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We apply the Grassmann tensor renormalization group to the lattice regularized Schwinger model
with one-flavor of the Wilson fermion. We study the phase diagram in the (f,x) plane performing a
detailed analysis of the scaling behavior of the Lee-Yang zeros and the peak height of the chiral
susceptibility. Our results strongly indicate that the whole range of the phase transition line starting from
(p.x) = (0.0,0.380665(59)) and ending at (o0, 0.25) belongs to the two-dimensional Ising universality

class similar to the free fermion case.
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I. INTRODUCTION

The Schwinger model, two-dimensional QED, has been
used as a theoretical test bed for QCD. It can be analytically
solvable in the massless limit and has many QCD-like
properties: confinement for fermions, chiral symmetry
breaking due to the U,(1) anomaly, etc. The lattice
regularized version of the Schwinger model is also favor-
able for the development of numerical techniques to tackle
lattice QCD. The hybrid Monte Carlo algorithm is the most
successful method to implement dynamical fermions so far.
However, it loses its validity when the determinant of the
Dirac matrix can be negative. Such a difficulty has been
preventing us from studying the phase structure of the
one-flavor lattice Schwinger model in the Wilson fermion
formulation. A system of free Wilson fermions at f = oo
exhibits a second order phase transition at k = 0.25 with «
the hopping parameter. It belongs to the 2D Ising univer-
sality class. In the strong coupling limit at # = 0.0, the one-
flavor lattice Schwinger model was shown to be mapped to
an eight-vertex model [1]. This was followed by large-scale
Monte Carlo simulations on spherelike lattices [2] and with
a method extending the worm algorithm [3], both of which
have proved that this model also lies in the 2D Ising univer-
sality class. One may naively expect that a phase transition
line runs from f = 0.0 to oo belonging to the 2D Ising
universality class. A result obtained by the microcanonical
fermionic average approach, however, indicates that the
phase transition at finite § lies in a different universality
class from the 2D Ising model [4]. Furthermore, an analysis
of the weak coupling expansion on large lattices disproves
even the existence of the phase transition line [5].

The tensor network renormalization group (TRG) was
originally introduced by Levin and Nave [6]. It has been
applied to a couple of models consisting of continuous
bosonic variables [7-11]. Gu et al. generalized the TRG to
a Grassmann valued tensor network in order to investigate
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fermionic systems [12,13]. Although direct evaluation of
multiple Grassmann integrals is an exponentially hard task
as discussed by Creutz [14], the Grassmann TRG (GTRG)
allows us to evaluate the partition function and expectation
values of physical quantities with a reasonable number of
computational resources even for fermionic systems. In this
paper, we apply the GTRG to the lattice Schwinger model
with one-flavor of the Wilson fermion. We demonstrate that
the GTRG works well even at the critical hopping param-
eter where the negative sign from the fermion determinant
may arise, and it determines the phase structure of the one-
flavor lattice Schwinger model.

The Grassmann valued tensor network employed in this
work is a kind of fermionic tensor networks. In Refs. [15,16],
efficient algorithms for other fermionic tensor networks, such
as the fermionic Projected Entangled Pair States [17] and
fermionic Multiscale Entanglement Renormalization Ansatz
[18,19], also have been developed earlier than the GTRG.

We also mention that there are some related works with
different approaches to the one-flavor lattice Schwinger
model, where the density matrix renormalization group
or variational matrix-product-state method are employed
[20-24]. They are all based on the Hamiltonian lattice
gauge theory with the Kogut-Susskind formulation.

This paper is organized as follows. In Sec. I, we explain
the GTRG procedure for the tensor network showing its
representation of the partition function of the lattice
Schwinger model. We present numerical results for the
finite size scaling analyses in Sec. III. Section IV is devoted
to summary and outlook.

II. GRASSMANN TENSOR RENORMALIZATION
GROUP FOR THE LATTICE SCHWINGER MODEL

A. Lattice formulation

The partition function of lattice gauge theory can be
generally expressed as

© 2014 American Physical Society
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Z= /DUdetD[U]e—Sg[UJ, (1)

where S, is the gauge action and its expression will be
given below. We employ the Wilson fermion formulation,
whose Dirac matrix D[U] is given by

1 _
= ﬂ ZWn,(ll//n.a
A ZWna{ ~Vu a/}Unﬂl//l’l-’r[lﬂ
nﬂaﬂ
+ (U + 70 apUn-pWniphs
= S,y .U @

with x the hopping parameter and U,, an U(1) link
variable at site n along the y direction. a,f denote the
Dirac indices and ji represents an unit vector along the u
direction. The Grassmann path integral representation for
det D[U] is given by

0] =T [ dvadpna )5,

where the Grassmann variables {y, .} and {y, .} satisfy
the following relations:

[Wn,a’ l/_/m,ﬂ]+ = l//n,al/_/m,ﬂ + l/_/m.ﬂl//n,a =0, (4)

[Wn,av Wm.ﬂ]+ = [l/_/n,m l/_/m,ﬂ]+ =0, (5)

/ iyl = / dirnal =0, (6)

/de.an.ﬂ = /dl/_/n,al/_/m,ﬁ = 5n.m5a.ﬂ' (7)

With the choice of a representation of gamma matrices

1 0 0 1
]/1:63:<0 _1>’ ]/2:61:<1 0)’ (8)

we introduce another basis,

1 1
nl = =\Wn + n2)s n2 = =Wn1~¥n2) 9
Xn \/E(W 1 Wa2)s Xn2 \/i(l/’ 1~ Wn2) )

1 1
_n == _n +_n ’ _n =—7= _n __n ’ 10
Hna \/E(W A FW2)s T2 ﬁ(u/ 1—Wa2). (10)

which yields

Zl/_/n,a(l + 71 )a,/}l//n—i,ﬁ = 21/_/n.11//n—i,1’ (1 1)
afp
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an «

~VDapWniip = 2WnoWoiin  (12)

Zl/_/n,a(] + Y2)a,ﬁwn_ﬁ,ﬁ = 2)_{)1,1){,1_21 , (13)

ap

ZWn a

Notice that {y, .} and {¥,.} also satisfy anticommutation
relations,

7’2 ap¥nisp = 20 2X 452 (14)

= b?n,av)?m.ﬂ]Jr =0. (15)

{¥na} and {¥,,} are introduced only in the second (space)
direction, while we keep {y,, , } and {7, , } in the first (time)
direction. This is a useful technique which allows us to treat
the hopping terms in each direction in the same way [1].

b(n,as)_(m.ﬂh» = b(n,a’)(m.ﬂ]+

B. Grassmann valued tensor network

We first transform det D[U] into a tensor network. The
exponential form in Eq. (3) is expanded as follows by using
the anticommutation property of the Grassmann variables:

_ 1 1
Silwap.U) — | | — W —
e v U] = (1 + ZK_llln.,ll//n,l> <1 +2Kl//n,ZWn.2)

x (1- U,Z l,lll_’n.lllfn i)

X (1 =Up W2, is)

x (1- Ui_ﬁ‘zjn,lxn—ﬁ,l)

X (1= UpoZtnskisn)- (16)

Here we define the Wilson term and the hopping terms as

1 1 1
— + —dy, dy —dy, ,dy
4K2 + 2K Yn 1YW + 2% Yn20Wy, 2

+ dl//n.ldl/_/n,ldlllnldlpn.% (17)

W, =

Hn,l =1- UZ,]J’,;JJJWn,I - Un,ll/_/n,ZWthT,z

+ ll_/n+i,ll//n,ll/_/n.2wn+i.2’ (18)
Hn,2 =1- U;,Q)?mril)(n,l - Un,ZZn,ZWnJrQ,z
+)?n+i,1)(n,1)?n,2)(n+iyz- (19)

The determinant det D[U] is expressed as a simple form,

vl =, [ TWIJf.  ©0)

where P, represents a projection to terms without any
Grassmann variable.

det D]
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Let us turn to the gauge part. We employ the U(1)
plaquette gauge action,

S, = —ﬂZCOS(pp, (21)

p
Pp = Put + Puyin = Puisi — Puos (22)
P Puiins Pusd1> Pn2 € [~ x], (23)

where @, 1,9,.1,,9,,5, and @, are phases of U(1) link
variables which compose a plaquette variable ¢,,. § is the
inverse coupling constant squared. Liu et al. have shown
that a finite-dimensional tensor network representation of
pure lattice gauge theory is derived by the character exp-
ansion (CE) with truncation [8], and its numerical accuracy
with the TRG is verified for the XY model [9-11]. Using
the character expansion, the Boltzmann weight per pla-
quette is decomposed as

e[)’cosq)p —

Z e, (B), (24)

mpy=

Nee
= 3 emn, (), (2)

mp=—Nce

where [, is the modified Bessel function and N, is the
truncation number in the character expansion. The sub-
script b denotes bosonic indices. After integrating out all
the link variables, the hopping term is written as

d
Hl’lyl;mb»nb = / ;0;1 H e (mb_nb)(/)"]
-

1+ Vi aWnaWnoWotrin My =Ny
o _l/_/nJri,ll//n,l mp = ny + 1
~Wn2Wniin my =n, — 1 '
0 others
(26)
H, 5.y, », 18 given in the same manner.
Now we introduce a tensor form of W, and H, ., »,

1
E Wirirzdgiirekekelslp
i1 =0

g,y \ 7y dy i Ny )y (27)

n,1’

W, =

if1,ip2 — i) if —ip
Z Honyon, ¥ Vo, 1V/n+12y’n1wn2’ (28)

ir1,ip=0

nlmbnb -

n2mhn,7 -

if1s lfz if1 ir ir iy
E Hmb X n+2, 1)(”+2 2)(11 IZn 20 (29)
ir,ipn=0
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where f1, f2 denote fermionic indices. Hereafter, super—
scripts for Grassmann variables mean power (e.g. y/nl is
Wy, to the iy th power.). Each value for Wir--l2 and
H,y07 is given in the Appendix.

Finally, the partition function Z is written as a tensor
network form

/ Z Tﬂ;i,j,k,lTn-‘ri;m.o,i,pTn-&-@;q,r,s,j T (30)

i,j.k,

where i, j, k, ... are combinations of bosonic and fermionic
indices, namely, i = (i,,i 100 fz), and the tensors are
expressed as

Tnz]kl—szkldW Sy dz s dy) dyl3di dy s d)

n,1

— fl fl — f2 —Jf] J/z 1/1 sz
Vo, lll/n+1 MWWk 51X 50X Xn 2 (31)

with

e Wirtipdadken ke g2 priisde o
T jg = Wivtlmdm it in Hy 52 Hy 2 ,(B)3i, -
(32)
Note that we treat y,, ,. ¥,,.o» and others also, as independent

variables. Equation (30) is represented as a network
diagram like Fig. 1(a).

C. Grassmann tensor renormalization group

Figure 1 illustrates one cycle of the TRG procedure. The
first step is the decomposition of each tensor 7', in Eq. (30)
by using the singular value decomposition (SVD) depicted

(a) (b)

SVD

#

tensor network

next cycle \

(©

/ contract

FIG. 1. Schematic representation for TRG procedure. (a) Each
site represents each tensor 7', in Eq. (30). (b) After performing
the SVD, we obtain a new network composed of S}, §2,, §3,, 5%,
(c) By contracting all old indices, the network is transformed
into a coarse-grained tensor network. Each site represents each
coarse-grained tensor 77, in Eq. (49). The number of sites is
halved per one cycle.
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SVD k
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T, ‘ 5 v
l Sn’—i—ﬁ
l

FIG. 2 (color online). Schematic representation for SVD on
even sites (a) and odd sites (b). New Grassmann variables
{&v,Ev T,y } are assigned to the additional dashed lines.

in Fig. 2. Here, we define a Grassmann version of the SVD
in a similar manner as in Refs. [12,13],

13
"E’/klZ/ ' 41ii.j.p nqugn’;p,q (33)

with
— ePr g4r
In':p.q én +1§ 51’/» q> (34)
1 1 lfz irt 5-Jp
Sn’+i;i,j,p =Sip dz ’+1 2,1, 2
d;(flilly"/nﬂﬂ ll//n +1, 2'//;:1 1‘/_’:{5
){;ﬂ+2 1}(;/12 2)(;? 1)5111{“22’ (35)
s3 dEY P, " dy (36)
n'ik,l, q k lg W W )( )(n RE
Pr=4qr=ipn+ip+jp+jpmod2
and
n,,z;kl_Z/ W 3:ir njksgn’rs (38)
with
N
gfzft;r,s = ’7 ’+2’1 férh Sp2 (39)
) 1/2 lf] lfz
Sn’+ﬁ;l.i r Sl i, "drl ’+2d)( d¢

if) i

d('{);ﬂ 1lp;fl+1 1Wn +1, W, lwn 22 (40)
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Si’;j,k\ = S?k sd”sfd)(]p dﬂ(i;“ld‘ﬁfinz
ke _
d¢"“1)(iﬂ+2 1)(;1 42, 2)({1{,1 1)({1/22’ (41)
}"f = Sf = lfl + lf2 + ljl + lf2 mod2
=jntipt+ky+kp mod2, (42)

where {&,/, &y, i1, 11,y } are Grassmann variables with n’ the
coarse-grained lattice site and satisfy the same relations as
Egs. (4), (5), (6), and (7). n, and n, mean even and odd

sites, respectively. S! ,p and 52,1. g are determined by the
SVD for the matrix M}, ) = Tijxi

M” ZU (i.j), mo-m (k,0),m>» (43)

z/p \/_Ut/ (44)

Siz.z,q =04V (ki).q (45)

In numerical calculation, we keep only the largest D
singular values out of {o,,}. §3, . and S},  are determined
similarly for the matrix M( G = ( 1)intieT, o,
where the extra sign comes from the reordering of
Grassmann variables. Although the dimension of M
and M?** is 16 x (2N, + 1)?, the calculational cost of
the SVD can be drastically reduced because of the
following conditions:

/kr

ipi tipptjp +jp+ Ky +kp o+l + lp = even,
(46)

iy = Jp- (47)

After performing the SVD, old Grassmann variables
{W o Wnar XnarXna) Teside on a small closed loop on
the transformed network as shown in Fig. 3. We can
integrate out all of them simultaneously with contracting
old indices and obtain a coarse-grained tensor 77,

n';q.r.p,s’
/q
. . q
contract
- o 17,
p’/ .

FIG. 3 (color online). Schematic representation for Eq. (48).
Solid lines in a closed loop, where old Grassmann variables
{WnaWnaJnaXna Teside, can be contracted and replaced
by 77,

014508-4
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U _ § 3 4
Tn’;q,r,p,s - / n'si,j,p VL jkrSn quSn LS

ij.k.l
= Z(—l)i”HﬂSl S/krSquSlzs
ijkl
de dn' dE dif’)
=T, ,dE dn’ldE") ai). (48)

As a result, the partition function is reexpressed as

_ ' ' ' L
Z _/ Z Tﬂ';i,.f,k,lTn’Jri;m,o,t,an’JrQ;q,r,s,u

ik
13 24
gn’;t,ign’;u,j B (49)

where only new Grassmann variables {&,, &, 7.y}
remain. Note that the scaling factor of this transformation
is /2.

After N = log, L? — 2 iterations with L the lattice size,
the partition function is a product of N-times coarse-

(N)

grained tensors 7, ' on a plaquette,

7™ (N) (N)
/ZTOlel 0+1mOIpT0+2quMT0+1+2I}WX)
i.j.k,.

90:1.i90,u,j90+1:k.m90+1:y,090+3:x,490+3:1.r

9o+1+43;5,00 Jo+1+2:pw
p
= E (_1)(jfl+jf'2+0/1+0f2)(kf1+kf2>

i.j.k,...
X (_] )(lfl+lf2+l7f1+l7f2)(3f1+sz)
x (-1

— )i.fl tiptintiptontontantapn

Tz(‘,]}/,)k.lTl(cj.\rl)),i,pTfjj,\;,)‘v,jTg'{\I/’)sq,O’ (50)
where the Grassmann version of the Kronecker delta g, is
defined in the same manner as Eqgs. (34) and (39).
We finally obtain the value of the partition function Z
by contracting all the indices in the last expression
of Eq. (50).

III. NUMERICAL RESULTS
A. Setup

We list parameters in our numerical analysis in Table 1.
N and D are truncation parameters in the TRG procedure

TABLE 1. Parameters in our numerical analysis.

Parameter ~ Description Value
Nee Truncation number of CE 15

D Truncation number of SVD 96

p Inverse coupling constant squared  0.0,5.0,10.0
K Hopping parameter p dependent

PHYSICAL REVIEW D 90, 014508 (2014)

1073 " " " "
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B
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N
= 107%F
10~ 7 n n n " L L
60 70 30 90 100 110 120

D

FIG. 4 (color online).
truncation number D.

Convergence of In Z as a function of SVD

as explained in Sec. II. We choose N, = 15 and D = 96,
which provide us sufficiently accurate results for all the
and x values employed in this work. We calculate the
partition function Z at the strong coupling limit (f = 0.0)
and finite couplings (# = 5.0,10.0). Figure 4 shows a
typical example of convergence behavior of InZ as a
function of D. We find the value of InZ with D = 64
already reaches a high precision. Since the scaling factor
of the TRG is /2, we are allowed to evaluate physical
quantities not only at the lattice size L = 4,8, 16, ... but
also at L = 4+/2,8v/2,16v2, .... The periodic boundary
condition is employed.

We have performed two kinds of finite size scaling
analyses. One is an investigation of the scaling properties of
the peak height of the chiral susceptibility which is
obtained by differentiating (InZ)/L? twice with respect
to 1/(2x),

2(L) =D (awaipowo) — L (yiowo)>. (51)
1 9*Inz
- ot (52)

The chiral susceptibility has a peak at the critical hopping
parameter k.(L) where the fermion mass is expected to
vanish and the correlation length diverges. The other is the
so-called Lee-Yang zero analysis in the complex x plane.
We have investigated the scaling behaviors of both the real
and imaginary parts of the partition function zeros which
approach «, in the infinite volume limit.

B. Strong coupling limit (# = 0.0)

The strong coupling limit is a special case. Since we are
allowed to integrate out all the Grassmann variables
analytically, we can employ the conventional TRG instead

014508-5
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1045 4t

0 s s s
0.370  0.375 0.380 0.385 0.390
K

0.3805 0.3810

K

0.3800 0.3815

FIG. 5 (color online). Chiral susceptibility (L) as a function
of hopping parameter x at f = 0.0 for L = 16,32,64, ..., 1024.

of the GTRG. This enables us to make a more precise
numerical analysis at the strong coupling limit than at finite
coupling. Figure 5 plots the chiral susceptibility as a
function of x. We observe the clear peak structure at all
the values of L and the peak height grows as L increases. In
case of the one-flavor Schwinger model, chiral symmetry is
always broken because of the U, (1) anomaly even in the
continuum limit. Therefore, we expect that the peak height
H(L) scales with L as

H(L) o L, (53)

where a is the critical exponent for the heat capacity rather
than that for the susceptibility. We plot the peak height
H(L) as a function of L in Fig. 6, where the error bar is
governed by performing a numerical differentiation of
Eq. (52) with the use of the discretized x. We observe a
clear logarithmic L dependence of H(L), which results

11

10F

10 10? 10°
L

FIG. 6 (color online). Peak height of the chiral susceptibility
H(L) as a function of L at = 0.0. The horizontal axis is
logarithmic. Solid line represents a linear fit in terms of In L.
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0.3815 T T T T :

0.3810F ):|(
0.3805F

— 0.3800

0.3790

0.37851

0.3780 . . . . . .
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

L71

FIG. 7 (color online). Peak position of the chiral susceptibility
k.(L) as a function of L~! at # = 0.0. Solid curve represents the
fit result.

in @ = 0. The solid line represents a linear fit as a function
of In L, which describes the data very well for a wide range
of L €[32,1024]. According to the Josephson law, «a is rela-
ted to the critical exponent for the correlation length v as

dv=2-a, (54)

which tells us v = 1. One can also estimate v from the finite
size scaling behavior of the peak position «.(L),

k. (L) — k. (c0) &x L™1/%, (55)

Figure 7 shows L~! dependence of k. (L). The solid curve
represents the fit result obtained with the fit function of
k(L) = k,(c0) 4+ a,L~"/*. The fit range is chosen as L €
[641/2, 1024] avoiding possible finite size effects expected
in the range of small L. Numerical values for the fit results
are presented in Table II. The value of v is consistent
with v = 1 within the error bar, though its magnitude is
rather large.

The Lee-Yang zero analysis allows us to determine the
critical exponent v more accurately. Figure 8 shows the
position of the partition function zero closest to the real axis
for L € [4,64]. We refer to it as k(L) hereafter. The k(L)
is located on the mesh of the discretized Rex and Imx so
that the mesh spacing determines the error bars of Rex( (L)

TABLE II. Results for the finite size scaling analysis on the
peak position of the chiral susceptibility.

B v Ke Fit range x*/d.of..
0.0  1.24(40) 0.380665(59) L € [64+/2,1024] 0.018
50 1.01(21) 0.27972(27) L € [16,128] 0.17
100 0.76(20) 0.26892(24) L € [16V/2,128] 0.018

014508-6
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0.10+ —— (3=0.0
—e— =50
0.08} —— (3 =10.0
¢ 0.06}
E
0.04
0.02
0.00

030 032 034 036 03
Rek

024 026 028

FIG. 8 (color online). Partition function zeros closest to the real
axis in the complex « plane for L € [4,64].

and Imkg(L). We expect that both the real part and
imaginary one of k(L) scale to Eq. (55),

Reky(L) — Reky(o0) ox L7177, (56)
Imx (L) — Tmkg(c0) o L717%, (57)

where Reky(o0) = k.(o0) and Imkg(co) =0 should be
realized. In Fig. 9 we present Reky(L) and Imxky(L) as a
function of L~'. We observe that Rek,(L) has rather large
finite size corrections in smaller L compared to Imky(L).
The solid curves denote the fit results with Re/Imx(L) =
Re/Imk(c0) + ag/L™'/* based on Egs. (56) and (57),
whose numerical values are listed in Table III. We find

0.382
0.380r
0.378¢
0.376
0.374r
0.372r
0.370
0.368

0.366 . . . . .
0.00 0.05 0.10 0.15 0.20 0.25

Re ko(L)

Im k(L)

0.00 0.05 0.10 0.15 0.20 0.25

FIG. 9 (color online). Real (top) and imaginary (bottom) parts
of the Lee-Yang zero as a function of L™! at # = 0.0. Solid curves
represent the fit results.
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TABLE III. Results for the finite size scaling analysis on the
real part (top) and the imaginary part (bottom) of the Lee-Yang
Zero.

B v Rexky (o) Fit range y*/d.of.
0.0 1.08(10)  0.38067(10) L e [16\/5, 128] 0.13
5.0  0.765(24) 0.27943(10) L € [8,64] 0.086
100 0.776(39) 0.26892(16) L € [8v/2.64] 0.10
B v Imkq (o) Fit range y2/d.of..
0.0 0.9755(80) 0.000062(52) L e [8\/5 128] 0.23
5.0 0.994(14)  0.00031(17) L € [8,64] 23
100 0.995(19)  0.0002920) L € [8v2,64]  0.22

that the Lee-Yang zero analysis gives much better precision
for the value of v than the scaling analysis of the peak
position of the chiral susceptibility. This could be expected
by comparing the L~ dependence of the peak position of
the chiral susceptibility in Fig. 7 and that of the Lee-Yang
zero in Fig. 9: The latter shows better scaling behavior from
the smaller L. Both results for Rekq(L) and Imkg(L)
indicate v=1. We should also note that Reky(co) is
consistent with x.(c0) determined by the peak position
of the chiral susceptibility and Imx,(co0) vanishes in the
infinite volume limit as expected. We conclude that our
results at the strong coupling limit indicate a second-order
phase transition with @ = 0 and v = 1 which belongs to the
2D Ising universality class. It should be noted that our
result for k.(o0) is also consistent with k. = 0.3805(1) in
Ref. [2] and «, = 0.3806641(78) translated from m,
in Ref. [3].

C. Finite coupling (8 = 5.0,10.0)

Since the numerical accuracy of the GTRG at finite
coupling becomes worse than at the strong coupling limit,
we perform finite size scaling analyses on smaller lattices.
We first investigate the scaling behavior of the peak height
and position for the chiral susceptibility. In Fig. 10 we plot
H(L) as a function of L at #=5.0 and p = 10.0 for
L € [16, 128]. The solid lines denote the linear fits in terms
of InZ for L € [32, 128]. Both plots show clear logarithmic
dependence on L as in the strong coupling limit, which
indicates a = 0. We also plot (L) as a function of L~! in
Fig. 11, where the solid curves denote the fit results with
k.(L) = k.(c0) + a.L~"/* based on Eq. (55). The fit range
is chosen as L € [16,128] at # = 5.0 and L € [16+/2, 128]
at f = 10.0. Numerical values for the fit results are
summarized in Table II. The value of v indicates consis-
tency with v = 1 taking account of the rather large error
bar. As in the strong coupling limit, it is hard to determine
the value of v with good precision from the scaling behavior
of the peak position of the chiral susceptibility.

In the strong coupling limit we know that a more
accurate evaluation of v is obtained from the Lee-Yang
zero analysis. Figures 12 and 13 show finite size scaling

014508-7



YUYA SHIMIZU AND YOSHINOBU KURAMASHI

3.5 T

3.0F 68=05.0

=4 1
10t 10

3.0r B=10.0 |

1.0

0.5 -
10" 102
L

FIG. 10 (color online). Peak height of the chiral susceptibility
H(L) as a function of L at # = 5.0 (top) and # = 10.0 (bottom).
The horizontal axis is logarithmic. Solid lines represent linear fits
in terms of In L.

plots of both the real and imaginary parts of the Lee-Yang
zero at = 5.0 and 10.0, respectively. We employ the
same fit procedure as in the strong coupling limit.
Numerical values of the fit results are given in
Table III together with the fit ranges. While the results
for the imaginary part indicate v =1 with very good
precision, those for the real part show disagreement with
v =1 beyond the error bars. A similar inconsistency is

0.280

0.279r
— 0.2781

< 0.277¢

0.276

0.275
0.

00 001 002 003 004 005 006 007
0.269

0.268r
0.267r
0.266

Ke(L)

0.265F

0.264

0.263 . . . . A A
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

FIG. 11 (color online). Peak position of the chiral susceptibility
k.(L) as a function of L™' at #=5.0 (top) and S = 10.0
(bottom). Solid curves represent the fit results.
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0.280 . . . : :
0.275}
0.270}
3 0265}
Z 0260} %
/2 0.255¢ A 1
0250t | —— Rero(oo) +agL ™" N
0.245}| - - -

0.240 " " " . .
0.00 0.05 0.10 0.15 0.20 0.25

Re #g(00) + agL™ + bpL ™2 ~ 4

0.08
0.07F —— Imrg(o0) + a;L™
0.06r|--- Imsg(oo) + arL ™" + b L2
3 0.05f
F o004}
= 0.03}
0.02r

0.01r

0.00 . . . . .
0.00 0.05 0.10 0.15 0.20 0.25

L71

*
1y A

FIG. 12 (color online). Real (top) and imaginary (bottom) parts
of the Lee-Yang zero as a function of L=! at # = 5.0. Solid curves
represent the fit results with Re/Imky(L) = Re/Imk,(c0) +
aR/,L‘l/” and dotted ones with Egs. (58) and (59).

reported in Ref. [2], where the authors argue that the real
part of the Lee-Yang zero has little chance to exhibit
the leading scaling behavior because it changes very little
as the lattice size L increases. The same features are
observed in our results of Fig. 8. We also investigate
possible finite size contaminations in Reky(L) and
Imky(L) by employing the following fit functions:

—— Rekg(oo) + agL ™"
0.23F - -~ Rerg(oo) + agL™ + bpL™2 ~

0.00 0.05 0.10 0.15 0.90 0.95

0.07F —— Imrg(o0) + arLV
0.06F|---" Tmrg(co) + arL b L2

0.00 . . . . .
0.00 0.05 0.10 0.15 0.20 0.25

L71

FIG. 13 (color online). Real (top) and imaginary (bottom) parts
of the Lee-Yang zero as a function of L~! at = 10.0. Solid
curves represent the fit results with Re/Tmkq (L) =Re/Tmk,(c0)+
aR/,L*I/” and dotted ones with Egs. (58) and (59).
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TABLE IV. Fit results including the sub-eading finite size
contribution. The fit ranges are the same as in Table III.

B Rexy(o0) ag bg y2/d.of..
50 027977391) —0.0687(45) -0270(36)  0.55
10.0  0.26922(14)  —-0.0736(73) —0.327(72) 0.25
B Imxy (o) a; b, y?/d.of.
50  000032(13)  02722(66)  0.035(53) 2.1
10.0 0.00028(11) 0.2641(60) 0.019(61) 0.21

Reky(L) — Reky(c0) = agL™" + bgL™2,  (58)

Imky (L) — Imky(c0) = a;L~" + b, L72,  (59)

where we assume v = 1 and the L2 term represents the
subleading contribution. The fit results are depicted with
the dotted curves in Figs. 12 and 13, and the numerical
values for the coefficients ag/; and bg/; are presented in
Table IV. We find that the coefficient by has a much larger
magnitude than ag, which results in large L=2 contribu-
tions to Rekg(L). On the other hand, the imaginary part
shows that the coefficient b; is negligibly small compared
to a;. This assures us that the Lee-Yang zero analysis of
the imaginary part is more reliable than the real one
avoiding the possible subleading contaminations. The
similar situation is also found with a different choice of
the boundary condition in Ref. [2]. In conclusion, our
results indicate a second-order phase transition with o = 0
and v = 1 so that the one-flavor lattice Schwinger model
belongs to the 2D Ising universality class even at finite
coupling. This disagrees with both results obtained by the
microcanonical fermionic average approach [4] and the
weak coupling expansion [5].

IV. SUMMARY AND OUTLOOK

We have applied the GTRG to the one-flavor lattice
Schwinger model with the Wilson fermion formulation.
The finite size scaling analyses of the peak height of the
chiral susceptibility and the Lee-Yang zero show that the
phase transition not only at the strong coupling limit but
also at finite coupling belongs to the same universality class
as the 2D Ising model similar to the free fermion case. It
tells us that we can take the massless continuum limit along
the critical line k = x.(53).

This is the first application of the GTRG to lattice gauge
theory including fermions. The GTRG has a strong
advantage that it does not suffer from the sign problem
caused by the fermion determinant, which is demonstrated
in this work. A further possibility is an application of
the GTRG to the physical system with the 6 term where the
action is a complex number. A numerical analysis of the
lattice Schwinger model with the € term is under way.

PHYSICAL REVIEW D 90, 014508 (2014)

There remain some difficulties in extending the GTRG
to lattice QCD. Although our method can be formally
extended to 2D lattice QCD by adopting a tensor network
formulation of SU(N) gauge theory proposed by Liu ef al.
[8], it is necessary to check how much computational
cost is actually required for numerical calculations. The
biggest difficulty is to develop a practical method to
calculate 4D systems. ATRG method based on the higher-
order SVD, which was proposed in Ref. [25], is the most
effective approach to higher dimensional systems at the
moment. Its computational cost, however, is proportional
to D' for a 4D hypercubic lattice, which is still too
expensive.
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APPENDIX: VALUES FOR Wi irzdridpkrikeadyidy2
AND H;%
We present the values for Wirvirzininknkplle and
Hy'#? introduced in Sec. 11 B:

2
W0.0.0.0.0000 _ 1 W1.000.1000 _ 1
2« )’ 2k’

WO,l.O,O.O,l,O,O — _2i’ Wl,l,O,O.l,l.O,O =1,
K
WO,O,I,O,O,O.I,O — Zi’ WO,O,O,I.O,O.O,I — _2i7
WO,O.I,I.O,O,I,I — ]I’C WI,O.O,I.O,I,I,O =1, ¢
WO,I,l,O,l,O,O,l =1, Wl,O,l.O,l.O,l.O — _%’
Wl.O,O,l,l,O.O,l — %’ WO,],I,O,O,I,I,O — %7
WO,I.O,I.O,I,O,I — _%’ Wl,l,l,l,O.O,O.O — _%’
Wl,l,O,O,O,O,l,l — _%’ W0,0,I,I,I,I,0,0 — _%’
W0.0,0,0,1,1.1,1 — _%’ W1,1.1,0.0,0,1,0 — 17
W1,1.0,1.0,0,0,1 — %’ Wl,O,l,l,l.O,O.O — %’
WO,l,l.l,O.l,O.O — %’ WO.O,I.O,I,],],O — _%’
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WO00.LL10T _%, W10.00.10.11 _%,
WO.I,O,O,O,I.I,I — _%’ W1,1.1,0.1,0,0,0 — %’
2
Wl,l.O,l.O,l,O,O — _%’ Wl,l,0.0,l,0,0,] — \/LZ’
WI.I,O,O,O,I,I,O — \/L_’ Wl,O.l,l.0,0,l,O — %’
2 2
WOL1.1.0.00.1 _ _%’ WOO.LLLOOT _\/LZ’
W0.0,],I,O,I,I,O — _L\/_’ WI,0,0,I,I,I,0,0 — \/L_’
0 2
Wl,0,0,0,l,l.l,O — _%’ WO,l.l,O.l,l,0,0 — \/L_’
b} 2
WO,],0,0,I,I,O,I — %’ WI,0,0,I,0,0,I,I — _\/L_’
5 2
WOLLO00LT _ 1 WOO0.L0.10.11 _ b
V2’ V2’
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WO0.0.1011.1 1 W10.0.10000 _ 1
\/E 2\/§K
W100000.10 _ ! WO0.1.1.00000 _ _ 1
2\/§K 2\/§K‘
WO0.1.0.0000.1 _ 1 WO00.1.0.1000 _ 1
22k 22k
W0.0.0.10.100 _ ! W0.0.0.0.100.1 _ _ 1
2\/§K 2\/§K‘
1
WO0.0.000.L1.0 — , others = 0,
212k
(A1)
00 _ g1 _
Hmh»nh - Hmbﬁnh - 5"%%’
10 _
Hmb,n,, - _6m;,,n;,+la
01 _
Hmb,nb - 5m,,,n,,—17 (Az)
where  Wirvindninknkpliln has only 49 nonzero
components.
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