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ABSTRACT

This thesis covers a range of topics through the analysis of random curves and

vortex filaments in various contexts. We find that phase vortices in random wave

model, which is a type of model for quantum and wave chaos, are closed random

walks whose length distribution is of universal scaling relation. We analyze the

phase vortex in two-plus-one dimensional random waves and find that they can be

classified into three types based on length: small loops whose behaviour is model-

dependent, large loops that are closed random walks, and vortex lines that are long

enough to penetrate through the space before getting closed.

Since vortex loops are closed random walks, we investigate the knot prob-

ability of them by generating a very large amount of sampling of equilateral and

non-equilateral closed random polygons and determining their knot type by the

Alexander polynomial. Then with statistical analysis we confirm a general proba-

bility equation for knots in random polygons. We also investigate a series of problems

regarding to the knot probability of random polygons.

The vortex in three-plus-one-dimensional space-time is two-dimensional sur-

face and we call them vortex worldsheet. We find that while the topology of the

vortex worldsheet is relativistically invariant, the topology of the vortex in the time-

slice of observers in different reference frame changes with the Lorentz boost. We

discuss constructions we used for the scenario and the superluminal region on the

vortex world sheet, which is where the speed of phase vortex exceeds the light speed.
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Chapter One

Introduction

1.1 Motivation and Outline

Physics is a subject for the principles of the nature and matters it contains. In early

stage of mechanics, people focus on the dynamics of single objects in ideal cases such

as how will they move when there are forces exerted. Then, as human knowledge

develops, there begin interests on more complicated dynamics, such as chaos and

statistical physics for random phenomena.

Chaos describes the unpredictability of physical systems that evolve with ex-

ponential uncertainty regarding to the measured initial condition. If a system is

chaotic, then it has at least one positive Lyapunov exponent [Spr03; Str18], which

is a measure of expansion of linearized neighborhood of certain point. Therefore,

since in reality there is always inevitable error in the measurement, then as such

error grows exponentially in time, finally there may be a non-negligible difference

between predictions made based on early observation and reality. Similarly, bifurca-

tion describes sudden non-negligible changes made when parameters in the system

are changed slightly. Both chaos and bifurcation contribute to the complexity of
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Introduction

dynamics because they make predictions become more difficult by their nature of

uncertainty.

Assuming determinism in macroscopic world, then theory of probability is

only a method to describe the world as it appears to us rather than what it truly is,

as chaos and bifurcation can make things appear happening by chance while in fact

happening in determinism. For example, in theory of probability, throwing a dice

has result in equal probability of one-sixth for each face, however, in reality, by the

time the dice is thrown, its future is determined and there is only one result of full

certainty existing in the future, yet it only appear to observers that each face has

equal probability because the judgment of the observer is limited by his ignorance

to the dice. Had the observer have enough information required for prediction, such

as the forces given by the hand to the dice, the moment of inertia of the dice, the

air resistance that the dice endure during the process, the hardness of the table it

falls on, and many other information, and had the observer have enough capability

of calculating the whole process, then the observer will see the result of throwing

a dice as happening in certainty rather than by chance. Chaos and bifurcation

causes observers to require much more information for accurate prediction, but the

“unpredictability” they cause is only for observers’ calculation, while they do not

break the determinism of the incidence in objective reality.

While chaos and bifurcation make dynamics in macroscopic world compli-

cated and make people turn to theory of probability, quantum chaos, on the other

hand, attracts people’s attention as a counterpart of it in microscopic world. Just

like light has wave-particle duality, chaos in the macroscopic world is often con-

sidered in terms of the chaotic dynamics of point particles, while quantum (wave)

chaos is studied in terms of the solutions of a wave equation such as Schrodinger’s

equation. As studied in chapter 2, quantum chaos and wave chaos are modeled by

2



Introduction

the Random Wave Model (RWM) and we specifically study the phase vortex, which

is the zero of both real and imaginary part of the field, in waves of various dispersion

relation. Unlike classical chaos in macroscopic world that there is no randomness re-

quired in the explicit construction of dynamical equations, quantum chaos, however,

has explicit randomness in the wave equation. Therefore, both classical chaos and

quantum/wave chaos embody essence of “unpredictability”, but they are different in

the way of exhibiting random probability.

Both the trajectory of particles in classical chaos and the vortex line in quan-

tum/wave chaos in three-dimensional space are one-dimensional line, and a specific

area of studying one-dimensional lines in three-dimensional space is the knot theory.

A knot is an embedding of a circle, which is a closed one-dimensional line, in three-

dimensional space. In chapter 3, we study knot theory in particular the probability

of knots in closed random walks, as we find in chapter 2 that vortices in random

wave model are closed random walks. In chapter 3, we raise and verify a general

equation for the knot probability in random polygons, which is an equivalent name

for closed random walks. We find that the knot probability of random polygons in

R3 is different from previous knowledge in Z3. We verify these results by a large data

simulation providing high accuracy for fitting. The simulation includes generating

equilateral and non-equilateral random polygons and determining the knot type by

the Alexander polynomial. I have independently completed necessary algorithms for

calculation, but the data is generated by my supervisor’s former postdoc Alexander

Taylor who left before completing the analysis. I did the whole analysis and reach

to conclusions in chapter 3.

In chapter 4, we study the vortex world sheet in complex wave field. Unlike

in previous chapters where the systems are of randomness, in this chapter we study

vortex worldsheet out of direct construction of complex wave field. We study the

3



Introduction

vortex in three-plus-one-dimensional space-time where the vortex forms vortex world

sheet, which is two-dimensional surfaces. We find that while the topology of vortex

worldsheet is invariant in space-time, the topology such as knot type in time-slice

is dependent to frame of reference, and Lorentz boost leads to topology change in

the eyes of observers in time. We also calculate the speed on the vortex sheet and

discuss the superluminal effect of phase vortices.

Vortex
Random Vortex 	

Filament (Chapter 2)
Vortex 

World-Sheet 

Topology 

(Chapter 4)Knot Probability of Random 

Polygon (Chapter 3)

Quantum/Wave 

Chaos	

Complex	

Knotted Field

Figure 1.1: The outline of this thesis.

Shown in figure 1.1 is the outline of this thesis. Motivated by the studies of

quantum and wave chaos, we search for the vortices which are random curves in space

and space-time. In chapter two we study the statistical behaviour of these random

vortex filaments. Then since these random vortex lines may be closed random walks,

we study the knot probability of random polygons in chapter three, and find general

equation for the knot probability in R3, which may be applied to broad statistical

science context. On the other hand, we also study vortices in designed field, beyond

4



Introduction

random field. We construct complex knotted field that satisfies the d’Alembert

equation in three-plus-one dimensional space-time, and study the topology of the

vortex worldsheet which is what vortex swipes through in time.

1.2 Random Wave Model for Quantum Chaos and

Wave Chaos

The famous “wave-particle duality” of light and in quantum physics extends the

research from classical chaos to quantum chaos through studies on billiard systems.

Imagine a region of certain shape of boundary in which particles are trapped and

bounce back and forth like balls on a billiard table, then the dynamics of particles

depend on the shape of the boundary of the billiard region. One famous example of

billiard system is raised by Sinai [Sin70] that he proved particles in a square billiard

with a circle boundary in its center that bounces back particles have trajectories that

are ergodic and chaotic except measure zero. If a trajectory is ergodic then it will

eventually covers the whole space in terms of passing through the neighbourhood

of arbitrary point in the space as time advances, and if a trajectory is chaotic

then another trajectory in its neighbourhood will diverge from it with a positive

exponential rate.

As billiard systems are shown to be chaotic and ergodic, and since they are

simple examples for chaos, following the spirit of “wave-particle duality” people study

if there will be similar behaviour of chaos when transforming the consideration on

chaotic dynamics of billiards into the consideration of waves as the counterpart,

which clearly is like a wave trapped in a periodic boundary.

Two famous conjectures on quantum chaos were made by Berry and Tabor in

5
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1977 [BT77] and later by Bohigas, Giannoni and Schmit in 1984 [BGS84]. Denote λ

as the quantum energy eigenvalue and P (S) as the level spacing distribution, which

is the probability distribution of spacing S between two adjacent λ, λj and λj+1,

then Berry and Tabor conjectured that for "generic" cases, meaning that excluding

certain known counterexamples, if the corresponding system in classical dynamics

is integrable, then the λ appear like independent random variable and P (S) is like

a Poisson process such that

P (S) = e−S (1.1)

Based on the result of Berry and Tabor, Bohigas, Giannoni and Schmit showed that

if the corresponding system in classical dynamics is chaotic, particularly as they

showed with the Sinai billiard, then P (S) follows Gaussian orthogonal ensemble of

random matrices, and thus enable the random matrix theory originally from nuclear

physics to describe quantum energy levels. Particularly, there have been papers

developed for the statistics of random waves such as [Ber78; BD00; MK88; BGS02;

Den07] on statistical quantities like velocity, correlation and nodal density for various

cases.

Even though later people realize that random wave model whose correspond-

ing classical dynamics is chaotic does not exhibit chaos in terms of positive Lyapunov

exponent in the wave counterpart because of the linearity of Schrödinger equation

[Ber89], the random wave model nonetheless has link to a broad range of concepts

in physics, such as in optics [ZG07; DAK18] where people study the optical vortices

in random wave model, and in wave chaos for ocean acoustics [TB10], Helmholtz

equation [LM10], especially the famous pioneering work by Longuet-Higgins [Lon57]

where he resembled the sea water surface as an ensemble of long-crested wave as

Ψ(x, y, t) =
∑
n

cn cos(unx+ vny + σnt+ εn) (1.2)

and study statistical properties such as energy spectrum and nodal density.

6



Introduction

Quantum chaos and wave chaos are two terms not exactly equivalent but

intersect and are closely related. While quantum chaos, apparently indicated by

its name, focuses on systems whom and whose corresponding system in classical

dynamics exhibit chaos, the studies in the field of wave chaos are not restricted

to quantum mechanics. Despite of their different purpose and targeted physical

scenario, both quantum and wave chaos may adapt similar mathematical expression

for model construction by plane wave solution to the Helmholtz equation and its

Gaussian random ensemble written as

Ψ(r) =
∑
n

an exp(ikn · r + χn) (1.3)

A new insight to this random wave ensemble was formulated and verified

by Mark Dennis and colleagues in 2008 [OHo+08] when they consider the vortex

statistics globally rather than locally, and with classification from view of topology.

Rather than local statistics of vortices such as velocity and vorticity, they view

vortices in terms of their topology, such that whether a vortex is a loop or not,

because loops differ from open strings by their topology. They study the length

distribution of vortex loops and find a scaling relation indicating the self-similarity

of the vortex loop soup. In chapter 2 we carry on this spirit of global statistics of

vortices under topological view and push further to find more universal behaviours

of vortices in random wave models. Yet before going further on details in chapter 2

we introduce more background knowledge essential to this thesis.

1.3 Knot Theory

As we will discuss in detail in chapter 2 and 3, vortices in random waves are found to

be random walks and we propose and verify the general equation for knot probability

in closed random walks. In order to discuss our result concretely in chapter 3 which
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is the chapter for knot probability, and in chapter 4 which is the chapter for knotted

vortex worldsheet, in this section we introduce necessary information of knot as the

basis.

1.3.1 Knot Classification and Polynomial

Knots are embedding of topological circles in three-dimensional Euclidean space.

The world we spatially live in is a three-dimensional Euclidean space, in which

countless physical phenomena may appear as knots, such as polymers [WDL+98;

RW11; OW07], vortices in extremely broad scenarios [Pis99] such as optics [OHo+08;

ODP09; Den+10], liquid crystals [MA14], superfluid [SBR98; POB12; KBS01], nor-

mal fluid [Ric98; RSB99; Mag+13; KI13] and cosmic strings [VV84]. In a more ex-

tended perspective, open strings that are not topological circles may locally entangle

and thus appear as knots localized in certain area. Therefore, knots are fundamental

structure of the world we live in, and are key factors of low dimensional topology

studies of physical phenomena.

An early attempt to classification of knots in done by Tait, inspired by

Kelvin’s conjecture that atoms are in fact knotted ether, which is later shown to

be wrong, but inspired the work on knot theory and led Tait to the early work of

making a knot table.

Lord Kelvin in 19th century conjectured that the essence of atoms is in fact

knotted ether, such as the hydrogen atom is one type of knotted ether while the

oxygen atom is another type of knotted ether. Ether is a type of existence of a type

of material that is imagined to be existing every where in the world and assumed

to be the medium of light’s propagating. Ether was thought to be of no colour or

shape but people believed it to exist because it is not only a long-lived folklore but

8
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also attributed to the propagation of light. However, as we later know, propagation

of light, unlike the propagation of sound wave, does not require medium, and the

famous experiment by Michelson and Morley on the light speed shows that there

is no ether as medium of light’s propagation. Furthermore, as discovered later

and learned in today’s middle school, atoms are electrons moving around nuclei

made by protons and neutrons, and it is the electrons rather than the knot type of

ether that determines the chemistry characteristics of different elements. Yet, these

knowledge, while commonly studies today, was not known ay the time, so Lord

Kelvin’s conjecture gained its popularity at that time, and naturally inspired Tait

to make a knot table for knots’ classification, just like a periodic table for elements.

Since Tait, there have been mathematicians classifying knots based on the

crossing number of knots, and such table grows up to knots of 16 crossings. As

the number of crossing of knots increases, the diversity of knots of that crossing

number increases drastically. There is only 1 type of knot of three crossings, 1 of

four crossings, 2 of five crossings, 3 of six crossings, 7 of seven crossings, 21 of eight

crossings, 49 of nine crossings, 165 of ten crossings, 552 of eleven crossing knots

and so on. A classical work that is still widely used today is table made by Rolfsen

for knots up to 10 crossings [Rol76]. Even though Rolfsen made a small mistake

in his table that he misidentified a single ten-crossing knot as two different knots,

so he thought there were 166 ten crossing knots but there are actually only 165 of

them, his work is still classic and widely used today because for in many context 10

crossing knots are complicated enough.

In the figure 1.2, we draw diagrams for knots of three to seven crossings,

including the unknot, which is labeled as 01. The diagrams are hand-drawn, in

order to empathize the care that needed to be taken during the time that knot

theory is developed by pen and paper, without modern help from the computer.

9
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Figure 1.2: A table of diagrams for knots from 3 to 7 crossings including the unknot,

which is labeled as 01. As will be discussed in later section, we concluded the

probability of random knots mainly based on the probability data of these knots.

Knots with crossing number higher than 7 happen to have less probability and

therefore have less clear statistical behaviour.

Knot polynomials mark a great progress on knot theory because it enables

algebraic representation of knots. People may write down a polynomial based on the

skein relation of knots and therefore studies on knots are no longer limited within

geometrical interpretations. An early and commonly used knot polynomial to dis-
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tinguish knots is the Alexander polynomial, invented by James Waddell Alexan-

der II [Ale28] and only became famous decades after. Then about half century

later, Vaughan Jones introduced another polynomial, the Jones Polynomial [Jon87],

named after himself. A difference between the Alexander polynomial and the Jones

polynomial is that the Jones polynomial can distinguish the chirality of knots while

the Alexander cannot. Yet since in our research we primarily care about the prob-

ability of knots disregarding the chirality of knots, we use Alexander polynomial

rather than the Jones polynomial because the Alexander polynomial is simpler and

computed in a higher speed.

Now we introduce how to compute the Alexander polynomial of a given knot

[OW07]. We do it with specific examples. Firstly, let us consider the “figure-eight

knot”, knot 41, which is the second simplest knot, as shown in figure 1.3.

As shown in the figure, this knot has four crossing, and that is why it is

called knot 41 because it has four crossings, and the sub-index 1 indicate that it

is the first type of its kind, even though there is only one four-crossing knot. The

four crossings in this knot are labeled by dark green number 1, 2, 3, 4. Naturally,

these four crossings separate this knot into four pieces of curves represented by four

numbers 1, 2, 3, 4 in red, and these “curves” are called “arcs”. These four arcs are

defined such that they start from one crossing as being the underlying arc, and stop

at the next crossing as being the underlying arc again. It is worth noticing that

an arc does not stop when it crosses a crossing as an over-crossing arc. Taking the

second arc as an example: it starts from the second crossing as an underlying arc,

then go through the third crossing without being stopped because it is an over-

crossing arc, and finally it stops at the first crossing where it is the underlying arc

again. It is important that when labeling the arcs, one may start from arbitrary

place, but must continuously go through the knot following the curves by always
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Figure 1.3: The diagram of the knot 41. Direction of the arcs are labeled by blue

arrows. The red numbers 1 to 4 represent the arcs while the green numbers 1 to 4

represent the crossings. The plus and minus sign in parenthesis in green represent

the sign of the crossing, which is determined by the right-handed rule.

keeping in one direction.

After labeling the crossings and arcs, one determines the sign of each crossing

in the way shown in the figure 1.4.

The sign of crossing is determined by the right-hand rule. One may either

take the over-crossing arc as the x-axis and underlying arc as the y-axis, and then

the sign is positive if the z-axis direction is going out of the paper while is negative

if the z-axis direction is going into the paper. Or equivalently one may take the

underlying arc as the thumb finger and clenching the rest four fingers. The sign is

positive if the sign of the over-crossing arc is the same to the direction of the rest four

fingers and vice versa. After determining the sign of crossing, there are three values

12
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Figure 1.4: The positive and negative crossings whose sign is determined by the

right-handed rule and there are three values assigned to the threes arcs connected

to such crossing based on the sign of it.

assigned to the arcs as shown in the figure. For minus sign crossing, the assigned

value for over-crossing arc, incoming underlying arc, and outgoing underlying arc is

1 − 1/t, −1 and 1/t. Meanwhile for the positive sign crossing, the three assigned

values are 1− t, −1, and t.

Now after labeling the crossings and arcs and determining the sign of crossings

we may write down a matrix based on them. For the knot 41 introduced above, the

matrix to write down is

D(t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1− 1
t
−1 1

t
0

−1 t 0 1− t

0 1− t −1 t

1
t

0 1− 1
t
−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
(1.4)

In the matrix D(t), element (1,1) is 1− 1/t, because the first arc is an over-

crossing arc at the first crossing, and since the first crossing is an negative crossing,

13
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the assigned value to it is 1 − 1/t. The element (1,2) is −1, because the second

arc at the first crossing is an incoming arc, and the value for an incoming arc at a

negative crossing is −1. The element (1,3) is 1/t, because the third arc at the first

crossing is an outgoing arc whose value is 1/t. The element (1,4) is 0 because the

fourth arc does not intersect with the first crossing and therefore is irrelevant. The

element (2,1) is −1 because the first arc at the second crossing is an incoming arc at

a positive crossing whose value is −1. Following this definition, we write down the

matrix D(t) where the element (i, j) is the value of the ith arc at the jth crossing.

This definition gives us an n by n matrix such that n is the number of crossing

of the knot. After obtaining D(t), one compute any principle minor of D(t) and

multiplies or divide the result by power of t or 1− t to obtain a polynomial in t that

has constant term, and this polynomial is our “Alexander polynomial”. For knot 41,

the Alexander polynomial is t2 − 3t+ 1.

We give another example for knot 31, as the figure 1.5 shows.

Following our previous definition that D(i, j) is the value of ith arc at the jth

crossing, the D(t) of the knot 31 is

D(t) =

∣∣∣∣∣∣∣∣∣∣
−1 1

t
1− 1

t

1
t

1− 1
t
−1

1− 1
t
−1 1

t

∣∣∣∣∣∣∣∣∣∣
(1.5)

The first arc at the first crossing is an incoming arc at a minus crossing,

therefore D(1, 1) has value of −1. The second arc and the third arc at the first

crossing are the outgoing and the over-crossing arc, so D(1, 2) = 1/t and D(1, 3) =

1 − 1/t. Following the definition, we write down D(t) and compute its principle

minor. We may, for example, consider the 2 by 2 matrix at the bottom left, whose

determinant is computed to be ((1−1/t)·1/t)−1 = 1/t−1/t2−1. Then we multiplies

14
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Figure 1.5: The diagram of the knot 31. Direction of the arcs are labeled by blue

arrows. The red numbers 1 to 3 represent the arcs while the green numbers 1 to 3

represent the crossings. The plus and minus sign in parenthesis in green represent

the sign of the crossing, which is determined by the right-handed rule.

it by the second power of t, which is t2, and obtain the Alexander polynomial to be

t2 − t+ 1.

There are other equivalent ways of evaluating the Alexander polynomial, such

as besides assigning value −1, t, 1 − 1/t, one could also assign value −t, 1, t, −1

for arcs that are left arc before crossing, right arc before crossing, left arc after

crossing and right arc after crossing. These different method will give the same

result [OW07] as to compute the principle minor of D(t) and let us obtain the

Alexander polynomial of a given knot.

Compared to the method of calculating the Alexander polynomial, the Jones

polynomial is similar in the way that it is also based on the crossings and skein rela-
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tion of knots, but the way of computing the Jones polynomial is more complicated

than the Alexander polynomial. The skein relation is the relation of two curves

that whether they are right-handed crossed or left-handed crossed or not crossed, as

shown in the figure 1.6.

Figure 1.6: The diagram of the skein relation. There are three types of skein relations

L0, L+ and L− as shown in the figure.

The basic idea of calculating the Jones polynomial is to operate changes on

the skein relations and step by step until the given knot becomes unknotted. During

such operations, one writes down polynomials with multiplications and divisions

based on how skein relation is changed each step, and finally as the given knot is

changed to an unknot through steps, the polynomials that multiplied through is

the Jones polynomial. In a more intuitive description, finding the Jones polynomial

is equivalently decomposing the knot and finding the corresponding accumulated

changes made during such decomposition.

Since the Alexander polynomial is a faster computing algorithm and is valid

enough for our research purpose, which is to study the probability of random knots,

we use the Alexander polynomial to algebraically represent knots in our research.

Admittedly, the Alexander polynomial is not perfect in the sense that for knots with
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higher crossing numbers, it happens that two knots with high crossing number may

happen to have the same Alexander polynomial while they are different knots. How-

ever, it does not brings trouble to our research because the Alexander polynomial

is accurate for all knots with crossing number smaller or equal to 7, and majority of

8 and 9 crossing knots. As we will show in our later research, it is sufficient for us

to study and conclude general principles of knot probability.

1.3.2 Previous Knowledge on Knot Probability

Previous studies on the knot probability are both theoretical and numerical. A

notable theoretical result on knot probability is done by Hammersley in 1961 on

lattice model [Ham61]. Denote pn to be the number of n-edge polygon, Hammersley

showed that

0 < lim
n→∞

n−1 logPn ≡ κ <∞ (1.6)

Which equivalently means that

Pn = eκn+o(n) (1.7)

where κ is a constant called connected constant of the lattice and for simple cubic

lattice the range of κ is between log3 and log5. Here the term o(n) is different from

O(n). A function f(n) is o(n) if limn→∞f(n)/n = 0, and for example log(n) is o(n),

while f(n) is O(n) if f(n) ≤ An for some positive constant A and large enough n.

Hammersley showed that the number of n− edge polygon has same growth rate to

self-avoiding random walks as n increases.

Based on Hammersley’s work, Sumners and Whittington in 1988 [SW88]

pushed his result further and showed that

lim
n→∞

n−1 logP 0
n = κ0 (1.8)
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where P 0
n is the probability of the unknot 01 of n-edge polygon, and this equivalently

leads to

P 0
n = e−(κ−κ0)n+o(n) = e−a0n+o(n) (1.9)

for some positive a0

This means that the probability of the random polygon unknot decreases ex-

ponentially to zero as its edge number increases, or equivalently saying that a ran-

dom polygon is almost certain knotted as n goes to infinity, as one would intuitively

anticipate and appreciate, which is also called as the “Frisch-Wasserman-Delbruck

conjecture” [OW07].

However, it is important to realize that, the above theoretical result is built

on the lattice model, which is Z3, while our real world is R3. All those knotted

light, polymers and vortices exists in our R3 world, and mathematically theorem

in Z3 and R3 are not necessarily mutually adaptive. Therefore, it is not sufficient

to push forward the theoretical result from Z3 to R3, so the probability of knot in

R3 remains unknown, even though it is reasonable to believe that such exponential

term from Z3 should also exist in R3. However, as we find out, an solely exponential

term is not sufficient to describe the knot probability, which turns out to be in the

form of an asymptotic expansion formula. Even though, theoretical works done by

Hammersley, Sumners, Whittington and other researchers [Dia95] pushed forward

the knowledge of knot probability.

Besides theoretical work, there have also been numerical studies on knot

probability, such as a series of works done by Deguchi and colleagues [DT94; DT97;

UD17] through numerical simulations. Deguchi studies the probability of some sim-

ple prime and composite knots because the simpler the knots are, the higher proba-

bility they have, and therefore have clearer statistical pattern. This work of Deguchi,

like many others, is based on Gaussian random polygons. Gaussian random poly-
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gons are random polygons whose edge length distribution obeys Gaussian normal

distribution. Deguchi’s work confirms that the knot probability obeys the form of

asymptotic expansion, but due to limited computation capacity, he did not realize

that in fact the probability of the unknot is also in the form of asymptotic expansion

rather than a simple power law decay, as we will show in later chapter. Deguchi

also did not include the correction term into the knot probability formula, a possi-

ble reason is that he did not have numerical data result for many knots, and even

limited accuracy for presented knots. On contrary, our simulation, with exceed-

ing numerical quality, reveals the role of correction terms in the knot probability

formula. Although Deguchi’s numerical work is limited and thus stops him from

further conclusion, admittedly his work is on the right track and paves the road for

later research.

1.3.3 Helicity Conservation and Knotted Field

Knots are important to the study of fields such as quantum and fluid field because

not only the vortices may form knots but also the essence of the field is closely

related to knot theory. The study of vortex is a key to the nature of fluid field

because vortices are the zeros and the topological defect of the field, and thus it is a

tool to categorize the field. The knotted vortex lines is closely related to the helicity

of the field, which is an essential concept to topological fluid dynamics.

In fluid dynamics, the helicity is defined as the integral of the dot product of

the velocity u and the curl of u over the spatial volume V :

H =

∫
V

u · (∇× u)dR (1.10)

One may write it in an equivalent form as

H =

∫
V

A ·BdR (1.11)
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where B = ∇ ×A so that it is consistent to the definition of helicity in a broader

sense. For example, for the magnetic helicity, B is the magnetic field while A is

the potential. However A and B are not limited to the magnetic field definition,

they can be more basic vector fields that represent different physical quantities. It

is straightforward to see that the helicity is independent to the gauge of A.

Moffatt and Ricca [MR92] considered the helicity in fluid dynamics and

showed that its conservation is in fact equivalent to the Călugăreanu theorem [Căl59],

which states that the linking number is equal to the sum of twist and writhe of a

curve, and is an invariant quantity. Equivalently it means that the helicity is an

invariant quantity under conditions. The conservation of helicity is the fourth fun-

damental conservation law after the conservation of energy, momentum, and angular

momentum, and it is a fundamental approach to various fields such as turbulence

[MT92; Zhu18] and electromagnetic field [BF84; Alp+18; TR96], especially after

the works by Moffatt and Ricca revealing the conservation of helicity and that the

geometrical reflection of it is the Călugăreanu theorem.

The Călugăreanu theorem [Căl61] states that the linking number n of a curve

C is equivalent to the sum of the writhe W , the total normalized torsion T , and the

number of rotation around C in integer N

n = W + T +N (1.12)

Or equivalently,

n = W + TW (1.13)

where TW = T +N is the Twist of the ribbon curve.

The linking number is a conserved quantity under conditions (such as no

topology change takes place) because the increase or decrease of the twist or writhe

will induce the change of the other quantity to balance out so that the sum of the
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twist and the writhe, the linking number n, is conserved.

Moffatt and Ricca in 1992 [MR92] showed that

H = nΦ2 = (W + T +N)Φ2 (1.14)

Where Φ is the flux along the vortex tube in the fluid field. This means that the

geometrical interpretation of the helicity is the linking number of the corresponding

vortex knot. Comparing to the other three conservation laws of energy, momentum,

and angular momentum whose geometrical interpretation is the invariance under

symmetry transformation in time, linear movement and rotation, the conservation

of helicity has its geometrical interpretation as the invariance of linking number as

long as there is no topology change.

Besides helicity, the nature of the field theory links to the knot theory fun-

damentally in another perspective, such as the revealing work by Edward Witten

[Wit89] and Xin Liu and Renzo Ricca [LR12] showing the straight connection be-

tween the Quantum field theory and fluid dynamics to the Jones polynomial.

Witten’s work [Wit89] starts from the Chern-Simons 3-form, which is a quan-

tity in Schwarz type of topological quantum field theory (TQFT), which is indepen-

dent to choice of metrics. Consider a three-manifold M, compact simple gauge group

G and connection A, then the integral of Chern-Simons 3-form, which is proportional

to the Chern-Simons action, is

S =
k

4π

∫
M

Tr(A ∧ dA+
2

3
A ∧ A ∧ A)

=
k

8π

∫
M

εijkTr(Ai(∂jAk − ∂kAj) +
2

3
Ai[Aj, Ak])

(1.15)

where the curvature F is

F = dA+ A ∧ A (1.16)

and the least-action principle, here in terms of the field curvature, leads to the
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dynamics
δS

δA
=

k

2π
F = 0 (1.17)

It is worth pointing out that, for abelian gauge field, the later half term in the

Lagrangian is cancelled out due to symmetry and thus simplifies the equation to be

S =
k

8π

∫
M

εijkAi∂jAk (1.18)

It is truly amazing that this Lagrangian is equivalent to the helicity as we introduced

above. Since as discussed earlier in the section, the geometrical reflection of the

helicity is the linking number of a curve, therefore the equivalence between the

Chern-Simons action in abelian gauge field and the helicity suggests that the Chern-

Simons theory provides a natural framework for the study of knotted nature of

quantum fields.

In this context, the Wilson loop operator around a circle C is defined as

WC = Tr(Pei
∮
C Aidx

i

) (1.19)

where P is the path-ordering operator. It is an integral over a closed circle, but

of course such circle represents anything topologically equivalent to an S1, either

knotted or not, and it has the gauge form

Pei
∮
C Aidx

i → g(x)Pei
∮
C Aidx

i

g−1(x) (1.20)

From here, Witten and Xin Liu used similar but not exactly the same method to

connect the essence of quantum and fluid dynamics to knot polynomials. The work

of Xin Liu and Renzo Ricca is based on the helicity, which as him acknowledged

inspired from the abelian Chern-Simons 3-form. Liu and Ricca started from helicity

interpreted by Kauffman bracket for un-oriented loops to derive skein relations, and

after that they included the orientation and reduced previous skein relation to the

Jones polynomial. We do not include much of the deduction detail by Witten and
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Liu and Ricca, but as the result they connected the expectation value of the Wilson

loop operator and the helicity to the Jones polynomial by writing out equation that

is in the same form to the skein relation of Jones polynomial, which is

(t1/2 − t−1/2)V (L0) = t−1V (L+)− tV (L−) (1.21)

As the L0, L+ and L− are shown in the figure 1.6

1.3.4 Designing Knot in Complex Field

The vortices in complex field may be designed into knots. The vortices in 3D space

are either lines or loops depending on knotted or not, while in 3+1 space-time they

gain an extra dimension and become vortex sheets. In order to distinguish such

vortex sheet from vortex sheet in 3D space, we may name it vortex worldsheet for

avoidance of confusion. Before further investigating the vortex world sheet in 3+1

space-time, it is necessary to firstly clarify the design of knots in 3D space. In

particular, we begin by showing how to design a certain knot type in complex field.

In 1928, Brauner [Bra28] invented a method, later popularised by Milnor

[Mil16], of creating a complex scalar field with (torus) knotted vortex lines. The

method is to design a three-dimensional complex field on (x, y, z) whose vortex is

knotted as designed. There are different ways of constructing field whose vortex is

knotted, such as from toroidal expression of torus knot, but in the thesis we use

the construction invented by Brauner so that we may construct knots beyond torus

knots, even though different constructions may be transformed to each other for

some knot types. Such a field is constructed as an algebraic function of the two

supporting complex field functions u = u(x, y, z), v = v(x, y, z) [Den+10] defined as
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u =
x2 + y2 + z2 − 1 + 2iz

x2 + y2 + z2 + 1
(1.22)

v =
2(x+ iy)

x2 + y2 + z2 + 1
(1.23)

as polynomials in terms of u and v will yield different complex field whose vortices

form into various knot types, as will be shown in the following. As shown by the

algebraic of u and v, u is symmetric on planar direction while v is symmetric on

vertical direction. Intuitively, the field of u and v are shown by figure 1.7, where we

plot the argument of the complex function. By inspection, it is easy to see that u

has a circular vortex in the x− y plane of radius 1, and v has a vortex line up the

z axis.

(a) (b)

Figure 1.7: The field surface plot for u and v on x − y plane at z = 0. This is

plotting the complex argument and showing in HSV color gradient. Subplot (a) is

for u and (b) is for v.

The color gradient clearly shows the change of the phase, and a net phase

change of 2π, appearing as the color gradient going through the HSV spectrum,

defines a phase vortex which is explicitly stated in equation (2.7) and (2.8). Then,

the phase vortex of the field u and v is in figure 1.8
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(a) (b)

Figure 1.8: The phase vortex in u and v shown in subplot (a) and (b). The vortex

in u is a loop while in v is a straight line at the origin.

The vortex in u is a loop while in v is a straight line at the origin. The

loop winds around the origin while the straight line go through it, and as they

are in complement to each other, together they may be used as primary tools to

design vortices of more complicated shape. For any point in 3D space (x, y, z), its

coordinate may be written as R+ z where R =
√
x2 + y2, as a combination of polar

coordinate and height, which is exactly shown by the vortex in u and v. Meanwhile,

as the u and v together form a complete coordinate system, there is |u2|+ |v2| = 1.

It is shown in [Bra28] that a field of uq−vp has vortex in terms of (p, q)-torus

knot, which is a knot formed by winding a loop p time through the hole of the torus

and q times around the torus, as in figure 1.8 that the vortex in v penetrate through

the origin while the vortex in u winds around the origin. (The expression in some

papers have reversed expression for u and v to the text here. Different papers have

been using different u and v such that u in some paper is v in the others, and vice

versa. However, the two terms u and v together always refer to the same expression.

The only difference is the just the notation.)
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The simplest example of which is the trefoil knot, which is the knot 31 in the

knot table and is a (3, 2) torus knot, meaning that it is equivalently dwelling on the

surface of a torus and goes 3 times through the hole of the torus and 2 times around

it, as shown in figure 1.9. Therefore, the field whose vortex is a trefoil knot is

Ψ = u2 − v3 (1.24)

=
(x2 + y2 + z2 + 2iz − 1)2

(x2 + y2 + z2 + 1)2
− (2x+ 2iy)3

(x2 + y2 + z2 + 1)3
(1.25)

Figure 1.9: The trefoil knot, equivalently in the name knot 31 or (3, 2) torus knot,

obtained as the vortex of the field Ψ = u2 − v3.

Two other examples of constructing the torus knot is knot 51 and knot 819

shown in figure 1.10, which are of (p, q) value (5, 2) and (4, 3), such that Ψ = u2−v5

and Ψ = u3 − v4. The knot 51 is the second simplest torus knot after the trefoil

knot, and both of them have apparent look of lines winding around the surface of

a torus. The knot 819 is the first non-alternating knot, and has relatively simpler
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structure compared to other 8 crossing knots. The uniqueness of the knot 819 is also

discussed in the chapter of knot probability, such as its high occurrence probability.

(a)

(b)

Figure 1.10: The knot 51 in subplot (a) and knot 819 in subplot (b) are two torus

knots with (p, q) of (5, 2) and (4, 3), so they come from Ψ = u2−v5 and Ψ = u3−v4

While the field uq−vp has vortex of (p, q) torus knot, there are constructions

for other geometries based on u and v as well, such as for the figure-eight knot, also

known as the knot 41, which is not a torus knot. The field that has vortex to be a

figure-eight knot is [Den+10]

Ψ = 64u3 − 12u(3 + 2(v2 − v̄2))− 14(v2 + v̄2)− (v4 − v̄4) (1.26)

where v̄ is the complex conjugate of v. The vortex of such field is shown in figure

1.11
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Figure 1.11: The figure-eight knot, equivalently in the name knot 41, obtained as

the vortex of the field Ψ = 64u3 − 12u(3 + 2(v2 − v̄2))− 14(v2 + v̄2)− (v4 − v̄4).

The knots designed in such way may also have a tunable helicity as shown

by Kedia et al [Ked+16], such that the helicity of certain knot type designed based

on u, v may be changed by introducing an extra term such as un for some integer n

and such n determines the degree of helicity revised. We will rely on the techniques

of constructing knots in complex field in chapter 4, but the tunable helicity is not

involved.

1.4 Necessary Topological Knowledge

Topology has particularly been an important tool for analyzing complicated dy-

namics because the idea of topology leads to consistence and robustness against
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continuous changes such as small perturbations away from critical point. In the

idea of topology, people focus on quantities such as homology which intuitively is

the holes in the topology space, because they are invariant even when the geometry

is changed: imagine a loop is deformed and local geometry such as curvatures cer-

tainly changes, but the homology of it is invariant as long as the loop is not cut or

merged.

In chapter 2 we classify the vortices according to the homology, such that

vortices are either open strings or closed loops, because closed loops are homeomor-

phic to S1 circles. In chapter 4 our analysis to the vortex worldsheet, which is a

surface in 3+1 dimensional space, also rely on the concept of homology. Therefore,

it is necessary to introduce homology in this section. Besides homology, we also

introduce the Poincare-Hopf theorem, also known as the Poincare index theorem,

which links the topology of the manifold and the vector field on its surface, as it is

necessary for our analysis in chapter 4.

1.4.1 Homology and Betti Number

The rigorous definition of homology group H on a topology space X is [Hat02]

Hn(X) := ker(∂n)/im(∂n+1) (1.27)

where Hn(X) denotes the nth dimensional homology group on space x, and ker(∂n)

is called cycles, and im(∂n+1) is called boundaries. ∂n is the boundary operator

defined on chain complex Cn such that

Cn+1
∂n+1−−−→ Cn

∂n−→ Cn−1...C1
∂1−→ C0

∂0−→ 0 (1.28)

where chain complex is a series of abelian groups that are connected by homomor-

phisms, which here specifically is our boundary operator ∂i that satisfies

∂n∂n+1 = 0 (1.29)
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Which is a famous conclusion in mathematics and physics that "the boundary of a

boundary is none".

In detail, the boundary operator ∂n of a simplex σ = (v0, ..., vk), which is

directly a set of elemental components (such as vertices and faces) and higher di-

mensional constitutes built from which, is defined as

∂n(σ) =
∑
i

(−1)iσ|[v0, ..., v̂i, ..., vn] (1.30)

where v̂i refers to vi being removed. However, in order not to go into too much

detail of this, we may sufficiently accept homologies simply as "holes" in the space,

and nth dimensional homology in topology is equivalent to an n-dimensional "hole"

in topology, which also sometimes referred as the "Betti number" such that if

Bettin = m (1.31)

then there the number of nth dimensional homology is m on certain manifold.

For example, in figure 1.12, Betti1 = 1 because there is a one-dimensional

hole bounded by the three edges of the triangle, according to the definition of the

homology group in equation (1.27) and the vertices are labeled as v0, v1, v2 and edges

defined in equation (1.30).

1.4.2 The Poincare-Hopf Theorem

A fundamental theorem in topology is the Poincare-Hopf theorem (calling PH the-

orem in the following), also called the Poincare index theorem, which connects the

topology of surfaces and the vector field on it [Lee13]. The PH theorem states that

suppose on a compact differentiable manifold M there exists vector field v, and the

direction of v at the boundary is all pointing in the same direction (all inwards or

all outwards), then there is an equivalence between the sum of index values of zeros
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20v v

v1

Figure 1.12: A triangle which has Betti1 = 1.

of the vector field and the Euler characteristic of the manifold. Mathematically it

states ∑
i

indexxi(v) = (−1)nχ(M) (1.32)

where χ is the Euler characteristic, and n is even if the v is everywhere point-

ing outward at the boundary while odd if v is everywhere pointing inwards at the

boundary.

The index of a critical point describes the behaviour of vector field in its

neighborhood. The index of a sink and a source is +1 while the index of a saddle

point is (−1)k where k is the number of dimension that the vector field is shrinking,

meaning a negative eigenvector of the Hessian matrix. The sink of a vector field

is a local minimum where points in the neighborhood tend to while the source is a

local maximum where points in the neighborhood move away from. While in three

dimensional vector field the saddle point may have index either −1 or 1 depending

on the eigenvector of Hessian matrix, such that if it is (−1,−1, 1) then the index

is −1 · −1 · 1 = 1 while if it is (−1, 1, 1) then the index is −1 · 1 · 1 = −1, in

two dimensional vector field the saddle point always have index value of -1 because

−1 · 1 = −1.
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Introduction

The Euler characteristic is a topological invariant describing the topology of

a manifold. The definition of Euler characteristic χ is

χ = V − E + F (1.33)

where V,E, F are the number of vertices, edges, and faces. The Euler characteristic

is a topological invariant such that objects that are topologically equivalent have

same Euler characteristic. The Euler characteristic of a sphere is 2, and of a cube

or tetrahedron or any convex polyhedron is always 2. The Euler characteristic of

solid objects is 1, and of a circle or torus is 0. When one changes the topology

of a manifold, by adding a handle the Euler characteristic decreases by 2, and by

puncturing a hole the Euler characteristic decreases by 1. For example, a solid disk

has χ = 1, and if one punctures a hole in it, then it becomes a circle that χ = 1;

a torus has χ = 0 and by adding a handle it becomes a double torus that χ = −2,

and furthermore a triple torus has χ = −4.
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Chapter Two

Universal Statistics of Spatial and

Spatial-Temporal Wave Chaos

Vortices

In this chapter we find universal scaling relation of the length distribution of vortex

loops and open strings independent to the model specification of the random wave

model, such that the universality holds between purely spatial and spatial-temporal

random wave models. We show details of generating the random waves, finding the

vortices, and analyzing the vortices.

2.1 Methodology and Simulation

As introduced in the chapter of introduction, there has been a series of research on

quantum chaos since Berry [BT77] and Bohigas [BGS84], and the model they use

is the random wave model, which was later also used for optics such as [Den+10].

The random wave model is an ensemble of plane waves as solution to the Helmholtz
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equation with Gaussian random amplitude written as

Ψ(r) =
∑
k

ak exp(ik · r) (2.1)

where r = (x, y, z), k is the angular wave number, and ak is the random amplitude.

This random wave model is dependent on three spatial dimension, where

vortices in the space behave like Brownian random walks. We are curious what

happens to the vortices when the set-up changes from 3D to 2+1D, such as whether

the vortices will still behave like Brownian random walks. Further, studying waves

in 2+1D is not just a question out curiosity, but it has motivation from a broad

range of application, such as wave chaos for ocean surface wave [Lon57] and optics

[DAK18].

Therefore, we extend from three-dimensional wave chaos to time-dependent

wave chaos of two spatial dimension

Ψ(r, t) =
∑
k

ak exp(i(k · r− ωt)) (2.2)

Specifically, we consider the model of a periodic boundary condition which explicitly

leads to

Ψ(x, y, t) =
N∑

m,n=−N

ak exp(2πi[(mx+ ny)/L0 − kt/T0]) (2.3)

where the amplitude is chosen to be Gaussian power spectrum of controllable width.

For the simulation of this 2+1 random wave model, it is important to choose

the proper time scale T0, length scale L0, and the length of the unit grid dT and dL.

We set dT = dL so that only the T0 and L0 will be adjusted for vortex density. We

set the time and length scale in the way such that the phase vortex density on spatial

and temporal direction is isotropic, such that the total number of vortex points on

spatial dimension NL divided by L0 is equal to the total number of vortex points on

temporal dimension NT divided by T0, and thus gives a “normalized” scaling for later
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investigation on the statistical properties of the random vortex, where for a given

vortex point in 2+1 space, it has equal probability of moving on each dimension, at

least in a global perspective. The dispersion relation between m, n and k are chosen

to be representing three different relation: k =
√
m2 + n2 which is of d’Alembert,

k = m2 + n2 which is of Schrödinger, and k =
√
m2 + n2 + g which is of Klein-

Gordon where g is the mass, so together with the 3D Helmholtz equation there are

in total four sets of random waves to be compared.

N determines the number of random waves being superposed, therefore the

large N is, the more random the wave ensemble is, as shown in figure 2.1. In same

region, when N is larger, there are more random waves superposed, and thus bring

greater randomness and unpredictability to the system.

It is beneficial to clarify the difference between "chaos" and "randomness" in

this scenario, as they both leads to unpredictability. The word "chaos" classically

refers to the unpredictability in the dynamical evolution, that consider an initial

point in the dynamical system, as time advances the neighbourhood of its trajectory

undergoes exponential divergence. Such exponential rate is called Lyapunov expo-

nent and positive Lyapunov exponent indicates chaos in classical dynamics. Since

points in the neighbourhood of trajectories diverge in an exponential rate, a little

uncertainty in the measurement from the observer may leads to difference that grows

exponentially in time, and that is the unpredictability in the system. However, clas-

sical chaotic systems are deterministic, meaning that had the system got a chance

to evolve again, everything will faithfully and accurately reply: there is no "random-

ness" required (even though allowed) in classical chaos, and the "unpredictability"

is attributed to the ignorance of the observer rather than the nature of the sys-

tem. However, wave chaos and quantum chaos or quantum chaology is different.

Truly, there is unpredictability in random wave model, however, such unpredictabil-
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Figure 2.1: A comparison between random wave model of small and large N of

equation (2.3). All subplots are on the x−y plane plotting the real part of the wave

equation. Subplot (a) and (c) are of N = 3 while (b) and (d) are of N = 7. Subplot

(c) and (d) are of top view. This is a straightforward illustration on random wave

ensemble of different number of waves.

ity comes from the randomness of the system: in a random wave ensemble, there

could be randomness in amplitude or phase of the superposed waves. While classical

chaos is deterministic, wave chaos or quantum chaos have randomness in their na-

ture. Furthermore, classical chaos comes from the nonlinearity in the system, while

the random wave model is a superposition of linear waves. These differences in na-

ture of systems are worth for clarification, like Berry argues [Ber89] that "quantum
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chaos" should be renamed as "quantum chaology", because the definition of clas-

sical chaos requires a positive Lyapunov exponent, leading to the unpredictability

to the future, or equivalently exponential sensitivity to the initial condition, while

such positive Lyapunov exponent does not exists in random wave model due to the

linearity of Schrödinger’s equation. Otherwise besides Schrödinger’s equation, there

is also Gross-Pitaevsky equation for superfluid turbulence which is a nonlinear wave

equation, but it is not in the scope of our study.

A major difference between spatial and spatial-temporal random wave ensem-

ble is the anisotropy of wave pattern on spatial and temporal dimension, as shown

in figure 2.2. It is apparent that subplot (a)(c) and (b)(d) have different pattern,

and that is because (a)(c) are plotting the x − y plane of the wave while (b)(d)

are plotting the x − t plane of the wave. While (a)(b) are plotting the real part of

the wave, which is of concern in some systems like ocean surface and atmospheric

wave, (c)(d) are plotting the complex angle of the wave, which is crucial to other

systems such as quantum mechanics and optics. The figure 2.2 is showing what we

generate for numerical simulation. Comparing it to figure 2.1 where N is smaller,

one can see that the wave ensemble here is more random. If N is too small, then the

random fluctuation in the space is rather smooth, and thus there exist less vortices,

then it requires many more repeated sampling for statistical result of vortices. On

the other hand, if N is too large, then there is too much fluctuation and too many

vortices, which require the sampling to have small enough grid to be of high enough

resolution to reflect that many fluctuations. As will be shown later, we find phase

vortices in the random wave ensemble. If N is too large, then it is possible that one

unit box is representing more than one vortex point, and that will cause ambiguity

for future analysis.

Here we arrive at another interesting comparison between classical chaos
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(a) (b)

(c) (d)

Figure 2.2: A comparison between x−y plane and x− t plane of equation (2.3) with

N = 23 in d’Alembert dispersion relation, which is what we use for later numerical

simulation. Subplot (a) and (c) are plotting on x − y plane while (b) and (d) are

on x− t plane. Subplot (a) and (b) are plotting the real part of the wave while (c)

and (d) are plotting the complex angle of the wave. It is apparent that the wave is

non-isotropical on x− y and x− t plane.

and random wave ensemble in terms of the simulation’s resolution. Whether the

space-time and physical quantities are continuous or actually grid-like is a question

of exceedingly degree of fundamentality, but at least in numerical simulation they

are represented by grids and have a certain "resolution". For both classical chaos

and random wave ensemble, the more unpredictability the system has, the higher
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"resolution" it needs for simulation, because there exists more information per unit

grid space. For classical chaos, the more chaotic the system is, the greater is the

Lyapunov exponent and thus the more likely the system is sensitive to perturbation;

so to be accurate for simulation one needs higher "resolution" such as smaller step-

length during numerical integration. On the other hand for the random wave model,

the greater N is, the more random waves exist per unit area, and thus yields more

information that requires smaller grid to capture. Even though classical chaos and

random wave ensemble embrace unpredictability in different nature, they appear

similar demand to information’s resolution during numerical simulations.

After generating the random waves we look for the phase vortex in the space.

Generally speaking the vortices are the zeros of the field, and thus are interpreted

as topological defects. In early studies the phase vortices are also referred as "wave

dislocation" [Den09] in analogue to dislocation lines in solid lattices. For convenience

expressing the complex wave in real and imaginary part as

Ψ(r, t) = ξ(r, t) + iη(r, t) = ρ exp(iχ) (2.4)

the phase vortices are the intersection of the zeros of real and imaginary part where

ξ(r, t) = η(r, t) = 0 (2.5)

the phase at the vortex core is undefined, but there is a net phase change of 2π

circulating around the vortex. Topologically such circulation equals a topological

charge s which is an integer in unit of 2π

s =
1

2π

∮
dr · ∇χ (2.6)

and topologically is the winding number around the given point.

On the 2D-plane, for simulation the plane is divided into grids, such that the

plane is divided into n by n grids of some preferable integer n, therefore the net
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phase change of the wave field Ψ at (x, y) is defined as

φnet = arg(Ψx+1,y ·Ψ∗x,y) + arg(Ψx+1,y+1 ·Ψ∗x+1,y)

+ arg(Ψx,y+1 ·Ψ∗x+1,y+1) + arg(Ψx,y ·Ψ∗x,y+1)

(2.7)

which is equivalently tracking through the phase change going from (x, y) to (x +

1, y), then to (x+ 1, y + 1) and to (x, y + 1), then finally return to (x, y). Ψx,y is a

phase vortex point on the plane if φnet = ±2π.

Then we generalize from 2D plane to 3D space. While on 2D planes we

search around the four vertices around a face, on 3D there are six faces of each box

and we search on that six faces for the trace of vortices. Consider the wave field

Ψ at position (x, y, z), even though we later generalize from (x, y, z) to (x, y, t), the

algorithm is the same, the net phase change on the six faces is

φ1 = arg(Ψx,y+1,z ·Ψ∗x,y,z) + arg(Ψx+1,y+1,z ·Ψ∗x,y+1,z)

+ arg(Ψx+1,y,z ·Ψ∗x+1,y+1,z) + arg(Ψx,y,z ·Ψ∗x+1,y,z)

φ2 = arg(Ψx+1,y,z+1 ·Ψ∗x,y,z+1) + arg(Ψx+1,y+1,z+1 ·Ψ∗x+1,y,z+1)

+ arg(Ψx,y+1,z+1 ·Ψ∗x+1,y+1,z+1) + arg(Ψx,y,z+1 ·Ψ∗x,y+1,z+1)

φ3 = arg(Ψx+1,y+1,z ·Ψ∗x+1,y,z) + arg(Ψx+1,y+1,z+1 ·Ψ∗x+1,y+1,z)

+ arg(Ψx+1,y,z+1 ·Ψ∗x+1,y+1,z+1) + arg(Ψx+1,y,z ·Ψ∗x+1,y,z+1)

φ4 = arg(Ψx,y,z+1 ·Ψ∗x,y,z) + arg(Ψx,y+1,z+1 ·Ψ∗x,y,z+1)

+ arg(Ψx,y+1,z ·Ψ∗x,y+1,z+1) + arg(Ψx,y,z ·Ψ∗x,y+1,z)

φ5 = arg(Ψx+1,y,z ·Ψ∗x,y,z) + arg(Ψx+1,y,z+1 ·Ψ∗x+1,y,z)

+ arg(Ψx,y,z+1 ·Ψ∗x+1,y,z+1) + arg(Ψx,y,z ·Ψ∗x,y,z+1)

φ6 = arg(Ψx,y+1,z+1 ·Ψ∗x,y+1,z) + arg(Ψx+1,y+1,z+1 ·Ψ∗x,y+1,z+1)

+ arg(Ψx+1,y+1,z ·Ψ∗x+1,y+1,z+1) + arg(Ψx,y+1,z ·Ψ∗x+1,y+1,z)

(2.8)

For each box representing Ψx,y,z, if it belongs to part of the vortex line, then the

vortex must come in from one face of the box and go out from another face of the

40



Universal Statistics of Spatial and Spatial-Temporal Wave Chaos Vortices

box. Therefore, if the data of the box is clearly enough, it should have two faces

where there is net phase change of 2π. However, it is also possible that there are

two vortex lines crossing at the same box because the resolution is not high enough.

If the wave ensemble has less number of waves or there are plenty enough boxes

to model the random wave with high enough resolution, then boxes should only

have two faces where the vortex lines come in from one and go out from the other.

However, if the wave ensemble contains a great number of random waves or the

boxes is not presenting enough resolution, then it is possible that there are four

faces of the box that have vortex coming in and going out. A simple way to solve it

is to divide the space and time into smaller boxes to avoid the issue, so that in later

analysis two vortex loops will not be accounted to one single loop. Statistically, if

there is only a negligible number of boxes that have vortex lines crossed and merged,

the analysis result will not be affected because the error from the vortex crossing

boxes is balanced by the majority of clearly distinguished boxes. It is only confusing

the analysis if there are a significant number of boxes who have four faces of vortex

coming in and going out.

By checking the phase change at each point in the space one obtains the

vortices in terms of data points, and the following step is to distinguish the vortex

lines from another vortex line by checking whether they are connected or separated.

The method we use is similar to method used in percolation theory. For each data

point in 3D space, one could examine either its six direct neighboring positions (up,

down, left, right, forward, backward) or twenty-six neighboring position including

the shoulder position whether there is another existing vortex point, and here we

adapt the rigorous criterion by only considering the six direct neighboring positions.

Consider arbitrary two data points x1 and x2, if x1 and x2 are in each other’s direct

neighborhood, then x1 and x2 are considered to be of the same cluster. Following

this criterion, vortex data points can be classified into independent clusters. In our
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(a)

(b)

Figure 2.3: Vortices on (a) x−y plane and (b) x−t plane. The vortices are indicated

by white circles. Theoretically vortices are lines of no thickness, but are here plotted

in large white dots for ease of recognition.

case, such “cluster” is specifically indicating vortex lines.

The reason that these vortex data points only forms into lines but not other

cluster such as surfaces is that the vortices are the intersection of the zero contours

of real and imaginary part of the wave field. The zero contour of the real part is the
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contour of a continuous region where every element in it maps to values of same sign

(either all positive or negative). Such contour in 2D is a circle, and in 3D is a sphere.

For same reason, the zero contours of the imaginary part are also spheres. Then,

the vortex is the intersection of zero contour of real and imaginary part, which is

the intersection of two spheres, which is a circle topologically written as S1. If the

loop is cut by the boundary of the space, then it is a line. Therefore, vortices are

either homeomorphic to circles or lines.

Since we are studying the random wave of periodic condition, it is crucial

to clarify the behaviour of vortex lines in the periodic boundary by clearly telling

how and which of the vortex lines are connecting through the periodic boundary.

Since one vortex line may cross the periodic boundary several times, it is crucial to

identify and combine those vortex lines that are formed by different pieces of vortex

line segments. The method of doing so is to find all vortex lines that reach the

boundary, and find all line segments whose end point on the periodic boundary is

in the neighborhood of one another. Naively, one may assume that a vortex loop

is divided by the periodic boundary into two pieces whose end points connect, but

in reality things are more complicated than that. For example, we may find line

segment A whose ending point on the periodic boundary is x1 and x2, while line

segment B’s ending point is x2 + L0 and x3, and line segment C’s ending point is

x1 + L0 and x3 + L0. Line segments A, B, C together form a single loop. As shown

in figure 2.4, a single vortex loop may be constituted by several line segments, as

adjacent lines are plotted in different color when crossing the periodic boundary.

As we realize that vortices are lines, we may further classify vortex lines into

two types: loops and non-trivial homology (NTH) lines. While it is easier to define

a loop, which is locally closed vortex lines, NTH lines may also be closed but the

difference is that NTH lines are closed only because we are in a periodic boundary
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Figure 2.4: Vortex loops identified by combining segments around a periodic bound-

ary. Adjacent vortex line segments are in different color indicating each time cross-

ing the boundary. To correctly identify vortex loops crossing the periodic boundary

several times one needs to collect all pieces carefully.

condition, and phase vortices are intersection of zeros of real and imaginary part

of the wave function, which is equivalently the intersection of two spheres, which

is homotopic to S1. The difference between loops and NTH lines is that is that

isolated loops may be resolved independently topologically, and can shrink away

and vanish upon varying the field parameters, while NTH lines may not be shrink

to infinitesimal because it persist a non-trivial homology to the topology space of

the whole region by “percolating” through it. Therefore, in a simpler way of saying,

we categorize loops to be “local” S1 while NTH lines to be lines that go across from

one boundary to another boundary through the whole space like a “percolated” line,

either closed or not. When the initial (t=0) wave field is periodic in x and y, its

temporal evolution is not necessarily periodic in time, depending on the dispersion

relation, therefore while all NTH lines are closed in spatial random wave ensemble,

not all NTH lines are closed for spatial-temporal random wave ensemble, but still

NTH lines may be distinguished from loops based on whether it "cuts" the plane
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cross section of the space into two parts such that one part may not be connected

to the other without crossing such NTH line.

The figure 2.5 plots the NTH line d’Alembert and Schrödinger wave field.

The NTH lines in d’Alembert are nearly straight lines because they can be seen

as segments of a very long loop cut by the boundary. On contrary, NTH lines in

Schrödinger may be very long because there is full periodicity on x, y, t. Vortices in

different color indicate that they are recognized as different vortices. In panel (b),

the gigantic vortex spans the whole space with great length by crossing through the

periodic boundary several times, while in panel (a) vortices are in different color

because they are connected.

x
y

zz

x y

(a) (b)

Figure 2.5: The NTH line found in the d’Alembert wave field in panel (a) and in

the Schrödinger wave field in panel (b). Due to the boundary periodicity, the NTH

lines in d’Alembert are cut on time boundary, while in Schrödinger they may be

very long because there is also periodicity on time boundary in Schrödinger wave

field.
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2.2 Analysis on Random Wave Vortices

2.2.1 Degree of Fractality of Vortex lines

Vortices of different length scale have different geometry and degree of fractality,

as shown in figure 2.6. There are small vortex loops and large vortex loop who

has different degree of fractality, and there is NTH lines that have similar degree of

fractality to large loop, which is of Brownian probability nature.

Figure 2.6: Vortices of different length scale plotted in different color in a local

region of simulation. The vortices in red are small ones while in blue are large ones.

Small and large vortices have different degree of fractality. Lines in green are NTH

lines. NTH lines are extensively long, and all green lines belong to a same NTH

line.

Fractals are commonly observed in nature, and the principle of fractality plays

an important part to the creation and formulation of nature. Fractals are a set of
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pattern which is repeated in different scale, and such repetition is usually due to the

scale invariance of dominant physical effect. Consider in a region where there exists

a field that apply certain effect to objects and such effect does depend on the position

of the object, then such effect is scale-invariant, meaning that such effect is constant

independent to scales. For example, the growth of tree branches is a straightforward

example of fractal. At certain node, the former branch bifurcates into two branches;

then at a later node, those two new branches both bifurcate so now there are four

branches. Following this trend, the number of branches increases in an exponential

speed, and further more since nearly all branches grow to the direction of the sun

light, they look even more united. This mechanism of branching at each node does

not depend on the position of the branch and simply takes place whenever there is a

node, and therefore this branching mechanism can be considered as a scale invariant

mechanism, whereas the tree branches form a fractal. This example also shows why

fractality and scale invariance is related to a quantity whose growth depends on a

power law. This is applied here to the configuration of space-time vortex filaments,

such as line length with respect to space-time distance between the endpoints. For

example, consider a power law function

f(x) = cxk (2.9)

has its domain on region (a, b). Then for x ∈ (a, b), had there been a scaling factor

m to x, then the function is

f(mx) = c(mx)k = mk · f(x) (2.10)

which is simply putting a factor of mk to f(x) while the function remains scale-

invariant.

As fractal geometry involves repeating a pattern across scales, the number

of times of such repetition defines the degree of fractality of such geometry. The
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fractal dimension is defined as the log of number of repeated pattern over the log of

unit length where such repetition takes place [Spr03], that is

D = − log(N)

log(s)
(2.11)

where N is the number of pattern repeated and s is the length of a period of the

curve.

A similar definition for curves in space of fractal geometry is the relation

between the Euclidean distance of two points on a curve and the arc length of the

curve between them, as shown in figure 2.7. Consider two points on a curve in space,

Figure 2.7: The Euclidean distance between two points on vortex loop plotted

against the arc length in log-log scale. For small scale loops where the log(arc length)

is under 4 the gradient is near 1 while for large scale loops over 5 the gradient is

near 1
2
. The region in between is of transition. This plot shows that vortex loops

of small scale have geometry of smooth curves while of large scale have geometry of

Brownian random walk.

denote the Euclidean distance between them as R and the arc length on the curve
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between that two points as l. Then the geometry of the curve may be characterized

by the relation between R and l. If there exists

R ∼ lD (2.12)

then such D may be called as the degree of fractality for the curve, because it

categorizes how long does a curve extend in a unit length, which is a constant rate,

in analogue to the number of patterns repeated in a unit length in equation (2.11).

Firstly consider the simplest example, which is straight line, and obviously it is

strictly R = l. Similarly, consider a circle-like curve, as the arc length l = rθ, the

Euclidean distance between two points is

R =
√

2r2 − 2r2 cos(θ) =
√

2r
√

1− cos θ (2.13)

≈ 2rθ ∝ l (2.14)

However, for Brownian random curves the relation between R and l is R ∼
√
l

because consider a random walk whose each step ~xi has length c, then after N steps

the mean displacement

〈~xN〉 = 〈
N∑
i=1

~xi〉 = 0 (2.15)

while the mean square displacement is

〈(~xN)2〉 = 〈(
N∑
i=1

~xi)
2〉 (2.16)

= 〈
N∑
i=1

~x2
i +

∑
i 6=j

~xi · ~xj〉 (2.17)

= c2N (2.18)

as 〈~xi · ~xj〉 = 0 for i 6= j. Then

R ≡
√
〈(~xN)2〉 = c

√
N (2.19)

∝ l1/2 (2.20)
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As the discretized arc length l = cN .

As shown in figure 2.7, vortex loops of different length scale have different

degree of fractal geometry such that they have different D for R ∼ lD. For small

loops of length below exp(4), D ≈ 1, meaning that small loops have fractal geometry

of smooth curves such as straight line or circular smooth curves. On the other hand,

for large loops of length above exp(5), D ≈ 1
2
, and large loops have fractal geometry

of Brownian random walks. While it is true that one may argue that a curve having

D ≈ 1
2
is only a necessary but not sufficient condition of being a Brownian random

curve, we find that in large loops the distribution of directions is such that the vortex

has an equal probability of turning in each direction, which makes the vortex loop

a Brownian random loop.

2.2.2 Vortex Length Distribution

Previously, there have been theoretical studies and predictions made based on dif-

ferent models in different scenarios regarding the length distribution of vortex lines,

such as cosmic strings [VV84] and loop soup CP n−1 model [Nah+13]. In the thesis

I present theoretical analysis and numerical simulation on the length distribution of

vortex lines.

The vortex lines may be classified into loops and NTH lines, where in d’Alembert

and Klein-Gordon the NTH lines stops at the boundary of time while in Schrödinger

the NTH lines gains the extensive length by crossing through the boundary and

winding through the space multiple times. In this subsection I show the universal

scaling relation of vortex loops and NTH lines length distribution.

The length distribution of vortex loops has universal scaling relation because

vortex loops of length greater than exp(5) are closed random walks, or equivalently
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random polygons, and form an ensemble of loops of fractal geometry. These loops

have length from small to large, and their specific construction may be different, but

they are all closed random walks with equal probability on each x-y-t direction. This

is saying that such loop ensemble has scale-invariance on the probability distribution,

and thus loops form a fractal, because by definition, fractals have certain "pattern"

repeated across scales, and in loop soup such "repeated pattern" is the closed random

walk.

With this fractality one may arrive at the length distribution of vortex loops.

Consider in a region where n is the number density of vortex loops. From dimen-

sionality, since the vortex loops are in three-dimensional space, the unit of n is 1/R3,

then as one increase the region by dR, there is a corresponding change on the density

dn, and from dimensionality there is

dn ∼ R−4dR (2.21)

Combining equation (2.20) and (2.21) it is apparent that

dn ∼ l−5/2dl (2.22)

as the loop length distribution of fractal Brownian closed random walk, and our

numerical simulation agrees to it, as shown in figure 2.8.

figure 2.8 plots the histogram of the loop length distribution in log-log scale.

It is evident that all four cases considered, which are the 3D random wave as solution

to the Helmholtz equation, and 2+1D random wave as solution to the d’Alembert,

Schrödinger, and Klein-Gordon’s equation, have universal scaling relation of the loop

length distribution, which is a gradient near −5
2
, in agreement to equation (2.22).

This scaling relation starts around exp(5.5) and ends around exp(8.5), and is in

agreement to figure 2.7, where the large loop starts to exist from length exp(5.5).

This is a cross supporting evidence that as loop length goes beyond certain level,
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Figure 2.8: The histogram of loop length plotted in log-log scale. In the plot, the

vortex loop from length of exp(5.5) ≈ 244 to exp(8.5) ≈ 4915 has a universal scaling

gradient near -2.5, which is in accordance to theoretical result. There are in total

four cases for comparison, which is 3D wave as solution to Helmholtz’s equation,

and 2+1D wave as solution to d’Alembert, Schrödinger, and Klein-Gordon.

which is exp(5.5) in our simulation, the loops starts to behave like closed random

walks.

Besides the length distribution of vortex loops, the length distribution of

NTH lines is also studied. The NTH lines percolate through the space, and do not

appear as loops. However, according to our analysis to the nature of vortices that

since the vortices is the intersection of two spheres, which are the zeros of real and

imaginary part of the wave field, they should be loops, therefore NTH lines are

ideally loops, but only appear not to be due to other reasons such as periodicity of

boundaries or the size of simulation. In some cases the NTH lines are cut by the
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boundary which has no periodicity due to the equation form, while in other cases

the NTH lines are not presented as loops because the simulation is always finite

while there could be part of the NTH line left outside of box. Either way, the NTH

lines can be considered as part of the super gigantic loop cut by the boundary, while

even such cut fragment is already of great length.

Given that the NTH lines are segments of gigantic loops, and since they

percolate through the space, we may approximately view them as very long lines,

as thus the density number n of the NTH lines is in unit R−1. Thus,

dn ∼ R−2dR (2.23)

and since equation (2.20)

R ∝ l1/2 (2.24)

Togther We get

dn ∼ l−3/2dl (2.25)

ans this scaling relation is observed in figure 2.9.

In figure 2.9 we plot the length distribution of NTH lines in log-log scale of

solution to d’Alembert and Klein-Gordon’s equation. Even with fluctuation it is

apparent that the NTH length distribution have a universal scaling gradient of −3
2
,

which starts around exp(9.1) and ends around exp(11.2), in agreement to theoretical

prediction. The plot does not include the NTH line length distribution of the solution

to Schrödinger and Helmholtz equation, due to very rare number of NTH line in

those simulation.
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Figure 2.9: The histogram of NTH length plotted in log-log scale. Due to the form

of Helmholtz and Schrödinger’s equation, the number of NTH lines is extremely rare

and makes it very difficult to generate enough sampling to observe a clear statistical

pattern of the NTH line length distribution in them. However, there are slightly

more NTH lines in the d’Alembert and Klein-Gordon’s equation, as shown in the

plot. The scaling gradient starts from around exp(9.1) ≈ 8955 and ends around

exp(11.2) ≈ 73130.

2.3 Vortex Analysis Result by Scales

There are in total three types of vortex lines, as shown in figure 2.10. The one of the

shortest length is the small loops. According to figure 2.7 they are mainly of length

below exp(4) while their mixture with large loops ends around exp(5.5). Small

loops are smooth curves and have fractal length dimension 1, but their statistical

behaviour is model dependent, such as small loops in the d’Alembert’s equation are

more horizontal while in the Klein-Gordon’s equation are more vertical. The second

54



Universal Statistics of Spatial and Spatial-Temporal Wave Chaos Vortices

type is the large loops, their universal scaling relation starts from length exp(5.5)

and ends around exp(8.5) and have gradient −5
2
. The large loops have fractal length

dimension 1
2
, and are effectively closed random walks of equal probability on each

x, y and t dimension. The third type is the NTH lines. Their scaling relation starts

around exp(9.1) and ends around exp(11.2). The NTH lines percolate through the

space-time at least one time, and since they are so long that each percolating branch

is more like approximately 1D line rather than 3D random walks. Thus even though

the NTH lines also have fractal length dimension 1
2
, their universal scaling gradient

is −3
2
.

We believe this classification and analysis of random vortex curves have broad

application scenarios because they focus on mathematical meaning of the random

curves without much limit from certain specific physical model. We hope the result

in this section may be applied to studies on optical vortices, superfluid vortices,

quantum chaos, wave chaos and many other cases where the vortices tangle in ran-

dom waves.
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Length

Small Loop Large Loop NTH Line

Figure 2.10: Three types of vortex lines plotted for direct comparison. The first

type is the small loops, they are smooth curves and have fractal length dimension 1.

The Second type is the large loops, they are closed random walks and have fractal

length dimension 1
2
. The third type is the NTH lines, they percolate through the

space with exceeding length, and also have fractal length dimension 1
2
.
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Chapter Three

Probability of Random Knot

In this chapter we propose and verify the general equation of knot probability in

random polygons. Sandy Taylor, my supervisor’s former PhD student and Postdoc,

generated the data and left without doing the analysis. I firstly repeated the method

of generating data, and then did the analysis. We discuss two types of polygons:

equilateral and non-equilateral, meaning that if the edge-length is constant or vary-

ing. We find an equation that can describe probability of all knot types in both

cases. Our result in R3 can be seen as a generalization to previous knowledge of

knot probability in Z3, and we believe our result may be applied to various problems

because the knot probability of random walks reflects the geometry nature of 3D

random walk. Contents in this chapter has been published as [Xio+21].

3.1 Generating and Distinguishing Knots

In this section we introduce how to generate knots and distinguish knot types for

later analysis.
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3.1.1 Generating Equilateral and Quaternionic Random Poly-

gon

We begin with a simple clarification between random walks and random polygons.

According to the definition, knots are topologically equivalent to loops, which are

closed, while in daily life people may consider strings with open ends as knots as

well since they are knotted locally. Therefore, we hereby clarify that we refer to

knots as their strict definition, which is closed loops instead of any strings that are

locally knotted. A problem comes naturally after this clarification is how to gener-

ate sampling as targeted, as the sampling being different from simply generating a

random walk, which is not closed. For instead, we generate random polygons which

are closed. We will explain in detail on our methods of generating random polygons

in this section.

We study the probability of knotted random polygons with the contemporary

computational ability privilege. In the past, the computational ability of computers

pose limit on research topics that requires heavy computation. However, as the

computing power increases significantly nowadays, people are now allowed to revisit

problems that could be better understood with high performance supercomputers.

We conducted a simulation with enormous number of random polygon sampling

that exceeds previous attempt. We have a magnitude of 109 number of sampled

polygons whose edge number goes up to 4000. Our analysis on knotted polygons

mainly focused at the range of edge number N from 50 to 3000 where we observe

the probability distribution of prime knots and composite knots. We analyzed over

108 magnitude of knots in this range of N, and such high data quality provides

confidence on accuracy to our analysis.

We generate and analyze two types of random polygons classified by their
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edge length distribution. The first type of random polygon is equilateral random

polygon, meaning that it is a polygon whose edge-length is all the same. The

second type is non-equilateral, specifically generated under Hopf fiberation mapping

[CDS13]. We compare the result from these two cases so that what holds between

different set-up is truly universal for knot probability of random polygons.

The method we use to generate the first type of random polygons follows

that of Cantarella and coworkers [Can+16]. It is an algorithm that enables ones to

generate Gaussian random polygons quickly and effectively. The principle of this

algorithm is first to generate a polygon with N edges as one hope at once. Then,

the polygon is folded in three-dimensional space in a way that the angle of folding

between edges is Gaussian randomly distributed. It is worth noticing that during

the second step of folding edges with rotational angle, edges are allowed to “cross”

each other so they are not real “solid” edges. After these steps of generation, one

obtains an equilateral polygon whose angles between edges are Gaussian random,

and therefore satisfy the need for a random polygon.

Cantarella refers this method as “action-angle” method because in this set-

up diagonal length and dihedral angles form a system of polygon moduli space, and

they can be considered as action-angle coordinates in the symplectic geometry sense.

Previous to Cantarella’s action-angle method, people use “sinc integral method” to

generate random polygons. The “sinc integral method” is to generate a polygon

each edge one after another determined according to a probability density function

adjusted based on previous edges. The advantage of Cantarella’s method is its time-

efficiency. It is shown by him that generating a N-edge polygon only takes time of

N5/2 magnitude.

The method we use to generate the second type of random polygons comes

from the Hopf fiberation mapping, as previously studied by Cantarella and coworkers
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[CDS13]. The Hopf fiberation mapping is a map from three-sphere S3 to two-sphere

S2, whereas each point in S2 comes from a circle S1 in S3. One may not directly

visualize S3 but may see S2 in R3. In order to distinguish the coordinates before

and after the Hopf map, we denote the coordinate of S3 to be x, y, z, w and of S2 to

be a, b, c, then the direct expression of Hopf Mapping from S3 to S2 is

a = 2(xy + zw)

b = 2(xz − yz)

c = x2 + z2 − (y2 + w2)

(3.1)

such that a, b, c are what we can visualize in R3 while x, y, z, w is in the pre-image of

the map. Based on the Hopf fiberation mapping, Knutson and Haussmann [HK97]

constructed a mapping from the complex Stiefel manifold, which here specifically

refers to a set of orthonormal 2-frame in n-dimensional space, to an n-edge polygon

in three-dimensional space. The process of generating the random polygon is as

follow. Firstly, generate a frame with Gaussian coordinate, which are two complex

vectors u and w whose real and imaginary part are Gaussian randomly generated

n-dimensional arrays.

u = a+ ib

w = c+ id

(3.2)

Secondly, perform Gram-Schmidt process on u and w to get new frame u and v. In

computer algorithm one may directly write as

u = |u|

v = w − (u∗ · w) · u

v = |v|

(3.3)

Thirdly, apply the Hopf map to the complex frames u and v to obtain the final
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random polygon as

a = u · u∗ − v · v∗

b = 2<(u · v∗)

c = 2=(u · v∗)

(3.4)

whose edge length distribution follows a beta distribution shown by Cantarella et.

al. [CDS13].

Following these algorithms, we generate random polygons with different edge

number N . The sampled edge number starts from every integer from 6 to 50, be-

cause 6 is the minimum number of edges that a polygon could possibly be knotted.

However, in the analysis we mainly looked at N starting from 40 to 50 for general

knotted behavior, because it is where polygons are random enough for a compre-

hensive study instead of limited to very simple knots. Then the edge number N

increases by 10 from 50 to 200, we keep such increase small enough so that when

we fits the probability equation for knots later, our data could be delicate enough

to reflect the difference from fitting with different parameters. Next we increase the

edge number by 50 going from 200 to 1000. For prime knots the probability func-

tion passes over the peak and starts the asymptotic decrease in this range, while for

composite knots the peak arrives at larger N and decreases more slowly, as will be

explained in more detail in later chapter. In the end, we increase the edge number

by 100 from 1000 to 4000. In the simulation, the larger edge number a polygon has,

the more difficult it is to be generated. Therefore, we have less number of polygon

samples at large N compared to at small N . This only affects our analysis on prime

knots with crossing number larger than 8 because their occurrence probability, which

is relatively low, fluctuates more obviously. Luckily, we are able to reach a general

conclusion on knots based on data we have, as will be further explained in later

chapters.
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3.1.2 Determining the Knot Type by the Alexander Polyno-

mial and the Reidemeister Move

As introduced in the previous chapter, we explained the definition of Alexander

polynomial, how it effectively categorizes knots, and how to compute it. However,

in practical calculation the performance could be enhanced by substituting polyno-

mials by numbers, because in computer algorithm it is easier to spot numbers than

polynomial. The method to substitute polynomials by numbers is to substitute t

in the polynomial by a certain number and then calculate the absolute value of

the polynomial. However, that certain number must be chosen carefully because

otherwise it is not sufficient to represent different polynomials by different num-

ber. For example, the Alexander polynomial for knot 41 and 51 is 1 − 3t + t2 and

1− t+ t2 − t3 + t4, if we substitute t by −1 we will get result of 5 for both polyno-

mial, which does not allow people to distinguish different knots based on polynomial

substitution.

Rather than using symbolic values ∆(t) of the Alexander polynomial, we

substitute t by three different values: −1, exp(2πi/3), and i, because each of these

values gives outcome of an integer, and together they give a set of three numbers

that are different as long as the original polynomial is different. One can certainly

pick more values for substitution to t, but that will spend more time for calculation.

In this way the Alexander polynomial of each knot is represented by three values

after the substitution, as example of prime and composite knots given in the table

3.1.

As the list shows, if we represent the Alexander polynomial by substituting

by these three numbers, we obtain a unique set of numbers for each knot type, and

therefore it allows us to verify the knot type by computing the Alexander polynomial
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01: (1, 1, 1) 31: (3, 2, 1)

41: (5, 4, 3) 51: (5, 1, 1)

52: (7, 5, 3) 61: (9, 7, 5)

62: (11, 5, 1) 63: (13, 7, 3)

71: (7, 1, 1) 72: (11, 8, 5)

73:(13, 4 ,1) 74:(15, 11, 7)

75: (17, 7, 1) 76:(19, 11, 5)

77 :(21, 13, 7) 31#31:(9, 4, 1)

31#41:(15, 8, 3) 31#51:(15, 2, 1)

31#31#31:(27, 8, 1) 41#41:(25, 16, 9)

41#51:(25, 4, 3) 41#41#41:(125, 64, 27)

Table 3.1: The three values of the Alexander Polynomial after substituting t by −1,

exp(2πi/3), and i

in terms of specific numbers instead of polynomial, and therefore simplifies the

calculation.

It is true that the Alexander polynomial may be questioned of its validity for

representing knots accurately because for higher crossing knots there exist seldom

examples of two different knot type sharing the same Alexander polynomial. How-

ever, we find that such confusion is statistically negligible, especially because as we

will show in later chapters, our results are mainly based on analyzing knots with

crossing number less or equal to eight, where the repetition of Alexander polynomial

is rare. We show the validity of representing knots by Alexander polynomial by con-

sidering the unknot (trivial knot) as an example, because the Alexander Polynomial

for the unknot is 1, which is the most commonly repeated Alexander polynomial

among knots. We show that the statistics of the unknot is not affected by other

knots whose Alexander polynomial is also 1 in the below paragraph since the pos-
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sible confusion is statistically negligible, as the minimal crossing number of them is

11, indicating very low probability of occurrence [Xio+21].

There are in total a number of around 3000 for all knots under 12-crossings,

and there are only four of them whose Alexander polynomial is 1, which are also the

only four knots whose Alexander polynomial value equals (1, 1, 1) after substituting

t by −1, exp(2πi/3), and i. This means that our method of substituting t by

−1, exp(2πi/3), and i for the value of Alexander Polynomial distinguishes knots

faithfully.

The four knots that has the Alexander polynomial equal to 1 which is the

same to the unknot are 11n-34, 11n-42, 12n-313, and 12n-430. In our observation, the

occurrence of the unknot has a data magnitude of 108, while the average occurrence

of the 11n-crossing knots and 12n-crossing knots is of 103 and 102 data magnitude at

the peak of their probability distribution. This means that the systematic error of

counting knots by their Alexander polynomial, caused by miscounting other knots

who share a same Alexander polynomial, is only in a magnitude of 10−5, which

is statistically negligible. While it is true that there exist more knots of higher

crossing number, and so there should be more knots whose Alexander polynomial

is 1. However, as we will show in later chapters, the probability of knots decreases

so rapidly as the crossing number increases, therefore we may see that the total

probability of miscounting higher crossing number knots as the unknot is convergent,

finite, and statistically negligible.

Another important and straightforward simplification that could be applied

to the calculation of Alexander polynomial is Reidemeister move as shown in figure

3.1.

There are three types of the Reidemeister move, and they simplify the ap-
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Figure 3.1: The diagram of the Reidemeister move in three types. The knot topology

is considered equivalent under these changes thus they can be adapted to simplify

the appearance of knots.

pearance of knots without changing its topology. Compared to actions like cutting

or reconnecting lines that change the knot type of a given knot, the Reidemeister

move does not change the topology nor the knot type of a given knot, therefore

we may say that Reidemeister move only simplify the appearance of a knot while

keep the knot type consistent. As shown in the plot, the first type of Reidemeister

move does the action of "twisting": one may twist a line or twist it back without

changing the Alexander polynomial. Algebraically this is because in the first type of

Reidemeister move, lines going in a crossing and then going out right after it cancels

each other in terms of their term in Alexander polynomial, meanwhile this is also

apparent from view that such move does not change the knot type. The second

type of Reidemeister move moves one piece of line over another, and the third type

of Reidemeister move moves one piece of line over another crossing. The second

and the third type of Reidemeister move does not change the knot type because
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they do not remove any real crossing of lines but only perform actions that keep

the knot type consistent before and after such action. In the sense of topology,

equivalence does not break during any movement or action such that only causes

change smoothly but not abruptly, such as creating or annihilating discontinuity.

Therefore, the three Reidemeister moves are actions that preserve the topology and

knot type of knots. While the knot type is preserved, what is changed is the total

number of crossings that appear. In another word, Reidemeister move only take

way crossings that does not change the topology of knots, and therefore saves the

computing time that would be spent on calculating those unnecessary crossings that

could be removed by the Reidemeister move, which give no effective information.

As the figure 3.2 shows, in the random polygons that are generated, we find

that only a small portion of it is knotted while a greater part of it is unknotted,

which should be removed during Reidemeister moves. In the first row of the plot, we

show how the trefoil knot (knot 31) exists in random polygons. The trefoil knot is

the simplest type of knot whose diagram is shown in the beginning of the second row.

Then in the following plots we indicate by the red segments the truly knotted part

in polygon, and the four of them are all trefoil knot. These four knotted polygons

are selected from a range of total length from small to large, while they are all

of the same knot type. As the total length of the polygon increases, the portion

of the knotted part decreases. This phenomenon shows that even for a very large

random polygon, the truly knotted part could be a small portion of it. Therefore,

this is an effective example of the importance of performing Reidemeister move to

speed up the knot identification, since removing the unknotted part by Reidemeister

moves and only compute the Alexander polynomial of the knotted part is more time

efficient than directly computing the Alexander polynomial of the whole random

polygon.
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01 31 41 51 52 61 62 63

(a)

(b)

(c)

N = 50 N = 100 N = 500 N = 1000

Figure 3.2: Spotted knotted part (coloured in red) in the total random polygon.

The first row is the diagram of knots. The second row is the knot 31 detected in

random polygons with different length, where the detected knotted part is coloured

in red. The longer the random polygon is, the smaller is the knotted part, as shown

in the figure. The third row is similar to the second row but the knot type is 76

instead of 31. This figure is generated by Sandy Taylor as part of our published

paper [Xio+21], while row (a) is generated by Keith Alexander.

3.2 Analysis

As introduced in the chapter of introduction, previous knowledge on the knot prob-

ability of random polygons was worked out on Z3 lattice model, where Sumners and

Whittington [SW88] analytically showed that the probability equation is a purely

exponential term, meaning that the probability of the unknot decreases exponen-
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tially as the edge number increases, therefore one expects the random polygon to

be almost certainly knotted when the edges number tends to infinity. However, as

we will further investigate in this chapter, we find the knot probability equation on

R3 is different to previous knowledge on Z3, and requires an additional power law

term. Furthermore with such high accuracy of data we are able to investigate the

correction terms of the knot probability equation, which in the end appears as an

asymptotic equation. We raise and verify that the following formula as our ansatz

is able to describe the probability of all knot types in random polygons

PK(N) = CKN
vK exp(− N

NK

)[1 + βKN
−1/2 + γKN

−1 + o(N−1)] (3.5)

The PK(N) is the probability of a random polygon being as the knot type K at

polygon edge length N . The CK is an amplitude coefficient that is dependent on

the knot type. The N vK term is the power law term, and specifically we find that

vK = v0 + np. For equilateral random polygons we find v0 = −0.19 ± 0.001 and

np is the number of components in in a given knot, such as np=0, 1, 2, 3. . . for

the unknot, prime knots, composite knots with 2 components, and composite knots

with 3 components. . . For Quaternionic random polygons we find vK to have the

same value but only a larger error bar: v0 = −0.19±0.003. This means that vK is a

universal coefficient for 3D random polygons independent to the distribution of edge

length, and we expect its universality to exist in a wide range in statistical physics.

The exp(−N/NK) term is an exponential term where we find NK = 259.3± 0.2 for

equilateral random knots and NK = 430.5± 1 for quaternionic random knots. The

exponential term is not as universal as the power law term, but still is universal in

the extent based on models of random polygon generation. For example, the NK is

the same for all equilateral random knots, no matter it is the unknot or prime knots

or composite knots. The following terms are the correction terms, written out as an

asymptotic expansion of the probability function. We observe that β and γ are knot

type dependent, while their values are close for knots with close crossing number,
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such as β and γ of 31 is closer to that of 41 than to 61.

Figure 3.3: The probability distribution data and fit of prime knots (a) and com-

posite knots (b) as a function of N , the edge number of the polygon. We plot the

data and the fitting based on our ansatz and they are very close to each other. In

the inset, We plot the probability in log scale and in panel (a) and they seems to be

parallel to each other, suggesting a universality which is dominated by exponential

term of large N .

The panel (a) of figure 3.3 shows the probability of some common prime knots
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as a function of N , the number of edges. It is observed that usually the probability

amplitude of knots with less crossing number is higher than that of knots with higher

crossing number. This is natural in a statistical intuition that knots with higher

number of crossings are usually more complicated and therefore less likely to exist.

All curves reach their probability peak around 250 to 300, and vanish asymptotically

close to zero at N around 2500 to 3000. The inset plot has a logarithmic scale on

y-axis, which is the knot probability. It appears that all lines tend to the x-axis

with the same gradient, because for large N the equation is dominated by the

exponential term, which appears to be horizontal line in logarithmic scale. The

error bar is plotted but is too small to see because the sampling is large. Consider a

total sample of n polygons with edge number N , and m of them belong to the knot

type K, then p̂ = m/n is the unbiased estimator of p, the probability of occurrences

of knot type K. Define q̂ = 1− p̂, then the variance of distribution m is npq and the

corresponding standard deviation is σ =
√
npq. Therefore, the standard deviation

of p̂ is σ/n =
√
pq/n

The panel (b) of the plot shows the probability of the unknot, prime knot

31, and composite knots with two and three components. As the number of compo-

nents of knots increase, the peak of the probability function arrives later at larger N ,

while the amplitude is also lower. The inset plot has a logarithmic scale on y-axis,

which is the probability. Curves tends to straight lines with different gradient as N

increases indicate that with different number of components in the knot, the proba-

bility functions do not have same power law and exponential term. This behaviour

is different to the inset in the panel a where curves have same gradient indicating

that they might have same exponential and power law term. However, it is only a

deduction from the appearance, and we will further investigate and prove our claim

in detailed analysis in the following.
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We compare result obtained from quaternionic non-equilateral random poly-

gon. The figure 3.4 is plotting the same thing to the above plot, which is the

probability of prime knots (panel (a)) and composite knots (panel (b)), but gener-

ated in our quaternionic model, which serves as a comparison to our result obtained

from equilateral random polygon model.

Figure 3.4: The probability distribution data and fit of prime knots (a) and com-

posite knots (b) as a function of N, the edge number of the polygon, of quaternionic

non-equilateral case. The difference between the equilateral and the quaternionic

systems is that the distributions have a wider span over N in quaternionic case, but

the overall styles are similar.

In the plot we observe that the probability function of knots have the same
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qualitative behaviour to that in equilateral random polygon model, such as prime

knots in the inset plot where probability is in logarithmic scale are in the same shape

with the same asymptotic line gradient, and composite knots with different number

of components arrives at their probability peak at different N . However, there is

difference between these two sets of plots. While the equilateral random prime knots

arrive at their peak at N around 250, the quaternionic random prime knots arrive at

their peak at N around 450. Similarly, the total span of the probability function of

the quaternionic model is wider than that of the equilateral model. Take the prime

knot 31 as an example, while in quaternionic model it is just starting to approach

its asymptotic flat tail at N = 3000, in equilateral model it has already been in

such flat tail since around N = 2000. Similarly, composite knots arrive at their

peak at larger N in quaternionic model compared to equilateral model. Therefore,

one may conclude that the probability distribution of knots is in the same structure

between different knot models, while the quaternionic knot has larger span. This

model based difference comes from the fact that if the edge length is not a constant,

those edges with shorter length are less probable to take place as effective crossings

that lead to knot.

From the comparison on the result obtained from these two models, we should

be confident that the probability of knots is a phenomenon with model-independent

universality on certain degree. Therefore, in the following content we will explore

such universality in quantitative leveled detail.

We start verifying our result from our claim that vK = v0 + np. If we look at

the ratio of the probability of two knots, then we obtain

PK1

PK2

=
CK1

CK2

N vK1−vK2 exp(−NK2/NK1)(1 +
βK1

βK2

+
γK1

γK2

) (3.6)

It is obvious from the equation that if vK1 and vK2 are not equal, or if
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NK1 and NK2 are not equal, then the power law term or the exponential term

is nonzero, then the probability ratio should approach infinity or zero in a power

law or exponential trend as a function of N . However, as the panel (b) in figure 3.5

shows, the probability ratio of two knots with same number of components reaches a

constant asymptotically, therefore it is a clear indication that vK and NK is constant

for knots with same number of components.

In panel (a) of figure 3.5 we observe that the probability ratio of two knots,

where the numerator has one more component than the denominator has an asymp-

totic gradient of 1 in the log-log plot. According to the probability ratio equation

we derived earlier, this is an indication that vK is independent to the knot type but

is dependent to the number of components of the knot, and vK increases by 1 if

the number of component of the knot increase by 1. This is a direct evidence of

our claim that vK = v0 + np. This also shows that NK is independent to both knot

type and number of component of the knot, because the exponential term gives no

contribution to the plot, otherwise it would not be an asymptotic gradient to 1. In

the inset of the plot we plot the gradient deviation as from 1 (panel (a)) and 0 (panel

(b)). In panel (a) we choose the fitting range from 200 to 2400 and the gradient

deviation is from 0 to 0.06 to 1. In panel (b) we choose the fitting range from 700

to 1800 and the gradient deviation from 1 is mainly around 10−4, while the largest

deviation comes from ratio of 31/63, since 63 has relatively smaller data count, which

leads to larger fluctuation. The error bar is this plot reflect the variance of ratio. For

random variable A and B with expectations E(A) and E(B), and variance var(A)

and var(B), the ratio R = A/B has expectation E(A/B) = E(A)/E(B) and the

variance var(A/B) = [var(A)/E(A)2 + var(B)/E(B)2] ·E(A/B)2 for covariance of A

and B is zero, such as in this case.

We observe similar phenomena to figure 3.5 from quaternionic non-equilateral
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Figure 3.5: The probability ratio of knots with one more component over the other

(a), and knots with the same number of component (b), as function of N , the edge

number of polygons. Panel (a) is plotted in log-log scale while (b) is in normal scale.

The inset plots the gradient deviation from 1 in (a) and 0 in (b), such very small

deviation is convincing that the line gradient in (a) and (b) of knot probability ratio

is uniformly 1 in (a) and 0 in (b).

random polygon as well, indicating a universal law between two cases. We do not

repeat the corresponding plot for quaternionic model because the idea is the same

but there is larger fluctuation due to data quality.

Now we have verified that the exponential term exp(−N/NK) is universal
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within the random polygon generation model, and the power law term N vK only

depends on the number of components in the knot such as vK = v0 + np where

np is the number of components and v0 is the coefficient for the unknot, which is

equivalently a "knot with zero component". The question rises right after this is

how to determine the specific value of them, which are NK and v0.

We do not determine the value of v0 andNK solely based on fitting one certain

knot type, even though knots such as 01 or 31 has relatively better data quality than

other knots, because there are in total five variable CK , vK , NK , γ and β in the

probability function and during the fitting they may vary to balance for the best fit.

This is saying that there could be several sets of values for these variables such that

they all fit well for the data, and one can not tell from the fitting deviation which

set is the best. Further more, the best fitting vK and NK also varies when fitting

different knot types, and making us unsure about the uncertainty of systematic bias

by determining the value of vK and NK solely based on one certain knot type.

Instead, we determine the value of v0 and NK by comprehensively considering

knots with different number of components. We consider the unknot, the 31 knot

which has the best data quality among prime knots, 31#31 and 31#31#31 which

has the best data quality among composite knots with two and three components.

For each knot type, we go through a range of v0, and find the best fitted NK to the

data of each knot type. Therefore, in this way we generate a plot where for each

knot type there is a set of (v0, NK) for the best fit, and also an error range which

is 95 percent confidence range for the fit. At this stage, we also allow the beta and

gamma to vary for the best fit.

As the plot shows, for each knot type, the best fit NK decreases and v0

increases, and the variation of each v0 NK pair falls almost on a line with certain

gradient. Since these four knot types we looked at have different gradient, they
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hence have an intersection of lines, and we find that intersection to be around

(v0, Nk) = (−0.19± 0.003, 259.3± 0.2). Furthermore, the error at this intersection

is also the smallest, therefore we determine (-0.19, 259.3) to be the most effective

(v0, Nk), since this value of fitted parameters should be effective comprehensively

for all knot types.

Figure 3.6: Determining the value of NK and v0 by varying these two terms together

and looking for the intersection of fitted result based on a comprehensive set of

knot types. We find ((NK , v0) to be around value (259.3 ± 0.2,−0.19 ± 0.003)

because fitting curves of knots with different number of components intersect in this

neighbourhood and the estimated error range is the smallest.

In the inset of the plot, we zoom in for a more detailed plot. We look at the

situation near our best fit (v0, NK), and find that even though not all lines intersect

at the same place, the intersection is fairly between v0 equals -0.19 and -0.191 and

NK equals 259.2 and 259.6, as the line of 31 intersect the line of 33
1 near v0 = −0.191
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while the rest intersections takes place basically in the middle of the range from

v0 = −0.19 to v0 = −0.191.

With similar method we look for the best fit v0 and NK for the quaternionic

model as well, as shown in figure 3.7. Admittedly, our data quality of the quater-

nionic model is not as good as our equilateral model, because due to the complexity

of the algorithm generating the random polygons, it takes more time to generate

quaternionic random polygons. Even though, we still managed to generate quater-

nionic random polygons of magnitude 108, and our result on quaternionic case,

though not as good as equilateral case, is at least clear enough to reach a conclu-

sion. In the plot where we followed the same method introduced above, we find the

best fit (v0, NK) for quaternionic random knots is around (−0.19±0.003, 430.5±1).

It is worth noticing that the v0 we find for the quaternionic case is nearly the

same to v0 in equilateral case. This suggests the universality of the power law term in

the knot probability function regardless of the model (equilateral or quaternionic).

Such universality may extends to the scope of general 3D random polygons, and

we are expecting to see our result on this universality to be found in other future

studies on knot probability. Meanwhile the NK we find for the quaternionic case is

larger than the NK in equilateral case, and this agrees to our previous observation

that the total probability function has a larger span on N in quaternionic case.

In the inset of the plot we zoom in to see the details. We look for the

intersection of the four lines and find that they do not intersect perfectly at one

place, but instead there is a range of v0 and NK for the intersection and we pick

that range to be the error range of the fitted value of v0 and NK . While the 33
1

intersect with 31 and 01 at v0 around −0.193, the 32
1 intersect with 31 and 01 at

around v0 = −0.187. So we estimate the error range of v0 to be −0.19± 0.003, and

correspondingly NK = 435.0±1. The error range we find for the quaternionic model
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Figure 3.7: Determining the value of NK and v0 by varying these two terms together

and looking for the intersection of fitted result based on a comprehensive set of knot

types. We find ((NK , v0) to be around value (−0.19±0.003, 430.5±1) because fitting

curves of knots with different number of components intersect in this neighbourhood

and the estimated error range is the smallest.

is larger than the error range we find for the equilateral model, but both of them are

acceptable, and most importantly, are certain enough to point out the universality

of the power law term for knot probability.

Now as we have seen the universality in the knot probability, we understand

that while there is different knot types for prime knots and prime knots can get

together to form composite knot, and while the appearance of knots may be dif-

ferent, the probability function of different knots in fact has great universality in

it. However, it is equally important to point out those parts that are knot type

dependent, and together they will complete our understanding of knot probability.
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To start, it is obvious that the probability amplitude CK , is knot type de-

pendent. In figure 3.8 we plot the CK in logarithmic scale against nc, the number of

crossing, and find that the mean Ck in logarithmic scale of each crossing is almost

decreasing linearly. It means that the probability of knots decreases exponentially

as the crossing number increases linearly in integer. This shows that most common

knots that takes place statistically in nature are more likely to be simpler knots,

and knots with higher crossing number are less likely to be observed statistically.

Figure 3.8: The probability amplitude CK plotted against nc, the number of crossing

of knots, from 3 to 8. We find that the probability amplitude decreases as the number

of crossings increases, which reflects an increase of the complexity of knots.

For up to 7 crossing knots, it is true that knots with higher crossing number

always have a smaller CK compared to knots with lower crossing number, however,

comparing the CK of 7 crossing knots and 8 crossing knots we find that some 8

crossing knots have CK larger than 7 crossing knots. If we interpret CK intuitively

as the bizarreness or complexity of knot structure, then the result means that some 8
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crossing knots may actually be simpler than 7 crossing knots. This means that while

the mean probability of knots decreases exponentially with the crossing number, the

individual probability of certain knot type may be higher than some knots with less

crossing number but higher complexity. As the crossing number of knots increases,

we expect this phenomenon to take place more frequently, but since the number

of knots with even higher crossing number is even more vast, we do not discuss

those situations individually, yet we present table 3.2 for CK stopping at 8 crossing

knots for prime knots. In the table we also include CK of some common composite

knots. We write CK in terms of minus logarithmic scale so that the value looks more

consistent and are of the same magnitude. We also include the error estimate from

95% confidence range.

It is interesting to examine the ratio of CK of two knot types, because the

ratio of CK , reflecting the ratio of the probability of two knot types, could reflect the

statistical nature of the random polygons based on the system model. For instance,

if two physical systems has the same probability ratio of two knot type, then it is

likely that these two systems share some similar nature statistically, because knot

probability could reflect the statistical characteristics of systems as its topological

defect.

We find the CK ratio of 31 over other knot types. C31/C41 ≈ 4.6, C31/C51 ≈

13.0, C31/C52 ≈ 7.3, C31/C61 ≈ 22.0, C31/C62 ≈ 20.7 and C31/C63 ≈ 34.1. This

means that a trefoil knot is about 4.6 times more likely to take place than the

figure-eight knot in equilateral random knots.

We also present a list of CK in quaternionic model for prime knots and

composite knots. For 8 crossing prime knots we only give an estimate CK value

for 88 and 819, because their CK is larger than that of most other 8 crossing knots,

whose data quality is limited by the probability amplitude and makes it hard to give
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K 31 41 51 52 61 62 63

− logCK 4.84 6.36 7.41 6.83 7.93 7.87 8.37

error 0.003 0.01 0.015 0.015 0.024 0.024 0.022

K 71 72 73 74 75 76 77

− logCK 9.88 9.10 9.25 9.74 8.82 8.64 9.45

error 0.03 0.03 0.023 0.03 0.029 0.024 0.027

K 81 83 84 86 87 88 89

− logCK 10.19 10.87 10.36 9.79 10.11 9.49 10.66

error 0.38 0.4 0.38 0.2 0.24 0.12 0.22

K 812 813 814 816 817 819 01

− logCK 10.42 10.11 9.41 10.93 11.28 9.83 1.3

error 0.37 0.25 0.13 0.4 0.44 0.21 0.001

K 31#31 31#41 31#51 41#41 41#51 31#31#31 31#31#31#31

− logCK 11.65 12.53 13.72 14.77 15.15 18.84 26.37

error 0.07 0.03 0.037 0.06 0.05 0.02 0.03

Table 3.2: The probability amplitude in minus log and corresponding error range of

prime and composite knots for equilateral model.

a good fit to them.

The CK ratio in quaternionic random polygon model, in terms of ratio of 31

over other knots is: C31/C41 ≈ 4.85, C31/C51 ≈ 13.87, C31/C52 ≈ 8.0, C31/C61 ≈

23.57, C31/C62 ≈ 23.8 and C31/C63 ≈ 38.86. Comparing these result to CK ratio

listed above for equilateral random knots, we find these two CK ratio value lists are

close but not identical. We find our CK ratio result is different from previous results

on lattice model by Janse van Rensburg and Rechnitzer [JR11], but close to previous

studies by Deguchi [DT97] done on R3 random polygon model which is off lattice.
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K 31 41 51 52 61 62 63

− logCK 5.14 6.72 7.77 7.22 8.30 8.31 8.80

error 0.01 0.02 0.026 0.024 0.034 0.036 0.05

K 71 72 73 74 75 76 77

− logCK 10.29 9.48 9.60 10.29 9.48 9.59 9.85

error 0.09 0.046 0.048 0.084 0.046 0.046 0.062

K 86 819 31#31 31#41 41#41 31#31#31 01

− logCK 10.28 10.29 12.47 13.24 15.55 20.10 1.46

error 0.079 0.08 0.1 0.08 0.06 0.2 0.006

Table 3.3: The probability amplitude in minus log and corresponding error range of

prime and composite knots for quaternionic model.

Therefore, our result suggests that the CK ratio may be a universal phenomenon for

random knots in R3, bur may be different to random knots on lattice model which

is Z3.

Besides the probability ratio CK , the position of the probability peak is an-

other characteristic that distinguish knot types. While we have seen that for prime

knots, the great universality leads to the knot-type independence of the power law

term and exponential term, suggesting that the dominant term of prime knot prob-

ability only differs by amplitude term CK , there in fact still remains the correction

term that is different for different knot type, and a direct contribution from the

correction term is the position of the probability peak.

Prime knots have the same dominant term, which is the exponential term and

the power law term, and these two terms make the shape of prime knots probability

look very similar. However, these probability functions arrive at their peak at dif-

ferent N, as the figure 3.9 shows. For knot 31, its peak appears at around 240, while
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for knot 41 the peak position is at around 250. Following this trend, prime knots

with higher crossing number arrives at their peak at larger N , as shown in the plot.

This is natural because knots with higher crossing number has more complicated

structure, and therefore need higher number of edges to form such polygon, so as

the result it is natural that knots with larger size and more complicated structure

need more edges to form and to arrive at the probability peak.

Figure 3.9: The position of the probability peakNmax plotted against nc, the number

of crossings of knots. We find that the Nmax shifts higher as nc increases, and this

phenomena is consistent to our result on the correction terms β and γ, which are

responsible for such shift of Nmax.

Meanwhile, there is exception in this trend, and that is obvious from the

plot. It is apparent from the plot that there is a data point in blue circle with eight

crossing number that has very small Nmax, meaning that there is an eight crossing

knot whose peak position is far less than other eight crossing knots, different enough

to be spotted by eyes, and is even small compared to the peak position Nmax of most
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seven crossing knots. As it turns out, this eight crossing knot is 819, the first non-

alternating knot. Knot 819, as the first non-alternating knot, is special in sense

of its simple and unique structure. The uniqueness of the Nmax of 819 is a good

reflection of its unique structure: it distinguish it from other eight crossing knots,

in this intuitive difference of Nmax, since the statistical probability is a reflection of

the geometry of knots.

We therefore believe that the Nmax is a reflection of the geometry of knots,

and of course on the other hand, its algebraic essence comes from the correction

terms that we will further discuss in the following content.

We find the correction terms of knot probability to be knot type dependent.

Previous studies on knot probability did not give much firm assertion to the cor-

rection term of knot probability, while we inherit from previous anticipation that

the correction terms are expansion led by terms of N−1/2 and N−1, whereas the

original asymptotic expansion of the knot probability function is fundamentally N∆

and N−1, and we hereby agree to previous studies and reckon ∆ to be −1/2.

The figure 3.10 is we plotting the probability ratio of knots against one over

the square root of N . The blue circle is the data of the probability ratio, while the

yellow curve is the fitted curve of the probability ratio and the red straight horizon-

tal line is the ratio of CK , CK1/CK2, which is theoretically where the probability

ratio curve should approach as N goes to infinity, or equivalently as 1/
√
N goes to

zero. The green shaded area is the estimated error range of the CK ratio, which is

calculated based on the error range of the CK of two knot types. The variance of

the ratio of two knot probability, var(PK1/PK2) has expression

var(
PK1

PK2

) =

(
var(PK1)

E(PK1)2
+

var(PK2)

E(PK2)2

)
E(
PK1

PK2

)2 (3.7)

Since the covariance of the two knot type probability PK1 and PK2 is zero, and E is
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the expectation value.

Figure 3.10: The ratio of knot probability plotted against 1/
√
N . The curves ap-

proaches zero with non-zero gradient suggests that the correction terms of different

knot types are different. While some ratio such that P31/P31 has a smaller asymp-

totic gradient suggesting that the correction terms of these two knots are close,

apparent non-zero gradient such as P31/P52 suggests that the correction term of

these two knots are more different.
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As we have realized in above content, the power law and the exponential term

of the knot probability are constant terms for prime knots, therefore plotting the

ratio against 1/
√
N gives us information on the correction terms. If the ratio of two

prime knots plotting against 1/
√
N approaches the ratio of CK , CK1/CK2, with zero

gradient as 1/
√
N approaches zero, then it means that the β/

√
N term of the two

knots is constant. On the other hand, if the ratio of two prime knots approaches

the ratio of CK , CK1/CK2, with nonzero gradient as 1/
√
N approaches zero, then

it means that the β/
√
N term of two knots is knot type dependent. Furthermore,

if the β/
√
N term of two knots are not the same, the larger is their difference, the

greater absolute value of the gradient of the probability ratio curve it has.

In the figure, we firstly look at knot 31 over knot 41 plotting against 1/
√
N .

The data of probability ratio approaches around 4.6 as N tends to infinity, which

equivalently is 1/
√
N tends to zero. The data approaches the CK ratio as almost

a flat curve, and such very small gradient of the curve implies that the β value of

knot 31 and 41 is very close to each other, and this agrees to our observation on the

peak position of knots, whereas the peak of knot 31’s probability is close to that of

knot 41, indicating that their correction terms are close as well. Comparatively, the

ratio of knot 31 over knot 51 and 52 have a greater gradient of the curve as they

tend to the ratio of Ck as 1/
√
N approaches zero. This suggests that the difference

between correction term of 51 and 52 is larger than that between 41 and 31.

Besides the probability ratio of prime knots, we also plot the probability ratio

of knots with different number of component. Specifically we plot knots multiplying

N over knots with one more component. We plot P01 · N/P31 , P31 · N/P321
, and

P321
·N/P331

. We find they nonetheless have nonzero gradient as they tend to the CK

ratio, and suggesting that they all have different beta value. The set of six plots

are the ratio plots with best data quality, even though there is still data fluctuation.
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This is because what we plot, the probability ratio of knots, is very sensitive and

more sensitive than previous plots we made on other quantities, because the error

of the ratio of two incidences is magnified by the error of each incidence, where here

the two incidence is the two knots’ probability.

Similarly, our result observed from the equilateral model also exist in quater-

nionic model as the figure 3.11 shows. The data quality of our quaternionic model is

not as good as good as the equilateral so we picked the two sets of ratio plots with

the best data quality, and it is clear enough that our claim on the correction terms

being knot type dependent holds for quaternionic model as well. Plotting is similar

style, the blue circle is the data of probability ratio, while the yellow curve is the

fitted curve and the red horizontal line is the Ck ratio value, and the green shaded

area is the error range. The probability ratio of 31 over 41 and 01 ·N over 31 both

have nonzero gradient as 1/
√
N approaches zero.

Acknowledging the fact that the correction terms are knot type dependent,

we estimate the value of them from the best fit value while setting the power law

and the exponential term with known values and only let the CK , β and γ to vary

for the best fit. We present a list of the best fit β and γ in the following chart.

We do not give a specific error range to β and γ individually because it only makes

sense to talk about them together since they vary together for the best fit result to

the data.

Now we have a clear and deep understanding on each term of the knot prob-

ability formula. One issue we need to clarify is about the probability of the unknot,

since our result does not exactly agree to previous anticipation on the probability

of the unknot.

In previous studies, people anticipated the probability of the unknot P01 to
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Figure 3.11: The ratio of knot probability plotted against 1/
√
N . Similar to the

equilateral model, but the data quality is not as good, so there is larger fluctuation.

Therefore we only present two cases with best data quality.

be dependent to the exponential term but not to the power law term. The study

on the probability of the unknot is probably the earliest and the primal motivation

on the study of knot probability in general physics perspective, because the unknot

is a single knot type that represent a state of being “unknotted”, while other knot

types such as 31 or 41 are all a certain knot type of a “knotted” state. Sometime
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K 31 41 51 52 61 62 63

−βK 1.24 1.14 1.30 1.44 3.63 3.47 3.79

−γK 12.5 21.9 29.7 29.9 22.1 22.9 20.8

K 71 72 73 74 75 76 77

−βK 5.65 5.91 5.60 4.24 6.55 6.78 6.38

−γK 9.97 10.3 12.0 22.5 5.40 4.03 7.43

K 81 83 84 86 87 88 89

−βK 8.77 10.24 8.65 9.18 8.68 9.66 8.92

γK 8.67 20.6 7.96 10.8 7.26 15.28 9.50

K 812 813 814 816 817 819 01

−βK 9.78 9.15 10.16 8.31 9.62 7.10 -3.8

γK 16.2 12.2 18.8 2.64 15.2 5.7 8.3

Table 3.4: The value of correction terms β and γ for prime knots from 3 to 8

crossings. The values are obtained from the terms balancing each other for the best

fit. For simple composite knots there is β321
= +1.7, γ321

= −48.9 and β331
= +3.3,

γ321
= −69.

people may care more about whether a loop is knotted or not, rather than what

specific knot type it is in. While it is recognized that, as the number of edges

of a random polygon increases to infinity, such polygon will eventually be almost

certainly knotted. Since exponential decays are commonly observed in statistical

physics and fundamentally appreciated in connection to scale invariance, previously

people anticipated the probability of the unknot decays exponentially. However, as

we have shown in our result, a single exponential term is not enough to describe the

probability of the unknot, while the true essence of the unknot probability is really

the probability of a knot with zero component, as falling into the universal class

of all knot types with different number of components. While we have shown the
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consistency of our model on the probability of all knot types including the unknot,

we show in the following why it is not enough to simply fitting the unknot probability

without the power law term.

In the figure 3.12 we plot the data of the unknot probability in logarithmic

scale in blue circle against N . We plot three types of fitting the unknot in three

color: black, red, and blue representing fitting the unknot data with the solely the

exponential term CK exp(−N/NK)(1 + β/
√
N + γ/N) with the universal NK we

found, fitting with our formula which is a combination of power law and exponential

term CKN
vK exp(−N/NK)(1 + β/

√
N + γ/N), and fitting with the best fit NK for

solely the exponential term CK exp(−N/N0)(1 +β/
√
N + γ/N) . Simply saying the

black and the blue curve are fitting the unknot data with two possibly best choice in

exponential term only, while the red curve is fitting the data with both exponential

and power law term as we propose. It is obvious that the red curve fits significantly

better than the other two to the data. In the inset we plot in the same color the fit

deviation of these three models,

Fit Deviation = |P01 − f01|/P01 (3.8)

which is the relative deviation from the fit to the data. The fit deviation suggests

that for as N increases, the fit deviation of the two models with the power law

term increases linearly, while our model keeps fitting well to the data. The black

curve starts to have a systematic deviation starting at N around 300, and the blue

curve starts to have a systematic deviation starting at N around 700. Therefore,

it is a strong support to our model, and shows the deficiency of fitting without the

power law term. Developing from previous knowledge to our correction is somehow

like going from Newtonian mechanics to relativity: previous knowledge is not en-

tirely wrong, but just need some amendment when put into a more general context.

Newtonian mechanics works fine in our daily life, but when the speed of the moving
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object is very high then it is the relativity that reveals a more true essence. Previous

knowledge on the unknot probability that thought there is only exponential term is

not entirely wrong, and it looks alright for small N . However, when the N is large

and when we perform a high quality data simulation, we find that the fit using a

single exponential term is poor, and we propose a new model with additional power

law term that describes the unknot probability more accurately.

Figure 3.12: Comparison between three types of fitting the unknot data by plotting

the probability against N . It is evident that our ansatz fits significantly better than

the other two equations that do not contain the power law term. In the inset we

plot the fit deviation of the three curves and the two equations without the power

law term have a clear systematic deviation.

In quaternionic model we find similar result. The blue circle is the data of the

unknot in logarithmic scale plotted against N , the three fitted curve in black, red,

and blue are fitted by CK exp(−N/NK)(1+β/
√
N+γ/N), CKN vK exp(−N/NK)(1+

β/
√
N+γ/N), and CK exp(−N/N0)(1+β/

√
N+γ/N). Similar to our color indica-
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tion in equilateral model analysis, these three colors indicate fitting by the exponen-

tial term with NK we found for universal class, fitting by power law and exponential

term together as we propose, and fitting by the exponential term with best fit N0.

We find similar result in quaternionic model to equilateral model. The red

curve fits better than the blue and black curve, and as shown in the inset, the black

curve fit deviation starts to grow almost linearly from N equals around 500, and the

blue curve fit deviation starts to grow almost linearly from N equals around 1000.

It is evident that the red curve fits substantially better than the other two curves

without a clear systematic growth of fit deviation. The systematic deviation of the

black and blue curve in this plot is not as significant as that in the equilateral model,

and this is because the total span of knot probability in the range of N is larger in

quaternionic model as shown in previous plot figure 3.13, and arrives at probability

peak at later at larger N as shown in figure 3.13. Similarly, the systematic deviation

of fitting the unknot grows slower than that in equilateral model. However, as larger

N , the unknot probability is very small and decreases very quickly, leading to larger

data fluctuation and much more effort to push forward simulation for even larger N .

Therefore, we stop our analysis at N = 3000, as the imperfection of fitting without

the power law shows its obvious trend in a linearly growing systematic deviation.

Readers may question the meaning and significance of showing how adding

a power law term helps increasing the fitting quality, since if one fits with one more

term, then it is likely and natural that the fitting quality is improved. Actually,

there are two types of “better fit”, distinguished by whether the improvement of the

fitting is systematic or not. Take our case as example. In our analysis, if we fit with-

out the power law term, there is a linear growth of fit deviation as N increases, and

such deviation is systematic: it is not a random noise, but a linear growth. Compar-

atively, if we introduce the power law term, such systematic deviation vanishes, and
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Figure 3.13: Comparison between three types of fitting the unknot data by plotting

the probability against N . It is evident that our ansatz fits significantly better than

the other two equations that do not contain the power law term. In the inset we

plot the fit deviation of the three curves and the two equations without the power

law term have a clear systematic deviation. This is similar to figure 3.12 but with

large span on N , which is consistent to other results from quaternionic model.

only leaves noise-form deviation. This means that introducing the power law term

improves the quality of fitting systematically, which is different from another type

of improvement, that a systematic error decreases to a smaller systematic error, or

a noise decreases to a smaller noise. If introducing a new fitting term only results

in a smaller noise, then one may not be certain that such new term is necessary and

reflecting nature. However, since we reduced systematic deviation by introducing

the power law term, we believe such term is necessary and fundamental. Further-

more, having the power law term as part of the unknot probability falls into our

big universal equation that well explains the probability of all knot types, where the
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unknot is equally a knot type with zero component. Therefore, we believe our result

improves the previous knowledge on knot probability.
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Chapter Four

Wave Vortex Worldsheet in

Space-Time

In this chapter we show how to construct complex field that satisfies the d’Alembert

equation and whose vortex is knotted as designed, which evolves in space-time. We

find that while the topology of the vortex worldsheet in space-time is invariant under

Lorentz boost, the topology of vortex in time-slice is dependent to the reference

frame of the observer. We also discuss the vortex speed and find the superluminal

and subluminal region on the vortex worldsheet.

4.1 Fundamental Topological Events in Space-Time

As we introduced in the introduction chapter, previously people [Bra28; Mil16]

have developed techniques on constructing knots in static three-dimensional complex

space in terms of u, v which are

u =
x2 + y2 + z2 − 1 + 2iz

x2 + y2 + z2 + 1
(4.1)

v =
2(x+ iy)

x2 + y2 + z2 + 1
(4.2)
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In this section we develop such technique and generalize it from constructing static

knot in 3D space to constructing knots in 3+1 space-time that satisfies the d’Alembert

equation.

The wave equation found by d’Alembert in 1D is

∂2u

∂t2
= c2∂

2u

∂x2
(4.3)

and for general expression one may concisely write

1

c2
∂2
t ψ −∇2ψ = 0 (4.4)

which is one of the most commonly seen wave equation and describes various me-

chanic waves such as water wave and sound wave. While it is true that the simplest

non-trivial solution to the d’Alembert equation is the plane wave equation as we

used in the chapter of 2+1 random wave statistics, the solution to the d’Alembert

equation may take various form, and one may even transform a given equation in

(x, y, z) into an equation in (x, y, z, t) which is solution to d’Alembert equation and

remains the same at t=0.

The method we use to transform certain initial state into a function that

satisfies the d’Alembert wave equation is as follow [CH08]. The basic idea is that

the propagation of wave in space-time is only dependent to its past light cone,

which intersects with the sphere of radius ct centered at it, so one can integrate it in

spherical coordinate to obtain the function from the initial state. This is a type of

Green’s function that if one knows the solution to a differential equation at certain

point, and if the differential operator is linear, then one can find a general solution

to the differential equation. Specifically, we start from designing a function whose

vortex is knotted through the construction from u and v, and we let it be the known

solution to the d’Alembert wave equation at t = 0. Then we use Green’s function

to integrate the function at time zero, so that we obtain a function that satisfies the
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d’Alembert equation and whose vortex at time zero is knotted as designed. Consider

a complex function Ψ dependent on (x, y, z), through the construction from u and

v, the vortices in Ψ is knotted as designed. Consider such function and due to the

spherical nature of u and v for simplicity we only take the numerator of Ψ because

this only changes the unit of the field, then the equation may be transformed into

form of spherical wave which is replacing the coordinate (x, y, z) into

Ψ′(x+ ct cos(φ) sin(θ), y + ct sin(φ) sin(θ), z + ct cos(θ)) (4.5)

Then integrate it in spherical coordinate

Ψs =
1

4π

∫ π

0

∫ 2π

0

Ψ′ sin(θ)dφθdθ (4.6)

Then take the derivative in time to obtain Ψt

Ψt =
d

dt
Ψs (4.7)

and this Ψt satisfy the d’Alembert wave equation such that

1

c2
∂2
t ψt −∇2ψt = 0 (4.8)

and it equals to the initial static function at time zero such that

Ψt,t=0 = Ψ (4.9)

Following this procedure, we obtain equation Ψ(x, y, z, t) that satisfies the

d’Alembert equation and has geometry as designed at time is zero. Denote this

transformation as F so that Ψt obtained in equation (4.7) will be defined as

F (Ψ) := Ψt (4.10)

Further more, in later context we may set c = 1 for c in d’Alembert equation (4.4)

for simplicity, unless stated otherwise.
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Then the simplest example of this transformation may be performed on Ψ = u

whose vortex at t = 0 is a flat loop, and after transformation F it becomes

F (u) = x2 + y2 + z2 + 2iz − 1 + 3t2 (4.11)

This field F as function of (x, y, z, t) has vortex of a loop because F (Ψ, t = 0) = u,

but as shown in figure , the whole world sheet of the vortex, is a sphere.

Time

x

Figure 4.1: The vortex world sheet, equivalently the set of zeros in the space-time

of F(u), is a sphere, which is the space-time trajectory of a loop from its creation to

annihilation.

The space-time trajectory of this vortex is a sphere, because it is what a

loop swipes around from creation to annihilation. Since the vortex loop at each

time cross-section is two dimensional in this case, the whole vortex world sheet is

three-dimensional.

We present analytical analysis to the vortex world-sheet, such as spotting the
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topological event and finding the vortex speed.

The topological event in this case is the creation and annihilation of the

loop. As shown in figure 4.1, the loop grows from small to large and then shrink

from large to small. The "north pole" and "south pole" of the sphere is where the

vortex appears and disappears. At these two points, the vortex shrinks to the origin

point x = y = z = 0, plugging this into Ψ = 0 one obtains the time of topological

event as

tevent = ±
√

3

3
(4.12)

To find the vortex velocity, one firstly express the wave field in terms of the

real and imaginary part as

Ψ(r, t) = ξ(r, t) + iη(r, t) (4.13)

and the associated current J is

J = =(Ψ∗∇Ψ) (4.14)

and the vorticity Ω is

Ω =
1

2
∇× J

= ∇ξ ×∇η
(4.15)

Since the vortex is the zeros of the real and the imaginary part of the wave, which

is

ξ(r, t) = 0, η(r, t) = 0 (4.16)

As we are looking for v = dr
dt

differentiating ξ and η one obtains

dξ(r, t)
dt

=
∂ξ

∂t
+
∂ξ

∂r
· dr
dt

= ξt +∇ξ · v = 0

(4.17)
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and similarly

dη(r, t)
dt

=
∂η

∂t
+
∂η

∂r
· dr
dt

= ηt +∇η · v = 0

(4.18)

Pulling the above two equations together one has

v(r, t) =
(ξt∇η − ηt∇ξ)× Ω

ω2
(4.19)

where ω = |Ω|

With the equation of velocity we may find the superluminal and subluminal

region of the vortex world sheet, which is the region where the vortex speed, which

is the norm of the vortex velocity, exceeds the light speed c = 1 in space-time. From

η = 0 we have z = 0, then from ξ = 0 we have

R2 + 3t2 − 1 = 0 (4.20)

where R =
√
x2 + y2. From equation (4.19), the speed of Ψ = x2 + y2 + z2 + 2iz +

3t2 − 1 is

s =
3|t|
R

= 1 (4.21)

Thus together with 4.20, the time when the vortex speed exceed the light speed is

tlum = ±
√

3

6
(4.22)

Thus for t ∈ (−
√

3
3
,−
√

3
6

) and t ∈ (
√

3
6
,
√

3
3

) the vortex is superluminal while for

t ∈ (−
√

3
6
,
√

3
6

) the vortex is subluminal, as shown in subplot (a) in figure 4.2, where

(b) is the region on the vortex world sheet after Lorentz boost.

Before going further it is necessary to discuss the ground of existence of

superluminal vortices. In a naive understanding of the theory of relativity, nothing

travels faster than light. In a more accurate understanding of relativity, only object

of zero mass, such as photons, may travel in the speed of light, and anything carries
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(a)

(b)

t

y x

t

xy

Figure 4.2: Superluminal and subluminal region, colored in red and cyan, on the

vortex world sheet of the sphere, and its transformation after the Lorentz boost

v = (0, 0, 0.4c)

mass or information may not travel faster than the speed of light. However, the

phase vortex may travel faster than the speed of light because it is only a phase,

rather than a “thing” or object. The reason that phase velocity may be greater

than c is that the phase is not an object with mass or information, but only an

observation to conscious, which is not concrete as real object.

An example of superluminal phase velocity is the movement of a light from

light house as it swipes through the eyes of an observer away, or similarly a light from

a torch as it swipes through a region on the wall in front of it. To the observer of the

lighthouse or the light spot on the wall, the light may travel faster than the speed of
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light, because it is only an illusion that the light is "swiping through". The actual

movement of the light is traveling in speed of c straightly from the lighthouse/torch,

and it is in reality not swiping around. It is only to the observer who is considering

the whole process as one united event, that the light spot appears as moving faster

than c. When a light spot on the wall appears at one position and then appears

at another position in a later time, the appearance of this two light spot is only

“moving” in the eyes of the observer because the observer consider the whole process

as one united event. However, in reality, it is just that one light spot appearing

at different position, rather than the light spot is truly moving on the wall. What

moves is only the light from the torch and the rotation of torch, and the light spot

on the wall does not move, yet the light spot only appears as moving to the observer.

This whole process of light spot, as intensity changes at different position and

time, is an example of the phase velocity, and how phase velocity may travel faster

than c. The phase velocity is not the velocity of a single object moving by itself,

but rather an observation to a group of objects whose relative displacement appears

as if the intensity is moving with an velocity. Therefore, the phase vortex, which is

zeros of the phase, has a concrete ground of traveling faster than c.

The difference between the phase velocity and the velocity of concrete object

is that concrete objects have mass, and requires infinite energy for the acceleration

to be superluminal, while phase velocity is only an appearance, and exist only de-

pending to the recognition of observer. However, this dependence to observer is

different to the uncertainty principle in quantum mechanics, because the observa-

tion does not affect the phase velocity. Yet, the existence of phase velocity requires

the recognition to the appearance of incidence as one united event.

Besides loop creation and annihilation, another type of topological event is

the reconnection, as shown in figure 4.3.
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Time

x

Figure 4.3: The vortex world sheet of reconnection process. Two curves approaches

close and cross each other, and then become another two curves that have different

two-ends to curves before the reconnection.

The reconnection is a process of three different states, which is before the

crossing, crossing, and after the crossing. For the first stage, consider two curves

a and b whose end points are a1, a2 and b1, b2, like the bottom two curves in figure

4.3, and they tend closer and closer to each other. Then at the crossing state, a

and b intersect at a point, as the third layer in the figure. Then at the third state,

the there are two separate curves, but they are not a and b, because the end points

have changes. The two curves may be named c and d because the two end points of

c is a1, b1 while the two end points of d is a2, b2, as shown in the upper two curves

in the figure. Therefore, the reconnection is a process that two curves of end points

a1, a2 and b1, b2 becoming two curves of end points a1, b1 and a2, b2 gradually with a

middle state where two curves intersect with each other.
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The equation of this reconnection is simply a complex hyperbolic equation.

The basic hyperbolic equation writes

x2

a2
+
y2

b2
− z2

c2
− 1 = 0 (4.23)

and our complex analogue to it is

ax2 + by2 + cz2 + idz + e = 0 (4.24)

Through our transformation F , the 3+1D transformation of equation (4.24) is

e+ ax2 + by2 + cz2 + idz + (a+ b+ c)t2 = 0 (4.25)

If we set (a, b, c, d, e) = (−1, 1,−1, 1, 1), then the speed of vortex in equation (4.25)

is

speed =
t2√

X2 + Y 2
(4.26)

and if we set (a, b, c, d, e) = (−2, 1,−1, 1, 2) for the reconnection simulation, then

the speed of vortex in equation (4.25) is

speed =
2|t|√

4X2 + Y 2
(4.27)

The superluminal and subluminal region on the vortex world sheet of the recon-

nection and its transformation after the Lorentz boost v = (0, 0, 0.4c) is shown in

subplot (a) and (b) of figure 4.4.

It is worth noticing that on a single simultaneous vortex it is possible that

part of it is superluminal while part of it is subluminal, as shown in figure 4.4. On

the surface of the manifold the centre region is superluminal, while the vortex is

the total horizontal cross-section, meaning that part of the vortex near the center is

superluminal while part of it near the edge of the manifold is subluminal.

The reason that we state the loop creation and the reconnection to be two

fundamental topological events for vortex world sheet is that they have different
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t

t

x

x

y

y

(a)

(b)

Figure 4.4: Superluminal and subluminal region, colored in red and cyan, on the

vortex world sheet of the reconnection, and its transformation after the Lorentz

boost v = (0, 0, 0.4c)

index value in terms of critical point on a 2-surface. At each time cross-section of

the space time, which is a 3D space, the vortex loops are topologically equivalent to

a one-dimensional sphere, S1. Then the vortex world sheet, which is what the vortex

loop swipes through in time, may become a 2-surface, which is a two-dimensional

manifold that can be transformed from a plane. By definition, a point on a surface

has two degrees of freedom: on each vortex line points have one degree of freedom,

and then as vortex lines move in time, these points also move in time with another

degree of freedom, thus in total space-time points on the vortex world sheet move

in two degrees of freedom.
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For comparison and local conclusion, we plot the sphere and the reconnection

together, in terms of separated vortices, vortex world sheet in space-time distinguish-

ing superluminal and subluminal region, and vortex world sheet both after Lorentz

boost v = (0, 0, 0.4c) while distinguishing superluminal and subluminal region in

figure 4.5.

t

y x

t

y x

t

y x

t

y x
t

y x

t

y x

(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Superluminal and subluminal region, colored in red and cyan, on the

vortex worldsheet of the sphere and the reconnection, and their transformation after

the Lorentz boost v = (0, 0, 0.4c)
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The loop creation and annihilation event marks local maximum and minimum

of the vortex world sheet and have index value +1, and they are the source and

sink on the sphere of its vortex world sheet. On the other hand, the intersection

point during the reconnection is a saddle point. Denoting the curves before the

reconnection as a1, a2 and b1, b2, and after the reconnection is a1, b1 and a2, b2, then

suppose the first vortex is going from a1 to a2 and the second vortex is going from b2

to b1, then after the reconnection the curve is going from a1 to b1 and then b2 to a1.

Therefore, at the intersection point of the four segments, the vortex is going inward

on two face-to-face segments and going outward on two face-to-face segments. Thus

on one dimension it is sinking while on the other dimension it is sourcing, so that it

is a saddle point.

Since a critical point in vector field is either a sink/source or a saddle point,

the loop creation/annihilation and reconnection represent the two types of funda-

mental topological events. With the PH theorem equation (1.32) they are linked to

the Euler characteristic of the vortex world sheet.

We may apply the PH theorem to the examples of loop creation and annihi-

lation, and to the loop reconnection. The Euler characteristic of a sphere is 2, and

the vector field on it has one source and one sink whose sum of index is 2. A single

reconnection has a saddle point whose index is −1, and its vortex world sheet is

equivalent to a solid whose vector field is pointing inward, so k is odd, then together

there is
∑

index = −1 = −1 · 1 = χ.

We now verify another fundamental example which is the vortex world sheet
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of field

Ψtorus = 4a3 + a4 + 5t4 + 4a(t2 − (x+ iy)2 + (i+ z)2)

+ 10t2(x2 + y2 + (i+ z)2) + ((−2 + x)x+ y(−2i+ y)

+ (i+ z)2)(x(2 + x) + y(2i+ y) + (i+ z)2)

+ 2a2(1 + t2 − x2 + y2 + z(2i+ z))

(4.28)

which is a torus shown in figure 4.6. The figure4.6 is another example of verifying

x

Time

Figure 4.6: The vortex world sheet of Ψtorus that forms a torus in space-time. The

whole process includes a loop creation, a reconnection, and the above reversed which

is a reconnection and then a loop annihilation.

the PH theorem. On the torus, there are two reconnections, whose sum of index

is −2, and there is a loop creation and annihilation, whose sum of index is 2, thus

in total the index of critical points on the torus is 0, and it agrees to the Euler

characteristic of a torus which is zero.
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As we are now familiar with these fundamental topological events, at the end

of this subsection we quickly revisit the Lorentz transformation for preparation to

the next subsection. The Lorentz transformation does not change the topology of

the vortex worldsheet in space-time, but it changes the topology of what appears in

time-slice.

The Lorentz transformation is a basic concept in physics describing how the

space-time in one frame of reference is transformed into another frame of reference.

Let the space-time X1 be (x, y, z, t), then the space-time after a Lorentz transfor-

mation with velocity v = (vx, vy, vz) is X1 ·B where

B =



γ −γvx −γvy −γvz

−γvx 1 + (γ − 1)v
2
x

v2
(γ − 1)vxvy

v2
(γ − 1)vxvz

v2

−γvy (γ − 1)vxvy
v2

1 + (γ − 1)
v2y
v2

(γ − 1)vyvz
v2

−γvz (γ − 1)vxvz
v2

(γ − 1)vyvz
v2

1 + (γ − 1)v
2
z

v2


(4.29)

as γ = 1/
√

1− v2, and v is normalized in unit of c = 1.

It is apparent that the Lorentz transformation does not change the topol-

ogy of the vortex worldsheet in space-time, because the Lorentz transformation is

a homeomorphism such that the topology before and after the transformation is

equivalent. By definition, a homeomorphism is a continuous bijection whose inverse

is also continuous. The Lorentz transformation and its inverse are obviously contin-

uous because they are even differentiable, and it is obviously bijective (one-to-one

and onto) from the form of the equation, which is even linear for the Lorentz boost.

Thus, the Lorentz transformation is a homeomorphism and does not change the

topology of the vortex worldsheet in space-time. However, as we will show in the

next subsection, the Lorentz transformation does change the topology in terms of

the knot type of time-slice in different frame of reference.

109



Wave Vortex Worldsheet in Space-Time

4.2 Knot Dynamics in d’Alembert Equation and Rel-

ativistic Decomposition

Now as we have introduced the basic knowledge and example, we discuss in this

chapter the dynamics of knots in d’Alembert equation and how they may be decom-

posed under Lorentz transformation.

The field whose vortex is a trefoil knot is Ψ = u2 − v3, thus from equation

(4.7) the function of the field that satisfy the d’Alembert equation meanwhile has

vortex of trefoil knot at time zero is

Ψ = F (u2 − v3)

= x6 + 3x4y2 + 3x4z2 + x4z(4i) + 21x4t2 − x4 − 8x3 + 3x2y4 + 6x2y2z2 + x2y2z(8i)

+ 42x2y2t2 − 2x2y2 + x2y(−24i) + 3x2z4 + x2z3(8i) + 42x2z2t2 − 6x2z2 + x2zt2(56i)

+ 35x2t4 − 14x2t2 − x2 + 24xy2 + y6 + 3y4z2 + y4z(4i) + 21y4t2 − y4 + y3(8i)

+ 3y2z4 + y2z3(8i) + 42y2z2t2 − 6y2z2 + y2zt2(56i) + 35y2t4 − 14y2t2 − y2 + z6

+ z5(4i) + 21z4t2 − 5z4 + z3t2(56i) + 35z2t4 − 42z2t2 − 5z2 + zt4((140i)/3)

+ z(−4i) + 7t6 − (35t4)/3− 7t2 + 1

(4.30)

Observing the vortex in equation (4.30) which is 3+1 dimensional, one may

plot the vortex at different time first and then combine them in the same figure as

shown in figure 4.7.

In figure 4.7, in temporal sequence firstly there is an event of loop creation.

Then the vortex loop grows larger and twists, and then the reconnection takes place

and the vortex becomes a trefoil knot. The time of these topological events may be

obtained by solving Ψ = 0 , x = y = z = 0 for t, because the vortex implies Ψ = 0

while the loop creation, annihilation and reconnection takes place at x = y = z = 0
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x

Time

Figure 4.7: The dynamics of formation of knot 31 from a critical point. As time

advances, the loop creation takes place, and then the loop extends and deforms.

After a reconnection the loop become a trefoil knot, and regulate its shape equivalent

to the static trefoil knot at t=0. The whole process is from past to time zero.

for the equation. Specifically, the time of topological events solves ±1.45 and ±0.35,

which corresponds to the loop creation/annihilation and two reconnections, as the

whole process shown in figure 4.8

figure 4.8 is a comprehensive illustration to the whole process of the trefoil

knot, and is equivalent to figure 4.7 plus its time-reversal. The topological event
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Time

x

Figure 4.8: The dynamics of formation of knot 31 from a critical point and then

endure time reversal to merge back. Firstly there is a loop creation, and then the

reconnection takes place the vortex becomes a trefoil knot. Afterwards is the time

reversal process that the trefoil knot endures a reconnection and decomposes into a

loop, which later annihilates.

at t = ±1.45 corresponds to the loop creation and annihilation at the bottom and

the top of figure 4.8. The topological event at t = ±0.35 corresponds to the two

reconnection such that one transforms the loop into a knot while the other one

transforms the knot back into the loop. At t = 0, the vortex is equivalent to the

trefoil knot constructed in static.
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The whole process of this trefoil knot dynamics is viewed in time slice, while

the whole vortex world sheet is a continuous 2-surface. Since there are one loop

creation, one loop annihilation, and two reconnections on the vortex world sheet,

from Poincare-Hopf theorem it is easily seen that the total sum of indices is 1+1−2 =

0, and agrees to the torus whose Euler characteristic is 0. Since the vortex world

sheet is oriented 2-surface it is not possible for its manifold to be circle or Klein

bottle. It also agrees to the fact that the trefoil knot is a torus knot, meaning that

the trefoil knot dwells on the surface of a torus. Therefore, we may see the vortex

world sheet as a torus and the whole process in figure 4.8 to be on the surface of a

torus.

With same algorithm we construct the field whose vortex at time zero is a

figure-eight knot and also satisfy the d’Alembert equation. Recall the static field

whose vortex is figure-eight knot is Ψ = 64u3 − 12u(3 + 2(v2 − v̄2))− 14(v2 + v̄2)−

(v4 − v̄4), then with the transformation F, the 3+1 field equation is

113



Wave Vortex Worldsheet in Space-Time

Ψ = F (64u3 − 12u(3 + 2(v2 − v̄2))− 14(v2 + v̄2)− (v4 − v̄4))

= −7 + 63t8 + 7x8 − 96ix5y + 7y8 + 78iz + 242z2 − 278iz3 − 278iz5 − 242z6 + 78iz7

+ 7z8 + y6(−22 + 78iz + 28z2) + x6(−78 + 28y2 + 78iz + 28z2)

+ t6(−798 + 588x2 + 588y2 + 1638iz + 588z2) + y4(56− 150iz − 286z2 + 234iz3 + 42z4)

+ y2(78− 150iz + 56z2 − 428iz3 − 506z4 + 234iz5 + 28z6)

+ x3(−192iy3 + y(−32i+ 192z − 192iz2))

+ x4(−56 + 42y4 − 150iz − 398z2 + 234iz3 + 42z4 + y2(−178 + 234iz + 84z2))

+ t4(882x4 − 2016ixy + 882y4 − 2646iz − 6678z2 + 4914iz3 + 882z4

+ y2(−2058 + 4914iz + 1764z2) + x2(−3234 + 1764y2 + 4914iz + 1764z2))

+ x(−96iy5 + y3(32i+ 192z − 192iz2) + y(96i+ 192z + 192z3 − 96iz4))

+ x2(22 + 28y6 − 150iz − 56z2 − 428iz3 − 562z4 + 234iz5 + 28z6

+ y4(−122 + 234iz + 84z2) + y2(−300iz − 684z2 + 468iz3 + 84z4))

+ t2(342 + 252x6 − 1728ix3y + 252y6 − 1134iz − 3636iz3 − 4698z4 + 2106iz5 + 252z6

+ y4(−738 + 2106iz + 756z2) + x4(−1746 + 756y2 + 2106iz + 756z2)

+ y2(392− 2484iz − 5436z2 + 4212iz3 + 756z4) + x(−1728iy3 + y(1728z − 1728iz2))

+ x2(−392 + 756y4 − 2484iz − 6444z2 + 4212iz3 + 756z4

+ y2(−2484 + 4212iz + 1512z2)))

(4.31)

and the vortex in this 3+1 field is the dynamics of the figure-eight knot, as

shown in figure 4.9 and 4.10.

Figure 4.9 shows the formation of a figure-eight knot. Firstly there is a loop

creation, then there is another loop creation. Then there is a reconnection so the

vortex becomes a link. From the middle of the link there is the third loop creation,
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Time

x

Figure 4.9: The dynamics of formation of knot 41. The topological events in chrono-

logical order are firstly two loop creation, and then a reconnection to make the vor-

tices into a link. Then there is another loop creation and reconnection, so finally it

forms a figure-eight knot.

then it reconnects with the link and the whole vortex becomes a figure-eight knot.

Figure 4.10 is the figure 4.9 plus its time-reversal. There are firstly two

loop creation events, then a reconnection transforms the vortex into a link. A

loop creation takes places and followed by another reconnection. so at time zero

the vortex is a figure-eight knot. Then the vortex endures a reconnection and the
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x

Time

Figure 4.10: The whole process of dynamics knot 41, which is figure 4.9 plus its

time-reversal.

isolated loop annihilates, so the vortex is a link. Finally, the link reconnects into

two loops and the two loops annihilate one after another.

We now show how the figure-eight knot constructed may be decomposed

under Lorentz boost such that it is not knotted in another frame of reference.

While in the rest frame of reference the vortex in equation (4.31) becomes

figure-eight knot, under a Lorentz boost of velocity (vx, vy, vz) = (0, 0, 0.4c) the

vortex never become figure-eight knot nor even knotted, but only a link with a
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separated loop, as shown in figure 4.11 and 4.12.

Time

x

Figure 4.11: The vortex that forms knot 41 in the rest frame of reference under a

Lorentz boost with velocity (vx, vy, vz) = (0, 0, 0.4). As shown in the plot the Betti

number of the space-time manifold does not change but the vortex does not become

a figure-right knot. The loop that was born inside the link does not reconnect with

the link into a figure-eight knot, but for instead move in the space-time and then

get absorbed by one loop of the link.

Figure 4.11 shows the dynamics of the vortex under a Lorentz boost. Firstly

there are two loop creations and a reconnection transforming the vortex into a link,

and after that, the third loop comes from the reconnection on the side of one link,
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yet the third loop does not reconnect with the link in the same way to the vortex

in the rest frame. Rather, the third loop moves in isolation to the link, until it is

absorbed by the side of the link.

The Betti number of the vortex world sheet in space-time is invariant under

Lorentz boost, and both in frame of reference with or without Lorentz boost there

are in total three loops. The first two loops form a link in both frames with or

without the Lorentz boost, yet the third loop is isolated from the link under the

Lorentz boost, while in comparison it reconnect with the link and form into a figure-

eight knot in the rest frame. The figure-eight knot and the link plus isolated loop

have same Betti number and they slices from two space-time manifolds of equivalent

topology, yet they appear of different topology in different frame of reference. Such

knot type difference is accounted to "ambient isotopy", which is a measure of whether

the ambient space of object can be continuously distorted to another. Loops of

different knot type yet with same homology have different ambient isotopy.

Figure 4.12 is the complete process of the vortex world sheet under Lorentz

boost. The process is symmetric in time in terms of topological events. In the

beginning there are two loop creations and a reconnection transforming them into

a link, and correspondingly in the end there are two loop annihilations following an

unlinking process. In the middle, there is an isolated loop moving in the middle of

the link. To observer it looks like as if the loop is "shooting" or "launching" from

one side of the link to another side of the link.

Comparing the complete dynamic process of the vortex loop with and without

Lorentz boost in figure 4.12 and figure 4.10, we show that the knot type is not

relativistic-invariant, and is dependent to the frame of reference. Without Lorentz

boost, the vortex forms a figure-eight knot by reconnecting a link with a loop in the

middle of it, however, with Lorentz boost, such loop does not form figure-eight knot
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x

Time

Figure 4.12: The whole process of the figure-eight knot under the Lorentz boost.

Unlike figure 4.10 in the rest frame of reference, the vortex under Lorentz boost

never become a figure-eight knot.

with the link. The Lorentz boost does not change the overall topology of vortex

world sheet in space-time, but it changes the time slice for observers in different

frame of reference, and topological events rely on the sequence of emergence of

homology. Lorentz boost only bring distortion to the space-time manifold without

changing its topology, yet cutting the distorted manifold from different angle leads

to different time slice, and bring different sequence of emergence of homologies in

the space-time manifold.
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In terms of the Poincare-Hopf theorem, there are in total three loop creation

and three loop annihilation, and there are in total four reconnections, so the total

sum of critical point index is 6−4 = 2. Since the velocity is pointing inwards on the

boundary to the manifold, the Euler characteristic is −1 · 2 = −2. It agrees to the

fact that the figure-eight knot is on the surface of a two-holed torus, whose Euler

characteristic is −2.

Thus here we arrive at one of the central result in this chapter, that the

Lorentz boost brings topology change to time-slice in different frame of reference.

Topology as a mathematical concept has been widely adapted in a wide scope of

scientific research because it measures invariant that is persistent to perturbations.

For example in vortex dynamics, a small perturbation may affect the shape of the

vortex, such as bending its local geometry, but it may less likely to change the

topology of the vortex, such as a vortex loop is still a loop if its local geometry is

changed, while the topology is not changed. However, we now see that topology

may be changed under Lorentz boost: a pair of reconnection in the rest frame may

appear as a loop in another frame of reference, and a knot may be unknotted in

another frame of reference. This finding does not violate the fact that Lorentz

boost is a homeomorphism that preserve the topology of space-time manifold, yet

it exaggerates the limitation of the observer that observations are only time slice

of the space-time, and one may not observe the past and future of an incident

simultaneously in the time of his own frame of reference, while such sequence of

events may be changed in another frame of reference.
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4.3 Designing Knot with Time Dependence in Wave

Equation (4.7) transforms a 3 dimensional wave field whose vortex is a knot as

designed, into a 3+1 dimensional wave field where the vortex is the designed knot

and its dynamics of emerging and disappearing. However, such 3+1 field has time-

reversal symmetry, and the knot at time zero has no "velocity", referring that both

the wave field and the time derivative of the wave field is not explicitly containing t

at t = 0. Now we generalize our construction and show how to construct wave field

that is not symmetric in time and has nonzero velocity at time zero.

Taking the trefoil knot as an example. In terms of u, v the field whose vortex

is a trefoil knot is u2−v3, and it is the state equivalent to the 3+1 wave field at time

zero. Obviously u2−v3 has no time dependence, yet we may add a time-dependence

term to it, and let it be wt. Then, one may design a wave field Ψ

Ψ = u2 − v3 +
wt

(x2 + y2 + z2 + 1)3
(4.32)

and for simplicity of calculation without changing its topology by taking its numer-

ator Ψn which is

ψn = x6 + 3x4y2 + 3x4z2 + x4z(4i)− x4 − 8x3

+ 3x2y4 + 6x2y2z2 + x2y2z(8i)− 2x2y2 + x2y(−24i)

+ 3x2z4 + x2z3(8i)− 6x2z2 − x2 + 24xy2

+ y6 + 3y4z2 + y4z(4i)− y4 + y3(8i)

+ 3y2z4 + y2z3(8i)− 6y2z2 − y2 + z6

+ z5(4i)− 5z4 − 5z2 + z(−4i) + tw + 1

(4.33)
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and send it through the transformation equation (4.7) to obtain

F (Ψn) = x6 + 3x4y2 + 3x4z2 + x4z(4i) + 21x4c2t2

− x4 − 8x3 + 3x2y4 + 6x2y2z2 + x2y2z(8i)

+ 42x2y2c2t2 − 2x2y2 + x2y(−24i) + 3x2z4

+ x2z3(8i) + 42x2z2c2t2 − 6x2z2

+ x2zc2t2(56i) + 35x2c4t4 − 14x2c2t2

− x2 + 24xy2 + y6 + 3y4z2 + y4z(4i)

+ 21y4c2t2 − y4 + y3(8i) + 3y2z4 + y2z3(8i)

+ 42y2z2c2t2 − 6y2z2 + y2zc2t2(56i) + 35y2c4t4

− 14y2c2t2 − y2 + z6 + z5(4i) + 21z4c2t2

− 5z4 + z3c2t2(56i) + 35z2c4t4 − 42z2c2t2

− 5z2 + zc4t4((140i)/3) + z(−4i) + 7c6t6

− (35c4t4)/3− 7c2t2 + 2wt+ 1

(4.34)

Thus this equation satisfy the d’Alembert equation and has time dependence wt at

time zero. For further generality, one may even add term wxzt to the initial state

to introduce explicit dependence on these variables. Thus we have

Ψn = x6 + 3x4y2 + 3x4z2 + x4z(4i)− x4 − 8x3

+ 3x2y4 + 6x2y2z2 + x2y2z(8i)− 2x2y2 + x2y(−24i)

+ 3x2z4 + x2z3(8i)− 6x2z2 − x2 + 24xy2 + twxz

+ y6 + 3y4z2 + y4z(4i)− y4 + y3(8i) + 3y2z4

+ y2z3(8i)− 6y2z2 − y2 + z6 + z5(4i)− 5z4 − 5z2

+ z(−4i) + 1

(4.35)
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and

F (Ψn) = x6 + 3x4y2 + 3x4z2 + x4z(4i) + 21x4c2t2

− x4 − 8x3 + 3x2y4 + 6x2y2z2 + x2y2z(8i)

+ 42x2y2c2t2 − 2x2y2 + x2y(−24i) + 3x2z4

+ x2z3(8i) + 42x2z2c2t2 − 6x2z2

+ x2zc2t2(56i) + 35x2c4t4 − 14x2c2t2

− x2 + 24xy2 + 2wxzt+ y6 + 3y4z2 + y4z(4i)

+ 21y4c2t2 − y4 + y3(8i) + 3y2z4 + y2z3(8i)

+ 42y2z2c2t2 − 6y2z2 + y2zc2t2(56i)

+ 35y2c4t4 − 14y2c2t2 − y2 + z6 + z5(4i)

+ 21z4c2t2 − 5z4 + z3c2t2(56i)

+ 35z2c4t4 − 42z2c2t2 − 5z2 + zc4t4((140i)/3)

+ z(−4i) + 7c6t6 − (35c4t4)/3− 7c2t2 + 1

(4.36)

and the vortex evolution of field equation (4.36) is shown in figure 4.13.

The evolution of vortex in figure 4.13 shows how we break time-reversal sym-

metry of knot dynamics with extra term in construction. Before time zero, there is

a single loop creation, and such loop endures a reconnection and become a trefoil

knot. However, after time zero the trefoil knot does not decompose in the same way

to what happened before time zero. For instead, the trefoil knot firstly endures one

reconnection and become a link. Then, there is another reconnection and the link

become two separated loops. In the third step one of the loop has another recon-

nection and become two separated loops, so there are in total three loops. As time

advances, these three loops disappear one after another. In total there are one loop

creation and three loop annihilation, and four reconnections, so the total index sum

is zero, as trefoil knots dwells on the surface of torus whose Euler characteristic is
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Time

x

Figure 4.13: Vortex evolution in wave field of equation (4.36). The evolution is not

symmetric in time. For negative time the loop undergoes a reconnection and form

into a knot like figure 4.7, however, for positive time the knot does not decompose

in the same way. The trefoil knot firstly undergoes a reconnection and become a

link, then another reconnection transform the link into two separated loops. Then

the loop on the right undergoes a reconnection and becomes two separated loops.

In the end, these three loops vanish.

zero.

In this construction, we show how to design a 3+1 dimensional wave field that
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satisfies the d’Alembert equation as exhibit dynamics of certain knot type design

in 3 dimensional space, and such dynamics can be either symmetric in time or not

depending on the state of the knot at time zero.

4.4 Vortex Worldsheet in Random Wave

In random wave model there exists an abundant amount of topology change of

vortex lines as they move in space. In three-dimensional world as vortex lines move

around, their behaviour may be represented by 3+1 random wave model in various

scenarios. Here we study a specific example of random wave model, which is the 3+1

dimensional random wave ensemble as the solution to d’Alembert equation, which

is

Ψ(r, t) =
∑
k

ak exp(i(k · r− ωt) (4.37)

for r = (x, y, z) and k =
√
x2 + y2 + z2, and specifically in a periodic boundary

condition which explicitly writes

Ψ(x, y, z, t) =
N∑

l,m,n=−N

ak exp(2πi[(lx+my + nz)/L0 − kt/T0]) (4.38)

As vortex lines move in 3+1 space they have various topology change, specif-

ically we present a loop emerging from a reconnection of a single line and merge into

another vortex line by another reconnection, as shown in figure 4.14

Figure 4.14 plots the dynamics of a specific process of vortex topology change.

At the first stage, vortex lines are plotted in green, then, as color get darker, there

is a loop emerged from a reconnection of the curve on the bottom right plotted in

light green. Then at the third stage where vortices are plotted in purple, the loop

vanishes because it is absorbed into another vortex line on the top left. Therefore it
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z+t

x

y

Figure 4.14: A local area in the 3+1 random wave model. As time advances, a loop

emerges from a reconnection, and then is absorbed in reconnection with another

vortex line.

reveals the process of a vortex line bends to reconnect and gives a loop, then such

loop is absorbed and merged into another vortex line.
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Chapter Five

Conclusion

In this thesis, we present results on analysis of random curve and vortex filament in

different scenarios. We believe this thesis reveals certain universality of curves and

vortex filaments in random models such as the random wave model, and connects

random field to their geometry and topology reflection in terms of knot theory.

Furthermore, we present new findings on the topology of vortex worldsheet, which

is a direct illustration to the topology of surfaces in space-time.

In chapter two, we study the vortices in random wave model and find that

their statistical behaviour may be categorized based on length. While vortices in

small scale are not fully developed and behave depending on specific models, as their

length become large enough, they behave like random walks among all searched mod-

els, which are 2+1 dimensional wave as solution to d’Alembert, Schrödinger, and

Klein-Gordon equation, and three dimensional wave as solution to Helmholtz equa-

tion. These vortex loops not only behave like closed random walks, their length

distribution is also of universal scaling relation, whose gradient is near −5
2
as the-

oretical prediction agrees to numerical finding. Another universal scaling relation

is of the length distribution of very long vortices that are long enough to penetrate

through the boundary. They may be effectively seen as segments of a super gigantic
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loop cut by the boundary, and they appear as lines rather than loops. The gradient

of such scaling relation is −3
2
, as theoretical prediction agrees to numerical analysis.

The universal scaling relation of vortices exists independent to specific choice

of random wave model, and thus reveal the universality rising from the global sta-

tistical perspective to random waves such as classifying vortices based on homology.

Furthermore, we find the vortices long enough to be model dependent are closed ran-

dom walks, which are also known as random polygons, and we further investigate

the probability of knot in random polygons in chapter three.

In chapter three, we investigate the probability of knot in random polygon,

which is a fundamental question for random walk in three-dimensional space reflect-

ing the topology nature of it. We raise a general equation for the knot probability

of equilateral and non-equilateral random polygons and verify the equation by a

high quality massive data generated by my supervisor’s former postdoc. Our result

answers the question of knot probability which is a very old question, and since our

result is in R3, it generalize previous knowledge in Z3, and show why it is necessary

to adapt our new equation for knot probability in R3. We believe our result may

be applied a broad range of studies regarding random curves in three-dimensional

space such as vortices, polymers, proteins, and many other.

In chapter four, we study the vortices rather from a deterministic construction

than from random search. We generalize previous construction of knotted vortices

in 3D static complex field into construction of knotted vortices in 3+1D space-time

obeying the d’Alembert equation. The vortices swipes through space in time and

thus become vortex worldsheet in 3+1D space-time. We find that while the topology

of the vortex worldsheet in Lorenz-invariant, the topology of vortices in time-slice is

dependent to the reference frame of observers under Lorentz transformation. We give

example of how the same space-time vortex worldsheet may appear as of different
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knot type in different frame of reference under Lorentz transformation, that while

the homology is preserved, the ambient isotopy is relativistic-dependent.

Since knots are closely related to fundamental quantities of the field such

as the helicity and Chern-Simons action, we expect further studies will reveal the

significance of the finding that the topology of vortices in time-slice is depending

on relativity in an even deeper way. We also plan to study the topology of vortex

worldsheet in 3+1 dimensional wave chaos in the future.
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