Vehicle Dispatch with Stochastic Travel Times

from 180 sec to 300 sec, we might have an approximate 10.10% (i.e., 85.50% minus 75.40%)

higher service rate, an approximate 1.27% (i.e., 14.42% minus 13.15%) lower violation rate

and an approximate $11.72k (i.e., $103.20k minus $91.48k) higher profit.

V
io

la
tio

n
R

at
e

(%
)

11

12

13

14

15

16

Different Runs

1 2 3 4 5 6 7 8 9 10

Se
rv

ic
e

R
at

e
(%

)

81

82

83

84

85

86

Different Runs

1 2 3 4 5 6 7 8 9 10

DVD RVD PVD

Pr
of

it
(1

0^
3

$)

103
104
105
106
107
108
109
110
111

Different Runs

1 2 3 4 5 6 7 8 9 10

 1

Figure 4.11: A comparison of the results of DVD, RVD and PVD under 10 simulation runs

(|R| = 400k, |V | = 2000, Ω = 300 sec, ∆T = 30 sec).

The statistical significance of the results above is tested by using a large sample size,

where the number of requests counted in experiments with the default parameter set is

around 22,631. Statistical measures of the simulation results of service rates, violation rates

and profits are shown in Tables 4.4, 4.5 and 4.6, respectively. It can be seen that the mean

and median of the results are very close and the standard deviation is small, indicating that

the improvements yielded by RVD and PVD over DVD are stable and are not due to random

chance. Moreover, even when using the worst results of RVD and PVD to compare the best

results of DVD, improvements still exist. We also investigate the distribution of results

from multiple experimental runs, as shown in Figure 4.11, where the results are plotted in

ascending order. It is demonstrated that both RVD and PVD have stable improvements

versus DVD. The low standard deviation of the results is because of the large sample size.

Table 4.7 shows the standard deviation for varying the number of counted requests. By

varying the number of vehicles, we can see that the standard deviation of the violation rate

101

Vehicle Dispatch with Stochastic Travel Times

Table 4.4: Statistical measures of service rates (%) for different algorithms (|R| =

400k, |V | = 2000, Ω = 300 sec, ∆T = 30 sec).

Algorithms Mean Minimum Maximum Median Standard Deviation

DVD 82.17 81.49 82.75 82.28 0.34

RVD 83.94 83.62 84.27 83.93 0.18

PVD 84.58 84.24 85.05 84.59 0.23

Table 4.5: Statistical measures of violation rates ($) for different algorithms (|R| =

400k, |V | = 2000, Ω = 300 sec, ∆T = 30 sec).

Algorithms Mean Minimum Maximum Median Standard Deviation

DVD 14.06 13.65 14.79 14.05 0.33

RVD 11.76 11.27 12.25 11.78 0.29

PVD 14.50 14.15 15.03 14.49 0.26

Table 4.6: Statistical measures of profits (103 $) for different algorithms (|R| = 400k, |V | =

2000, Ω = 300 sec, ∆T = 30 sec).

Algorithms Mean Minimum Maximum Median Standard Deviation

DVD 104.57 103.57 105.45 104.66 0.53

RVD 107.08 106.61 107.69 107.06 0.35

PVD 109.67 109.30 110.40 109.64 0.32

Table 4.7: A comparison of standard deviation of violation rates (RVD) for varying numbers

of vehicles (|R| = 400k, Ω = 300 sec, ∆T = 30 sec).

Number of Vehicles 1 10 100 500 1000 2000

Number of Served Requests 14 122 1,240 6,144 12,127 22,631

Standard Deviation of Violation Rate 17.36 3.88 1.42 0.73 0.32 0.29

102

Vehicle Dispatch with Stochastic Travel Times

decreases as the number of requests counted rises. These suggests that the improvement

discussed based on the mean of the experimental results is statistically significant.

We further investigate the effect of changing the method to generate the candidate

schedule pool from RTV (i.e., the method in [19]) to OSP. Tables 4.8, 4.9 and 4.10 show the

comparisons of service rates, violation rates and profits for varying capacities, respectively,

where "-OSP" indicates that the candidate schedule pool is generated by OSP. In line with

the results in Chapter 3, all dispatchers perform better after switching to OSP, and the

improvements grow with capacity. We also see enhancements in regards to the improvements

yielded by RVD and PVD over DVD. For example, the reduction in violation rate brought

in by RVD-OSP over DVD-OSP is 2.92% and the increase in profit brought in by PVD-OSP

over DVD-OSP is 5.05%, when the capacity is 6, while those two numbers are 2.30% and

4.87% before the switching to OSP. However, these enhancements are much smaller than the

differences between RTV and OSP. Moreover, the trends of the results are the same, whether

the candidate schedule pool is generated by RTV and OSP. Thus, the improvements yielded

by RVD and PVD over DVD do not rely on the choice of candidate generation methods.

(H4.3) Finally, we investigate the additional computation time caused by the intro-

duction of the stochastic scoring step. Table 4.11 shows the computation times of the scoring

step for varying capacities. DVD-OSP only needs to retrieve the already calculated travel

delays from the candidate schedule pool, so it takes very little time. Although RVD-OSP

and PVD-OSP take 10 times more computation time for scoring, the time cost is less than 3

sec. Therefore, RVD-OSP and PVD-OSP are able to dispatch vehicles in real-time, i.e., the

total computation time is less than 30 sec while the dispatch window is 30 sec.

103

Vehicle Dispatch with Stochastic Travel Times

Table 4.8: A comparison of service rate (%) during the peak hour for varying vehicle capac-

ities (|R| = 400k, |V | = 2000, Ω = 300 sec, ∆T = 30 sec).

Vehicle Capacity
Algorithms

DVD DVD-OSP RVD RVD-OSP PVD PVD-OSP

2 55.53 55.81 56.25 56.59 54.32 54.62

4 76.38 76.92 78.07 78.77 78.47 79.05

6 82.17 83.46 83.94 85.29 84.58 86.01

8 83.19 84.95 84.43 86.35 85.70 87.57

Table 4.9: A comparison of violation rate (%) during the peak hour for varying vehicle

capacities (|R| = 400k, |V | = 2000, Ω = 300 sec, ∆T = 30 sec).

Vehicle Capacity
Algorithms

DVD DVD-OSP RVD RVD-OSP PVD PVD-OSP

2 11.77 11.42 8.65 8.02 10.92 10.35

4 13.71 13.11 11.37 9.99 14.34 13.96

6 14.06 13.07 11.76 10.15 14.50 13.72

8 14.01 13.08 11.70 10.06 14.91 14.08

Table 4.10: A comparison of profit (103 $) during the peak hour for varying vehicle capacities

(|R| = 400k, |V | = 2000, Ω = 300 sec, ∆T = 30 sec).

Vehicle Capacity
Algorithms

DVD DVD-OSP RVD RVD-OSP PVD PVD-OSP

2 66.37 66.48 68.56 68.68 69.31 69.57

4 97.02 97.41 99.57 100.21 101.80 102.42

6 104.57 105.90 107.08 108.79 109.67 111.25

8 106.08 107.67 107.71 109.63 111.26 113.30

104

Vehicle Dispatch with Stochastic Travel Times

Table 4.11: Computation time (sec) of different procedures during the peak hour for varying

vehicle capacities (|R| = 400k, |V | = 2000, Ω = 300 sec, ∆T = 30 sec).

Procedures
Vehicle Capacity

2 4 6 8

Scoring Process in DVD-OSP 0.09 0.13 0.15 0.15

Scoring Process in RVD-OSP 1.03 1.75 1.97 2.13

Scoring Process in PVD-OSP 1.08 1.84 2.06 2.23

4.5.4 Discussion

Taking the uncertainty of travel time into consideration, our proposed approaches, RVD and

PVD, are able to assign vehicles to the most reliable trips and most profitable trips, so that

the performance of vehicle dispatch is significantly improved. Along with the drop in the

violation rate and the growth in profit, there is also an increase in the service rate. Both

RVD and PVD achieve greater gains over DVD for larger fleet sizes (especially when the

number of vehicles is sufficient to handle almost all requests) and looser delay constraints.

Additionally, the performances of RVD and PVD scale well across different vehicle capacities

and instance sizes. Although our assumption that edge travel times follow independent

Gaussian distributions may limit the accuracy of our model, experiments with different

levels of travel time uncertainty show that our proposed multi-phase scheme is robust to

different stochastic travel time models and can be easily coupled with other stochastic routing

and estimating methods. For example, if a taxi trajectory dataset is available, the learning

method proposed by Li et al. [123] to estimate the travel time distribution could be employed

to enhance the accuracy of our model.

105

Vehicle Dispatch with Stochastic Travel Times

4.6 Chapter Summary

In this chapter, we have presented a travel time uncertainty aware vehicle dispatch scheme

for on-demand ride-sharing, a method to allocate the most reliable trips and a method to

optimize the profit of vehicle dispatch. Numerical simulations on Manhattan taxi datasets

show that, by considering stochastic travel times, the proposed methods improve upon the

state-of-the-art deterministic dispatcher in terms of the reliability (up to 7.3% at peak hour),

the profit (up to 8.13% at peak hour) and the service rate (up to 4.22% at peak hour).

106

Chapter Five

Learning-Based Dispatch for Long-Term

Optimization

To ensure real-time response to passengers, existing solutions to the vehicle dispatch prob-

lem typically optimize dispatch policies with small batch windows and ignore the temporal

dynamics over the long-term horizon. In this chapter, we focus on improving the long-term

performance of Shared Autonomous Mobility-on-Demand (SAMoD) systems and propose a

deep reinforcement learning based method for the ride-sharing dispatch problem. In partic-

ular, this work includes: (1) an Offline Policy Evaluation (OPE) based method to learn a

value function that indicates the expected reward of a vehicle reaching a particular state; (2)

an online learning procedure to update the value function to capture the real-time dynamics

during the operation; (3) an efficient online dispatch method that optimizes the matching

policy by considering both past and future influences. Extensive simulations are conducted

based on the New York City taxi data, and show that the proposed method further in-

creases the service rate compared to the method presented in Chapter 3. Additionally, it

outperforms the state-of-the-art far-sighted ride-sharing dispatch approach.

107

Learning-Based Dispatch for Long-Term Optimization

5.1 Introduction

In SAMoD systems, a key goal is to assign and route vehicles to serve as many requests as

possible. The most common approach is batch assignment, which uses dispatch windows

to match multiple requests at the same time and is well suited for real-world ride-sharing

production systems. Recent research has enabled "optimal" optimization in each dispatch

window, but is myopic in nature as the window length has to be small to provide a good

passenger experience, and leaves room for further optimizations [23, 32]. Figure 5.1 shows

an example where the optimal policy is assigning the blue schedule to the vehicle at present,

although the red one has a more immediate reward, and adjusting the schedule according to

the appearance of newly revealed requests to get a maximum total reward.

Meanwhile, the rapid development of online ride hailing services (e.g., Uber and DiDi)

provides rich information on taxi mobility patterns, which has lead to research on the far-

sighted vehicle dispatch problem [64, 88, 99]. To leverage the transit information to learn

urban mobility patterns and improve transportation efficiency, the following technical chal-

lenges need to be addressed:

1. Learning Efficiency. Applying extensive learning exploration on real-world deploy-

ments is inefficient and may lead to unintended behaviour that leads to a bad user

experience. Training in simulations requires an accurate simulator that is typically

hard to build and the transfer of learned behaviour from simulation to reality is also

a challenge. Thus, there is a desire to use historical vehicle trajectories from the real-

world for efficient learning.

2. Real-Time Fluctuations. In the real-world, besides the systematic patterns of urban

mobility (e.g., people are more likely to travel to residential areas during the evening

peak hours), there are also the non-stationarity dynamics (e.g., people may go to

108

Learning-Based Dispatch for Long-Term Optimization

different restaurants on different days). A dispatcher that can continues to capture

real-time dynamics over time is more preferable to deploy.

3. Value Deviation. The learned mobility pattern is an approximation of the values of

real-world dynamics and bias exists. Thus, if a dispatcher can re-optimize its matching

policy, it is expected that some deviations will be corrected and eventually a higher

service rate is achieved.

AUTONOMOUS.

request3

request2

request1

request5

request4

Figure 5.1: An example with one vehicle, three revealed requests and two requests that will

arrive in the future but are not known at present. Triangles (4) and inverted triangles (5)

represent the origins and destinations, respectively. When myopically optimizing over the

current epoch, the vehicle will go towards the top right of the map to serve requests 1 and 2

and earn a reward of 2. However, if it chooses to serve request 3 and instead travels towards

the bottom left of the map, it will eventually earn a reward of 3.

Most existing work on the far-sighted vehicle dispatch problem does not allow ride-

sharing [64, 88, 99]. Some work studies double-occupancy fleets, but they formulate assign-

109

Learning-Based Dispatch for Long-Term Optimization

ment decisions with no more than five candidate options [100, 102], which cannot be directly

extended to higher occupancy ride-sharing. More relevant to this chapter is the Approxi-

mate Dynamic Programming (ADP) method proposed in [32], where a neural network based

value function is learned through techniques from Deep Q-Network (DQN) [97]. However,

the training process heavily relies on the use of simulators and real-time dynamics during

operations are not considered.

In this chapter, we study the long-term optimization of the vehicle dispatch problem

in SAMoD systems and present a learning-based method that is flexible in adjusting the

dispatch policy based on real-time dynamics to maximize the service rate (i.e., percentage of

requests served). The method adopts large-scale Offline Policy Evaluation (OPE) and fast

online learning to capture the spatial-temporal dynamics of ride-sharing trips. It also employs

the re-optimization strategy proposed in Chapter 3 to mitigate the deviation between the

learned value and the actual value. To summarize the work in this chapter, we:

1. Develop an Offline Policy Evaluation (OPE) based method to capture the systematic

patterns of ride-sharing mobility, using a neural network to learn a spatio-temporal

value function from historical vehicle movement data. (Section 5.3.1.)

2. Adopt an online learning procedure to continuously update the value function to handle

non-stationarity dynamics, using only the states of vehicles in the current operating

epoch. (Section 5.3.2.)

3. Combine the learned value function with the re-optimization dispatch method in Chap-

ter 3 to optimize the objective over a long horizon, including both recent and upcoming

epochs. (Section 5.3.3.)

4. Conduct simulation experiments with taxi trips from Manhattan to evaluate our pro-

posed approach and analyze the impact of long-term optimization. (Section 5.4.)

110

Learning-Based Dispatch for Long-Term Optimization

The remainder of the chapter is arranged as follows. In Section 5.2, we model the

movements of a vehicle as a Markov Decision Process (MDP), introduce the problem state-

ment and give an overview of the value-based dispatch framework. In Section 5.3, we present

the technical details of the proposed dispatch method. In Section 5.4, we evaluate the pro-

posed approach using real world taxi data. In Section 5.5, we draw our conclusions.

5.2 Preliminaries

In the vehicle dispatch problem, the rolling horizon framework is naturally a sequential

decision-making process, as the dispatcher needs to compute matching decisions in consecu-

tive time slots and aims to maximize the cumulative number of served requests. This suggests

modelling the problem as a Markov Decision Process (MDP), especially considering that the

goal in RL (i.e., maximizing the cumulative reward) is consistent with the objective in the

dispatch problem. RL has great promise for enhancing the performance of a dispatcher,

because it can not only learn value functions from historical trajectories to guide matching

decision making, but can also have the potential to use policy iteration to improve the dis-

patcher over time. In addition, RL can complete the main training procedure offline and

has no impact on the complexity of the candidate match search procedure for the dispatch

problem, so it has very little impact on the computational efficiency of online dispatching,

as shown in the experimental study later. Note that the candidate search procedure is the

main computational burden of the dispatch problem.

Similar to the approaches presented in the previous two chapters, the dispatcher

proposed in this chapter solves a static problem repeatedly in a rolling-horizon framework,

i.e., batch planning every ∆T . We also follow the notions of SAMoD systems defined in

Chapter 3. However, to be consistent with the notation in the Reinforcement Learning

111

Learning-Based Dispatch for Long-Term Optimization

(RL) community, some symbols used in this chapter may have a different meaning than in

Chapters 3 and 4, e.g., V stands for the value function and no longer refers to the vehicle

fleet, R stands for the reward function, s stands for the state, l stands for the schedule, α

stands for the learning rate and γ stands for the discount factor.

5.2.1 Definitions

Following the definitions in Section 3.2 of Chapter 3, a dispatcher operates a fleet of m

vehicles. At each planning epoch, it receives a set of n new requests and computes all

possible vehicle-trip matches to produce the optimal assignment. A trip Γ denotes that a

group of requests are merged with ride-sharing. The order in which a vehicle picks up and

drops off requests in a trip is called a schedule l = {o1, . . . , d1, . . . , o2, . . . , dnΓ
}, where q is

the current location of the vehicle, oi and di are the origins and destinations of requests.

A schedule must satisfy the capacity (κ), waiting time (Ω), total delay (Λ) and precedence

constraints. In this chapter, we assume that all possible vehicle-trip matches are known

and focus on the allocation problem, i.e., finding the maximum matching policy. We also

assume that each vehicle-trip match comes with a schedule that has the lowest expected

travel delays for passengers. In addition, the set of candidate vehicle-trip matches for an

individual vehicle is denoted by a schedule pool z = {l1, l2, . . . }.

We model the vehicle dispatch problem as an MDP, with an agent representing an

individual vehicle. In this framework, a vehicle interacts with an environment over a sequence

of discrete time steps t ∈ {0, 1, 2, . . . , nend}, where nend is the terminal time (e.g., end of an

operating hour or day). At each time step t, the vehicle receives a state st, based on which

it selects an action at. It then receives a scalar reward rt+1 and transitions to st+1, according

to environmental dynamics. The goal of a vehicle is to maximize the expected discounted

return Gt =
∑nend

t γ ·rt+1 (i.e., the long-term total reward from time step t), where 0 < γ ≤ 1

112

Learning-Based Dispatch for Long-Term Optimization

is the discount rate. The specific definitions of the ride-sharing dispatch problem are given

as follows:

State. The state of a vehicle contains the spatial status lt, the associated temporal

status ζt, the real world time stamp ut and the exogenous information wt (i.e., supply-demand

contextual features). Formally, it is defined as st = (lt, ζt, ut, wt). The temporal status ζt

represents the remaining delay time when the vehicle visits each location in schedule lt,

reflecting how much more deviation from the current path the vehicle can take to pick up

a new passenger. For example, assuming a vehicle is traveling to location d1 to drop off a

passenger, the deadline to arrive is 400 sec and the travel time is 200 sec, then the vehicle

has 200 sec (i.e., the remaining delay time) to make a detour to pick up a new passenger.

Passengers that require more than 200 sec to pick up will not be feasible for the vehicle. The

time stamp ut indicates the time scale in the entire operating horizon of the SAMoD system

and is independent of the algorithmic time t. The exogenous information wt consists of two

scalars: the number of new requests at the current dispatch epoch and the number of nearby

vehicles at the vehicle’s current location.

Action. The eligible actions for a vehicle include all possible candidate schedules zi,t

(i stands for the vehicle id), where each one indicates a candidate vehicle-trip match that

assigns the requests included in the trip to the vehicle. Formally, it is defined as at = lt+1.

Note that a vehicle has |zi,t| actions. There are basically two types of actions. The first type

is to add (or remove) one or more requests to (from) the vehicle and replace its schedule

with the action schedule. The other type is "remaining the same" which leaves the vehicle to

follow its current schedule. Executing action at means replacing the schedule of the vehicle

with l′t+1 and transitioning to lt+1, where l′t+1 is the status of lt+1 at time t.

Reward function. The reward is the number of requests added to the vehicle when

it takes an action at. Formally, it is defined as R(st, at) = (|l′t+1| − |lt|)/2. The output value

113

Learning-Based Dispatch for Long-Term Optimization

of R(st, at) is denoted by rt+1. The "remaining the same" action would produce a reward

of 0 (i.e., rt+1 = 0). Note that rt+1 could be negative if requests that are assigned to the

vehicle at t− 1 are re-assigned to other vehicles at t.

State transition. When a vehicle is in state st and takes an action at, its transition

to state st+1 is denoted by st+1 = f(st, at, wt+1). However, in SAMoD systems, the decisions

have to be made at t before the realization of the exogenous information wt+1 (arriving

between t and t+1), so as not to affect the passenger experience. Therefore, the post-decision

state sat [124] (also called afterstate [125]) is introduced to split the transition function into

two components: sat = f (1)(st, at) and st+1 = f (2)(sat , wt+1). The post-decision state is

a segregation of deterministic and stochastic information about the future. It explicitly

captures the most recent system state without actually moving forward in time [126].

In the above MDP model, the interactions between a vehicle and the environment

would produce a historical trajectory (s0, a0, r1, s
a
0, w1, s1, a1, r2, s

a
1, . . . , st, at, rt+1, s

a
t , . . .). To

solve an MDP, a common way is to find a value function that measures potential future

rewards to guide the interaction of the agent. As the full dynamics of an SAMoD system are

not known to the dispatcher when deciding the matching between vehicles and requests at

time step t, we choose to learn a post-state value function that incorporates the most recent

information we have. This would produce a more efficient learning method than learning an

action-value function [125, 127].

5.2.2 Problem Statement

Considering the long-term impact of vehicle-trip matches, we allow vehicles to forgo the

maximization of immediate reward in order to maximize their service rate over the entire

operating horizon. We define the objective of value-based far-sighted dispatch as a sum over

114

Learning-Based Dispatch for Long-Term Optimization

the action-value of each vehicle (denoting the vehicle id by i):

Ovalue =
m∑
i=1

Q(si, ai) (5.1)

where Q(si, ai) is the expected cumulative future rewards, i.e., the expected number of

requests that a vehicle may serve considering its state si and its action ai. Q(si, ai) is

derived from a learned post-state value function, which will be discussed in the next section.

Problem 4 (Far-sighted dispatch) Given a set of requests and a set of vehicles at a dis-

patch epoch with a length of ∆T , the problem of far-sighted dispatch is to assign vehicles

particular schedules to maximize the service rate over a long time horizon, so that the objec-

tive (i.e., Equation (5.1)) is maximized, subject to the constraint that each request must be

served by exactly one vehicle.

5.2.3 System Framework

Figure 5.2 illustrates our proposed framework for solving Problem 4. We build on prior work

on ride-hailing [64, 88, 99], which generalizes offline policy iteration and on-policy value

iteration [125] to vehicle dispatch, but with a model strictly limited to single-occupancy

vehicles. The framework, which chooses to optimize the objective of ride-sharing over a

long horizon while maintaining an efficient online matching procedure that yields a short

response time, consists of three components: Online Dispatch, Online Learning, and Offline

Policy Evaluation (OPE). The online dispatch part is similar to the multi-phase scheme

discussed in Section 4.2.3 of Chapter 4, where the scoring step is now processed by using

a value function to get the expected number of served requests for each candidate match,

instead of the on-time arrival probability. The two learning parts, online learning and offline

evaluation, are working backends to support the online dispatch part and getting data from

it to jointly train a value function.

115

Learning-Based Dispatch for Long-Term Optimization

st AUTONOMOUS.

 v1 at v1 r1,r2

rt+1 2
sta r1 r2

AUTONOMOUS.

 v1

st AUTONOMOUS.

 v2 at
rt+1 0
sta

v2

AUTONOMOUS.

 v2

st AUTONOMOUS.

 v3 at
rt+1 1
sta

v3 r3

r3
AUTONOMOUS.

 v3

Value
Function

Vope

Historic Vehicle States Data

Offline Police Evaluation

Temporal-Difference (TD) update
minimizing (rt+1 + γ· V(sa

t) - V(sa
t-1))

Vehicle Post-Decision States Value
Function Vθ

online update
every ΔT

Exogenous
Info

Online Learning update every nensemble ·ΔT

v1

v3

r1

r2

r3

r1,r2v2

AUTONOMOUS.

r1,r3

r1,r2,r3

r2,r3

Vehicle Fleet Vehicle
States

Candidate
Vehicle-

Trip
Matches

Schedule
Scoring

Passengers Request
Info

Assignment
Plannerassign schedule and update T = t + ΔT

Online Dispatch

T = t

Figure 5.2: Framework of the long-term optimization logic.

OPE. Given a set of historical state transitions collected from different vehicles,

denoted by {(sai,t−1, ri,t+1, s
a
i,t)} (i stands for vehicle id), the dispatcher performs a policy

evaluation with a neural network to learn a post-decision state value function Vope(s
a), by

applying the Bellman squared error and Temporal Difference (TD) update.

Online Dispatch. With the learned value function, the dispatcher is able to match

vehicles and requests in a far-sighted way, by scoring candidate matches (i.e., candidate

schedules) with the sum of instant rewards and long-term expectations. The dispatcher also

116

Learning-Based Dispatch for Long-Term Optimization

considers re-optimization by adjusting the matching between vehicles and previously received

requests with the most recent knowledge about the system, so as to extend the matching

horizon for a more "global" optimization and correct the bias of the value function.

Online Learning. During the online dispatch procedure, a new set of state tran-

sitions is generated at each epoch, which reflects the real-time dynamics of the current

operational state. The dispatch leverages these real-time transitions to continuously update

the value function, so that it can quickly adapt to any fluctuations in the system.

5.3 Value-based Vehicle Dispatch Scheme

We assume the dispatcher is equipped with a matching policy that always maximizes the

objective function at each dispatch epoch (i.e., maximizing Equation (5.1) at time step t) and

remains unchanged over the training period. When the objective function has no knowledge

about the future (i.e., Q(s, a) = R(s, a)), the dispatcher is called a myopic one. Given the

MDP formulation and historical trajectories generated by the myopic dispatcher, we first

use a neural network to approximate a post-state value function Vope(sa) for the underlying

policy. We then present an online learning procedure that adds an adaptive capability to the

value network. Finally, with the learned value function in place, we discuss how to employ it

in the scoring and allocating steps of online ride-sharing dispatch, so as to turn the myopic

dispatcher into a far-sighted one.

The value function is trained for an individual vehicle, under the assumption that

all vehicles are homogeneous and have a common goal of maximizing the global service rate

of the SAMoD system. Learning a shared value function, not a separate network for each

vehicle, utilizes the historical data in a more efficient way and requires a simpler training

pipeline [64, 89]. The matching step during dispatch maximizes Equation 5.1 in a coordinated

117

Learning-Based Dispatch for Long-Term Optimization

way to achieve global optimization.

5.3.1 Offline Policy Evaluation With Neural Networks

As we do not distinguish individual vehicles, a complete historical transition tuple can be

presented as (sat−1, wt, st, at, rt+1, s
a
t , wt+1, st+1). If t = 0, we set sat−1 = s0. Let V (s) denote

the state-value function of a vehicle, the Bellman equation can be written as:

V (st) = E{Gt|s = st}

= E{rt+1 + γ ·Gt+1|s = st}

= E{rt+1 + γ · V (st+1)} (5.2)

Considering the transition from st to st+1 and applying the Temporal Difference (TD) learn-

ing method [125], the state-value function is updated as:

V (st)← V (st) + α[rt+1 + γ · V (st+1)− V (st)] (5.3)

where α > 0 is the learning rate, st is the current state of the vehicle and st+1 is the next

state following the schedule indicated by at.

Using the post-decision state and let Vope(sa) denote the post-state value function

learned by OPE, Equation (5.2) is decomposed into two steps:

V (st) = E{rt+1 + γ · Vope(sat)} (5.4)

Vope(s
a
t) = E{V (st+1)|sat } (5.5)

The advantage of this decomposition is that the right hand side of Equation (5.4) is determin-

istic, which makes it easier to use deterministic algorithms [128]. Similar to Equation (5.3),

the post-decision state value function is updated as:

Vope(s
a
t−1)← Vope(s

a
t) + α[rt+1 + γ · Vope(sat)− Vope(sat−1)] (5.6)

118

Learning-Based Dispatch for Long-Term Optimization

which is almost the same as Equation (5.3), except that we are now updating the value

function around the previous post-decision state.

Hidden LayersLSTM

�� � �

Embedding

l

ζ

u

w

Input Output

v

Figure 5.3: Structure of the value network.

In SAMoD systems, both the state space and action space grow exponentially, espe-

cially with regard to the number of state variables. To overcome the curse of dimensionality,

a neural network is used to approximate the post-decision state value function. Its struc-

ture is depicted in Figure 5.3. The network takes a post-decision state sat = f (1)(st, at) =

(lt+1, ζt+1, ut+1, wt) as input and outputs a scalar as the estimation of the value. It uses

an embedding layer to learn the geographical feature, a Long Short-Term Memory (LSTM)

layer to learn the sequence-level temporal feature, and a hidden layer to combine the spatial-

temporal features with the exogenous information.

We collect a set of historical transition tuples and store them in a replay bufferDoffline.

Each tuple (sat−1, rt+1, s
a
t) represents that a vehicle transitions from sat−1 to sat within one time

step and receives a reward of rt+1. We use Double Q-Learning [101] and TD error to train

the network Vope(sa) offline with the following objective:

argmin
θope

L = E(sat−1,rt+1,sat)∼Doffline [(rt+1 + γ · V̂ope(sat)− Vope(sat−1))2] (5.7)

119

Learning-Based Dispatch for Long-Term Optimization

where θope is the weights of Vope(sa), and V̂ope(sat) is the target network that is designed to

reduce overestimation [97].

Algorithm 7 Offline Policy Evaluation (OPE) with Neural Network
Input : A prioritized replay buffer filled with historical state transitions Doffline =

{(sat−1, rt+1, s
a
t)}, the number of iterations niter, the discount factor γ and the target

smoothing factor ρ.

Output: The post-decision state value function Vope(sa).

1: Vope, θope ← InitializeV alueNetwork();

2: V̂ope, θ̂ope ← InitializeV alueNetwork();

3: for i← 1 to niter do

4: B ← SampleMiniBatch(Doffline);

5: L = 1/|B| ·
∑|B|

j=1(rj,t+1 + γ · V̂ope(saj,t)− Vope(saj,t−1))2;

6: θope ← GradientDescent(L, θope);

7: θ̂ope ← ρ · θope + (1− ρ) · θ̂ope;

The main procedure for offline training is presented in Algorithm 7. The algorithm

uses prioritized experience replay [129] to make the training more efficient by sampling im-

portant transitions more frequently, where the importance of a transition is measured by

the magnitude of its TD error. It also uses mini-batch gradient descent to train Vope(s
a).

Function InitializeV alueNetwork returns a network using the structure in Figure 5.3 with

random weights. Function SampleMiniBatch returns a small set of transitions using pri-

oritized sampling, which is then used to compute the mean-squared loss L and perform a

gradient descent step to update the network weights θope (line 6). In the last line of the

algorithm, a soft update [130] is applied to the target network weights θ̂ope. Soft update tries

to improve the stability of learning by changing the target network very slowly.

The resultant value function Vope(sa) captures the general systematic patterns of the

supply-demand conditions from historical data, and will serve as the basis for the online

120

Learning-Based Dispatch for Long-Term Optimization

value function during operation (i.e., online dispatching).

5.3.2 Online Learning With Value Ensemble

To capture the non-stationary dynamics in real-time, we present a new value network Vol(sa)

that uses the transitions of vehicles in the current dispatching epoch. The main difference

between Vol(sa) and Vope(sa) is that the online value function Vol(sa) cares more about the

spatial dynamics of the supply-demand conditions, and fixes time at tnet to utilize the sparse

online transition data more efficiently.

Considering that at time step t, after the matching policy has been made, we will

have an online state transition (si,t, ai,t, ri,t+1, s
a
i,t) for each vehicle i ∈ [1, 2, . . . ,m]. We allow

the dispatcher to make a backup of the transitions at time step t− 1, and use it to generate

an online buffer Donline = {(sai,t−1, ri,t+1, s
a
i,t)}. Note that |Donline| = m. The one-step TD

update for each vehicle’s transition is slightly different from Equation 5.6, given by:

Vol(Ψ(sai,t−1, tnet))← Vol(Ψ(sai,t, tnet)) + α[rt+1 + γ · Vol(Ψ(sai,t, tnet))− Vol(Ψ(sai,t−1, tnet))]

(5.8)

where a new function Ψ(·) is introduced to fix the time of states. As an example, for

sat−1 = (lt, ζt, ut, wt−1) and sat = (lt+1, ζt+1, ut+1, wt), we have Ψ(sat−1, tnet) = (lt, ζt, utnet , wt−1)

and Ψ(sat , tnet) = (lt+1, ζt+1, utnet , wt).

Using all transitions in Donline, Double Q-Learning and TD error to train the network

Vol(s
a) online, the objective is given by:

argmin
θol

L =
m∑
i=1

(ri,t+1 + γ · V̂ol(Ψ(sai,t, tnet))− Vol(Ψ(sai,t−1, tnet)))
2 (5.9)

where θol is the weights of Vol(sa), and V̂ol(sat) is the target network.

The terms tnet and Ψ(·) are introduced to build the capability of effective online

121

Learning-Based Dispatch for Long-Term Optimization

learning from sparse data. All transitions occurring between tnet and tnet,next are treated

as data at tnet, which in turn allows more effective learning of the spatial dynamics of the

supply-demand conditions, under the assumption that the temporal dynamics do not change

significantly in a short period of time, e.g., 10 min. To give an example, supposing tnet = 0

sec and tnet,next = 600 sec, function Ψ(·) will modify the time parameter of the input to the

neural network during this interval [tnet, tnet,next) to ut = 0 sec. The downside of this is that

it will make the update of the neural network less smooth, so the online trained network is

periodically combined with the offline trained one, as shown in Algorithm 8.

Algorithm 8 Online Learning With Value Ensemble
Input : The offline learned value network Vope with its weights θope, the discount factor

γ, the value ensemble step size nensemble, the value ensemble factor ψ and the target

smoothing factor ρ.

1: Vol, θol ← InitializeV alueNetwork();

2: V̂ol, θ̂ol ← InitializeV alueNetwork();

3: tnet ← 0;

4: for t← 0 to nend do

5: if t mod nensemble = 0 then

6: θol ← ψ · θope + (1− ψ) · θol;

7: tnet ← t;

8: Donline ← SolveMatchingProblem(Vol);

9: L = 1/m ·
∑m

i=1(ri,t+1 + γ · V̂ol(Ψ(sai,t, tnet))− Vol(Ψ(sai,t−1, tnet)))
2;

10: θol ← GradientDescent(L, θol);

11: θ̂ol ← ρ · θol + (1− ρ) · θ̂ol;

The main procedure for online training is presented in Algorithm 8, which is a joint

procedure for online dispatching. The algorithm just needs a very simple memory buffer, as

it only has a limited number of transitions and uses batch gradient descent to train Vol(sa).

122

Learning-Based Dispatch for Long-Term Optimization

The algorithm initializes Vol(sa) with random weights θol at the beginning of operation and

updates it in two processes: (1) periodically update its weights θol using a weighted ensemble

with a snapshot of the offline learned network Vope(sa) (line 6); (2) update its weights θol using

real-time transitions in Donline at each dispatch epoch (line 8-10). The value ensemble factor

ψ > 0 is a hyperparameter similar to the target smoothing factor ρ. It determines how much

importance we place on historical and immediate experience, by adjusting the weighting

between the offline trained network Vope(sa) and the online learned network Vol(sa) [99].

The resultant online value function Vol(sa) is actually an augmentation of Vope(sa), by

continuously updating the value function using the most recent information to capture the

real-time variations of the moment. It relies on the ensemble with Vope(sa), as only partial

vehicle trajectories are available for online training, which makes it hard to learn a global

value function. Also, solely using online learning suffers from sample-inefficiency.

5.3.3 Re-Optimization and Value-Based Allocating

At each epoch, function SolveMatchingProblem in Algorithm 8 solves a maximum matching

problem to determine the assignment policy. Considering a fleet of m vehicles, a set of

previously reveived yet not served requests REQprev, a set of newly submitted requests

REQnew, and a set of candidate action pools {z1,z2, . . . ,zi} that have been computed for

each vehicle, the goal is to find the best action for each vehicle to maximize the long-term

value (i.e., the service rate over a long horizon). The action pool zi for each vehicle is

generated by using Algorithm 3 and Algorithm 4 discussed in Chapter 3. It contains all

possible actions the vehicle can take at the current dispatch epoch, meaning that the action

with the maximum value must be included otherwise it is an infeasible one (i.e., violating one

or more constraints on capacity, waiting time, total delay and precedence). This maximum

123

Learning-Based Dispatch for Long-Term Optimization

matching problem can be formulated as a Integer Linear Program (ILP):

argmax
xi,j ,εk

m∑
i=1

|zi|∑
j=1

xi,j ·Q(si, aj) (5.10)

s.t.

|zi|∑
j=1

xi,j = 1, ∀i ∈ [1, 2, . . . ,m] (5.11)

m∑
i=1

|zi|∑
j=1

xi,j ·Θaj(k) + εk = 1, ∀k ∈ REQprev ∪REQnew (5.12)

εk = 0, ∀k ∈ REQprev (5.13)

where Q(si, aj) = R(si, aj) + γ · Vol(sai), and Θaj(k) is an indicator function (i.e., Θaj(k) = 0

if aj does not serve k and Θaj(k) = 1 otherwise).

Binary variable xi,j ∈ {0, 1} indicates whether an action aj (i.e., a candidate schedule)

is selected (xi,j = 1) or not (xi,j = 0) for vehicle i. Binary variable εk indicates whether

a request k is matched (εk = 0) or not (εk = 1). Constraint (5.11) ensures that each

vehicle selects exactly one action, constraint (5.12) ensures that each request is matched

to at most one vehicle. While assigning vehicles to new incoming requests, the dispatcher

also considers adjusting the matches of previous requests based on the latest knowledge

of the supply-demand conditions (including both revealed and estimated). At the same

time, constraint (5.13) ensures the passenger experience, by guaranteeing that no previously

matched requests will be rejected even if rejecting them yields a higher objective value at

the current epoch.

The re-optimization procedure adjusts the previous matching, both by considering

new requests and by updating the weights of actions with the latest value function Vol(sa).

When producing the matching policy at time step t, each candidate vehicle-trip match (i.e.,

the action) is scored with the expected future reward (i.e., R(st, at) + γ · Vol(sat)) that might

have potential prediction bias. Then, at time step t + 1, besides using TD error to update

the value function, the dispatcher also implicitly uses a Bellman-style update of the form

124

Learning-Based Dispatch for Long-Term Optimization

R(st, at)+R(st+1, at+1)+γ ·Vol(sat+1), to adjust the score of each candidate match, to alter the

matching policy. Moreover, the latest value function Vol(sa) guides the dispatcher to alter the

matching policy in a more far-sighted way. For example, a vehicle is previously dispatched

to a working area where it is expected to receive requests from off-duty passengers, but if a

large musical concert has just ended and creates a large number of requests, the vehicle will

be re-directed to that area for a better future expectation.

5.4 Experimental Study

In this section, our proposed method is evaluated and analyzed using a real-world taxi dataset

from New York City [111]. The performance of our method is compared to the state-of-

the-art far-sighted dispatch approach and our previous approach introduced in Chapter 3.

All algorithms are implemented and run on the same machine for a fair comparison. The

performance measures include the service rate (i.e., percentage of requests served) and the

additional computation time yielded by introducing RL methods (i.e., mean scoring time

per dispatch epoch).

Experiments are designed to evaluate the following hypotheses: (H5.1) our Long-Term

Optimization (LTO) dispatcher can outperform the state-of-the-art far-sighted dispatcher

(i.e., [32]), by combining a long-term value function and re-optimization; (H5.2) updating

the value function online to capture traffic fluctuations has the potential to further improve

the service rate; and (H5.3) the additional computational time yielded by employing the

value function does not affect the real-time deployment of the LTO dispatcher.

125

Learning-Based Dispatch for Long-Term Optimization

5.4.1 Simulation Details

The experimental environment and assumptions in this chapter are the same as in Chapter 3,

where the travel times are deterministic, as our focus is on considering the distribution

requests to improve the service rate. The experiments are conducted using data from two

days: 25th and 26th May 2016. The value network Vope(sa) is trained using data from nine

days (3rd-5th, 10th-12th and 17th-19th May 2016) and validated on 24th May 2016. The

selected days are Tuesday, Wednesday and Thursday and have similar request patterns [99].

The vehicle state transitions used for training are generated by running OSP, the dispatcher

in Chapter 3. Simulations are run for the hour with peak demand (19:00-20:00), where

the average number of requests is 18,789. The road map and travel times of Manhattan

are produced using the method proposed in [7]. The simulation environment used in this

chapter is the same as the one in Chapter 3.

Table 5.1: Parameter settings (defaults in bold).

Parameters Settings

Vehicle Capacity κ 2, 4, 6, 8

Fleet Size m 1200, 1500, 1800

Maximum Waiting Time Ω (sec) 180, 300, 420

Batch Period ∆T (sec) 10, 30, 60, 120

The main experimental parameters are summarized in Table 5.1, where we vary the

supply and demand conditions to evaluate the algorithms. Besides, the maximum travel

delay is set to be twice the maximum wait time Λ = 2Ω. In the previous Chapters 3 and

4, the evaluations are conducted on datasets synthesized from taxi data over three days to

test the ability of handling large-scale scenarios (400k–800k requests) and the scalability of

algorithms. In this chapter, to avoid the dependency between datasets affecting the training

effect, the raw taxi trip data is used, which has an average number of daily requests of 308k.

126

Learning-Based Dispatch for Long-Term Optimization

So the fleet size here is different. In addition, the results of Chapters 3 and 4 show that

whether the dispatcher can handle large scale problem scenarios basically depends only on

the method of generating candidate schedule pool, so we are not testing the performance for

varying instance scales here any more. The hyperparameters of the value network are tuned

by running the validation simulation and then fixed when running the evaluation simulation.

Specifically, we set the discount factor to γ = 0.95, the learning rate to α = 0.01, the target

smoothing factor to ρ = 0.05, the value ensemble step size to nensemble = 600 sec/∆T and the

value ensemble factor to ψ = 0.9. All experiments were run on a machine with 56 Intel(R)

Xeon(R) E5 2.60GHz processors and 512GB RAM in Python 3.9. The results are averaged

over five experiment runs.

5.4.2 Algorithm Comparison

We examine and compare the following algorithms.

• LTO (Long-Term Optimization): The method proposed in this chapter that optimizes

the objective for all available requests over a long horizon.

• LTO-Basic: A method that emulates the one presented in [32]. It only optimizes the

objective for newly received requests, with a value function estimating the expected

reward in the future. It is obtained by removing the online learning and re-optimization

components of LTO.

• OSP (Optimal Schedule Pool): The method from Chapter 3 that maximizes the ob-

jective for all available requests, but does not have any knowledge about the future.

• Baseline: A method that only optimizes the current dispatch epoch by maximizing the

objective for newly received requests. It is a simplified version of OSP that does not

allow re-optimization.

127

Learning-Based Dispatch for Long-Term Optimization

The key difference between them is how many batch windows are optimized for the

assignment policy, as shown in Figure 5.4. The Baseline algorithm is used to demonstrate the

performance of the dispatcher without any advanced algorithms. In addition, the difference

between the improvement of LTO over OSP and the improvement of LTO-Basic over Baseline

can help demonstrate the role of re-optimization and online learning.

∆T 2∆T0 3∆T 4∆T 5∆T 6∆T 7∆T 8∆T
Baseline:

∆T 2∆T0 3∆T 4∆T 5∆T 6∆T 7∆T 8∆T
OSP:

∆T 2∆T0 3∆T 4∆T 5∆T 6∆T 7∆T 8∆T
LTO-Basic:

∆T 2∆T0 3∆T 4∆T 5∆T 6∆T 7∆T 8∆T
LTO:

Current
 Dispatch

 Epoch

Figure 5.4: A schematic comparison of how many dispatch epochs are considered for opti-

mization by different algorithms. The epochs considered are marked in light orange, and the

intensity of the color indicates how much the information within that epoch contributes to

the optimization.

5.4.3 Results

(H5.1) Figure 5.5 shows the results of varying vehicle capacities on two different days. The

mobility patterns of the two days are similar and all the algorithms have similar performance.

With higher vehicle capacity, the SAMoD system would have more seats and thereby serve

more requests. But the new increased seats are bundled with existing trips, rather than

working independently and flexibly to transport passengers, and require the dispatcher to

capture a more complex mobility pattern. When the capacity is 2 and 4, the average service

128

Learning-Based Dispatch for Long-Term Optimization

50
55
60
65
70
75
80
85
90
95

100

2 4 6 8

Se
rv

ic
e

R
at

e
(%

)

Vehicle Capacity

25 May 2016

Baseline OSP LTO-Basic LTO

50
55
60
65
70
75
80
85
90
95

100

2 4 6 8

Se
rv

ic
e

R
at

e
(%

)
Vehicle Capacity

26 May 2016

Figure 5.5: A comparison of service rate (%) during the peak hour for varying vehicle

capacities (m = 1500, Ω = 300 sec, ∆T = 30 sec).

65

70

75

80

85

90

95

100

1200 1500 1800

Se
rv

ic
e

R
at

e
(%

)

Fleet Size

25 May 2016

Baseline OSP LTO-Basic LTO

65

70

75

80

85

90

95

100

1200 1500 1800

Se
rv

ic
e

R
at

e
(%

)

Fleet Size

26 May 2016

Figure 5.6: A comparison of service rate (%) during the peak hour for varying fleet sizes

(κ = 6, Ω = 300 sec, ∆T = 30 sec).

129

Learning-Based Dispatch for Long-Term Optimization

rate of LTO-Basic is 1.82% and 0.76% higher than that of OSP; but when the capacity is 6

and 8, the average service rate of LTO-Basic is 0.45% and 0.66% lower than that of OSP,

respectively. This indicates the importance of making accurate estimates of the future, and

the robustness of the re-optimization strategy that always explicitly uses all precisely revealed

information. Our proposed method LTO also suffers from a decrease in accuracy that comes

with the increase in the complexity of the supply-demand condition. When the capacity

increases from 4 to 8, LTO’s improvement relative to OSP in the average service rate drops

by 0.82%, from 4.61% to 3.79%, while the drop for LTO-Basic is 1.41%. This indicates

that, by employing online learning and re-optimization, we can learn a better value function

and correct for prediction bias. When exploring the patterning of different days, the results

show that when the capacity is 4, LTO-Basic serves 3.3% and 3.66% more passengers than

Baseline on the 25th and 26th, respectively, indicating that LTO-Basic performs better on

the 26th. When the capacity is 8, LTO-Basic serves 2.76% and 2.18% more passengers than

Baseline on the 25th and 26th, respectively, indicating that LTO-Basic performs better on

the 25th. This demonstrates that mobility patterns can vary on different days. Specifically,

when the capacity is 6, the service rates yielded by LTO are 4.48% higher than OSP and

4.73% higher than LTO-Basic on the 25th, and 3.88% higher than OSP and 4.52% higher

than LTO-Basic on the 26th.

(H5.1) Figure 5.6 shows the results of varying fleet sizes on the two different days.

When the fleet size increases, the system has more independent seats, which gives more flexi-

bility to the dispatcher and also reduces the dispatcher’s reliance on sophisticated algorithms.

We can tell that as the number of vehicles increases from 1200 to 1800, the lift in LTO-Basic

relative to Baseline decreases, which is consistent with the results in [32]. The reason for this

may be that a far-sighted dispatcher will tend to ignore immediate rewards and instead save

empty seats for future orders. This allows LTO-Basic to achieve an average of 3.62% higher

improvement over Baseline when there are not enough vehicles (i.e., m = 1200). However,

130

Learning-Based Dispatch for Long-Term Optimization

when there are a sufficient number of vehicles (i.e., m = 1800), most of the future requests

are quickly taken by vehicles and there are not many left, so LTO-Basic only achieves an

average of 0.48% improvement over Baseline. It is also possible that, because the value

network is trained on 1500 vehicles, when the number of vehicles increases, which actually

increases the supply and decreases the average reward of vehicles, the value becomes over-

estimated and inaccurate. OSP, on the other hand, only considers real-time supply-demand

conditions and can quickly adapt to changes in fleet size. It has an average improvement

of 2.8% and 2.45% versus Baseline when using 1200 and 1800 vehicles, respectively. LTO,

combining the value function and re-optimization to make better match decisions, achieves

a two-day average improvement of 1.26% over OSP with 1800 vehicles.

(H5.1) Figure 5.7 shows the results of varying values of the maximum waiting time

constraint on two different days. The increase in travel delay constraint allows for more

detours and therefore makes it easier to carry more passenger. Thus, all algorithms achieve

higher service rates as the delay tolerance increases. When the constraint increases from 180

sec to 420 sec, the improvement in the two-day average service rate of LTO-Basic relative to

Baseline over the two days increases from 2.65% to 3.17%. Enhanced by online learning and

re-optimization, LTO further improves on the basis of LTO-Basic by 2.03%, 4.63% and 5.17%,

when the time constraints are 180 sec, 300 sec and 420 sec. Overall, the trend of the change

in different algorithms’ performance, as the constraint becomes looser, is similar to what

happens when changing vehicle capacities. When the constraint is tight (i.e., Ω = 180 sec),

LTO-Basic performs better than OSP. But when the constraint becomes looser, LTO-Basic

has a significant drop in service rate compared to OSP and becomes worse than OSP. The

performance of LTO shows that online learning can slow the drop. This is because passengers

are more likely to be pooled together and produce a more complex scheduling problem that

requires the dispatcher to be more sophisticated. Considering the mobility patterns on the

two different days, when the maximum waiting time constraint is 420 sec, the service rates

131

Learning-Based Dispatch for Long-Term Optimization

yielded by LTO are 3.34% higher than OSP and 5.47% higher than LTO-Basic on the 25th,

and 2.55% higher than OSP and 4.87% higher than LTO-Basic on the 26th.

(H5.1) Figure 5.8 shows the results of varying lengths of batch period on two different

days. As the window length increases, more requests are received per epoch, but the response

time of passengers also grows. Requests waste more time waiting for the end of the dispatch

window, which in turn leads to an actually tighter maximum waiting time constraint. Thus

we can see a significant decrease in the two-day average service rate for both OSP and LTO,

with a 2.93% decrease in OSP (from 88.92% to 85.99%) and a 4.22% decrease in LTO (from

93.17% to 88.95%), when the window length is increased from 10 sec to 120 sec. This is

because, through re-optimization, they are actually using a batch period as large as possible

to perform matching by considering all available requests. For them, a larger batch window

would only reduce the time available for detours and produce a worse performance. But for

LTO-Basic and Baseline, because they optimize only the current batch window, receiving

more new orders offsets the drop in detour time and makes their service rate to drop by less

than 1%. In the real world, however, the smaller the window length, the better. When the

window length is 10 sec, the service rates yielded by LTO are 4.86% higher than OSP and

4.88% higher than LTO-Basic on the 25th, and 4.25% higher than OSP and 5.15% higher

than LTO-Basic on the 26th.

Table 5.2: A comparison of service rate (%) during the peak hour for using online learning

(m = 1500, κ = 6, Ω = 300 sec, ∆T = 30 sec).

Date of Experimental Data LTO LTO Without Online Learning

25 May 2016 91.80 91.32

26 May 2016 92.34 92.08

(H5.2) In the above results, we find that LTO sometimes yields a greater improvement

than LTO-Basic on the 25th and sometimes on the 26th, showing that mobility patterns can

132

Learning-Based Dispatch for Long-Term Optimization

65

70

75

80

85

90

95

100

180 300 420

Se
rv

ic
e

R
at

e
(%

)

Maximum Waiting Time (s)

25 May 2016

Baseline OSP LTO-Basic LTO

65

70

75

80

85

90

95

100

180 300 420

Se
rv

ic
e

R
at

e
(%

)
Maximum Waiting Time (s)

26 May 2016

Figure 5.7: A comparison of service rate (%) during the peak hour for varying values of

maximum waiting time constraint (m = 1500, κ = 6, ∆T = 30 sec).

65

70

75

80

85

90

95

100

10 30 60 120

Se
rv

ic
e

R
at

e
(%

)

Batch Period (s)

25 May 2016

Baseline OSP LTO-Basic LTO

65

70

75

80

85

90

95

100

10 30 60 120

Se
rv

ic
e

R
at

e
(%

)

Batch Period (s)

26 May 2016

Figure 5.8: A comparison of service rate (%) during the peak hour for varying lengths of

batch period (m = 1500, κ = 6, Ω = 300 sec).

133

Learning-Based Dispatch for Long-Term Optimization

vary not only on different days but also across different settings. To figure out the role

of online learning, we remove the online learning component of LTO to see the difference.

Table 5.2 shows the service rates over the two days with the default parameter set. It is shown

that online learning yields more improvements on the 25th, which is consistent with the

results that LTO yields a greater improvement than LTO-Basic on the 25th under the default

experimental setting. The results in Table 5.2 show that online learning only contributes

0.48% and 0.26% to the performance of LTO on the 25th and 26th, suggesting that the

supply-demand conditions may vary very little during the peak hour. We then examine the

role of online learning during 00:00 - 08:00, where the change in the number of requests is

greater than during the peak hour (19:00-20:00), and find that the contributions of online

learning to the service rates increase to 1.57% and 1.21% on the 25th and 26th, respectively.

This suggests that greater improvements can be achieved through online learning when real-

time fluctuations are high.

Table 5.3: A comparison of service rate (%) during the peak hour for varying discount factors

(m = 1500, κ = 6, Ω = 300 sec, ∆T = 30 sec).

Date of Experimental Data
Discount Factor γ

0.90 0.95 0.97 0.99

25 May 2016 90.65 91.80 91.44 90.25

26 May 2016 91.53 92.34 91.97 90.87

We further investigate the impact of varying discount factors. Table 5.3 shows the

service rates over the two days. In general, the discount factor implicitly determines the

number of future epochs we take into consideration when compute the matching policy. A

small discount factor results in a short-sighted strategy and a large one provides a long-

sighted goal. We can tell that the service rate rises when γ is increased from 0.9 to 0.95, for

being more far-sighted. But the service rate falls if we continue to increase γ. This might be

134

Learning-Based Dispatch for Long-Term Optimization

Average
Value

2.50

3.00

3.50

Tim
e H

orizon (m
in)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
52
54
55
56
57
58
59
60

γ = 0.97

Average
Value

8.50

8.75

9.00

Tim
e H

orizon (m
in)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
52
54
55
56
57
58
59
60

γ = 0.99

Average
Value

1.50

1.75

2.00

Tim
e H

orizon (m
in)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
52
54
55
56
57
58
59
60

γ = 0.95

Average
Value

0.90

0.95

1.00

Tim
e H

orizon (m
in)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
52
54
55
56
57
58
59
60

γ = 0.90

 1

F
igure

5.9:
Tem

poralpatterns
in

the
learned

values
for

varying
tim

e
discount

factors.

135

Learning-Based Dispatch for Long-Term Optimization

that a very large discount factor induces the dispatcher to optimize the objective over the

next few hours, which is longer than the length of our experiments. Figure 5.9 shows the

average value of all vehicle states over the time horizon for varying discount factors. The

values are around 0.95, 1.75, 3.05 and 8.8 for γ = 0.9, γ = 0.95, γ = 0.97 and γ = 0.99,

respectively. The value indicates the discounted expected number of requests that will be

served in the future. We can tell that the larger the discount factor, the further the dispatcher

looks ahead and the larger the value. When γ = 0.9, the curve fluctuates more than the

others, because the dispatcher only captures the rewards over a short time (several minutes).

When sufficiently far-sighted, the value decreases with the passage of time, because the total

number of future passengers decreases.

Table 5.4: A comparison of computation time (sec) of different procedures during the peak

hour for varying vehicle capacities (m = 1500, Ω = 300 sec, ∆T = 30 sec).

Procedures
Vehicle Capacity κ

2 4 6 8

Scoring Process in OSP 0.05 0.07 0.07 0.07

Scoring Process in LTO 2.71 2.71 2.75 2.77

Online Training in LTO 4.12 4.18 4.21 4.26

(H5.3) Finally, we investigate the computation times of the scoring process using value

network and the online training process. Table 5.4 shows the comparison for varying capac-

ities. The time consumed by the scoring process in OSP is shorter than that in Chapter 4,

because of the decrease in the number of candidates due to the decrease in the number of

requests (from 400k to 308k). The time consumed by the scoring process in LTO increases

only very little when the capacity increases, indicating that its sensitivity to problem size is

low, most likely because most of its computation time is spent on data format processing.

Therefore, LTO is able to run in real-time. As for the time consumed by the online train-

136

Learning-Based Dispatch for Long-Term Optimization

ing process, since it can run separately from dispatching, it can meet the requirements of

real-time deployment as long as the computation time is shorter than the dispatch window.

5.4.4 Discussion

Considering longer horizons when computing a matching policy results in better performance

than Baseline. Solely optimizing over all possible past epochs, OSP produces an increase in

service rate of up to 5.58% at peak hour on the 25th when Ω = 420 sec. LTO-Basic, solely

optimizing over the future epochs, yields an increase of up to 3.69% at peak hour on the

25th when ∆T = 10 sec. While optimizing over both the future and the past epochs, LTO

achieves an improvement over Baseline by 8.92% and 8.57% at peak hour on the 25th when

Ω = 420 sec and ∆T = 10 sec, respectively.

Learning a good state value function has the potential to significantly improve the

performance of a dispatcher. However, due to the highly dynamic nature of urban mobility

and the unavoidable prediction bias, the ability to continuously alter the matching policy

online is also very important. Moreover, updating the value function during online dispatch

has the opportunity to further improve performance. By employing online learning and

re-optimization, LTO (our proposed method) captures real-time supply-demand conditions

and corrects for deviations with newly revealed requests. Compared to OSP, LTO improves

the service rate by up to 5.03% at peak hour on the 25th when κ = 4, while compared to

LTO-Basic, it improves the service rate by up to 5.47% when Ω = 420 sec.

137

Learning-Based Dispatch for Long-Term Optimization

5.5 Chapter Summary

In this chapter, we have proposed a deep reinforcement learning based method for far-sighted

vehicle dispatch in SAMoD systems. Our work aims to investigate the role of optimization

over a long horizon, including both the past and the future. An offline learning method

is developed to learn a value function to capture general mobility patterns from historical

data. An online updating procedure is then developed to quickly adapt the offline learned

value function to real-time dynamics of the system during operation. The value function is

embedded into an efficient online dispatcher that uses re-optimization for better performance.

Numerical experiments on real large-scale datasets show that the proposed method further

improves the dispatcher proposed in Chapter 3 in terms of service rate (up to 5.03% at peak

hour). It also yields an improvement over the state-of-the-art (up to 5.47% at peak hour).

138

Chapter Six

Conclusions

This thesis addresses the problem of improving the efficiency and quality of vehicle dispatch in

high-capacity SAMoD systems, by means of (1) an optimal online batch assignment method,

(2) a travel time uncertainty aware vehicle dispatch method and (3) a long-term reward

optimization method. Regarding efficiency, we work on making explicit use of the revealed

deterministic information about the system in real-time. Regarding quality, we work on

tackling two types of uncertainty information, i.e., stochastic travel times and dynamic

passenger demands. In this chapter, we summarize the results presented in the thesis and

discuss the directions of future work.

6.1 Summary

In Chapter 3, we propose a batch assignment method that produces an optimal matching

policy for each dispatch window in real-time. It uses an incremental search algorithm which

reduces the global search for vehicle scheduling problems to local search through heuristics

while ensuring optimality. This means that it can explore all possible vehicle-trip matches

by quickly pruning the futile portion of the search space, and thereby compute the optimal

139

Conclusions

matching policy. It also uses a re-optimization strategy to dynamically alter the matching

policy to keep it optimal at any given time. Case studies using real-world taxi trip data

demonstrate that the proposed method outperforms the leading online dispatch algorithm

in terms of service rate and scalability.

In Chapter 4, we propose a multi-phase method that leverages stochastic travel time

models to optimize the on-time arrival probability of passengers and the profit of the plat-

form. It consists of three steps: computing candidate matches (which could be done using

the method presented in Chapter 3), scoring the candidates with the on-time arrival proba-

bilities, and computing the matching policy by solving a maximum weight matching problem.

It also takes into account compensation for late arrivals and scores the candidates based on

expected profits. Simulations using real-world taxi trip data demonstrate that, by taking

travel time uncertainty into account, the proposed method achieves improvements in service

rate, reliability and profit.

In Chapter 5, we propose a learning-based method that captures spatio-temporal

mobility patterns to optimize long-term service objectives. It combines offline evaluation

and online learning to obtain a value function that captures both the general systematic

patterns and the real-time dynamics of the system. The value function is embedded into

an online dispatch scheme to optimize the matching policy over a long horizon. The online

dispatch scheme is similar to the one in Chapter 4, but using a different scoring process. It

also employs the re-optimization strategy in Chapter 3 to extend the matching horizon and

correct for the prediction bias. Numerical experiments demonstrate that, by optimizing over

a longer horizon, the proposed method yields a higher service rate than the state-of-the-art

far-sighted dispatch approach.

In general, Chapter 3 develops an optimal online dispatch method, in which only

deterministic information is involved. Chapters 4 and 5 extend and enhance the approach

140

Conclusions

in Chapter 3 by handling different kinds of uncertainty, respectively; they share some simi-

larities in the solution framework, but are optimizing for quite different objectives.

6.2 Future Directions

In this section, we discuss several directions that may extend and improve the methods

presented in this work.

Appropriate Fleet Size. The method developed in Chapter 3 focuses on producing

the optimal matching policy for a predetermined number of vehicles. However, a fundamental

unsolved problem of finding the appropriate number of vehicles to serve all requests has been

ignored. It is a central issue for service providers, as deploying too few vehicles can lead to

poor passenger experience and loss of customers, while deploying too many vehicles can lead

to a waste of resources. Some work has been done on determining the minimum fleet size

[131, 132]. It is of interest to investigate other optimization objectives such as how to change

the fleet size according to the changes in demand distributions and requirements.

Congestion-Aware Routing. In Chapter 4, the dispatcher assumes that the routing

of the controlled vehicles does not affect traffic conditions. With the deployment of large-

scale SAMoD systems, we expect the number of vehicles under control to be very large and

the matching and routing policy may affect travel times. Congestion-aware routing would

be an important problem [33, 114], especially when allowing ride-shairng, as delay time is a

very important consideration.

Vehicle Rebalancing. The dispatcher presented in Chapter 5 tries to produce a

far-sighted matching policy by considering the supply-demand conditions. There is another

active research topic on routing idle vehicles to potentially high demand areas, known as

141

Conclusions

rebalancing [103, 104]. Rebalancing has the potential to influence the supply-demand con-

ditions to serve more requests. It would be an interesting idea to consider the combination

of rebalancing and dispatching in ride-sharing, such as learning a unified value function [99].

Public Transit Interaction. Despite the various benefits of the SAMoD systems,

public transportation is an integral component of urban mobility. It is important to examine

the impact of the SAMoD systems on the public transportation system, as well as build

a fusion system [133, 134]. Using a fleet of autonomous vehicles to provide transportation

services jointly with public transit could potentially result in lower travel costs and emissions.

142

References

[1] Marco Pavone. “Autonomous mobility-on-demand systems for future urban mobility”.

In: Autonomes Fahren. Springer, 2015, pp. 399–416.

[2] Rick Zhang. “Models and Large-scale Coordination Algorithms for Autonomous Mobility-

on-demand”. PhD thesis. Stanford University, 2016.

[3] Katarzyna Anna Marczuk. “Modeling and analysis of an autonomous mobility on

demand system”. PhD thesis. National University of Singapore, 2017.

[4] Federico Rossi. “On the interaction between Autonomous Mobility-on-Demand sys-

tems and the built environment: Models and large scale coordination algorithms”.

PhD thesis. Stanford University, 2018.

[5] Daniel James Fagnant. “The future of fully automated vehicles: opportunities for

vehicle-and ride-sharing, with cost and emissions savings”. PhD thesis. The University

of Texas at Austin, 2014.

[6] Xing Wang. “Optimizing ride matches for dynamic ride-sharing systems”. PhD thesis.

Georgia Institute of Technology, 2013.

[7] Paolo Santi et al. “Quantifying the benefits of vehicle pooling with shareability net-

works”. In: Proceedings of the National Academy of Sciences 111.37 (2014), pp. 13290–

13294.

143

REFERENCES

[8] Hadi Hosni et al. “The shared-taxi problem: Formulation and solution methods”. In:

Transportation Research Part B: Methodological 70 (2014), pp. 303–318.

[9] Wen Shen et al. “Toward understanding the impact of user participation in au-

tonomous ridesharing systems”. In: 2018 Winter Simulation Conference (WSC). IEEE.

2018, pp. 845–856.

[10] economist.com, ed. The hidden cost of congestion. https ://www.economist . com/

blogs/graphicdetail/2018/02/daily-chart-20. Accessed: 2021-11-18. Feb. 2018.

[11] Regina R Clewlow et al. “Disruptive transportation: The adoption, utilization, and

impacts of ride-hailing in the United States”. In: University of California, Davis,

Institute of Transportation Studies, Davis, CA, Research Report UCD-ITS-RR-17-07

(2017).

[12] Alejandro Henao et al. “The impact of ride-hailing on vehicle miles traveled”. In:

Transportation 46.6 (2019), pp. 2173–2194.

[13] Alejandro Tirachini. “Ride-hailing, travel behaviour and sustainable mobility: an in-

ternational review”. In: Transportation 47.4 (2020), pp. 2011–2047.

[14] Gregory D Erhardt et al. “Do transportation network companies decrease or increase

congestion?” In: Science advances 5.5 (2019), eaau2670.

[15] Long T Truong et al. “Estimating the trip generation impacts of autonomous vehicles

on car travel in Victoria, Australia”. In: Transportation 44.6 (2017), pp. 1279–1292.

[16] Remi Tachet et al. “Scaling law of urban ride sharing”. In: Scientific reports 7.1 (2017),

pp. 1–6.

[17] Patrick M Bösch et al. “Cost-based analysis of autonomous mobility services”. In:

Transport Policy 64 (2018), pp. 76–91.

144

https://www.economist.com/blogs/graphicdetail/2018/02/daily-chart-20
https://www.economist.com/blogs/graphicdetail/2018/02/daily-chart-20

REFERENCES

[18] Michael Hyland et al. “Operational benefits and challenges of shared-ride automated

mobility-on-demand services”. In: Transportation Research Part A: Policy and Prac-

tice 134 (2020), pp. 251–270.

[19] Javier Alonso-Mora et al. “On-demand high-capacity ride-sharing via dynamic trip-

vehicle assignment”. In: Proceedings of the National Academy of Sciences 114.3 (2017),

pp. 462–467.

[20] Matthew Tsao et al. “Model predictive control of ride-sharing autonomous mobility-

on-demand systems”. In: 2019 International Conference on Robotics and Automation

(ICRA). IEEE. 2019, pp. 6665–6671.

[21] Kangjia Zhao et al. “Online Vehicle Dispatch: from Assignment to Scheduling”. In:

2018 IEEE International Conference on Data Mining Workshops (ICDMW). IEEE.

2018, pp. 608–611.

[22] Chiwei Yan et al. “Dynamic pricing and matching in ride-hailing platforms”. In: Naval

Research Logistics (NRL) 67.8 (2020), pp. 705–724.

[23] Zhiwei Qin et al. “Ride-hailing order dispatching at DiDi via reinforcement learning”.

In: INFORMS Journal on Applied Analytics 50.5 (2020), pp. 272–286.

[24] Shuo Ma et al. “T-share: A large-scale dynamic taxi ridesharing service”. In: 2013

IEEE 29th International Conference on Data Engineering (ICDE). IEEE. 2013, pp. 410–

421.

[25] Ming Zhu et al. “An online ride-sharing path-planning strategy for public vehicle

systems”. In: IEEE Transactions on Intelligent Transportation Systems 20.2 (2018),

pp. 616–627.

[26] Yongxin Tong et al. “A unified approach to route planning for shared mobility”. In:

Proceedings of the VLDB Endowment 11.11 (2018), p. 1633.

145

REFERENCES

[27] Andrea Simonetto et al. “Real-time city-scale ridesharing via linear assignment prob-

lems”. In: Transportation Research Part C: Emerging Technologies 101 (2019), pp. 208–

232.

[28] Meghna Lowalekar et al. “ZAC: A zone path construction approach for effective real-

time ridesharing”. In: Proceedings of the International Conference on Automated Plan-

ning and Scheduling. Vol. 29. 2019, pp. 528–538.

[29] Connor Riley et al. “Column generation for real-time ride-sharing operations”. In:

International Conference on Integration of Constraint Programming, Artificial Intel-

ligence, and Operations Research. Springer. 2019, pp. 472–487.

[30] Andres Fielbaum et al. “Anticipatory routing methods for an on-demand ridepooling

mobility system”. In: Transportation (2021), pp. 1–42.

[31] Alex Wallar et al. “Vehicle rebalancing for mobility-on-demand systems with ride-

sharing”. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems (IROS). IEEE. 2018, pp. 4539–4546.

[32] Sanket Shah et al. “Neural approximate dynamic programming for on-demand ride-

pooling”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34.

01. 2020, pp. 507–515.

[33] Federico Rossi et al. “Routing autonomous vehicles in congested transportation net-

works: Structural properties and coordination algorithms”. In: Autonomous Robots

42.7 (2018), pp. 1427–1442.

[34] Soheil Sadeghi Eshkevari et al. “Reinforcement Learning in the Wild: Scalable RL Dis-

patching Algorithm Deployed in Ridehailing Marketplace”. In: arXiv preprint arXiv:2202.05118

(2022).

146

REFERENCES

[35] Lingyu Zhang et al. “A taxi order dispatch model based on combinatorial optimiza-

tion”. In: Proceedings of the 23rd ACM SIGKDD international conference on knowl-

edge discovery and data mining. 2017, pp. 2151–2159.

[36] James Munkres. “Algorithms for the assignment and transportation problems”. In:

Journal of the society for industrial and applied mathematics 5.1 (1957), pp. 32–38.

[37] Ldc Martins et al. “Optimizing Ride-Sharing Operations in Smart Sustainable Cities:

Challenges and the Need for Agile Algorithms”. In: Computers & Industrial Engineer-

ing 153 (2020), p. 107080.

[38] Mitja Stiglic et al. “Making dynamic ride-sharing work: The impact of driver and

rider flexibility”. In: Transportation Research Part E: Logistics and Transportation

Review 91 (2016), pp. 190–207.

[39] Erhun Özkan et al. “Dynamic matching for real-time ride sharing”. In: Stochastic

Systems 10.1 (2020), pp. 29–70.

[40] Niels Agatz et al. “Optimization for dynamic ride-sharing: A review”. In: European

Journal of Operational Research 223.2 (2012), pp. 295–303.

[41] Hipólito Hernández-Pérez et al. “The multi-commodity one-to-one pickup-and-delivery

traveling salesman problem”. In: European Journal of Operational Research 196.3

(2009), pp. 987–995.

[42] Thierry Garaix et al. “Optimization of occupancy rate in dial-a-ride problems via

linear fractional column generation”. In: Computers & Operations Research 38.10

(2011), pp. 1435–1442.

[43] Sophie N Parragh et al. “A heuristic two-phase solution approach for the multi-

objective dial-a-ride problem”. In: Networks: An International Journal 54.4 (2009),

pp. 227–242.

147

REFERENCES

[44] Gerardo Berbeglia et al. “A hybrid tabu search and constraint programming algo-

rithm for the dynamic dial-a-ride problem”. In: INFORMS Journal on Computing

24.3 (2012), pp. 343–355.

[45] Gerardo Berbeglia et al. “Dynamic pickup and delivery problems”. In: European jour-

nal of operational research 202.1 (2010), pp. 8–15.

[46] Karl F Doerner et al. “Chapter 7: Pickup-and-delivery problems for people trans-

portation”. In: Vehicle Routing: Problems, Methods, and Applications, Second Edition.

SIAM, 2014, pp. 193–212.

[47] Neda Masoud et al. “A decomposition algorithm to solve the multi-hop peer-to-

peer ride-matching problem”. In: Transportation Research Part B: Methodological 99

(2017), pp. 1–29.

[48] Amirmahdi Tafreshian et al. “Trip-based graph partitioning in dynamic ridesharing”.

In: Transportation Research Part C: Emerging Technologies 114 (2020), pp. 532–553.

[49] Amirmahdi Tafreshian et al. “Frontiers in service science: Ride matching for peer-to-

peer ride sharing: A review and future directions”. In: Service Science 12.2-3 (2020),

pp. 44–60.

[50] Ali Najmi et al. “Novel dynamic formulations for real-time ride-sharing systems”.

In: Transportation research part E: logistics and transportation review 108 (2017),

pp. 122–140.

[51] Roozbeh Ketabi et al. “Playing with matches: vehicular mobility through analysis of

trip similarity and matching”. In: Proceedings of the 26th ACM SIGSPATIAL Inter-

national Conference on Advances in Geographic Information Systems. 2018, pp. 544–

547.

148

REFERENCES

[52] Wesam Herbawi et al. “The ridematching problem with time windows in dynamic

ridesharing: A model and a genetic algorithm”. In: 2012 IEEE Congress on Evolu-

tionary Computation. IEEE. 2012, pp. 1–8.

[53] Marius M Solomon. “Algorithms for the vehicle routing and scheduling problems with

time window constraints”. In: Operations research 35.2 (1987), pp. 254–265.

[54] Jizhe Xia et al. “A new model for a carpool matching service”. In: PloS one 10.6

(2015), e0129257.

[55] Alp M Arslan et al. “Crowdsourced delivery—A dynamic pickup and delivery problem

with ad hoc drivers”. In: Transportation Science 53.1 (2019), pp. 222–235.

[56] Ruimin Ma et al. “A novel algorithm for peer-to-peer ridesharing match problem”. In:

Neural Computing and Applications 31.1 (2019), pp. 247–258.

[57] P Gruebele. “Interactive system for real time dynamic multi-hop carpooling”. In:

Global Transport Knowledge Partnership (2008), p. 28.

[58] Wesam Herbawi et al. “Evolutionary multiobjective route planning in dynamic multi-

hop ridesharing”. In: European conference on evolutionary computation in combina-

torial optimization. Springer. 2011, pp. 84–95.

[59] Neda Masoud et al. “A real-time algorithm to solve the peer-to-peer ride-matching

problem in a flexible ridesharing system”. In: Transportation Research Part B: Method-

ological 106 (2017), pp. 218–236.

[60] Libin Zheng et al. “Order dispatch in price-aware ridesharing”. In: Proceedings of the

VLDB Endowment 11.8 (2018), pp. 853–865.

[61] Der-Horng Lee et al. “Taxi dispatch system based on current demands and real-time

traffic conditions”. In: Transportation Research Record 1882.1 (2004), pp. 193–200.

[62] Kiam Tian Seow et al. “A collaborative multiagent taxi-dispatch system”. In: IEEE

Transactions on Automation science and engineering 7.3 (2009), pp. 607–616.

149

REFERENCES

[63] Minne Li et al. “Efficient ridesharing order dispatching with mean field multi-agent

reinforcement learning”. In: The World Wide Web Conference. 2019, pp. 983–994.

[64] Zhe Xu et al. “Large-scale order dispatch in on-demand ride-hailing platforms: A

learning and planning approach”. In: Proceedings of the 24th ACM SIGKDD Interna-

tional Conference on Knowledge Discovery & Data Mining. 2018, pp. 905–913.

[65] Dominic Widdows et al. “Grabshare: The construction of a realtime ridesharing ser-

vice”. In: 2017 2nd IEEE International Conference on Intelligent Transportation En-

gineering (ICITE). IEEE. 2017, pp. 138–143.

[66] Peng Cheng et al. “Utility-aware ridesharing on road networks”. In: Proceedings of the

2017 ACM International Conference on Management of Data. 2017, pp. 1197–1210.

[67] Douglas Oliveira Santos et al. “Dynamic taxi and ridesharing: A framework and

heuristics for the optimization problem”. In: Twenty-Third International Joint Con-

ference on Artificial Intelligence. 2013.

[68] Jaeyoung Jung et al. “Dynamic shared-taxi dispatch algorithm with hybrid-simulated

annealing”. In: Computer-Aided Civil and Infrastructure Engineering 31.4 (2016),

pp. 275–291.

[69] Yinglei Li et al. “Ride-sharing under travel time uncertainty: Robust optimization and

clustering approaches”. In: Computers & Industrial Engineering 149 (2020), p. 106601.

[70] Dawn Woodard et al. “Predicting travel time reliability using mobile phone GPS

data”. In: Transportation Research Part C: Emerging Technologies 75 (2017), pp. 30–

44.

[71] Sejoon Lim et al. “Stochastic motion planning and applications to traffic”. In: The

International Journal of Robotics Research 30.6 (2011), pp. 699–712.

[72] Evdokia Nikolova et al. “Stochastic shortest paths via quasi-convex maximization”.

In: European Symposium on Algorithms. Springer. 2006, pp. 552–563.

150

REFERENCES

[73] Evdokia Nikolova. “Approximation algorithms for reliable stochastic combinatorial

optimization”. In: Approximation, Randomization, and Combinatorial Optimization.

Algorithms and Techniques. Springer, 2010, pp. 338–351.

[74] Sejoon Lim et al. “Practical route planning under delay uncertainty: Stochastic short-

est path queries”. In: Robotics: Science and Systems. Vol. 8. 32. 2013, pp. 249–256.

[75] Zhiguang Cao et al. “Finding the shortest path in stochastic vehicle routing: A cardi-

nality minimization approach”. In: IEEE Transactions on Intelligent Transportation

Systems 17.6 (2016), pp. 1688–1702.

[76] Sejoon Lim et al. “Stochastic motion planning with path constraints and application to

optimal agent, resource, and route planning”. In: 2012 IEEE International Conference

on Robotics and Automation. IEEE. 2012, pp. 4814–4821.

[77] Astrid S Kenyon et al. “Stochastic vehicle routing with random travel times”. In:

Transportation Science 37.1 (2003), pp. 69–82.

[78] Xiangyong Li et al. “Vehicle routing problems with time windows and stochastic travel

and service times: Models and algorithm”. In: International Journal of Production

Economics 125.1 (2010), pp. 137–145.

[79] Duygu Taş et al. “Vehicle routing problem with stochastic travel times including soft

time windows and service costs”. In: Computers & Operations Research 40.1 (2013),

pp. 214–224.

[80] D Taş et al. “Vehicle routing with soft time windows and stochastic travel times: A

column generation and branch-and-price solution approach”. In: European Journal of

Operational Research 236.3 (2014), pp. 789–799.

[81] Baoxiang Li et al. “The share-a-ride problem with stochastic travel times and stochas-

tic delivery locations”. In: Transportation Research Part C: Emerging Technologies 67

(2016), pp. 95–108.

151

REFERENCES

[82] Shangyao Yan et al. “A car pooling model and solution method with stochastic vehicle

travel times”. In: IEEE transactions on intelligent transportation systems 15.1 (2014),

pp. 47–61.

[83] Jiancheng Long et al. “Ride-sharing with travel time uncertainty”. In: Transportation

Research Part B: Methodological 118 (2018), pp. 143–171.

[84] Xiaoming Li et al. “Ride-Sharing Matching under Travel Time Uncertainty through A

Data-Driven Robust Optimization Approach”. In: 2021 IEEE International Intelligent

Transportation Systems Conference (ITSC). IEEE. 2021, pp. 3420–3425.

[85] Zhiguang Liu et al. “Dynamic shared autonomous taxi system considering on-time

arrival reliability”. In: Transportation Research Part C: Emerging Technologies 103

(2019), pp. 281–297.

[86] Jin Y Yen. “Finding the k shortest loopless paths in a network”. In: management

Science 17.11 (1971), pp. 712–716.

[87] Jun Gao et al. “Fast top-k simple shortest paths discovery in graphs”. In: Proceedings

of the 19th ACM international conference on Information and knowledge manage-

ment. 2010, pp. 509–518.

[88] Xiaocheng Tang et al. “A deep value-network based approach for multi-driver order

dispatching”. In: Proceedings of the 25th ACM SIGKDD international conference on

knowledge discovery & data mining. 2019, pp. 1780–1790.

[89] Yan Jiao et al. “Real-world Ride-hailing Vehicle Repositioning using Deep Reinforce-

ment Learning”. In: arXiv preprint arXiv:2103.04555 (2021).

[90] Javier Alonso-Mora et al. “Predictive routing for autonomous mobility-on-demand

systems with ride-sharing”. In: 2017 IEEE/RSJ International Conference on Intelli-

gent Robots and Systems (IROS). IEEE. 2017, pp. 3583–3590.

152

REFERENCES

[91] Xianan Huang et al. “Efficient mobility-on-demand system with ride-sharing”. In: 2018

21st International Conference on Intelligent Transportation Systems (ITSC). IEEE.

2018, pp. 3633–3638.

[92] Meghna Lowalekar et al. “Zone pAth Construction (ZAC) based Approaches for Effec-

tive Real-Time Ridesharing”. In: Journal of Artificial Intelligence Research 70 (2021),

pp. 119–167.

[93] Yang Liu et al. “Proactive rebalancing and speed-up techniques for on-demand high

capacity ridesourcing services”. In: IEEE Transactions on Intelligent Transportation

Systems (2020).

[94] Connor Riley et al. “Real-time dispatching of large-scale ride-sharing systems: In-

tegrating optimization, machine learning, and model predictive control”. In: arXiv

preprint arXiv:2003.10942 (2020).

[95] Ramon Iglesias et al. “Data-driven model predictive control of autonomous mobility-

on-demand systems”. In: 2018 IEEE international conference on robotics and automa-

tion (ICRA). IEEE. 2018, pp. 6019–6025.

[96] Zhaodong Wang et al. “Deep reinforcement learning with knowledge transfer for online

rides order dispatching”. In: 2018 IEEE International Conference on Data Mining

(ICDM). IEEE. 2018, pp. 617–626.

[97] Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”.

In: nature 518.7540 (2015), pp. 529–533.

[98] James S Albus. “A theory of cerebellar function”. In: Mathematical biosciences 10.1-2

(1971), pp. 25–61.

[99] Xiaocheng Tang et al. “Value Function is All You Need: A Unified Learning Frame-

work for Ride Hailing Platforms”. In: Proceedings of the 27th ACM SIGKDD Confer-

ence on Knowledge Discovery & Data Mining. 2021, pp. 3605–3615.

153

REFERENCES

[100] Ishan Jindal et al. “Optimizing taxi carpool policies via reinforcement learning and

spatio-temporal mining”. In: 2018 IEEE International Conference on Big Data (Big

Data). IEEE. 2018, pp. 1417–1426.

[101] Hado Van Hasselt et al. “Deep reinforcement learning with double q-learning”. In:

Proceedings of the AAAI conference on artificial intelligence. Vol. 30. 1. 2016.

[102] Xian Yu et al. “An integrated decomposition and approximate dynamic program-

ming approach for on-demand ride pooling”. In: IEEE Transactions on Intelligent

Transportation Systems 21.9 (2019), pp. 3811–3820.

[103] Jian Wen et al. “Rebalancing shared mobility-on-demand systems: A reinforcement

learning approach”. In: 2017 IEEE 20th International Conference on Intelligent Trans-

portation Systems (ITSC). Ieee. 2017, pp. 220–225.

[104] Daniele Gammelli et al. “Graph Neural Network Reinforcement Learning for Au-

tonomous Mobility-on-Demand Systems”. In: arXiv preprint arXiv:2104.11434 (2021).

[105] Volodymyr Mnih et al. “Asynchronous methods for deep reinforcement learning”. In:

International conference on machine learning. PMLR. 2016, pp. 1928–1937.

[106] Rick Zhang et al. “Control of robotic mobility-on-demand systems: a queueing-theoretical

perspective”. In: The International Journal of Robotics Research 35.1-3 (2016), pp. 186–

203.

[107] James J Pan et al. “Ridesharing: simulator, benchmark, and evaluation”. In: Proceed-

ings of the VLDB Endowment 12.10 (2019), pp. 1085–1098.

[108] Bilong Shen et al. “Dynamic ridesharing”. In: Sigspatial Special 7.3 (2016), pp. 3–10.

[109] Michal Cáp et al. “Multi-Objective Analysis of Ridesharing in Automated Mobility-

on-Demand”. In: Robotics: Science and Systems. 2018.

154

REFERENCES

[110] Hongjian Wang et al. “A simple baseline for travel time estimation using large-scale

trip data”. In: ACM Transactions on Intelligent Systems and Technology (TIST) 10.2

(2019), pp. 1–22.

[111] NYC Taxi et al. TLC Trip Record Data. https://www1.nyc.gov/site/tlc/about/tlc-

trip-record-data.page. Accessed: 2021-11-19. July 2021.

[112] Dimitris Bertsimas et al. “Travel time estimation in the age of big data”. In: Operations

Research 67.2 (2019), pp. 498–515.

[113] Transport forLondon. Travel in London Reports. https : / / tfl . gov . uk / corporate /

publications-and-reports/travel-in-london-reports. Accessed: 2022-07-20. July 2022.

[114] Mauro Salazar et al. “A congestion-aware routing scheme for autonomous mobility-

on-demand systems”. In: 2019 18th European Control Conference (ECC). IEEE. 2019,

pp. 3040–3046.

[115] Tao Xing et al. “Finding the most reliable path with and without link travel time

correlation: A Lagrangian substitution based approach”. In: Transportation Research

Part B: Methodological 45.10 (2011), pp. 1660–1679.

[116] Bi Yu Chen et al. “Finding reliable shortest paths in road networks under uncertainty”.

In: Networks and spatial economics 13.2 (2013), pp. 123–148.

[117] Hailong Huang et al. “Reliable path planning for drone delivery using a stochastic

time-dependent public transportation network”. In: IEEE Transactions on Intelligent

Transportation Systems 22.8 (2020), pp. 4941–4950.

[118] Bin Yang et al. “PACE: a PAth-CEntric paradigm for stochastic path finding”. In:

The VLDB Journal 27.2 (2018), pp. 153–178.

[119] Simon Aagaard Pedersen et al. “Fast stochastic routing under time-varying uncer-

tainty”. In: The VLDB Journal 29.4 (2020), pp. 819–839.

155

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://tfl.gov.uk/corporate/publications-and-reports/travel-in-london-reports
https://tfl.gov.uk/corporate/publications-and-reports/travel-in-london-reports

REFERENCES

[120] Patricia June Carstensen. “The complexity of some problems in parametric linear and

combinatorial programming”. PhD thesis. University of Michigan, 1983.

[121] Philippe Artzner et al. “Coherent measures of risk”. In: Mathematical finance 9.3

(1999), pp. 203–228.

[122] Matthew Norton et al. “Calculating CVaR and bPOE for common probability distri-

butions with application to portfolio optimization and density estimation”. In: Annals

of Operations Research (2019), pp. 1–35.

[123] Xiucheng Li et al. “Learning travel time distributions with deep generative model”.

In: The World Wide Web Conference. 2019, pp. 1017–1027.

[124] Warren B Powell. Approximate Dynamic Programming: Solving the curses of dimen-

sionality. Vol. 703. John Wiley & Sons, 2007.

[125] Richard S Sutton et al. Reinforcement learning: An introduction. MIT press, 2018.

[126] Wouter van Heeswijk. What Are Post-Decision States and What Do They Want From

Us? https://towardsdatascience.com/what-are-post-decision-states-and-what-do-

they-want-from-us-9e02105b7f40. Accessed: 2021-12-21. May 2021.

[127] Marcin Szubert et al. “Temporal difference learning of n-tuple networks for the game

2048”. In: 2014 IEEE Conference on Computational Intelligence and Games. IEEE.

2014, pp. 1–8.

[128] Warren B Powell. “What you should know about approximate dynamic programming”.

In: Naval Research Logistics (NRL) 56.3 (2009), pp. 239–249.

[129] Tom Schaul et al. “Prioritized experience replay”. In: arXiv preprint arXiv:1511.05952

(2015).

[130] Timothy P Lillicrap et al. “Continuous control with deep reinforcement learning”. In:

arXiv preprint arXiv:1509.02971 (2015).

156

https://towardsdatascience.com/what-are-post-decision-states-and-what-do-they-want-from-us-9e02105b7f40
https://towardsdatascience.com/what-are-post-decision-states-and-what-do-they-want-from-us-9e02105b7f40

REFERENCES

[131] Mohammad M Vazifeh et al. “Addressing the minimum fleet problem in on-demand

urban mobility”. In: Nature 557.7706 (2018), pp. 534–538.

[132] Alex Wallar et al. “Optimizing multi-class fleet compositions for shared mobility-as-a-

service”. In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC). IEEE.

2019, pp. 2998–3005.

[133] Mauro Salazar et al. “On the interaction between autonomous mobility-on-demand

and public transportation systems”. In: 2018 21st International Conference on Intel-

ligent Transportation Systems (ITSC). IEEE. 2018, pp. 2262–2269.

[134] JianWen et al. “Transit-oriented autonomous vehicle operation with integrated demand-

supply interaction”. In: Transportation Research Part C: Emerging Technologies 97

(2018), pp. 216–234.

[135] Michal Kümmel et al. “Taxi dispatching and stable marriage”. In: Procedia Computer

Science 83 (2016), pp. 163–170.

[136] A. Prokhorchuk et al. “Estimating Travel Time Distributions by Bayesian Network In-

ference”. In: IEEE Transactions on Intelligent Transportation Systems (2019), pp. 1–

10.

157

	Abstract
	Contents
	1 Introduction
	1.1 Background
	1.1.1 Trends in Personal Urban Mobility
	1.1.2 Shared Autonomous Mobility-on-Demand

	1.2 Research Problem and Questions
	1.2.1 Efficient and Optimal Dispatch
	1.2.2 Reliability-Aware Dispatch
	1.2.3 Long-Term Service Optimization

	1.3 Contributions
	1.4 Publications Resulting from the Thesis
	1.5 Thesis Structure

	2 Literature Review
	2.1 Efficient Vehicle-Request Matching in Dynamic Ride-Sharing
	2.1.1 Peer-to-Peer Ride-sharing
	2.1.2 Shared Autonomous Mobility-on-Demand

	2.2 Ride-Sharing Under Travel Time Uncertainty
	2.2.1 Stochastic Shortest Path Finding
	2.2.2 Vehicle Routing with Stochastic Travel Times
	2.2.3 Ride-Sharing with Stochastic Travel Times

	2.3 Predictive Vehicle Dispatch
	2.3.1 Demand Forecast Based Dispatch
	2.3.2 Value Based Dispatch

	2.4 Chapter Summary

	3 Optimal Online Dispatch in High-Capacity Ride-Sharing
	3.1 Introduction
	3.2 Preliminaries
	3.2.1 Definitions
	3.2.2 Problem Statement
	3.2.3 System Framework

	3.3 Optimal Online Dispatch Scheme
	3.3.1 Optimal Schedule for a Single Ride-Sharing Trip
	3.3.2 Optimal Schedule Pool for a Vehicle Fleet
	3.3.3 Re-Optimization and Iterative Updating
	3.3.4 Constrained Allocating Based on Optimal Schedule Pool
	3.3.5 Discussion of Optimality and Correctness

	3.4 Experimental Study
	3.4.1 Simulation Details
	3.4.2 Algorithm Comparison
	3.4.3 Results
	3.4.4 Discussion

	3.5 Chapter Summary

	4 Vehicle Dispatch with Stochastic Travel Times
	4.1 Introduction
	4.2 Preliminaries
	4.2.1 Definitions
	4.2.2 Problem Statement
	4.2.3 Multi-Phase Dispatch Scheme

	4.3 Reliability Optimization
	4.3.1 On-time Arrival Probability Estimation
	4.3.2 Reliable Allocating

	4.4 Profit Optimization
	4.4.1 Profit Estimation
	4.4.2 Profit-Aware Allocating

	4.5 Experimental Study
	4.5.1 Simulation Details
	4.5.2 Algorithm Comparison
	4.5.3 Results
	4.5.4 Discussion

	4.6 Chapter Summary

	5 Learning-Based Dispatch for Long-Term Optimization
	5.1 Introduction
	5.2 Preliminaries
	5.2.1 Definitions
	5.2.2 Problem Statement
	5.2.3 System Framework

	5.3 Value-based Vehicle Dispatch Scheme
	5.3.1 Offline Policy Evaluation With Neural Networks
	5.3.2 Online Learning With Value Ensemble
	5.3.3 Re-Optimization and Value-Based Allocating

	5.4 Experimental Study
	5.4.1 Simulation Details
	5.4.2 Algorithm Comparison
	5.4.3 Results
	5.4.4 Discussion

	5.5 Chapter Summary

	6 Conclusions
	6.1 Summary
	6.2 Future Directions

	References

