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Abstract
1.	 Species distribution models (SDMs) are a useful mean to understand how en-

vironmental variation influences species geographical distribution. SDMs are 
implemented by several different algorithms. Unfortunately, these algorithms 
consistently lose accuracy exactly when they are needed the most, that is with 
rare species, originating the so-called rare-species modelling paradox. Although 
approaches exist to tackle this problem, most notably by performing and then av-
eraging a number of bivariate models, they are usually computationally intensive 
and were never shown to apply successfully to the rarest species (i.e. with less 
than 20 geographical occurrences).

2.	 Here, we present a new algorithm, ENphylo, embedded in the readily-available R 
package RRdtn, which couples Environmental Niche Factor Analysis (ENFA) and 
phylogenetic imputation to model the distribution of rare species.

3.	 Using the fossil record of 31 species of large mammals that lived during the late 
Pleistocene as the source data to sample from, we demonstrate ENphylo provides 
good SDM evaluation scores, with area under the curve and Sørensen Index both 
consistently above 0.75, True Skills Statistics above 0.4 and Boyce Index above 
0.5 in most cases, when just 10 fossil occurrences are randomly drawn from their 
respective fossil records. ENphylo proved significantly more accurate than ENFA 
and the ensemble of bivariate models using Maxent, Generalized Linear Model 
and Random Forest algorithms. Intriguingly, we found that randomly drawing as 
little as 10 occurrence data points per species allows ENphylo to perform equally 
well as Maxent run using the entire fossil record of these same species and data.

4.	 ENphylo provides a fast and accurate solution to perform species distribution 
modelling with rare species, which will help predicting their distribution in the 
light of climate change, and to delineate how rare extinct species reacted to past 
climatic variation.
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1  |  INTRODUC TION

Species distribution models (SDMs) algorithms are powerful tools 
for predicting species distributions across the landscape under the 
hypothesis that environmental conditions influence species' geogra-
phy (Elith & Leathwick, 2009). In the last decades, SDMs have been 
widely applied to assess the effect of climate change on species dis-
tributions and the impact of invasive species, to select suitable sites 
for species reintroductions, or to address conservation objectives 
(Barbet-Massin et al.,  2018; Fois et al.,  2018). Although a number 
of different algorithms have been successfully used to calibrate 
SDMs, their applicability is limited by several factors, including spe-
cies intrinsic characteristics (e.g. range size, dispersal ability) and 
methodological issues (Fourcade et al., 2018; Tessarolo et al., 2021). 
Most, if not all, SDM algorithms fail to apply to scanty occurrence 
records, as with rare species or at modelling extinct species with 
sparse fossil records (Raia et al., 2020; Svenning et al., 2011; Varela 
et al.,  2011). Several studies have demonstrated that low sample 
size impacts negatively on SDM accuracy (Jiménez-Valverde, 2020; 
Pearman et al.,  2008; Santini et al.,  2021). It has repeatedly been 
suggested that more than 20, and ideally more than 50 geographi-
cal occurrences are necessary to provide robust distribution models 
predictions (Santini et al., 2021; Wisz et al., 2008). Thus, although 
rare species are the most demanding in terms of reliable SDM esti-
mates (since they are the most exposed to extinction risk, Blomqvist 
et al.,  2010; Eaton et al.,  2018), they are also those where the 
SDM algorithms perform worst (Breiner et al., 2015, 2018; Lomba 
et al., 2010; Sousa-Silva et al., 2014). The same applies to most ex-
tinct species, which is disappointing because the inclusion of fossil 
information to living species distributions allows approaching the 
species fundamental niche (Maiorano et al., 2013; Raia et al., 2020; 
Timmermann et al.,  2022) and because fossil species provide the 
most genuine evidence of past response to climate change (Di 
Febbraro et al.,  2017; Mondanaro et al.,  2021; Tóth et al.,  2019). 
The main problem with modelling rare species is that their few geo-
graphical occurrences are usually coupled to numerous environmen-
tal explanatory variables, causing a strong imbalance between the 
poor information on the species actual environmental preferences 
and the rich environmental information. The imbalance likely causes 
model overfitting, which, in turn, reduces SDM transferability 
(Vaughan & Ormerod, 2005). A possible solution proposed in litera-
ture is to fit several bivariate models (i.e. including two environmen-
tal variables at a time) and then averaging their predictions within a 
weighted ensemble model (Lomba et al., 2010). Although viable and 
effective (Breiner et al., 2015, 2018), this approach is computation-
ally intensive and time-consuming, and does not address the prob-
lem of the weak starting information about the species preferences. 
In principle, species environmental predilections and tolerance limits 
are determined by the traits they inherit so that the climatic niche 

can be studied as it were a phenotype (Pearman et al., 2008; Rolland 
et al.,  2018). This implies phylogenetic position might supplement 
the scarce environmental data related to the species occurrences 
that typically comes with modelling rare species. Starting from this 
assumption, we propose ENphylo, a new modelling algorithm able 
to provide fast and accurate distribution predictions for rare spe-
cies by combining Ecological Niche Factor Analysis (ENFA, Hirzel 
et al., 2002) and phylogenetic imputation (Garland & Ives, 2000). To 
test ENphylo performance, we applied the algorithm to model ex-
tremely under-sampled species (i.e. with sample size as low as 10 
or 20 occurrences, respectively) and compared its predictive accu-
racy to ENFA and to the ensembles of small models (ESM, Breiner 
et al., 2015, 2018) approaches. In applying ESM, we included three 
widely used modelling techniques: Maxent, Random Forest (RF) and 
Generalized Linear Models (GLM). We demonstrated ENphylo con-
sistently outperforms both ESM and ENFA at 10 occurrences. At 20 
occurrences ESM performs best, yet it fails for some 15% of the spe-
cies for which ENphylo still provides decent performance. Crucially, 
ENphylo results at sampling a mere 10 occurrences from the fossil 
record of individual species, performs as well as Maxent using the 
full fossil record on the same set of data and climatic variables, as 
implemented in a previous study.

2  |  MATERIAL S AND METHODS

ENphylo's workflow includes two consecutive steps. The first, em-
bodied in the R function ENphylo_modeling, formats the input data 
(i.e. species occurrence/background points and the phylogenetic 
tree), calibrates ENFA and phylogenetic imputation, and then evalu-
ates their predictive accuracy. The second R function, ENphylo_pre-
diction, relies on the output of ENphylo_modeling to predict species 
marginality, specialization and habitat suitability on a new dataset 
provided by the user (e.g. to generate spatially explicit predictions). 
ENphylo_modeling and ENphylo_prediction are embedded in a sin-
gle R package, named RRdtn, that is made available as part of the 
current study. The modelling steps involved in both functions are 
described in the following paragraphs.

2.1  |  ENphylo_modeling: Calculating species 
marginality and specialization via ENFA and 
phylogenetic imputation

ENphylo_modeling takes three objects as inputs: (i) presence/back-
ground points for all the species under analysis provided as a named 
list (argument input_data), (ii) the phylogenetic tree including the 
species present in input_data (argument tree), and (iii) a geographical 
mask defining the spatial domain encompassing the background area 

K E Y W O R D S
climate change, ENphylo, overfitting, rare species, RRdtn, species distribution models
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enclosing all the species (argument input_mask). For each species in 
input_data, the relevant information should be provided as a data 
frame or a spatial object (as handled by ‘sp’ or ‘sf’ R packages) and 
must include a column with occurrence data in binary format (1 for 
presences, 0 for background), two columns with occurrence/back-
ground coordinates (in case the data are not in the form of spatial ob-
jects), and one column for each environmental variable to be used in 
the modelling process. Environmental predictors must be the same 
for all the species on the phylogenetic tree. Optionally, the user can 
provide a column specifying the age of each occurrence (which is 
useful when modelling fossil species). The phylogenetic tree must be 
provided in Newick or Nexus format. The geographical mask must 
be a RasterLayer object. ENphylo_modeling contains three internal 
functions: (i) DATA_PREPARATION, (ii) ENFA_CALIBRATION and 
(iii) IMPUTED_CALIBRATION. DATA_PREPARATION matches the 
geographical mask with species occurrence/background data pro-
vided as input, rearranging them in a proper way as to be used in 
the subsequent modelling steps. ENFA_CALIBRATION relies on the 
R package ‘CENFA’ (Rinnan, 2021) to compute marginality and spe-
cialization factors for all the species in input_data having a number 
of occurrence records above a minimum threshold (e.g. >50) as set 
by the user (argument min_occ_enfa). Marginality and specialization 
are at the core of ENFA modelling. Marginality can be thought of as 
the distance between the centroid of the niche occupied by the spe-
cies and the centroid calculated for all the available habitat (Rinnan & 
Lawler, 2019). Specialization is the ratio of the variance in the avail-
able habitat distribution to that in the species distribution (Rinnan 
& Lawler, 2019). Occupied and available habitats are defined by a 
given set of environmental variables, which are expected to show 
some degree of multicollinearity. Under ENFA, multicollinearity is 
accounted for by means of factor analysis, performed to extract 
the linear combinations of environmental variables maximizing the 
focal species' marginality and specialization eigenvectors. The n x m 
matrix of marginality/specialization coefficients having the n envi-
ronmental variables as rows and m marginality/specialization eigen-
vectors as columns, named the CO matrix, represents the amount of 
marginality and specialization of the focal species on each variable 
(Hirzel et al., 2002). The first eigenvector represents marginality, the 
following, orthogonal to the first, eigenvectors represent specializa-
tion. The number of columns m of the CO matrix is reduced dropping 
specialization eigenvectors accounting for little variance, according 
to the broken-stick criterion (Jackson, 1993).

ENFA_CALIBRATION calculates predictive accuracy by splitting 
the data into 80%–20% training/testing samples (the split percent-
age is indicated in the boot_test_perc argument) for the calibration–
evaluation of the ENFA models. Specifically, a new CO matrix (CO80) 
is obtained calibrating ENFA on the 80% (training) data and used 
to predict marginality and specialization factors on the entire data-
set through the row per column product of the n × m (CO80) matrix 
multiplied by the n columns of environmental variable values in the 
entire g × n dataset, where the number of rows g is equal to the num-
ber of geographic cells in the data. The predicted marginality and 
specialization values are then converted into Mahalanobis distances 

calculated from the species position to the barycenter of the ENFA 
axes in the multivariate marginality/specialization space (Fonderflick 
et al., 2015; Hengl et al., 2009; Préau et al., 2018). This step allows 
to (i) accommodate for the residual collinearity among specialization 
axes (Calenge et al., 2008; Hirzel et al., 2002) and (ii) convert pre-
dicted marginality/specialization values into habitat suitability values 
in the 0–1 range. This latter operation is possible because squared 
Mahalanobis distances approximate a Chi-square distribution (Clark 
et al., 1993). The suitability values predicted on the remaining 20% 
(testing) occurrence data are eventually used to assess model accu-
racy. The entire procedure is repeated several times (as regulated 
by the boot_rep argument), relying by default on multi-core parallel 
processing. Predictive accuracy is assessed through a set of discrim-
ination-, reliability-, and similarity-based evaluation metrics (Leroy 
et al., 2018), namely the area under the operating characteristic curve 
(AUC; Fielding & Bell,  1997), the true skill statistic (TSS; Allouche 
et al., 2006), the continuous Boyce index (CBI; Hirzel et al., 2006) 
and the Sørensen similarity index (SSI; Leroy et al.,  2018; Li & 
Guo, 2013). Evaluation metrics are calculated using PresenceAbsence 
(Freeman & Moisen, 2008) and ecospat (Broennimann, 2022) R pack-
ages. Omission error rate is further supplied to evaluate the inci-
dence of false positives, that is recommended at using AUC/TSS as 
discrimination metrics (Jiménez-Valverde, 2012).

The taxa present in INPUT_DATA which have either a number of 
occurrences lower than the min_occ_enfa, or for which ENFA reports 
predictive accuracy below the reference level (as set by the argument 
eval_metric_threshold), form a subset I of all the species in the phy-
logenetic tree for which CO matrices are either unavailable or little 
reliable, respectively. For them, the last internal function, IMPUTED_
CALIBRATION, will automatically estimate the CO matrices by means 
of phylogenetic imputation. Imputation relies on the Brownian motion 
model of evolution to provide sensible estimates of CO for each spe-
cies in I. Imputation is implemented using the function phylopars in the 
Rphylopars R package (Goolsby et al., 2017). To account for phyloge-
netic uncertainty, alternative trees are created by altering topology and 
branch lengths of the original tree using the function swapONE in the 
RRphylo R package (Castiglione et al., 2018). The user can set the num-
ber of alternative phylogenies to create (which is 100 by default), the 
proportion of tree tips whose topologic arrangement will be swapped, 
and the proportion of tree nodes whose age will be changed. To keep 
the same number of marginality/specialization axes—hence the same 
number of columns in CO—for all the species in I, the dimensionality of 
the imputed CO matrices is forced to be equal to the median number 
of axes retained by all the species not present in I. Phylogenetically 
imputed CO matrices obtained from the tree swapping iterations are 
used to predict marginality and specialization values and to evaluate 
predictive accuracy through bootstrap cross-validation, as it is done 
with ENFA-modelled species. No accuracy is computed for species 
represented by less than 10 occurrences. Once predictive accuracies 
are calculated over all tree swapping replicates, the function returns 
different outputs according to three alternative strategies speci-
fied by the user according to the “output_options” argument: (i) CO 
matrices and evaluation metrics for all the tree swapping iterations 
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(“output_options” = “full”); (ii) a subset of CO matrices and evaluation 
metrics limited to tree swapping iterations achieving a predictive ac-
curacy above a user-defined threshold (“output_options” = “weighted.
mean”), according to a specific metric (“eval_metric_for_imputation”) 
and the relative score (“eval_threshold”); (iii) a single CO matrix and 
the corresponding evaluation scores relative to the most accurate 
tree swapping iteration (“output_options”  =  “best”). Eventually, for 
the species forming the subset I the CO matrix are always imputed for 
those with less than min_occ_enfa occurrences, whereas for those > 
min_occ_enfa the validation metrics are compared for the two meth-
ods (ENFA versus phylogenetic imputation) and the one performing 
best is retained.

2.2 | ENphylo_prediction: Generating predictions of 
species marginality, specialization and habitat suitability

ENphylo_prediction takes as input the output of ENphylo_modeling 
and the “newdata” object including the same environmental variables 
used to calibrate models. The newdata object can be a different time 
frame, or a different geographical area or both, as compared to the 
calibration data. For each species present in the ENphylo_modeling 
output object, ENphylo_prediction automatically recognizes whether 
ENFA or phylogenetic imputation was performed for modelling. In the 
latter case, the function retrieves marginality and specialization pre-
dictions from the tree swapping iterations according to ENphylo_mod-
eling “output_options” specification. In particular, by specifying “full” 
or “best” as outputs, either all or the best-performing tree are used to 
generate predictions. By specifying “weighted.mean” a subset of trees 
is used, limited to trees generating model performance above a certain 
value (AUC > 0.7, by default) and the weighted average performance 
for the selected evaluation metric is calculated.

ENFA and phylogenetic imputation predictions can be performed 
on either a data frame or RasterLayer objects (provided as the new-
data argument). Optionally, the user can convert predictions into 
habitat suitability values using the argument convert_to_suitability.

2.3  |  Comparing ENphylo predictive accuracy 
toESM approach

We compared the predictive performance achieved by ENphylo 
to other state-of-the-art SDM algorithms, that is ENFA and ESM 
built using Maxent (Phillips et al.,  2006), RF (Breiman,  2001) and 
GLM (McCullagh & Nelder,  1983), posing the explicit hypothesis 
that ENphylo would outperform competing methods under low-
sampling conditions and achieve good absolute predictive perfor-
mance. To this aim, we gathered fossil occurrences for 21 extinct 
and 10 extant large mammals living in Eurasia during the last 
200 ka from Mondanaro et al.  (2021). Occurrence data included 
4651 mammal records distributed over 916 fossil layers. For each 
species, the gathered data include occurrences along with 10,000 
background points (for further details, see Mondanaro et al., 2021). 

Each occurrence/background datapoint is spatially and temporally 
associated (depending on the age of the fossil layer) to a vector of 
climate values retrieved from the paleoclimate emulator described 
in Holden et al.  (2019), corresponding to six non-collinear predic-
tors (Mondanaro et al.,  2021): BIO4 (temperature seasonality), 
BIO8 (mean temperature of the wettest quarter), BIO 10 (Mean 
Temperature of Warmest Quarter), BIO13 (precipitation of wettest 
month), BIO14 (precipitation of driest month) and BIO18 (precipita-
tion of warmest quarter). Along with the occurrence data, we con-
structed a phylogenetic tree of mammal species, using the R function 
tree.merger in RRphylo (Castiglione et al., 2022). The function com-
bines different phylogenies into a single synthetic time-calibrated 
tree. Here, the source phylogenies were published in Carotenuto 
et al. (2016) and Castiglione et al. (2021). The data, species and cli-
matic variables are the same as in Mondanaro et al.  (2021), which 
is welcome since it allows comparing SDM accuracy in this study 
directly to the SDM results we got in that study, where the entire 
fossil record was used.

As a preliminary step, we applied ENphylo to all the 31 species, re-
lying on their entire fossil record. Since all the species included more 
than 50 occurrence records, they were initially modelled with ENFA. 
We evaluated model predictive performances of these preliminary 
ENFA models splitting randomly species occurrence records into an 
80% training and 20% testing data, and calculating AUC, TSS, CBI 
and Sørensen Index. We repeated this splitting procedure 20 times, 
then averaging the evaluation scores. From the ENFA models, we 
retrieved the marginality/specialization CO matrix for each species.

To test the ability of ENphylo to predict the observed occurrence 
records of a given species starting from an extremely sub-sampled fos-
sil occurrence pool, we randomly selected 10 occurrences datapoints 
per species to calibrate the models, and kept the remaining datapoints 
to evaluate predictive accuracy (i.e. external evaluation). This entire 
procedure was iterated 20 times, changing the 10 randomly selected 
occurrences at each iteration. The same set of 20, 10-occurrence-wide 
subsets were used, in turn, to calibrate ENFA, ENphylo, and ESM (see 
below), which underwent a second evaluation round under an 80%–
20% bootstrap cross-validation scheme (i.e. internal evaluation) per-
formed on each fossil occurrences set. To model a sub-sampled species 
with ENphylo, CO matrices calculated in the preliminary phase for the 
remaining 30 species were used as phenotypic traits on the tree to 
perform imputation. To account for phylogenetic uncertainty, we 
created 20 alternative phylogenies, altering 50% of the topology and 
50% of the branch lengths of the original tree according to swapONE 
specifications. For each species, ENphylo outputs were generated ac-
cording to all the three strategies implemented, that is “full”, “best” 
and “weighted.mean”, where the last two were, respectively, applied 
selecting the single most accurate tree (in terms of AUC; ‘best.tree’, 
hereafter) and calculating a weighted average of the trees with an 
AUC > 0.7 (‘selected.tree’, hereafter), relying on AUC values from the 
internal evaluation for selection.

To optimally tune ESM, we followed the procedure described in 
Breiner et al.  (2018). Specifically, for each bivariate model (i.e. 15 bi-
variate predictor combinations of the six climatic variables), we varied 
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parameters and complexity as generated by alternative settings and 
then chose the configuration that yielded the highest AUC from an 
80%–20% bootstrap procedure. We implemented the ensemble ac-
cording to GLM and Maxent algorithms, which were shown to provide a 
good compromise between computational time and accuracy (Breiner 
et al., 2018) and RF which was shown to provide good performance 
when there is limited environmental overlap between presence and 
background data (Valavi et al., 2021) which is more easily met by our 
historical data. For GLMs, we tested the shape of the relationship (i.e. 
linear, quadratic or cubic) and the interaction level (absent or present). 
For Maxent, we used the ENMeval R package to test regularization val-
ues between 0.5 and 4, with 0.5 steps and the following alternative 
combinations of feature classes in turn: linear, linear + quadratic, hinge, 
linear + quadratic + hinge, linear + quadratic + hinge + product and lin-
ear + quadratic + hinge + product + threshold (Muscarella et al.,  2014). 
Among the 48 resulting combinations, we chose the model reporting 
the lowest Akaike information criterion corrected for a small sample 
size (AICc; Warren & Seifert, 2011). As for RF, we adopted the default 
options as reported in biomod2 package (as in Breiner et al., 2018). As 
with ENFA and ENphylo, we evaluated each bivariate model by per-
forming a bootstrap cross-validation scheme, where calibration data 
are randomly split into 80%–20% training/testing samples and re-
peated this step 10 times (i.e. internal evaluation procedure). Among 
these models, we dropped those poorly calibrated (i.e. AUC < 0.7) from 
the subsequent analyses. Ensemble models were obtained by averag-
ing individual GLM, RF and Maxent models projections weighted by 
their respective AUC scores calculated under the internal validation 
(Marmion et al., 2009). Both internal and external evaluation proce-
dures were carried out calculating AUC, TSS, CBI and SSI values. The 
entire subsampling and testing procedure was iterated over the 31 
species in the tree and repeated on the 20-occurrence randomly gen-
erated datasets.

Significant differences in predictive performance among the three 
modelling approaches were assessed by fitting a random-slope linear 
mixed effect model (LMM), where the evaluation metrics were used, in 
turn, as the response variable, the three modelling approaches as the 
explanatory variable, and the species as random effect.

2.4  |  Testing ENphylo sensitivity to the number of 
species requiring phylogenetic imputation

We set a second experiment to assess whether ENphylo is sensitive 
to the proportion of species to be imputed. To this aim, we randomly 
imputed 3 out 31 (9.7%), using the CO matrices obtained by ENFA on 
the full dataset for the 28 remaining. For these three species, we im-
puted the new CO matrices after modelling 50 alternative swapped 
trees. The accuracy of ENphylo predictions for these three species 
was evaluated through the 80%–20% cross-validation scheme, re-
peating the data splitting 10 times, and calculating the average AUC 
value. Lastly, we selected the tree achieving the highest AUC values 
among the 50 swapped phylogenies. The entire procedure was re-
peated selecting, in turn 6 (19.4%) and then 9 (29%) species to be 

modelled through phylogenetic imputation. To test for significant 
differences in ENphylo predictive performance among the three im-
putation intensity scenarios, we fitted a random-slope LMM, where 
AUC values were used as the response variable, the three imputa-
tion scenarios as the explanatory variable and the species as the ran-
dom effect.

3  |  RESULTS

Overall, we generated >446.000 models (i.e. 31 species × 20 sub-
sampling replicates × 10 bootstrap replicates × two levels of sam-
pling intensity, all multiplied to 20 swapped trees for ENphylo and 
15 bivariate models for ESM). Using the 10-occurrence datasets, 
all the three ENphylo strategies reported >50% species to achieve 
an acceptable level of evaluation accuracy (i.e. with AUC > 0.75; 
Elith,  2000), with the “full” strategy showing the highest absolute 
percentage of well-performing models (58%). The correspond-
ing percentages for the other algorithms tested are 29% for ENFA 
and 3% for ESM. ENphylo “full” proved the best algorithm accord-
ing to three out of four evaluation metrics, reporting a mean AUC 
value averaged among the species equal to 0.75 (0.58–0.88), mean 
TSS = 0.39 (0.23–0.57), and mean CBI of 0.56 (0.31–0.74), whereas 
ENFA achieved the highest SSI values (mean = 0.68; 0.56–0.78).

ESM resulted systematically the least performing algorithm ac-
cording to all evaluation metrics (Table 1). Under the 10-occurrence 
subsampling scheme, LMMs indicated AUC values associated to all 
the three ENphylo strategies are significantly higher than those re-
lated to any other algorithm. This finding remains true using TSS, 
though in this case the differences with ENFA are statistically sig-
nificant only for the “full” strategy (Figure 1). As for CBI, LMMs in-
dicated all the three ENphylo strategies to significantly outperform 
ESM, while the differences with ENFA are not statistically signifi-
cant. ENFA was the best algorithm according to SSI values (Figure 1).

When using 20-occurrence datasets, more than 70% spe-
cies achieved AUC > 0.75 under ESM and ENphylo “best.” Under 
ENphylo “best” and ENFA more than 80% species reached a 
TSS > 0.4. ESM emerged as the best algorithm according to 
AUC (mean  =  0.79; 0.50–0.92) together with ENphylo “best” 
(mean  =  0.79; 0.60–0.90), and CBI (mean  =  0.77; 0.00–0.99), 
while ENphylo “best” was the most accurate algorithm according 
to TSS (mean = 0.50; 0.30–0.68) and SSI (mean = 0.75; 0.63–0.84; 
Table 1, Table S1). LMMs indicated ESM to outperform other algo-
rithms in terms of AUC and CBI values, though this difference is 
not significant against ENphylo “full” and “best” in terms of AUC, 
and against ENphylo “best” in terms of CBI (Figure 1). As for TSS 
and SSI, the only significant difference pertains to ENphylo “full” 
and “best” outperforming ENFA, and the opposite at comparing 
ENphylo “weighted.mean” to ENFA under SSI (Figure 1). Although 
using 20-occurrence species records ESM performs well overall, 
some 15% of the species report low evaluation scores with his 
algorithm, a problem that does not apply to ENFA and ENphylo 
(Figure 2, Figures S1 and S2).
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ENphylo performance is not sensitive to the number of species 
imputed. LMMs suggested that there are no significant differences 
between the three imputation intensity scenarios in term of AUC 
values (Table 2) indicating imputation is still robust when some 30% 
CO matrices are imputed.

4  |  DISCUSSION

The trade-off between the need to accurately shape the distri-
bution of rare species and the inherent difficulty in modelling 
them is known as the ‘rare-species modelling paradox’ (Lomba 
et al.,  2010). Lomba and colleagues proposed to overcome the 
problem using all possible combinations of environmental pre-
dictors fitting bivariate models and averaging their predictions 

with a weighted ensemble based on model performances. Breiner 
et al.  (2015) compared this approach, named ‘ensembles of small 
models’ (ESM), to standard ensemble models calibrated on large 
covariate sets by using a pool of 107 rare species with number of 
occurrences ranging in between 10 and 140 (Breiner et al., 2015). 
They found ESM outperforms standard SDMs in terms of model 
performance and transferability, especially when the number of 
training data was low (Breiner et al., 2015). In a subsequent paper, 
Breiner and colleagues tested ESM with a range of different mod-
elling algorithms using rare and under-sampled species with 10–
25 occurrences (Breiner et al.,  2018). However, how much ESM 
is appropriate, in absolute terms, to pursue the goal of modelling 
the rarest species was never directly tested, and whereas ESM 
effectively addresses overfitting, it remains fraught with the 
problem that the poor available starting information on species 

TA B L E  1  Evaluation metric values (mean and range) for each algorithm and for two different levels of sampling intensity (either extracting 
10 or 20 occurrences from the full fossil record of each species), averaged among the 31 species. The number of training occurrences 
represents the number of occurrences randomly extracted from the fossil record of each species to calibrate models

Evaluation 
metric

# training 
occurrences ENphylo best.tree ENphylo full.tree

ENphylo selected.
tree ENFA ESM

AUC 10 0.74 (0.57–0.86) 0.75 (0.58–0.88) 0.73 (0.53–0.87) 0.72 (0.57–0.81) 0.62 (0.50–0.83)

20 0.79 (0.60–0.90) 0.78 (0.61–0.90) 0.76 (0.52–0.90) 0.76 (0.59–0.88) 0.79 (0.50–0.92)

TSS 10 0.37 (0.21–0.52) 0.39 (0.23–0.57) 0.37 (0.14–0.57) 0.37 (0.13–0.53) 0.20 (0.01–0.54)

20 0.50 (0.30–0.68) 0.49 (0.29–0.68) 0.44 (0.06–0.68) 0.46 (0.19–0.69) 0.49 (0.00–0.71)

CBI 10 0.54 (0.28–0.71) 0.56 (0.31–0.74) 0.53 (0.27–0.76) 0.56 (−0.04–0.79) 0.36 (−0.05–0.79)

20 0.70 (0.31–0.89) 0.70 (0.30–0.91) 0.64 (0.12–0.91) 0.69 (0.22–0.89) 0.77 (0.00–0.99)

SSI 10 0.62 (0.50–0.71) 0.65 (0.55–0.76) 0.62 (0.36–0.76) 0.69 (0.56–0.78) 0.33 (0.03–0.70)

20 0.75 (0.63–0.84) 0.75 (0.65–0.84) 0.67 (0.13–0.84) 0.74 (0.63–0.85) 0.68 (−0.01–0.86)

F I G U R E  1  Results of linear mixed models' marginal means comparison of the different SDM algorithms applied in this study, performed 
on individual species by sampling from their respective fossil records either 10 (upper row) or 20 (lower row) fossil occurrences. The 
procedure is iterated over 31 different species. Asterisks indicate significance at 0.05 (one asterisk), 0.01 (two asterisks), 0.001 levels (three 
asterisks). The colour shade indicates whether the algorithm in each row is either better performing (red shades) or worse performing (blue 
shades) than the competing algorithm (columns), according to four different evaluation metrics.
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environmental preferences might be unrepresentative of the true 
species preferences. To tackle these issues, we propose ENphylo, 
a new modelling algorithm which proved to accurately predict the 
geographical distribution of extremely rare species by combin-
ing ENFA (Hirzel et al., 2002) and phylogenetic imputation. The 
method rationale is to calculate niche marginality and speciali-
zation factors, as routinely implemented under ENFA, for all the 
well-sampled species and then to rely on phylogenetic relatedness 
to derive marginality and specialization for the poorly sampled 
species. Although more sophisticated algorithms progressively 

replaced ENFA in the mainstream of modelling studies (but see e.g. 
Andersen et al., 2021; Cartledge et al., 2021; Mugo et al., 2020; 
Sutton et al.,  2021), this method has been used in >200 papers 
since its publication in 2002 (according to Scopus database in 
January 2022), and is still widely adopted to describe species 
habitat preferences, niche characteristics and vulnerability to 
global change (Cordier et al., 2021; Melchionna et al., 2018; Raia 
et al., 2020; Rinnan & Lawler, 2019). ENFA marginality and spe-
cialization can intuitively be translated into biologically meaning-
ful concepts, as they represent the position and width of a species 
niche in the environmental space relative to the habitat conditions 
available to the species (Hirzel et al., 2002). Since niche position 
and width depend on biological traits such as thermal tolerance 
limits, body size and fat metabolism, they can be studied as they 
were phenotypes (Pearman et al., 2008; Rolland et al., 2018). This 
makes phylogenetic effects a potential predictive factor in terms 
niche modelling.

Standing on this assumption, we combined ENFA and phylo-
genetic imputation to produce SDMs for rare species. By means 
of randomization experiments based on extreme subsampling of 
fossil species with otherwise dense fossil records, we demon-
strated that ENphylo consistently outperforms competing meth-
ods in terms of predictive accuracy, with the difference becoming 
shallower as the sample size increases. Standard SDM algorithms 
‘learn’ the species niche from occurrence data; hence, they 
are limited by the sampled climatic variability generating low 

F I G U R E  2  Contour plots showing model performance (according to AUC and TSS metrics) for individual species, under both 
10-occurrence (10 points) and 20-occurrence (20 points) sampling strategies. The vertical (for AUC) and horizontal (for TSS) solid lines 
represent commonly held reference values to judge model accuracy.

TA B L E  2  Results of random-slope mixed effect models at three 
different imputation intensity scenarios, ran under ENphylo. The 
table reports the estimate, standard error, p.values and significance 
associated with each scenario. We adopted the nomenclature 
‘scenarios 1-3’ to refer to 3-6-9 number of imputed species (out of 
31), respectively. Scenario 1 was selected as reference level in the 
mixed model

Imputation 
intensity 
scenario Estimate Std.Error p.value

(Intercept) 0.862 0.011 <0.001 ***

Scenario 2 0.000 0.002 0.935

Scenario 3 −0.001 0.002 0.670

***Means "highly significant" in reference to the p value which is below 
1e-3.
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transferability when projected into new climatic conditions (Liu 
et al., 2022; Qiao et al., 2019), a limit that ENphylo circumvents 
providing biologically meaningful suitability maps under widely 
differing climatic conditions (Figures 3 and 4). By using ENphylo, 
we found 21–23 species achieved large (>0.7) AUC values, de-
pending on the approach selected. The corresponding figure in 
Mondanaro et al., 2021, using the full fossil record for the same 
set of species was 22, indicating ENphylo is at least as good as 
Maxent using only one-fifth to one-tenth of the original number 

of fossil occurrences. The better accuracy of ENphylo over com-
peting methods progressively fades away as the number of oc-
currences rises above 20 (Figures 2 and 3), that is when Maxent 
is expected to perform better as the fundamental niche is ap-
proached (Fonderflick et al., 2015; Qiao et al., 2019). At 20 occur-
rences, we found that ESM performs slightly better than ENphylo 
(although the difference is not statistically significant). However, 
ESM still fails to produce acceptable predictions for nearly one 
sixth of the species (Figure 2), whereas ENphylo, especially under 

F I G U R E  3  Comparison between the 
habitat suitability maps predicted with 
different algorithms for the reindeer 
Rangifer tarandus, at 130 (last interglacial, 
left column) and 22 ka (last glacial 
maximum, right column) using 10 fossil 
occurrences only to produce the SDM. 
Probability of occurrence spans from 
0 (blue) to 1 (yellow). For ENphylo_full, 
the maps represent the consensus 
among the binary maps produced from 
habitat suitability values related to 20 
alternative phylogenies, applying the 
committee averaging method. The red 
polygon indicates the minimum convex 
polygon (MCP) encompassing R. tarandus 
occurrence data at 22 ka (real fossil data at 
130 ka are too scanty to produce a reliable 
MCP estimate).
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the ‘best’ strategy, remains stable (Figure  2). A key point of 
concern is whether phylogenetic imputation, on which ENphylo 
stands, is appropriate under all conditions. It has been shown 
that phylogenetic effects might be negligible or even mislead-
ing in terms of inferring climatic preferences (Münkemüller 
et al.,  2015). However, under ENphylo phylogenetic effects are 
not derived from the tree topology and branch lengths as they 
are. In contrast, the species positions on the tree are swapped, 
and the branching times altered (100 times by default), as to 
maximize the model predictive performance while accounting 

for phylogenetic uncertainty. This effectively relaxes the as-
sumption (intrinsic to phylogenetic imputation) that the tree is 
‘correct’ and by altering branch lengths relieves the assumption 
that a single rate of evolution in the climatic niche applies to all 
branches in the tree.

We meant ENphylo to extend species distribution modelling to 
species for which limited observational information is available. We 
demonstrate the method is especially appropriate when dealing with 
rare species, and with extinct species whose fossil record is neces-
sarily scarce because of the nature of the preservation process.

F I G U R E  4  Comparison between the 
habitat suitability maps predicted with 
different algorithms for the reindeer 
Rangifer tarandus, at 130 (last interglacial, 
left column) and 22 ka (last glacial 
maximum, right column) using 20 fossil 
occurrences only to produce the SDM. 
Probability of occurrence spans from 
0 (blue) to 1 (yellow). For ENphylo_full, 
the maps represent the consensus 
among the binary maps produced from 
habitat suitability values related to 20 
alternative phylogenies, applying the 
committee averaging method. The red 
polygon indicates the minimum convex 
polygon (MCP) encompassing R. tarandus 
occurrence data at 22 ka (real fossil data at 
130 ka are too scanty to produce a reliable 
MCP estimate).
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SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
Table S1. AUC statistics for individual species calculated according to 
each SDM algorithm at 10 (up) and 20 (down) occurrence data points.
Figure S1. Contour plots showing model performance (according 
to AUC and Boyce Index (CBI) metrics) for individual species, under 
both 10-occurrences (10points) and 20-occurrences (20points) 
sampling strategies. The vertical (for AUC) and horizontal (for TSS) 
solid lines represent commonly held reference values to judge model 
accuracy.
Figure S2. Contour plots showing model performance (according to 
AUC and Soerensen Index (SSI) metrics) for individual species, under 
both 10-occurrences (10points) and 20-occurrences (20points) sampling 
strategies. The vertical (for AUC) and horizontal (for TSS) solid lines 
represent commonly held reference values to judge model accuracy.
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