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Abstract: This study addresses the issue of energy optimization in by investigating solutions for 1

the reduction of energy consumption in the diagnostics and monitoring of technological processes. 2

The implementation of advanced process control is identified as a key approach for achieving energy 3

savings and improving product quality, process efficiency, and production flexibility. The goal of 4

this research is to develop a cost-effective system with a minimal number of ultrasound sensors, 5

thus reducing the energy consumption of the overall system. To accomplish this, a novel method for 6

obtaining high-resolution reconstruction in transmission ultrasound tomography (t-UST) is proposed. 7

The method involves utilizing a convolutional neural network to take low-resolution measurements 8

as input and output high-resolution sinograms that are used for tomography image reconstruction. 9

This approach allows for the construction of a super-resolution sinogram by utilizing information 10

hidden in the low-resolution measurement. The model is trained on simulation data and validated 11

on real measurement data. The results of this technique demonstrate significant improvement 12

compared to state-of-the-art methods. The study also highlights that UST measurements contain 13

more information than previously thought, and this hidden information can be extracted and utilized 14

with the use of machine learning techniques to further improve image quality and object recognition. 15

Keywords: Deep learning; Machine learning; Inverse Problems; Tomography; Industry 4.0; Energy 16

consumption; Energy optimization 17

1. Introduction 18

Advanced automation and control of manufacturing processes play a key role in 19

maintaining competitiveness. While costly process equipment and production lines can be 20

considered the heart of industrial production, control systems, and information technology 21

are its brain. They provide the flexibility to quickly adapt production processes to changing 22

customer requirements and ensure safety and efficiency at the lowest possible resource 23

and energy costs. Hence, the development and application of advanced process control 24

is one of the most effective levers for immediate and long-term gross energy savings, 25

improvement, product quality, increased process safety, and greater production flexibility, 26

and will provide security and promote economic growth in conventional and emerging 27

areas. 28

Advanced process control includes all control procedures beyond standard closed-loop 29

control, using PID controllers and sequential control. This approach optimizes the system 30

so that the processes themselves always remain reproducible, leading to a further increase 31

in throughput, productivity, and product quality on the one hand and a reduction in energy 32

and raw material expenses on the other. One of the most interesting and advanced methods 33

used in industry is tomography [1–3]. 34
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Computed tomography is one of the basic diagnostic methods included in the so-called 35

imaging tests. It is readily available, and common, and is widely used in diagnosis and in- 36

spection. Of the numerous computed tomography methods based on physical phenomena 37

such as electrical resistivity tomography (ERT) [4], electrical capacitance tomography (ECT) 38

[3], electrical impedance tomography (EIT) [2], radio wave tomography and localization 39

[5], x-ray tomography [6] or magnetism tomography [7], ultrasound tomography (UST) [8] 40

is a commonly used method in medicine and industry [9,10]. UST is an imaging technique 41

that exploits the properties of acoustic wave transmittance through tissues and materials 42

[11]. 43

Ultrasound tomography is most commonly recognized under the name of "medical 44

ultrasound" or "ultrasonography" (USG). This technique is very useful when no other type 45

of measurement is possible like in the case of electro-stimulation [12]. In this paper, a 46

low-cost industrial transmission ultrasound tomography (t-UST) is described. The paper 47

focuses on the problem of improving reconstruction quality using low-cost probes to 48

measure the Time of Flight (ToF) between sensors [13–15]. 49

An example of an industrial application (t-UST) is to locate around a pipe with flowing 50

liquid, then it is possible to reconstruct images from the measurement data, which will 51

show any perturbations in the flow i.e. air bubbles. This can be very useful for non-invasive 52

leak detection. In various scenarios, it is possible to monitor multiphase flow with such 53

a set-up, which can then be used to monitor industrial processes [13]. The UST is also an 54

important device for energy systems such as oil and gas [16,17] (for measuring velocity 55

and flow) and crystallization [18] (for carbon capture monitoring). 56

Measurement with (t-UST) is carried out with probes placed at the edge of the object. 57

With one of the probes, ultrasonic waves are generated. Other probes that have been placed 58

around the object record the signal received from the transmitting probe. Such a procedure 59

continues until N × N − 1 (the transmitting probe simultaneously receives the reflected 60

signal) measurements are collected, where N is the number of ultrasound drivers. 61

In order to image the interior of the object under study based on measurements
collected from probes, the most common approach is to solve an inverse problem (IP),
where an underdetermined set of linear equations is solved [19–21]. This can be described
by the following equation:

Je = m (1)

where J is the sensitivity matrix, e are the elements of the mesh on which we reconstruct 62

the images and m is the measurement. 63

The sensitivity matrix J is describing the relation between the physics of the measure- 64

ment (ToF) and the reconstructed image representing a deviation from the mean sound 65

speed. Note, that the J is not square, thus, it can be computationally expensive to find 66

the pseudo-inverse J−1. Additionally, finding the inverse is impossible without additional 67

regularization terms that modify the final solution [22]. 68

To solve this problem, the authors decided to use a well-known method developed by 69

Radon [23]. From the measurements of ToF, one can pick measurements that are parallel to 70

each other for a given measurement angle. 71

On the one hand, this approach compresses the information gathered from measure- 72

ments from N × N − 1 to N
2 × N

2 − 1 through the process of calculation of Radon Transform 73

(sinogram). On the other hand, it allows using a very fast method to find the reconstruction. 74

This method has one downside, it heavily relies on the information from the sensors, and 75

it is recommended to use as many as possible. Figure 1 shows why the larger number of 76

ultrasound transducers is important. A large number of details can vanish in the case of 16 77

sensor sinograms. 78

This stands in contradiction to the assumption of cheap industrial tomography. An- 79

other drawback of using a high number of ultrasound sensors is the power composition 80

of the system. The device presented in the paper uses measurement cards, each control- 81

ling four measurement channels. Each card consumes 5W during measurement. If the 82

measurements are made at a very high rate, e.g. 30 measurement frames per second, the 83
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Figure 1. The sinograms (top row) calculated from the measurements (bottom row) for the case of 16,
32, and 64 sensors.

power consumption for 64 sensor systems can be as high as 95 watts. On the other hand, 84

measurements with a lower number of electrodes, e.g. 16 sensors, will lower the power 85

consumption to 35 watts. This reduction in energy consumption is achieved by reducing 86

the number of active measurement cards from 16 to 4. It is especially important if a large 87

number of tomographs will be used in the industrial processes because the tomograph has 88

to operate 24h/7 and will have a big impact on energy consumption. On the other hand, a 89

lower number of measurement channels results in a lower number of measurements. 90

To deal with that problem we need to increase the number of measurements ergo 91

increasing the resolution of the sinogram. This leads us to the methods used in the domain 92

of neural networks used for obtaining super-resolution images from low-resolution input 93

images; the technique used in a wide range of methods that depends on neural networks. 94

The use of machine learning algorithms in industrial processes and tomography is 95

common [2,9,21,24]. The authors decide to use a very simple approach that is a fundamen- 96

tal method used in super-resolution technique known as Super Resolution Convolutional 97

Neural Networks (SRCNN) developed by [25]. In the first step, a conventional neural net- 98

work very similar to SRCNN was created and trained on purely simulation data. Next, the 99

network trained on the simulation data was validated on actual ultrasonic measurements 100

collected from the circular tank. 101

2. Materials and Methods 102

The SRCNN itself is very simple and consists of convolutional layers that play different 103

roles in image reconstruction. Its structure is shown in Figure 2. 104

The network consists of three parts patch extraction and representation, non-linear 105

mapping, and reconstruction. This network was designed as one of the first deep networks 106

in the study of super-resolution. It was designed to get high-resolution images from 107

low-resolution images. 108

The justification for the use of an SRCNN-like structure in this work is that both 109

measurement matrix and sinograms can be treated as images that are linearly coupled to 110

each other. 111
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Figure 2. The original SRCNN developed by [25].

Figure 3. The model of the convolutional neural network used for sinogram reconstruction.

The sinograms are calculated with the use of the method described by [23]. For each 112

measurement array, we find measurements for which the propagation of the signal in the 113

tank is parallel. then measurements are then saved as a row in the sinogram. The process 114

is repeated for each projection angle until full rotation around the tank is made. In the 115

measurement array, each row consists of measurements, where the propagation of the 116

signal is not parallel and constructs a network of connection between the emitter probe and 117

all other receiving probes. In sinogram, each row represents a measurement for which the 118

emitter−→receiver connection is parallel and perpendicular to the projection angle. 119

There are a few major differences between the solution proposed in the paper and the 120

original SRCNN model shown in Figure 2. 121

First, bi-linear up-sampling of the input image is not used and the input shape is 122

different from the output shape. This is because at the input we use a measurement 123

matrix and at the output, we expect a high-resolution sinogram from the high-resolution 124

measurement matrix. 125

Second, a dense layer with a sigmoid activation function to perform a mapping from 126

measurement to the sinogram space at the output was added. 127

Except for these modifications, the motivation behind the network is the same which 128

is to obtain high-resolution images of sinograms from the low-resolution measurement. 129

The reason behind using low-resolution measurement versus low-resolution sinogram 130

at the input is that measurement consists of a larger amount of information needed to 131

obtain a high-resolution sinogram, which is unavailable in the low-resolution sinogram. 132

This claim is validated in the Results section of this paper. 133

The model presented in Figure 3 was trained on the simulation data that we generated 134

using our deterministic ultrasound algorithms. The algorithms allow us to solve the 135
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Figure 4. The internals of active probe of a UST used in the research.

forward problem (calculate measurement from the known state using equation 1), and 136

solve the pseudo-inverse problem by finding the inverse matrix J−1. 137

A total of 93 306 cases were generated including all single perturbation cases and 138

around 89 thousand cases having two perturbations. 139

The single perturbation means that one pixel in the reconstruction image (ground 140

truth) is set to one and the rest is 0. The case of two perturbations has two pixels with 1 141

and the rest is zero. The forward problem was solved for each such case, and the sinogram 142

was calculated. 143

The dataset created from simulations was split into train and validation subsets, where 144

30% of the whole set was validation data. During training, the model never saw any cases 145

corresponding to three or more perturbations. Finally, the model was evaluated by carefully 146

inspecting the reconstruction from the predicted sinogram using the data obtained from 147

the real measurements from the circular tank filled with water with rigid body inclusions. 148

This data was the test dataset used for model evaluation. 149

The biggest difference between the training/validation set and test set is that the 150

training/validation dataset consists of single pixel perturbation while the test dataset 151

consists of multiple groups of pixel patches. The evaluation dataset is thus much harder to 152

reconstruct making it perfect as the test set. Finally, after obtaining a super-res sinogram, 153

the Radon method is used to calculate reconstruction. 154

2.1. Hardware 155

The tomograph used to obtain the data is an ultrasound transmission tomograph 156

developed by Netrix S.A. It uses a system of active measuring probes communicating with 157

each other via the CAN 2.0B bus. 158

The tomograph has full responsibility for controlling the measurement sequence, and 159

active measurement probes, and for capturing and collecting data. The active probe of 160

the ultrasound tomograph uses a single piezoelectric transducer for measurement in the 161

absorption mode. This transducer shown in Fig. 4 with a resonant frequency of 40 kHz, 162
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functions as an ultrasound transmitter and receiver. External transducers can be connected 163

to the circuit board via the SMB socket (e.g. transducers immersed in the medium or 164

permanently attached to the tank or pipe). The probe incorporates a microcontroller 165

with integrated signal processing and an A/C converter. Using a programmable digital 166

potentiometer, each probe can adjust the amplification of the received signal. 167

The probes are designed to be placed close to each other. The power lines, communi- 168

cation bus, and interrupt lines, which are necessary for proper measurement of the time 169

from transmission to reception of signals from the other probes, are therefore made with 170

RJ-12 cables. 171

The measurement of the ultrasound transmission time from one probe to another is 172

done by connecting all probes to another via the communication line. If a Low condition 173

occurs on this link, all probes except the transmitting probe start measuring time and stop 174

measuring time after receiving the ultrasound signal. Each receiving probe then transmits 175

the measurement results to the tomograph controller. The analog signal is processed by an 176

A/D converter or comparator with programmable thresholds. Based on the information 177

of which probe generated and which probe received the signal, the measurement values 178

(Time of Flight) are stored in the corresponding cells of the measurement matrix. 179

3. Results 180

The results presented in this section show how the network performed on the real 181

measurement data. First, the approach whereas as input we fed a full measurement matrix 182

was tested and then validated by feeding the network with sinograms. In both cases, a 183

super-resolution sinogram at the output of the network was expected. 184

3.1. Results of the modified network 185

Figure 5 shows the results obtained with the training data. It can be observed that 186

the predicted sinograms and the reconstructed images are of great quality. To check the 187

accuracy of the predicted sinogram the squared error of the reconstruction was shown. 188

Reconstructions are nearly ideal with a small error at the edges. 189

The results obtained from the network and the examples of the reconstructions from 190

real measurements are shown in Figures 6 and 7. 191

The top left panel of Figure 7 shows the real measurement. The top right panel of the 192

Figure shows the reconstruction obtained with the Radon method. The bottom left panel 193

shows the reconstruction with the data predicted with the model and the bottom right 194

panel shows the measurement setup. The position of the top left phantom seen in Figure 7 195

is not correctly recognized, but the position of 3 out of 4 phantoms is correct. 196

Four well-known indicators were used to assess the quality of the reconstruction: 197

Mean Absolute Error (MAE), Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR), 198

and structural similarity index measure (SSIM). The MSE metric was evaluated according 199

to the equation: 200

MSE =
1
n

n

∑
i=1

(
x′ i − x∗ i

)2 (2)

where: n—number of pixels in the image, x′ i—reference of i-th pixel, x∗ i—value of 201

i-th reconstructed pixel. 202

The next measure of reconstruction quality MAE was calculated according to the 203

equation: 204

MAE =
1
n

n

∑
i=1

|x′i − x∗i | (3)

Many derivative measures have been developed based on MSE, and PSNR, but all 205

these measures have similar disadvantages regarding, among others, sensitivity to the 206

mutual displacement of images or their rotation. In such a situation, even an image of 207
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Figure 5. Results obtained with the data from the simulation. The top left image is 16 sensors
simulation of measurement. The top middle is a sinogram obtained from 64 sensor measurements.
The top right predicts 64 sensor sinograms from 16 sensor measurements. The middle left is a
Reconstruction from 16 sensor measurement data, middle right is a reconstruction from 64 sensor
measurement data. The bottom left is a reconstruction from the prediction, bottom right is an error
between reconstruction from prediction (x̂) and truth x.
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Figure 6. The results were obtained from real measurements with two phantoms located in the
circular tank with two phantoms.

Figure 7. The results were obtained from real measurements with four phantoms located in the
circular tank with four phantoms.
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Figure 8. The convolutional neural network model used for sinogram reconstruction where the lower
resolution sinograms are used on input.

Figure 9. The results obtained from real measurements with two phantoms located in the circular
tank using the second network shown in 8.

excellent quality, but shifted only by one or a few pixels from the original would be assessed 208

as distorted.. 209

The quality PSNR was calculated according to the equation: 210

PSNR = 10log10
(max x′i)

2

MSE
(4)

SSIM is an extension of the universal image quality indicator. In this method, which 211

is sensitive to the three most typical types of distortions, i.e. brightness change, contrast 212

change, and image structure disturbance, the reference image is scanned and evaluated 213

based on a sliding window (usually it is a Gaussian window with a size of 11 × 11 pixels), 214

for which the calculated is the local image fragment quality index according to the relation 215

(after simplification): 216

SSIM =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

1 + µ2
2 + c1

)(
σ2

1 + σ2
2 + c2

) (5)

where: µx — average value of the reference image inside the window, µy – average 217

value of the image evaluated inside the window, σ2
1 — variance of the reference image inside 218
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the window, σ2
2 – variance of the image evaluated inside the window, σxy — covariance, 219

c21, c2 — constants protecting against instability. 220

Equation 5, in its expanded form, is the product of three factors corresponding to the 221

three listed types of misstatements. First, the role of the instability protection constants is to 222

prevent division by zeros, which could occur for very dark and "flat" (solid color) portions 223

of the image. The recommended values are C1 = 0.01L and C2 = 0.03L, where L is the 224

maximum allowed brightness level in the image (usually L = 255). 225

By moving the window by one pixel, a map of image quality is obtained, which, after 226

averaging, allows us to obtain a scalar quality index in the < −1; 1 > range. 227

Analyzing the obtained results, it can be concluded that the SSIM is more useful for 228

assessing the quality of images obtained using various algorithms compared to the classical 229

mean square error. Figure 10 shows the values of this indicator’s values and the smallest 230

values of the mean squared error. 231

SSIM assesses the structural similarity between two images by comparing the local 232

patterns of pixels in the images, while PSNR calculates the ratio of the maximum possible 233

power of an image to the power of the noise in the image, and it produces a score in 234

decibels (dB). PSNR is a simple and widely used measure for image quality assessment 235

that compares the pixel-by-pixel differences between two images, while SSIM is a more 236

sophisticated measure that takes into account the structural information in the images and 237

is more closely aligned with human perception of image quality. 238

Additionally, MSE, MAE, PSNR, and SSIM were calculated for each reconstruction 239

obtained with the use of the developed network as shown in Figure 10. The results show 240

that the network allows for a high PNSR and large SSIM values and thus indicates that it is 241

very accurate for the simulation data. The low values of MSE and MAE indicate that there 242

is not much error regarding the position of inclusions in original images. 243

As can be seen from mentioned Figures, the reconstruction improved significantly 244

concerning the original data. The two phantoms in the tank were separated, and their 245

location and shape were more precise. 246

The network was able to reconstruct a sinogram from real measurements containing 247

four phantoms, and after inverse radon transformation, the phantoms are visible in the 248

tank. This result is beyond the possibilities of the current methods used in ultrasound 249

tomography. 250

In the validation stage of the network, the limits of the possibilities of the developed 251

network were checked, and it was found that with the real measurements, the network 252

works best with up to four phantoms. It is worth noting that the network during the training 253

never saw any cases with more than two inclusions at once. Thus the results obtained with 254

real measurements, including three and four inclusions, exceeded expectations. 255

3.2. Validation of initial assumptions 256

In section 2 it was claimed that to achieve high-resolution reconstructions we need 257

to use low-resolution measurement data and not low-resolution sinograms as input. To 258

prove the point we trained a very similar CNN to the original model developed by [25] 259

where low-resolution sinograms are used as an input as seen in figure 8. The network is 260

then trained like before on the same data set and validated on the real measurement data 261

just as in the case of the previous model. 262

The results in Figure 9 clearly show that in the case of two phantoms, the reconstruc- 263

tions cannot correctly indicate the location and the size of inclusions. It is expected as the 264

low-resolution sinogram consists of a compressed and denoised version of the measure- 265

ment matrix. The results obtained for other cases (one, two, three, and four phantoms) are 266

similar and do not correctly show the inclusions in the tank. 267

The direct reason for worse network performance is the amount of information in the 268

sinogram. The raw measurements include much more noise but at the same time, they 269

are rich in information about the objects inside the tank. The network can easily eliminate 270

noise in the measurement and easily achieve super-resolution of the sinograms. 271
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Figure 10. Statistical measures of reconstruction obtained with the use of the developed model.
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Table 1. The comparison table of results achieved with super resolution approach networks on similar
datasets.

Method PSNR SSIM

iNet [26] 31.8738 0.9249
U-Net - Elipses dataset [27] 28.02 0.8766
PWLS-PCG [28] 11.3 N/A
SIT-GAN [29] 28.714 0.8814
This Work 30.390 0.999

4. Discussion and summary 272

The article presents a modified version of the SRCNN applied to ultrasound transmis- 273

sion tomography. The direct advantage of using the developed model is the cost reduction 274

and energy consumption of the ultrasound tomographic system. 275

The modification of the network consisted of changing the idea of the same image in 276

the input and the output of the network. In the model presented in the paper as input, we 277

put a full 16-sensor transmission UST measurement matrix and as an output, we expect 278

a high-resolution sinogram. The expected sinogram should be equal to the one that can 279

be calculated from 64 sensor measurements. The developed convolutional network was 280

not only able to reconstruct such sinograms but also reconstructed images. As a result, we 281

were able to recognize the position and the size of the phantoms. 282

The reconstructions obtained on the test set are close in terms of PSNR and SSIM 283

values to the results obtained in other papers devoted to image reconstruction using deep 284

learning methods. Although the datasets for methods presented in Table 1 are different. 285

the results obtained here were compared to them as the PSNR and SSIM values are a great 286

indicator of the reconstruction quality. 287

The network outperformed the classical methods [30] and allows a system with 16 288

sensors to behave like a system with 64 sensors. The network provides a simple method for 289

a cheap t-UST to be applied in more complex problems with a higher frame rate than the 290

older classical methods. This study has a second important finding. The UST measurements 291

hide much more information than it seems. Unfortunately, this information stayed mostly 292

hidden from the deterministic and other machine learning models until now. 293

Directions for further work are related to improving still image quality and object 294

shapes. Among other things, the authors plan to use auto-encoders in the future. The 295

developed method can be used easily used in dynamic data processing consisting of stirring 296

and this topic will be explored in future projects. 297
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