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General Introduction 

 

Membrane proteins such as ion channels and receptors play major roles in the activity of the 

brain and nervous system, especially by initiating and conducting action potentials.  They change 

their structures, and quite often oligomerize to higher-order structures to exert their full functions.  

Specifically, ion channels change their conformations among multiple states to regulate their 

target ion permeabilities.  Therefore, determination and comparison of their 3D structures at near-

atomic resolution provide valuable information for understanding brain function at the molecular 

level, and also for the development of medicines.   

Several structure determination methods are currently available, including crystallography, 

Nuclear Magnetic Resonance (NMR), and Single Particle Analysis (SPA).  The choice of method 

is mainly determined by the resolution required, the molecular mass, and ease of crystallization 

of the research target.  Crystallography analyzes the diffraction patterns from protein crystals, 

mainly using X-ray or electron beam.  It can achieve atomic-level resolution (1-3 Å) and is 

mainly used for relatively small proteins.  However, some proteins are difficult to crystallize, and 

it is usually difficult to determine high-resolution 3D structure from the poorly ordered crystals.  

NMR is a spectroscopic technique which measures transitions between spin states of atomic 

nucleus under an electromagnetic field.  Although it can also achieve atomic-level resolution, it 

has a practical limit of molecular mass up to 20-80 kDa (Skrisovska et al., 2010).  SPA is a 

combination of Electron Microscopy (EM) and computer image processing.  The Signal-to-Noise 

Ratio (SNR) of each individual EM image of the target protein is usually very low, mainly due to 

the reduced electron dose during the recording necessary to avoid damage to the specimen.  The 
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dose is commonly limited to between 15 and 25 electrons/Å
2
 as integrated flux densities of 

electrons (Frank, 2009).  However, classifying particles into groups numbering in the hundreds or 

thousands, and averaging them, can improve the contrast of the target proteins.  Computation can 

also determine the Euler angle of each average and can reconstruct the original 3D structure.  

SPA does not require crystallization and can theoretically be applied to macromolecules having a 

mass greater than 100 kDa in cryo-EM (Frank, 2006; Henderson, 1995).  Ion channels frequently 

form higher-order structure by multimeric assembly and are difficult to crystallize.  Therefore, 

SPA is suitable for structural analysis of an entire complex of ion channels in a close-to-native 

state.   

Two major considerations in developing SPA are resolution and analysis time.  The current 

resolution of SPA is 4 to 10 Å (near-atomic resolution) using cryo-EM (Cong et al., 2010; Ludtke 

et al., 2008; Zhang et al., 2010), which is still lower than that of crystallography and NMR.  A 

notable obstacle to achieving high-resolution with SPA has been the extremely low SNR of 

electron micrographs.  Great improvements in EM have mitigated this without increasing the 

electron dose.  Zero-loss imaging with energy filter (Langmore and Smith, 1992; Schroder et al., 

1990; Zhu et al., 1997) has been used to improve SNR in recent high-resolution analysis (Cong et 

al., 2010; Ludtke et al., 2008; Zhang et al., 2010), which dramatically improves particle 

recognition from background noise by both human eyes and computers.  The development of 

high-resolution CCD cameras and automatic EM recording systems as well as improvements in 

computational ability now enable handling of huge volumes of data and accelerate high-

resolution analysis.   

The other important goal in SPA is reduction of analysis time, which should be achieved 

simultaneously with improvement of resolution.  To understand the conformational change of the 
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target protein (especially ion channels), high-resolution structures of different conformations 

should be obtained in a realistic period, although SPA is a multi-step image processing.   

In typical SPA, there are four major stages: (1) particle pickup, (2) initial 2D averaging 

(reference-free), (3) initial 3D reconstruction (reference-free), and (4) 3D refinement by 

projection matching with 3D angle reassignment.  After obtaining digitized micrographs of 

highly purified protein, the first stage is particle pickup: creating a particle library by selecting 

the regions containing a single particle view.  This particle library is corrected for the contrast 

transfer function (CTF) and is band-pass filtered.  In the second stage, class averages are 

calculated from the particle library to improve SNR of particle views.  This stage is repeated until 

convergence.  In the third stage, the initial 3D structure is reconstructed from the class averages, 

using their estimated 3D projection angles.  The fourth stage improves the quality of the 2D 

averages, their 3D angle estimations, and 3D structure, using projections of the 3D structure from 

a previous cycle as a reference.  This stage is repeated until a stable 3D structure is obtained.  

Many of these stages consist of several algorithms and are iterative processes; sequences of 

stages are often repeated multiple times.  To reduce the analysis time for SPA, these cycling 

processes should be effectively operated and automated.   

Several software packages have been developed and distributed in the SPA field for reducing 

analysis time as well as improving resolution.  Examples include IMAGIC (van Heel et al., 1996; 

van Heel et al., 2011), SPIDER (Frank et al., 1996; Shaikh et al., 2008), EMAN (Ludtke et al., 

1999; Tang et al., 2007), XMIPP (Marabini et al., 1996; Scheres et al., 2008; Sorzano et al., 

2004), and FREALIGN (Grigorieff, 2007).  These packages have greatly facilitated the progress 

and dissemination of this structure determination method.  However, a single package is not 

usually sufficient for the analysis, due to the differences in theoretical approaches of analyses and 
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in the target proteins for their software development.  Researchers must often develop an original 

workflow integrating basic algorithms for each target protein.  A workflow is an ordered set of 

basic algorithms with iterative steps and is likely to be extremely complex.  In this workflow 

optimization task, the comparative evaluation of different algorithm integrations and different 

parameter settings has often been aided by human image recognition and experience.  The 

necessity of these human interventions is a large part of the long analysis period and hinders 

automation in these software packages.  Particularly, the qualitative evaluation by a human is 

problematic since this prevents further automation.   

To further reduce analysis time in SPA and improve automation of analysis, I carefully examined 

two main qualitative evaluations during the optimization of SPA workflows: visual inspection of 

input/output images and convergence evaluation of the iterative steps.  Particle images, 2D 

average images, and projected images from resultant 3D structures are visually inspected to 

assess the quality of outputs, such as their consistencies and resolutions.  Many objective 

quantitative criteria to replace this qualitative inspection have been already proposed in the SPA 

field.  Examples are a similarity measure using the Cross-Correlation Coefficient (CCC) and a 

resolution measure using Fourier Shell Correlation / Fourier Ring Correlation (FSC, Harauz and 

van Heel, 1986; FRC, Saxton and Baumeister, 1982).  However, according to our experience 

from previous analyses, it has been difficult to rate the differences between optimizations by 

individually checking the resultant values of any single criterion.  The value differences of a 

criterion have been often too subtle to be conclusive and the ratings of different criteria have 

often conflicted.   

The other main qualitative evaluation is for the convergence of iterative steps.  Several SPA 

studies have used a graph of resolution history, such as FSC (Cong and Ludtke, 2010; Frank, 
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2006; Ludtke et al., 2001) and the Differential Phase Residual (DPR, Frank et al., 1981).  

However, quantitative criteria have not been established for the final decisions of whether 

workflows converged or not, even though clear differences have been observed in convergence 

trends of criterion values before and after workflow optimizations in previous analyses.   

Analyzing qualitative evaluation by humans along with our previous experience, three 

observations emerge: (1) A quantitative criteria of workflow convergence has not been 

established, (2) The difference between different workflow optimizations has not been 

statistically evaluated, and (3) Humans have intervened in comprehensive evaluation of multiple 

criteria.  Solving these problems should allow the evaluation and optimization of the SPA 

workflow without depending on human interpretation and experience.  Software can set 

parameter values systematically and should be able to automatically select the most appropriate 

optimized state of a workflow using a quantitative evaluation.   

Based on this background, I propose the Integrated Convergence-Evaluation Oriented System 

(IC-EOS).  The IC-EOS is an evaluation system, oriented to the convergence of criterion values, 

for SPA workflow optimization.  To enhance the reliability of the decision, the system integrates 

the convergence evaluations of multiple criteria.  Inspired by previous works (Cong and Ludtke, 

2010; Frank, 2006; Frank et al., 1981; Ludtke et al., 2001; Sigworth, 1998), it visualizes histories 

of criterion values.  Furthermore, curve fitting is applied to history graphs and provides 

convergence measurements: fluctuation amplitude and improvement width.  These measurements 

are used to evaluate convergence.  The computational selection vote system for most-appropriate 

condition sets is also developed.   
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The IC-EOS improves SPA accuracy and minimizes calculation time by reducing trial-and-error 

steps and by supporting building of complex workflows.  This research should open the path to 

the automatic determination of the structures of ion channels and other important proteins at 

high-resolution.   
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Part I: Theoretical background for IC-EOS development 

 

One recent emphasis in SPA methodology has been on the optimization of workflow.  Although 

software packages for SPA provide most of the basic algorithms, the combination and order of 

algorithms must be frequently rearranged.  In addition, multiple searches for adequate parameters 

are usually necessary.  An evaluation step follows to assess each applied optimization.  The 

optimization and evaluation are repeated until a good balance among multiple criteria is reached.  

The balance is a key to achieving high-resolution, and is specific to the nature of the target 

protein as well as the type and quality of micrographs.  This optimization task often takes several 

months or even years, especially because the evaluation has been rather qualitative than 

quantitative.  Scoring the workflow optimization is necessary for a more objective evaluation and 

for automation of SPA, and it is desirable to quantify criteria of these qualitative evaluations.  

Therefore, to reduce the analysis time of SPA by the automation, the three observations stated in 

the General Introduction must be addressed.  This evaluation system for SPA workflow 

optimization, named IC-EOS, was developed by focusing on the convergence of multiple 

quantitative criteria.   

1. Establishing a quantitative decision method of workflow convergence   

The first agenda is to establish a quantitative method to decide the convergence of a criterion 

value.  For this purpose, a mathematical model of expected convergence trend is fitted to an 

iteration history curve of a quantitative criterion, and the trend is quantified.  Using obtained 

trend measures, it was hypothesized that it would be possible to make an algorithm of the 

convergence decision.   
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The convergence trend of a criterion value was expected to be either decreasing or increasing 

with saturation, or constant.  A good mathematical model for decreasing/increasing trends with 

saturation is exponential decay.  Let y be the value of a criterion and x be the iteration count.  

Exponential decay is defined by:   

0


rwesy
rx  (Decreasing form) 

0)1( 


rewsy
rx  (Increasing form) 

, where s is a value offset (i.e. a saturation value in the decreasing form or an initial value in the 

increasing form), w is the decay width, and r indicates the decay rate.  The parameters of this 

model can explain some properties of the convergence trend.  Using exponential decay as the 

mathematical model, the “curve fitting” by the least-squares method (minimizing the sum of 

squared residuals) is applied to the observed history curve of the criterion value in the 

convergence decision (Fig. 1).   

2. Statistical evaluation of workflow optimization difference: fluctuation measurement   

The second agenda is to evaluate the difference of workflow optimizations using a statistical 

method.  It was hypothesized that the stability of convergence trend, quantified by curve fitting, 

should show a statistical difference.   

Multiple history curves of a criterion measure are obtained by varying conditions systematically.  

Using the curve fitting to each history curve, a Root-Mean-Square Deviation (RMSD) is 

calculated.  Since RMSD indicates the average residual of the history curve, the fluctuation 

measurement, defined by this RMSD, is used as a convergence measurement to quantify the 

stability of the convergence trend.  The small value of fluctuation indicates that the history curve 
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is visually smooth and the criterion value is stable.  That is, the condition producing “the most-

stable” trend is indicated by the “minimum” fluctuation value of all conditions, and the condition 

resulting in “the most-unstable” trend is indicated by the “maximum”.  The stability of each 

condition is measured by its statistical difference from these minimum and maximum fluctuation 

values.  Two fluctuations are defined to be significantly-different if they have different variances 

of residual distributions.  Accordingly, the F-test is used, and its test statistic is defined by the 

ratio between the squared residual variances of two different conditions of a single criterion 

measure.  The larger variance is the numerator.  The test statistic is assumed to follow the F-

distribution with N1 - 1 and N2 - 1 degrees of freedom under the null hypothesis (i.e. two 

distributions have the same variance), where N1 and N2 are the sample sizes of the numerator 

and the denominator (i.e. 30 cycles).  The significant level was set to 0.001 with the two-tailed 

test.   

The value difference of a criterion is also considered statistically.  I hypothesized that the 

fluctuation value is the error of a criterion value.  Two criterion values are defined to be 

significantly-different if their difference is larger than 2.58 times the sum of their fluctuations (i.e. 

the likelihood of their fluctuations causing this size difference is 1%).  Otherwise, their 

fluctuation error range overlaps each other and they are considered to be statistically the same 

value.   

3. Algorithm of comprehensive decision: base measurements and best condition election   

The third agenda is to make an algorithm of comprehensive decision.  Introducing the computer 

voting method using multiple criteria, it was hypothesized that the best condition set should 
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obtain the largest number of quantitative criteria showing the most-stable expected trend.  This 

should allow a highly reliable comprehensive decision.   

Currently, visual inspection of input/output data is done many times at different stages of the 

analysis, along with evaluation using quantitative criteria.  The most frequently used criterion in 

SPA is CCC, which measures similarity between a reference image (i.e. a class average or 

reprojection) and the particle image from EM.  Another criterion is resolution.  The commonly-

used definitions for resolution are the Q-factor (Kessel et al., 1985; van Heel and Hollenberg, 

1980), the S-image (Sass et al., 1989), DPR (Frank et al., 1981), FSC (Harauz and van Heel, 

1986)/FRC (Saxton and Baumeister, 1982), and the Spectral SNR (SSNR, Unser et al., 1987).  Of 

these, the most widely used are FSC and FRC, because of ease of calculation and versatility, as 

well as their relationship to the SSNR (Penczek, 2010).   

Accordingly, the following five base measurements were selected for quantitative tracking of 

convergence trends: (1) FRC/FSC-resolution of a 2D class average or a 3D reference structure (in 

Å/cycle), (2) Total Intra-Class variance (TIC-variance) of a class average (normalized), (3) CCC-

similarity of a class average and the corresponding constituent particle (normalized), (4) shift in 

2D alignment (in pixels), and (5) rotation in 2D alignment (in degrees).  FRC or FSC with a 0.5 

CCC criterion was chosen as a resolution measurement.  By definition, these indicate how well 

the fine features match among the constituent particles of a 2D average or a 3D structure.  They 

also measure self-consistency in frequency space, that is, how closely the particles in a class 

resemble each other.  Together, the TIC-variance of class averages can measure self-consistency 

in real space.  This value should also reflect changes in signal and noise variance in particle 

images.  For stability of class constituents, each particle-average pair should show the highest 

correlation among all other possible combinations at the converged state.  Creating a quantitative 
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measurement for the cessation of shift and rotation can be directly associated with the shifted-

distance and rotated-angle of particles by 2D alignment.  Each of these five values has been 

individually used as a quantitative criterion or “energy function” (objective function) measuring 

the achievement level of the workflow objective.  IC-EOS uses all of them together, as base 

measurements for the convergence trend.  Mean and Standard Deviation (SD) of each base 

measurement are calculated at each iteration cycle, and their histories are recorded.   

The best condition election by voting method consists of four procedures: (1) convergence sub-

vote, (2) fluctuation sub-vote, (3) best condition total vote, and (4) mean-value inspection.   

The convergence sub-vote ranks conditions with the number of base measurements showing the 

expected trend, using all “converged” or “not-converged” decisions.  This vote is divided into 

two categories; for base measurements with “desirable convergences” and for those with 

“undesirable convergences”.  As described in subsection 2.1 of Part II, the preliminary inspection 

of all obtained data revealed that, when the appropriate condition set was used, values of some 

base measurements should be “not-converged”.  This is because the first cycle of iteration steps 

was sufficient for these measurements to converge, and their values were constant during the later 

iteration cycles.  Therefore, their convergences are regarded as “undesirable”.  The vote simply 

counts up the number of “converged” marks for the desirable category (A1) and “not-converged” 

marks for the undesirable category (A2).  A larger sub-vote sum (A1 + A2) is better.   

The fluctuation sub-vote counts the number of base measurements which obtained the most-

stable-trend and rates each condition, using the statistical difference of fluctuation values.  For a 

given base measurement, the procedure evaluates whether the convergence stability is 

significantly-not-different from the condition of most-stable convergence (i.e. the minimum 
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fluctuation).  If this is true, a score is given to the base measurement.  The procedure also 

evaluates whether the convergence stability is significantly-different from the condition of the 

most-unstable convergence, and again a score is given.  A higher score is better for the minimum 

vote (B1), and lower is better for the maximum vote (B2).  A larger sub-vote difference (B1 - B2) 

is better.   

The best-condition total vote is the sub-vote sum plus the sub-vote difference ((A1 + A2) + (B1 - 

B2)).  The condition with the largest number of votes is elected.  This ensures that the elected 

condition has obtained the largest number of base measurements showing the most-stable 

expected trends.   

In the mean value inspection, the mean values are evaluated relative to the best and worst values, 

and used to confirm whether or not each mean value of the elected condition is optimal among 

the experimental conditions.  The statistically-optimal value is defined to be both not-

significantly-different from the best mean value and significantly-different from the worst.  For a 

given base measurement history, the procedure checks if the mean value of each condition is 

statistically optimal.   

4. Construction of IC-EOS   

IC-EOS is constructed as an external extension tool for existing software packages.  The system 

consists of three components: (1) extraction of five base measurement values from all iteration 

cycles of the workflow after the completion of 2D averaging, (2) calculation of their statistics, 

and (3) convergence evaluation.  The modules for value extraction and statistic calculation were 

implemented using C++ and DOS command batch files.  For convergence evaluation, including 
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curve fitting and various other statistical analyses, Microsoft Office Excel 2007 (Microsoft 

Corporation, Redmond, WA) was used.   
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Figure 1. Convergence evaluation by IC-EOS   

Flowchart of convergence evaluation by IC-EOS curve fitting.  The evaluation consists of the 

following process: (1) Line fitting to the base measurement history curve.  (2) Determining 

whether the slope of the fitted line matches the expected increase/decrease trend of the history 

curve.  If not, the history curve is determined to be “not-converged”.  (3) Curve fitting of the 

expected mathematical model (i.e. exponential decay) to the history curve by minimizing the sum 

of the squared residuals (i.e. deviation between fitted and observed values) at each cycle.  At the 

same time, fluctuation (defined by RMSD) is calculated, which indicates the average residual of 

the history curve.  (4) Determining whether the improvement width (i.e. the difference between 

values at first and last cycles) is larger than 2.58 times fluctuation (i.e. with a probability of 99%, 

fluctuation values are expected within this range and the improvement width is not caused by 

fluctuation).  If not, the history curve is determined to be “not-converged”.  (5) Determining 

whether the residual at each cycle is less than 50% of the maximum and minimum value 

difference (i.e. min/max width), to ensure that unexpected sudden value changes did not happen 

during the iteration cycles.  If not, the history curve is determined to be “not-converged”.  A 

workflow for a condition set is determined to be “converged” only if the history curve passes all 

these criteria.  Statistical analysis of the fluctuations and residuals was made in the best condition 

election by IC-EOS (defined in section 3 of Part I).  This evaluation procedure was applied to 

each history curve.  For a condition set, a total of 10 history curves (two statistic values of five 

base measurements) were obtained, as seen in Figure 5.  Therefore, a total of ten fluctuations and 

ten convergence decisions were obtained for each condition.   
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Part II: Case study examination of IC-EOS using NaChBac 

 

1. Introduction   

To examine the validity of the convergence-oriented approach for evaluation and optimization of 

SPA workflow described in Part I, a case study was conducted by applying IC-EOS to the 2D 

averaging of a negatively stained NaChBac (bacterial Voltage-Gated Sodium (NaV) channel) 

from Bacillus haloduran.  In Part V, the 3D structure of NaChBac was also determined using 

SPA (see subsection 2.1 and 2.2 of Part V for the preparation of the particle library).   

The particle images for SPA are taken with a transmission electron microscope after the 

purification of proteins.  The most commonly used specimen preparations are negative staining 

and ice-embedding.  Negative staining with a heavy metal salt such as uranyl acetate produces 

high contrast, and protects the protein from deformation under vacuum.  Although some particles 

show deformation or staining variations, the high contrast is still advantageous for the throughput 

of analysis.  For cryo-EM, the purified proteins in solution are rapidly plunged into liquid ethane 

cooled by liquid nitrogen, whereupon the thin water film vitrifies and embeds the samples.  This 

makes it possible to obtain particle images in a close-to-native state under fully hydrated 

conditions.  However, the density of proteins is only slightly higher than that of vitreous ice, and 

the contrast between the unstained sample and the surrounding ice is quite low.  Because of the 

extremely low SNR in the recorded particle images, analysis requires a proportionally large 

number of particle image data and of alignment/classification calculation repetitions, which 

prolong analysis time.  Therefore, negatively stained samples were used in the first examination 

of IC-EOS.   
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Addressing 2D averaging is especially important because it is the first critical workflow with 

iterative steps for 3D reconstruction.  A key requirement of SPA is to obtain a high-quality initial 

structure.  From our experience, the quality of the initial structure strongly influences the stability 

and plausibility of the later stages, as well as the resolution of the final 3D structure.  To achieve 

this objective, the accuracy of 3D projection angle estimation is important.  In SPA, the 

projection directions of 2D particle images must be estimated from these images themselves, 

since particles are expected to be oriented randomly on an EM sample holder.  This estimation 

process distinguishes SPA from other 3D reconstruction methods such as tomography, where the 

projection angle of each detected 2D image is known in advance.  The estimation accuracy is 

mainly influenced not only by the 3D angle estimation algorithm but also by the quality of class 

averages resulting from the iterative alignment/classification of 2D averaging.  Therefore, the 

iteration steps of 2D averaging can be considered to establish the basis for analysis quality.   

Several convergence criteria for 2D averaging have been proposed in previous research: (1) 

resolution improvement of class averages should reach saturation (Frank, 2006; Frank et al., 

1981), (2) no particle should migrate between different classes (van Heel and Stoffler-Meilicke, 

1985), (3) refinement should decrease total image variance (van Heel and Stoffler-Meilicke, 

1985), and (4) most particle images should cease to shift or rotate (Penczek et al., 1992; van Heel 

and Stoffler-Meilicke, 1985).  Since some of these criteria are somewhat qualitative, they need to 

be translated into quantitative measurements to automatically evaluate convergence of 2D 

averaging.  Ideally, all of these criteria are satisfied when the workflow reaches a converged state.  

Therefore, the reliability of workflow outputs will be much improved if all criteria are integrated.  

The proposal here of using five base measurements fulfills all statements.   
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The optimization of 2D averaging was started from the widely-used workflow described in the 

IMAGIC-5 manual (IMAGIC-5, 2011; van Heel et al., 1996).  This workflow consists of five 

main steps (Fig. 2a-A): (1) coarse centering of particle views to their total average (Dube et al., 

1993), (2) initial classification of coarsely centered particle views (Dube et al., 1993), (3) mutual 

alignment of class averages, (4) Multi-Reference Alignment (MRA) of particle views relative to 

class averages, and (5) classification of aligned particle views.  The third through fifth steps were 

repeated for a fixed number of cycles, using the class averages yielded at the fifth step as new 

references for the subsequent iteration.   

 

2. Materials and Methods   

2.1. Expected trend of five base measurements for 2D averaging   

To determine the 2D resolution within a class, the class average obtained from 2D averaging was 

split into two independent sub-averages, which were compared by the FRC method (van Heel 

and Stoffler-Meilicke, 1985; van Heel et al., 1982) with a 0.5 CCC criterion (van Heel and Schatz, 

2005).   

The expected convergence trend of mean values for each base measurement is as follows: (1) a 

decreasing trend with gradual saturation, for FRC-resolution and TIC-variance as well as shift-

distance, (2) an increasing trend with saturation for CCC-similarity, and (3) a constant trend for 

rotation-angle.  Mean value of rotation-angles is constant, since the positive and negative angles 

are expected to cancel each other out.  The SD values of all base measurements are expected to 

show a decreasing trend with saturation.  However, contrary to this original hypothesis, the 

preliminary inspection showed that the convergences are “undesirable” for the SD of FRC-
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resolution and the SD of TIC-variance.  These values converge at the first cycle of 2D averaging 

and are constant during the iteration cycles.   

For mean value inspection, only the FRC-resolution and CCC-similarity mean values of the last 

cycle are used to simplify the inspection.  The minimum mean value is the best for FRC-

resolution, while the maximum is the best for CCC-similarity.   

2.2 Particle-discard and classification variations in 2D averaging   

Two independent variables were chosen: discard ratio and Class-To-Particle ratio (CTP ratio).  

The trends of base measurement histories were then monitored and the workflow was evaluated.  

The discard ratio was defined as the ratio of discarded image counts to the total image counts in 

the library; the discarded images included those of background noise without any particle, 

aggregated particles, fragmented particles, deformed particles, and particles with variations.  The 

CTP ratio (CTP) was defined as the square root of the ratio of class counts (k) per particle counts 

in a library (N):  

N

k
CTP   

The number inside the square root is the inverse of the average number of particles in each class.  

CTP ratio indicates the expected reduction of the noise level by 2D averaging (Rosenthal and 

Henderson, 2003).   

To achieve the highest possible resolution from a given dataset, both discard and CTP ratios must 

be appropriate.  When the number of classification groups is too large, the number of particles in 

a class will be small.  This limits the reduction effect on noise level by 2D averaging.  Inversely, 

if the number of classes is too small, particles of different appearances (or projection angles) are 
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mixed into a single class.  This blurs the average image of this class.  Even though the 

appropriate class is used, an unsatisfactory particle selection causes the inclusion of non-true-

particle images into some classes.  This also blurs class averages.  Thus, an inappropriate discard 

ratio or CTP ratio reduces the resolution of class averages.   

 

3. Results   

3.1. IC-EOS evaluation of 2D averaging workflow before optimization   

The convergence of unoptimized 2D averaging was first evaluated using the proposed criteria 

(Fig. 1, Fig. 2a-A).  The top four rows in Figure 3a summarize the 2D averaging with discard 

ratio variation; the bottom four rows are of CTP ratio variation.  For the discard ratio variation, 

the numbers of particles were 10947, 8713, 6848, and 5495 (each a reduction of 20%), while the 

number of classes was kept constant at 200 (Fig. 3a, Table 1a).  The selection was based on the 

CCC of particle images relative to the total average.  For the CTP ratio variation, the numbers of 

classes were 100, 200, 300, and 400, while the number of particles in the library was kept 

constant at 5495 (Fig. 3a, Table 1b), where visual inspection did not reveal any obvious non-true 

particles.  The iterative steps of workflows were repeated for 30 cycles.   

Most of the base measurements indicated “not-converged” (Fig. 3a, blue crosses).  The exception 

was the TIC-variance mean value, which got “converged” marks (red circles) in all condition sets 

except in that of 10947 particles (200 classes).  The condition set with 100 classes (5495 particles, 

indicated by an orange outline) got “converged” marks in several measurements including FRC-

resolution, indicating the most stable condition set.  The visual trends of “converged” and “not-

converged” of each base measurement (Fig. 3b) fitted well with the quantitative results.  The 
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resultant class averages at the final 30
th

 cycle of this condition set compared well with raw 

particle images in each class (Fig. 4), indicating that our 2D averaging was consistent with the 

dataset.  Although assessment of convergence achievement could be introduced to the 

unoptimized workflow, best-condition search was complicated due to the workflow’s sensitivity 

to condition variation.  Therefore, I proceeded to optimization of the workflow.   

3.1.1. Investigation of condition-sensitivity   

To investigate the condition-sensitivity of an unoptimized workflow, it was informative to check 

the mean value trend of CCC-similarity.  History curves of a “not-converged” condition set (5495 

particles and 300 classes) show that the mean value of CCC-similarity had a stable trend of 

increasing to convergence from the 1
st
 to 8

th 
cycle, but the value suddenly dropped off at the 9

th
 

cycle (Fig. 3c).  The value recovered steadily up to the 15
th

 cycle, but again dropped drastically at 

the 16
th

 cycle and even more at the 17
th

 cycle.  This up-and-down repeated through whole 

iterations.  At the same cycles where CCC mean value dropped drastically, shift-distance mean 

value also increased (Fig. 3c, highlighted with blue lines), indicating a large movement of most 

particles.  As indicated by the red cross marks in Figure 3d, the orientation of the total average 

clearly changed from the 16
th

 to the 18
th

 cycle, which showed the most drastic movements of 

CCC-similarity mean value.  In addition, the orientations of class averages were not always 

consistent, especially in the 17
th

 cycle.  From this, it appears that the 17
th

 cycle was a transitional 

state of the particle library from the well- to poorly-aligned state.  These results indicate that the 

particle orientation and position in each image square tend to change dramatically through whole 

iterations.  These significant changes in appearance, orientation, or position of particle averages 

between any consecutive cycles are undesirable for alignment and classification algorithms.   
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3.2. Optimization of 2D averaging by particle uprighting   

The workflow was modified to achieve more robust convergence by introducing the “particle 

uprighting” algorithm (Fig. 2b).  This algorithm was designed to obtain the maximum 

consistency of particle orientation and position through whole iteration cycles, by forcing all 

particle views to be upright and centered at every cycle.  OpenCV v2.3 (OpenCV, 2011) was 

used for the implementation of the algorithm.  The modified workflow (Fig. 2a-B) is comprised 

of seven main steps: (1) coarse centering of particle images to their total average, (2) initial 

classification of coarsely centered particle images, (3) uprighting of class averages, (4) uprighting 

of the total average, (5) mutual alignment of class averages with the upright total average as a 

base reference (to which all class averages were aligned before the mutual alignment), (6) MRA 

of particle images using the aligned class averages as references, and (7) classification of the 

particle images.  The fourth through seventh steps were repeated for 30 cycles, using the 

produced class averages as new references for the subsequent iteration.  The introduction of a 

particle uprighting algorithm was examined using two types of condition variations: CTP ratio 

variation with a constant discard ratio (Table 2a), and discard ratio variation with a constant CTP 

ratio (Table 2b).   

3.2.1. Number of classes: CTP ratio variation   

Introducing the particle uprighting algorithm dramatically enhanced convergence in the CTP ratio 

variation experiment.  The histories of the five base measurements were obtained first (Fig. 5).  

Fluctuation curves (Fig. 6a) and value curves (Fig. 6b), generated from these histories, represent 

the changes in each base measurement with the condition variation.  These histories were then 

used as input data for the best condition election of IC-EOS (Fig. 6c).  Among the mean-
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fluctuation curves of the base measurements relative to the CTP ratio (Fig. 6a), the FRC-

resolution presented an increasing trend (less stability), while those of the others showed 

decreasing trends (more stability).  All the curves had plateaus at higher CTP ratios.  FRC-

resolution and CCC-similarity also had plateaus at lower CTP ratios, resembling a sigmoid 

function.  The trends of SD-fluctuations did not have any clear plateaus compared with those of 

mean fluctuations.  The SD-fluctuation curves of FRC-resolution, CCC-similarity, and TIC-

variance showed an increasing trend (less stability), while those of rotation-angle and shift-

distance showed a decreasing trend (more stability).   

Value curves of base measurements depending on CTP ratio (Fig. 6b) showed a variety of trends; 

the width between the first cycle (orange and aqua curves) and last cycle (red and blue curves) 

changed relative to CTP ratio variation, for several of the base measurements.  As CTP ratio 

increased, FRC-resolution mean value increased almost linearly, indicating linear degradation.  

CCC-similarity mean value also showed an almost linear increase, but this trend indicates linear 

improvement.  That is, mean values of FRC-resolution and CCC-similarity were in a tradeoff 

relationship.  TIC-variance mean value decreased almost linearly (see subsection 4.7 of Part II 

about the interpretation of TIC-variance).   

The result of the best condition election shows all base measurements, except FRC-resolution SD 

and TIC-variance SD, converged in most of the condition sets (Fig. 6c).  These SDs converged 

only at the end points of the experimental condition sets, where other base measurements got 

“not-converged” marks.  The convergence sub-vote section (Fig. 6c-1) indicated that most 

conditions showed desirable trends (red mark).  A few undesirable trends (black mark) appeared 

at both ends of the CTP ratios (25 and 400 classes).  Larger counts of convergence sub-vote sums 

(Fig. 6c-1), fluctuation sub-vote differences (Fig. 6c-2), and total votes (Fig. 6c-3) concentrated 
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at around 150 classes (0.165 CTP ratio), which were selected by the best condition election 

(highlighted with yellow).  This shows that the condition with 150 classes converged most stably.  

However, the mean value inspection (Fig. 6c-4) indicated that the condition for statistically-

optimal FRC mean value was only at 25 classes while that for statistically-optimal CCC was only 

at 400, reflecting their tradeoff relationship.  Furthermore, both mean values of the selected 150 

classes were significantly-different from these statistically-optimal values.  All together, FRC and 

CCC mean values of the most stable condition were located near the average levels of those of all 

CTP ratios.   

3.2.2. Particle selection: discard ratio variation   

The particle uprighting algorithm was also examined in relation to discard ratio variation (Fig. 7).  

Trends of the fluctuation curves of base measurements relative to the discard ratio (Fig. 7a) were 

not as clear as those for CTP ratio variation.  In particular, no clear plateaus were found except on 

the curve of CCC-similarity mean fluctuation.  This curve had a plateau at lower discard ratios 

and increased almost linearly on the higher end, reflecting unstable CCC-similarity when the 

discard ratio was high.  As the discard ratio increased, FRC-resolution mean value decreased 

(improved) to the saturation point, while CCC-similarity mean value increased (improved) (Fig. 

7b).  In these curves, the increasing or decreasing rate changed at higher discard ratios.  That is, 

FRC-resolution and CCC-similarity improved together when the discard ratio increased, at a cost 

of unstable CCC-similarity.  TIC-variance mean value showed a similar trend to the CCC-

similarity mean value.   

The best condition election of the discard ratio variation experiments (Fig. 7c) showed similar 

results to those of CTP variation experiments (Fig. 6c).  All base measurements, except FRC-



25 
 

resolution SD and TIC-variance SD, converged (Fig. 7c).  Notably, TIC-variance SD got 

“converged” marks at lower discard ratios (Fig. 7c-1, green box).  Visual inspection confirmed 

that these libraries contained a relatively high ratio of non-true-particle images.  Higher counts of 

convergence sub-vote sums (Fig. 7c-1), fluctuation sub-vote differences (Fig. 7c-2), and total 

votes (Fig. 7c-3) concentrated at around 6848 and 5495 particles.  The best condition election 

selected 5495 particles (0.50 discard ratio; highlighted with yellow).  The mean value inspection 

(Fig. 7c-4) also indicated that this condition achieved the statistically-optimal values of both FRC 

and CCC.  These statistically-optimal values overlapped at 5495, 4373, and 3272 particles 

(orange box) and they were not-significantly different from values of the most stable condition.   

3.3. Further optimization of 2D averaging by intra-class alignment   

To further improve 2D averaging, the “intra-class alignment” algorithm was applied (Fig. 2a-C).  

Particles in each class were aligned to the class average after image classification at the seventh 

step of the workflow.  This alignment was repeated five times in each iteration.  Refinement by 

intra-class alignment was inspired by the work of Ludtke et al. (Ludtke et al., 2004), who used 

this algorithm in 3D refinement by projection matching to reduce the strong bias of the current 

volume.  Its application to the 2D averaging was expected to reduce the bias of the 2D references.  

This modification also allowed us to use finer translational and rotational alignment without a 

huge increase in computation time, since the number of image alignments is much smaller than 

that using MRA.   

Workflows with and without intra-class alignment were compared by IC-EOS using the same 

condition sets (Table 2a and 2b).  Additional intra-class alignment made 2D averaging more 

condition-sensitive, while it improved FRC-resolution.  A few “not-converged” marks were 
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obtained in almost all base measurements.  This sensitivity became more apparent in relation to 

CTP ratio variation; CCC-similarity, rotation-angle, and shift-distance were affected most (Fig. 

8c-1).  For discard ratio, the condition set with 5495 particles and 100 classes was deselected by 

the vote, and the CCC-similarity mean value of this condition set was “not-converged” (Fig. 9c-

1).  Comparing the fluctuation curves between with- and without-intra-class alignment cases, the 

amplitudes of fluctuations were not so different (Fig. 8a and 9a, solid and dotted curves).  

However, there were differences in the values of the first cycle (Fig. 8b and 9b, orange and aqua 

curves) and last cycle (red and blue curves).  For example, CCC-similarity SD value curves of the 

first cycle in Figure 8b show that the values with intra-class alignment (solid aqua curve) were 

lower than the ones without this algorithm (dotted aqua curve) at all CTP ratios.  On the other 

hand, the value curves of the last cycle (solid and dotted blue curves) were not so different.  

Consequently, the improvement width became narrower with this algorithm.  The other 

measurements of this optimized workflow also showed narrowing of the improvement width, 

especially at the “not-converged” condition sets.  However, intra-class alignment achieved better 

FRC-resolution mean value and did not strongly affect its convergence (Fig. 8c-1 and 9c-1).  The 

improvement width of this mean value was almost the same because both the first cycle values 

(Fig. 8b and 9b, solid relative to dotted orange curve) and last cycle values (solid relative to 

dotted red curve) shifted lower in all condition sets.   

The best CTP ratio was 0.165 (150 classes; Fig. 8c, highlighted with yellow) and the best discard 

ratio was 0.29 (7817 particles; Fig. 9c, highlighted with yellow), when intra-class alignment was 

included.  The elected CTP ratio was consistent with the workflow without intra-class alignment 

(Fig. 6c), while the elected discard ratio was different (Fig. 7c).  Comparing the total votes 

between Figure 6c and 8c, the convergence-stability of the 100 class set (0.135 CTP ratio) 
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decreased more than that of the 150 class set, as the condition-sensitivity of the workflow was 

increased.  This observation indicated that the CTP ratio of 0.135 was not adequate for the 

algorithm with intra-class alignment.  Furthermore, the high sensitivity to the CTP ratio made it 

difficult to find an adequate discard ratio.  Accordingly, the 0.5 discard ratio (5495 particles) was 

concluded to be the most desirable for the present library.  Notably, the mean value inspection 

(Fig. 9c-4) also supported the 5495 particle dataset as a better choice.  The statistically-optimal 

mean values of FRC and CCC overlapped only at 5495 particles (orange box), whose FRC and 

CCC mean values were not-significantly different from the selected 7817 particles.  For the CTP 

ratio variation, a similar result was obtained (Fig. 8c) compared to without intra-class alignment 

(Fig. 6c).   

 

4. Discussion   

4.1. IC-EOS   

It is known that extremely noisy input micrographs can yield an artificially high-resolution with 

increased misalignments to noise (Penczek, 2010; Stewart and Grigorieff, 2004).  To quantify the 

likelihood of including this artifact into the resultant class averages, not only the resolution but 

also four other energy functions of 2D averaging and their convergence stabilities were used.  

The “majority voting” approach softened the noise influence of each individual base 

measurement and effectively reduced the number of search trials in selecting the best condition 

set.  To organize the findings from the IC-EOS experiment, a decision scheme for workflow 

optimization was devised (Fig. 10), consisting of three major components: (1) properties of the 

input/output datasets, (2) workflow, and (3) evaluation system.  Among them, properties of 
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datasets and workflow have been well established in SPA, but a quantitative evaluation system 

has not yet been in wide use.  The construction of an evaluation system having a set of 

quantitative measurements and criteria was the aim for IC-EOS.   

4.2. Detection of convergence inhibitor factors   

As shown by the present study, IC-EOS can detect three “convergence-inhibitor factors”: (1) data, 

(2) conditions, and (3) processes.  First, the non-true-particle images were inhibitor data, which 

did not match the pre-conditions of the workflow.  IC-EOS successfully determined the most 

appropriate value for the particle discard ratio.  Second, an inappropriate number of classes (i.e. 

particle 3D orientations) was an inhibitor condition, which did not fit the nature of the dataset.  

The adequate CTP ratio was successfully determined with IC-EOS.  Third, the sudden overall 

shift due to mutual alignments of class averages was the inhibitor process for NaChBac.  The 

orientational constraint by the particle uprighting algorithm was effective in enhancing the 

convergence of the 2D averaging.  The investigation of mismatches between the pre-conditions 

of the process and the nature of the dataset led to finding the cause of the condition sensitivity of 

the workflow (Fig. 3c and 3d, and subsection 3.1.1 of Part II).  Thus, the system can aid in 

finding inhibitor processes for the optimization of workflow.   

4.3. Optimizations of 2D averaging   

The particle uprighting algorithm successfully enhanced the convergence of base measurements 

by preventing any drastic change in orientation through whole cycles.  During this first 

optimization, three issues were addressed; (1) the appearance of the total average should be stable 

through all iterations, (2) its orientation and position should also be stable, and (3) the alignment 

update should occur only between most-similar class average pairs.  To maintain a stable 
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appearance, all class averages were aligned relative to the total average before their mutual 

alignment.  The total average should be stable during iterations, since it is the most global 

statistical feature of the particle library (Penczek et al., 1992).  The CCC between the total 

average and each class average was used to upright particles at the center of the image square.  

This CCC was also used to ensure that alignment updates occur with only most-similar class 

average pairs.  However, this uprighting algorithm was designed for particles whose projections 

have a wide variety in shape and size.  Caution has to be taken when applying this algorithm to 

any particle which does not fit this assumption, such as round particles, including icosahedral 

viruses.   

In the second optimization, the addition of intra-class alignment increased the condition-

sensitivity of the workflow convergence and was not helpful for finding the adequate parameter 

range.  However, resolutions of the averages were improved.  Therefore, this algorithm should be 

included after narrowing the condition range but not in the condition-search stage.   

4.4. Selection of constant ratios   

Since the dependence relationship between the CTP ratio and the discard ratio was not clear, 

independent experiments were designed for variations of these two ratios in the NaChBac study, 

and constants were chosen based on experience and visual inspection following our previous 

method (Venturi et al., 2011).  For the discard ratio variation, a constant CTP ratio of 0.135 was 

chosen as an effective number with the size of the present library.  The result showed that this 

CTP ratio was not substantially different from the most appropriate CTP ratio of 0.165 elected in 

the CTP ratio variation (Fig. 6c, highlighted with yellow), and supported the validity of our 

empirical method for deciding the number of classes.  The library of the 0.50 discard ratio was 
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chosen in the CTP ratio variation, since no non-true-particle images were found in this library by 

visual inspection.  The best condition election with discard ratio variation selected the same 

library (Fig. 7c, highlighted with yellow), showing consistency with our visual inspection method.   

4.5. FRC-resolution relative to discard and CTP ratios   

Among the five base measurements used in the present study, FRC-resolution is the most well-

balanced because it reflects two important aspects of class averages: self-consistency and SNR 

(Penczek, 2010).  The particle discarding experiment justifies the particle selection.  Highly 

flexible domains of ion channels and the variation of the attached lipids to the hydrophobic 

transmembrane helices can cause image variation (Maruyama et al., 2007).  The increase in the 

discard ratio may reduce such variations, resulting in the improvement of resolution.   

The saturation point offers key information for finding the optimal condition.  The FRC mean 

value was saturated at high discard ratios while it was linearly improved by decreasing CTP ratio.  

Due to the limited conditions in the present study, this improvement was not bounded by any 

clear saturation.  By contrast, its mean fluctuation curve showed clear plateaus.  Therefore, 

fluctuation assessment is useful in balancing between optimal achievement level and convergence 

stability.   

4.6. CCC-similarity tradeoff relationship with resolution   

CCC-similarity and FRC-resolution mean values were in a tradeoff relationship when the CTP 

ratio was varied.  This relationship made it difficult to find the most-plausible CTP ratio using the 

mean value of FRC-resolution alone.  The fluctuations of base measurements were again useful 

in this matter, because these fluctuations indicated a CTP ratio for the most stable convergence.  

On the other hand, CCC-similarity and FRC-resolution mean values improved together when the 
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discard ratio was increased.  However, the CCC-similarity mean value became increasingly 

unstable, judging from its mean fluctuation curve.  Therefore, a higher discard ratio itself does 

not mean closer-to-optimal achievement levels.  Since multiple objectives interact with each 

other in relationship with various parameters, our approach of considering 2D averaging as a 

“complex system” allows IC-EOS to select the most appropriate condition set.   

4.7. TIC-variance interpretation   

With all the workflows and conditions used in the present study, TIC-variance mean value was 

the most stable base measurement.  However, the interpretation of TIC-variance mean value is 

not straightforward, since TIC-variance is the sum of signal variance and noise variance from the 

“additive noise” model (Frank et al., 1981).  The FRC mean value reflecting the SNR of class 

averages should be considered alongside the TIC-variance mean value.  The most widely used 

definition of SNR in SPA is the signal-variance per noise-variance ratio (Frank, 2006; Frank et 

al., 1981), which can be improved either by relatively reducing noise variance or relatively 

increasing signal variance.  Therefore, the information from other base measurements, such as 

resolution or SNR, is necessary to understand the trend of the TIC-variance mean value in detail.   

 

5. Conclusion   

The case study using NaChBac demonstrated that the numerical computation method of IC-EOS 

calculating real data is informative to find the characteristics and behaviors of workflows for 2D 

averaging.  Due to the complicated process of image formation in EM for SPA, establishing a 

noise generation model for input particle images has been challenging for analytical methods to 

predict the outputs of SPA computations.  These results revealed that a characteristic of the 
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workflow with particle uprighting is the ability to stabilize the convergence of base 

measurements more effectively than does the workflow without this algorithm or with the 

addition of intra-class alignment.  IC-EOS led to this finding by enabling the rating of workflow 

optimization.  The tradeoff behavior of the 2D averaging workflows between resolution and CCC 

became apparent during the search for the proper number of classes.  Even with this complication, 

IC-EOS still could determine the best number of classes where these two base measurements are 

well balanced.  IC-EOS also showed the behavior of the 2D averaging workflows during particle 

selection; resolution and CCC improved together with stricter selections, although saturation was 

possible.   
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Table 1. Particle selection and class counts   

a. Discard ratio variation with constant class counts   

Particles Classes Members CTP Ratio 
Discard 

Ratio 

10947   200   54.74   0.135   0.00   

8713   200   43.57   0.152   0.20   

6848   200   34.24   0.171   0.37   

5495   200   27.48   0.191   0.50   

 

b. CTP ratio variation with constant particle counts   

Particles Classes Members CTP Ratio 
Discard 

Ratio 

5495   100   54.95   0.135   0.50   

5495   200   27.48   0.191   0.50   

5495   300   18.32   0.234   0.50   

5495   400   13.74   0.270   0.50   
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Table 2. 2D Averaging conditions for 1
st
 and 2

nd
 optimizations   

a. CTP ratio variation with constant discard ratio   

Particles Classes Members CTP Ratio 
Discard 

Ratio 

5495   25   219.80   0.067   0.50   

5495   50   109.90   0.095   0.50   

5495   100   54.95   0.135   0.50   

5495   150   36.63   0.165   0.50   

5495   200   27.48   0.191   0.50   

5495   300   18.32   0.234   0.50   

5495   400   13.74   0.270   0.50   

 

b. Discard ratio variation with constant CTP ratio (variable class counts)   

Particles Classes Members CTP Ratio 
Discard 

Ratio 

10947   200   54.74   0.135   0.00   

9843   180   54.68   0.135   0.10   

8713   159   54.80   0.135   0.20   

7817   143   54.66   0.135   0.29   

6848   125   54.78   0.135   0.37   

5495   100   54.95   0.135   0.50   

4373 
 

80 
 

54.66 
 

0.135 
 

0.60 
 

3272 
 

60 
 

54.53 
 

0.135 
 

0.70 
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Figure 2. Optimization of 2D averaging workflow   

(a) Three workflows used to test the optimization effect on 2D averaging.  The left column shows 

the starting workflow to be optimized.  The first approach (middle column) introduced the 

“particle uprighting algorithm” (Fig. 2b), expecting to stabilize the orientation and position of 

aligned particle views through iterations by forcing particle views to be upright and centered at 

each iteration.  This aimed to achieve more robust convergence in 2D averaging.  Additions (step 

B3 and B4) and modifications (from step A3 to B5) of steps are indicated by underlining.  The 

second optimization (right column) further using “intra-class alignment” was expected to reduce 

the bias due to references used for MRA, enabling finer translational and rotational alignment.  

The additional step is underlined (step C8).  (b) Flow chart of the particle uprighting introduced 

in the first optimization.  This algorithm starts from an average, such as a class average or total 

average of particles.  (1) First, create a binary version of the average.  (2) Find the contour of the 

binary image using the “findContours” function of OpenCV (Open Source Computer Vision 

Library).  (3) Fit an ellipse to the contour by the least-squares method using the “fitEllipse” 

function of OpenCV.  (4) The image contour and the fitted ellipse are uprighted so that the major 

and minor axes are vertical and horizontal, respectively, the intersection of axes is centered in the 

image square, and the area surrounded by the contour below the horizontal axis is larger than that 

above.  (5) The third and fourth steps are repeated five times or until the contour is stabilized.  (6) 

Finally, the input image is rotationally and translationally aligned using the resultant values of 

alignment for the image contour.   
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Figure 3. Workflow without optimization   

Using NaChBac particles.  (a) Convergence evaluation using the procedure defined in Figure 1.  

Red circles represent “converged”, blue crosses “not-converged”.  All base measurements, except 

TIC-variance mean value, did not converge for most of the condition sets.  The condition set of 

5495 particles classified into 100 classes (indicated by orange outlines) was the most stable 

because several base measurements, including FRC-resolution, were “converged”.  (b) History 

curves of mean values (red line) and SD values (blue line) for the condition set of 5495 particles 

with 100 classes.  The decision of “converged” or “not-converged” by IC-EOS was identical to 

the visual impression.  (c) History curves of the 5495 particle dataset with 300 classes are 

presented as examples of “not-converged” (Fig. 3a, green box).  At cycle numbers 9, 17, and 22 

(highlighted with vertical blue lines), mean value of CCC-similarity dropped drastically.  Mean 

value of shift-distance increased at the corresponding cycles, reflecting instability in the overall 

orientation and position of particle views.  (d) Total averages and class averages at cycle numbers 

16 to 18, during which mean value of CCC-similarity dropped.  The orientations of the total 

average and class averages were not consistent through the cycles.  These inconsistencies can 

interrupt the convergence of this workflow.   
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Figure 4. 2D averages of NaChBac created by the unoptimized workflow   

Final 2D averages of the NaChBac particles using the unoptimized workflow with the most stable 

condition set (5495 particles and 100 classes).  Four class averages are shown in the top row, 

with the constituent raw particles below.  The constituent particles were highly consistent in size 

and shape with the 2D averages, indicating successful 2D averaging.  However, it was not easy to 

find a convergence condition for this workflow because of its high sensitivity to condition 

variation.   
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Figure 5. Five base measurements during the workflow with particle-uprighting and CTP ratio 

variation in the NaChBac study   

In each graph, a curve corresponds to a history of a base measurement using a particular CTP 

ratio, which increases as the number of classes increases from 25 (blue) to 400 (red).  (a) History 

curves of mean values, showing convergence trends.  CTP ratio influenced the mean values; 

fluctuation of the value curves helped to visually measure the convergence stability.  For example, 

FRC-resolution increased (degraded or got worse) as the CTP ratio increased.  At the same time, 

its fluctuation amplitude also increased (i.e. curve became rougher), while CCC-similarity 

increased (improved) and its fluctuation amplitude decreased (i.e. curve became smoother).  (b) 

History curves of SD values.  These curves indicate relatively large fluctuations and less clear 

convergence compared with those of mean values   
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Figure 6. Relationship between CTP ratio and five base measurements in 2D averaging with 

particle uprighting   

(a) Fluctuations of base measurements relative to CTP ratio.  The minimum (purple dotted line) 

and maximum lines (green dotted line) show the ranges of significantly-not-different conditions 

from the minimum and maximum fluctuations, respectively.  In each figure, an increasing or 

decreasing trend with a plateau was exhibited.  Mean fluctuations of FRC and CCC were 

somewhat sigmoidal.  In the fluctuation sub-vote difference (Fig. 6c, 2
nd

 section), a condition 

with a point lower than the minimum line got a positive vote, while one higher than the 

maximum line got a negative vote.  (b) Means and SDs of base measurements relative to CTP 

ratio.  The changes in the values of first and last cycles represent a variety of trends and 

improvement widths relative to CTP ratio variation.  The mean values of FRC and CCC were in a 

tradeoff relationship.  (c) The result of the best condition election.  The condition of 150 classes 

was selected as the most plausible (0.165 CTP ratio; 3
rd

 section, highlighted with yellow).  

Convergence sub-vote sums (1
st
 section), fluctuation sub-vote differences (2

nd
 section), and total 

votes (3
rd

 section) were high around this CTP ratio.  The mean value inspection indicated that the 

optimal FRC mean value was only at 25 classes (0.067 CTP ratio) and the optimal CCC was only 

at 400 (0.270 CTP ratio), reflecting the tradeoff relationship, and both values of the selected 150 

classes were significantly-different from these optimal values (4
th

 section).   
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Figure 7. Particle uprighting workflow with discard ratio variation in NaChBac study   

(a) Relationship between base measurement fluctuations and discard ratio variation.  The 

increasing/decreasing trends were less clear than those between fluctuations and CTP ratio 

variation (Fig. 6a).  Plateaus were not clear except for mean fluctuation of CCC-similarity, 

reflecting that CCC became unstable at higher discard ratios.  (b) Means and SDs of base 

measurements relative to the discard ratio.  As discard ratio increased, mean values of FRC and 

CCC improved together, at a cost of CCC instability.  (c) The best condition election selected 

5495 particles for the best convergence (0.50 discard ratio; 3
rd

 section, highlighted with yellow).  

Counts of convergence sub-vote sums (1
st
 section), fluctuation sub-vote differences (2

nd
 section), 

and total votes (3
rd

 section) were higher around 6848 (0.37 discard ratio) and 5495 particles.  

According to the mean value inspection, the optimal values for FRC and CCC overlapped at 3272 

and 4373 particles (0.7 and 0.6 discard ratio) as well as at the selected 5495 particles (4
th

 section, 

orange box).   
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Figure 8. Intra-class alignment workflow related to CTP ratio variations in NaChBac study   

Comparative evaluation between the primary (without intra-class alignment; Fig. 6) and the 

secondary (with intra-class alignment) optimizations.  (a) Fluctuations of base measurements.  

There were slight differences in the fluctuations with (solid line) and without (dotted line) intra-

class alignment at various CTP ratios.  (b) Means and SDs of base measurements in the primary 

(dotted line) and secondary (solid line) optimizations.  In general, the improvement widths were 

narrowed by intra-class alignment.  At all CTP ratios except 200 classes (0.191 CTP ratio), the 

FRC mean values with intra-class alignment were lower (better) than those without intra-class 

alignment.  (c) The best condition election selected 150 classes (0.165 CTP ratio; 3
rd

 section, 

highlighted with yellow), consistent with the result without intra-class alignment.  The 

convergence sub-vote (1
st
 section) exhibited more undesirable trends than that without intra-class 

alignment, indicating that intra-class alignment increased condition-sensitivity, as a cost of better 

FRC-resolution.  The result of mean value inspection (4
th

 section) was similar to that without 

intra-class alignment.  This result shows that IC-EOS is effective for revealing differences in the 

characteristics and behaviors of these two workflows for 2D averaging.   
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Figure 9. Intra-class alignment with discard ratio variation in NaChBac study   

Differences of the secondary optimization from the primary (Fig. 7).  (a) Fluctuations of base 

measurements with (solid line) and without (dotted line) intra-class alignment.  Again, the 

fluctuations in relationship with discard ratio variation were similar regardless of this algorithm.  

(b) Means and SDs of base measurements with (solid line) and without (dotted line) intra-class 

alignment.  In general, the improvement widths in the particle selection experiment were 

narrowed by intra-class alignment.  FRC mean value with intra-class alignment was lower 

(better) than that without intra-class alignment.  (c) The convergence vote sub-table with intra-

class alignment (1
st
 section) showed more undesirable trends as compared to the sub-table of 

without intra-class alignment; indicating that intra-class alignment increased condition-sensitivity, 

as a cost of better FRC.  The narrowing of the improvement width might have caused this 

sensitivity, since one criterion of the convergence evaluation states that the improvement width 

must be significantly larger than the fluctuation.  The best condition election selected 7817 

particles (0.29 discard ratio; 3
rd

 section, highlighted with yellow), which was not consistent with 

the result without intra-class alignment.  However, in the mean value inspection (4
th

 section), the 

optimal values for FRC and CCC overlapped only at 5495 particles (0.50 discard ratio; orange 

box), whose FRC and CCC mean values were not-significantly different from the selected 7817 

particles.   



50 
 



51 
 

Figure 10. IC-EOS decision scheme for workflow optimization   

The IC-EOS decision scheme for workflow optimization.  Each component requires another to be 

adequate to its precondition (red and cyan arrows).  The violations of these preconditions are 

considered as convergence-inhibitor factors (purple arrow): data, conditions, and processes.  The 

construction of an evaluation system having a set of quantitative measurements and criteria was 

the aim for IC-EOS.   
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Part III: Simulation study of IC-EOS using GroEL 

 

1. Introduction   

In Part II, the case study showed that IC-EOS could determine the best number of classes and 

selected particle images for the NaChBac dataset.  However, an investigation of selection 

accuracy was still necessary.  IC-EOS also revealed trends of fluctuations, means, and SDs of 

five base measurements relative to the variation of CTP ratio and of discard ratio.  Under the 

assumption that clearer trends of these convergence measurements could be observed and that IC-

EOS would select a correct condition, the 2D averaging of simulated data was conducted using 

the workflow of the first optimization with particle uprighting (Fig. 2a-B).  Projection images 

were artificially generated from an atomic-coordinate data of the GroEL chaperon protein, which 

was obtained from the Protein Data Bank (PDB) web site (PDB, 2013).   

 

2. Materials and Methods   

First, 82 equally distributed projection images were generated from the crystal structure of the 

GroEL protein (wild-type, apo-GroEL; PDB code: 1XCK, Bartolucci et al., 2005), assuming D7 

(7-fold x 2) symmetry (Fig. 11, the leftmost column).  Then, 4100 particle images were obtained 

by creating 50 copies from each projection with random rotations (uniform distribution) and 

shifts (Gaussian distribution with zero-mean and 4 pixel SD).  The dimensions of projection 

images were 80 x 80 pixels with 4 Å/pixel.  The SNR (ratio of signal variance per noise variance) 

of particle images was set to 0.05 (=1049/20982) by adding zero-mean Gaussian noise (Fig. 11, 
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the middle three columns).  To simulate the discard ratio variation, pure noise images of zero-

mean Gaussian with a variance of 20982 were added to the library of 4100 particles.  To mimic 

the case of discarding the true-particle images from the library, the number of particles was also 

reduced from the original 4100 particles by excluding all copied particles of certain projections, 

based on CCC of projection images relative to their total averages.  It was expected that libraries 

of 4100 particles or fewer would result in almost the same resolution, similarity, and stability.  A 

band pass filter was applied to all generated libraries, with a 288.0 Å low-frequency cutoff and a 

10.0 Å high-frequency cutoff at each cycle.   

 

3. Results   

The selection accuracy of the discard and CTP ratios was evaluated by simulation analysis using 

projections created from the crystal structure of GroEL.  The condition sets are shown in Tables 

3a and 3b.  The iterative steps of the workflow were repeated for 30 cycles.  The starting dataset 

of 4100 particles and 82 classes was defined as the correct answer with a zero discard ratio.  The 

negative values of the discard ratio correspond to the ratios of additional noise images in the 

library, and the positive values correspond to the ratios of discarded true-particle images from the 

correct answer.   

The generated 2D averages fitted well with the original projections (Fig. 11).  The best condition 

election correctly selected 82 classes (0.141 CTP ratio; highlighted with yellow) in CTP ratio 

variation (Fig. 12c).  This result supports that my proposed method is suitable for finding the 

correct CTP ratio for 2D averaging.  The tradeoff relationship between mean values of FRC-

resolution and CCC-similarity was observed again (Fig. 12b).  The mean and SD fluctuations of 
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FRC showed clear trends in that the CTP ratios around the correct answer were the most stable 

(Fig. 12a).   

On the other hand, the election selected a library of 3700 particles (0.1 discard ratio; highlighted 

with yellow) for discard ratio variation (Fig. 13c).  This number was 10% fewer than the starting 

4100 particles (0.0 discard ratio).  However, mean value inspection (Fig. 13c-4) revealed that 

obtained mean values of FRC and CCC from libraries of 3700, 3900, and 4100 particles (orange 

box) were not-significantly-different, in agreement with our expectation (see section 2 of Part III).   

 

4. Discussion   

The GroEL simulation of discard ratio variation showed that obtained mean values of FRC and 

CCC from the libraries around the correct answer were not-significantly different according to 

mean value inspection (Fig. 13c-4, orange box).  Assuming that a wider variation of projection 

angles is more desirable (Frank, 2006), a larger number of particles should be chosen in the 

discard ratio experiment.  The application of this criterion would have resulted in selecting the 

correct answer of 4100 particles in the simulation.  This observation also suggests that the 5495 

particle library of NaChBac would have been selected in both with- and without-intra-class-

alignment experiments (Fig. 7c-4 and 9c-4, orange box) if the mean value inspection was 

included in the decision criteria of the best condition.  Thus, this simulation result suggests that 

the mean values of FRC and CCC are also useful for finding the appropriate discard ratio.   

 

5. Conclusion   
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The result of this GroEL simulation study shows that IC-EOS can successfully select the correct 

number of classes and of particle images in the simulated library, validating the best-condition-

selection method of IC-EOS.  Fluctuations, means, and SDs of base measurements relative to 

these condition variations showed clearer trends than those in the case study using NaChBac.  

The tradeoff behavior between resolution and CCC was again observed in 2D averaging upon 

searching for the correct class counts.  Noticeable saturation of resolution and CCC 

improvements at higher numbers of discarded images was observed during particle selection.   

For the SPA structure determination of multiple ion channels and their multiple conformational 

variants, the automation of workflow optimization procedures is crucial for achieving high-

resolution.  Recent trends in SPA indicate that workflow optimization is increasingly important 

as individual algorithms improve.  The analysis of various proteins with various data styles 

requires balancing workflow arrangements and their appropriate conditions, using algorithms 

provided by multiple SPA software packages.  Since different proteins particles have different 

natures, it seems to be difficult, or at least not efficient, to use the same workflow for all proteins.  

The procedure for designing and constructing a highly optimized workflow should make SPA 

more accurate, efficient, and accessible to a much broader range of scientists.   
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Table 3. 2D Averaging conditions for simulation   

a. CTP ratio variation with constant discard ratio   

Particles Classes Members CTP Ratio 
Discard 

Ratio 

4100   25   164.00   0.078   0.00   

4100   50   82.00   0.110   0.00   

4100   75   54.67   0.135   0.00   

4100   82   50.00   0.141   0.00   

4100   100   41.00   0.156   0.00   

4100   125   32.80   0.175   0.00   

4100   150   27.33   0.191   0.00   

4100   175   23.43   0.207   0.00   

4100   200   20.50   0.221   0.00   

 

b. Discard ratio variation with constant CTP ratio (variable class counts)   

Particles Classes Members CTP Ratio 
Discard 

Ratio 

5740   115   49.91   0.142   -0.40   

4920   98   50.20   0.141   -0.20   

4510   90   50.11   0.141   -0.10   

4305   86   50.06   0.141   -0.05   

4100   82   50.00   0.141   0.00   

3900   78   50.00   0.141   0.05   

3700 
 

74 
 

50.00 
 

0.141 
 

0.10 
 

3300 
 

66 
 

50.00 
 

0.141 
 

0.20 
 

2450 
 

49 
 

50.00 
 

0.141 
 

0.40 
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Figure 11. GroEL simulation study   

Simulation study using GroEL model projections.  Leftmost column: 82 original projections 

generated from the GroEL crystal structure (PDB code: 1XCK, Bartolucci et al., 2005).  Middle 

three columns: 4100 particle library of 0.05 SNR (the variance ratio).  Fifty copies were 

generated from each original projection with random rotations and shifts.  Noise was then added 

to the copies.  Rightmost column: Final 2D averages using particle uprighting workflow with 

optimized conditions (4100 particles and 82 classes).  The particles compared well with the 

original projections.   
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Figure 12. GroEL simulation related to CTP ratio variations using the workflow with particle 

uprighting   

(a) Fluctuations of base measurements relative to CTP ratio.  Mean and SD fluctuations of FRC-

resolution showed clear trends, indicating that 75 and 82 classes (0.135 and 0.141 CTP ratios) 

were the most stable conditions.  This coincided with the original 82 classes.  Fluctuations of 

CCC-similarity also had clear plateaus at higher CTP ratios but suggested that the most stable 

condition was around 150 classes (0.191 CTP ratio).  (b) Means and SDs of base measurements 

relative to CTP ratio.  The tradeoff relationship between FRC and CCC were again obtained with 

this simulation.  The improvement width of FRC SD value showed an obvious change at 82 

classes and became wider at higher CTP ratios.  (c) The best condition election correctly selected 

82 classes (3
rd

 section, highlighted with yellow).  The convergence sub-vote (1
st
 section) 

exhibited poor convergences of shift-distance, strongly indicating that this base measurement 

converged at the first cycle of iterations with this dataset.  The concentrations of larger vote 

counts (1
st
 to 3

rd
 sections) were gained around this selected CTP ratio.  The mean value 

inspection shows a similar result (4
th

 section) compared to the case study of NaChBac (Fig. 6c).   
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Figure 13. GroEL simulation using particle uprighting workflow with discard ratio variation   

(a) Fluctuations of base measurements relative to discard ratio.  Mean and SD fluctuations of 

FRC-resolution indicated that the conditions of 4100 particles (0.0 discard ratio) and fewer 

(positive discard ratios) were stable.  Those of TIC-variance and SD fluctuation of CCC-

similarity showed similar tendencies.  (b) Means and SDs of base measurements relative to the 

discard ratio.  The mean and SD values of FRC were obviously different between negative and 

non-negative discard ratios.  All values of FRC and CCC had plateaus at non-negative discard 

ratios.  The SD value of TIC-variance showed the same trend while its mean value had a trough 

at the correct 4100 particles.  (c) The best condition election selected 3700 particles for the best 

convergence (0.10 discard ratio; 3
rd

 section, highlighted with yellow), which was 10% fewer than 

the correct answer.  The convergence sub-vote (1
st
 section) again showed poor convergences of 

shift-distance, suggesting that this measurement of the simulated dataset converged at the first 

iteration cycle.  Counts of convergence sub-vote sums (1
st
 section), fluctuation sub-vote 

differences (2
nd

 section), and total votes (3
rd

 section) were obviously higher at the non-negative 

discard ratio side.  According to the mean value, the optimal values for FRC and CCC overlapped 

at 3700 and 3900 particles (0.05 discard ratio) as well as at the correct 4100 particles (4
th

 section, 

orange box).   
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Part IV: SPA structure determination of MG23 

 

1. Introduction 

In parallel to the work on IC-EOS, I also conducted the SPA structure determinations of two 

negatively-stained proteins: a cation-conducting channel (Mitsugumin 23 or MG23) and 

NaChBac.  Over the past few decades, an enormous number of 3D structural studies revealed that 

the remarkable diversity of shapes and sizes of proteins is a reflection of the specificity with 

which they interact, often in a lock-and-key fashion.  The components of these nano-sized “work 

machines” show mechanical movements such as rotation, gliding, and lever motions.  SPA using 

negatively stained proteins has been used in a significant number of these studies.  Here, I 

followed the procedure of workflow optimization used in our previous SPA studies (e.g. 

Maruyama et al., 2007; Mio et al., 2007; Yazawa et al., 2007).  This led to conclusions about the 

qualitative criteria used by human evaluation described in the General Introduction, leading to the 

development of IC-EOS.  The structure determination of MG23 is described in this Part IV, and 

that of NaChBac is in Part V.   

MG23 was recently identified as a Sarcoplasmic Reticulum (SR) protein, and was expected to 

reveal the molecular basis of Ca
2+

 stores (Nishi et al., 1998).  This is a 23 kDa transmembrane 

protein localized to the Endoplasmic Reticulum (ER), SR, and nuclear membranes in a wide 

variety of cells.  The ER/SR is a multifunctional organelle responsible for important cellular 

processes, including protein maturation, lipid metabolism, Ca
2+

 signaling, and stress response.  

An important function of the ER/SR is an intracellular Ca
2+

 store, and its Ca
2+

 release controls 

physiological functions such as muscle contraction, secretion, metabolism, and transcription.  



65 
 

The ubiquitous distribution of MG23 implies its participation in a fundamental function of 

intracellular membrane systems.  Work by our co-research group showed that MG23 behaves as a 

voltage-dependent, cation-conducting channel, permeable to both K
+
 and Ca

2+
 (Venturi et al., 

2011).  One feature of MG23 gating is that multiple channels always appear to be gating together 

in the bilayer.  In EM observations, most MG23 particles are round-shaped or bowl-shaped, 

which represent vertical or lateral views, respectively.  3D reconstruction revealed that MG23 

forms a large bowl-shaped complex equipped with a putative central pore.  However, we realized 

that the MG23 preparations always contained considerable numbers of asymmetrical particles 

that were relatively smaller than the bowl-shaped particle.  This suggested that two states of 

multi-metric assemblies existed among MG23 particles.  To confirm this observation, I 

additionally reconstructed the 3D structure of the smaller-sized particles.   

 

2. Materials and Methods   

2.1. Affinity purification and transmission electron microscopy of recombinant MG23   

I started the 3D reconstruction of MG23 particles from micrographs taken at our laboratory.  

Purified MG23 particles were kindly provided by Professor H. Takeshima (Graduate School of 

Pharmaceutical Sciences, Kyoto University, Japan).  For production of recombinant MG23 using 

a methylotrophic yeast system (Invitrogen), a His tag sequence (Hisx6) was inserted into rabbit 

MG23 cDNA at a site immediately downstream of the N-terminal signal sequence (Venturi et al., 

2011).  The total microsome fraction was prepared from yeast cells expressing His-tagged MG23, 

and the recombinant protein was solubilized with NP-40 or n-dodecyl β-D-maltoside (DDM) and 

purified using combined Ni and mAb-C affinity chromatography.  MG23 particles were further 
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separated by density gradient centrifugation.  The 5-20% sucrose liner gradient containing the 

final elution buffer without the peptides was prepared and centrifuged for ~10 hrs in a Beckman 

SW41 rotor at 220,000xg.  MG23-enriched fractions were detected by Western blotting.  MG23 

particles were applied to thin carbon films, negatively stained with 2% uranyl acetate solution, 

and imaged using a transmission electron microscope (JEM-100CX; JEOL, Tokyo, Japan) at 

x39,024 magnification with a 100 kV acceleration voltage.  Images were recorded on SO-163 

films (Eastman Kodak, Rochester, NY) and digitized with a Scitex Leafscan 45 scanner (Leaf 

systems Inc., Westborough, MA) at a pixel size of 0.256 nm (the specimen level).   

2.2. 3D reconstruction of the MG23 particle   

Particle 3D reconstruction was performed essentially as described in previous works (e.g. 

Maruyama et al., 2007; Mio et al., 2007; Yazawa et al., 2007).  MG23 projections were primarily 

selected in 160 x 160 pixel subframes (corresponding to 41 x 41 nm) using the auto-accumulation 

method with simulated annealing (Ogura and Sato, 2004b).  Selected particles were rotated at 10-

degree increments to generate a set of training images for the three-layer pyramidal-type neural 

network (Ogura and Sato, 2001; Ogura and Sato, 2004a).  The trained neural network selected 

additional particles.   

For the 3D reconstruction, 1,707 particle images of the small-sized group were used.  The particle 

library was processed in the following steps.  For the initial 2D averaging, particles in each 

library were aligned rotationally and translationally (Frank, 2006; Harauz and van Heel, 1986; 

van Heel et al., 2000) relative to each other using the reference free method (Ogura and Sato, 

2004a).  Aligned images were classified into120 clusters using Multivariate Statistical Analysis 

(MSA, Bretaudiere and Frank, 1986).  The resulting class averages were used as new references 
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and the cycle from alignment to classification was repeated until convergence.  Because no 

symmetry was observed in the averaged images or the raw images, the smaller-sized molecule 

was reconstructed assuming no intramolecular symmetry.  An Euler angle was assigned to each 

average image, using Echo-correlated 3D reconstruction with simulated annealing (Echo-

correlated method, Ogura and Sato, 2006).  Using the exact-filter back-projection algorithm 

(Harauz and van Heel, 1986), a primary 3D model was reconstructed from averages with their 

assigned Euler angles, and used as the reference structure for the next step.  To optimize 3D 

reconstruction using the projection matching method (Penczek et al., 1994), reprojection images 

were created from the 3D model.  Using these as references, the particles in the library were 

rotationally and translationally aligned by the MRA method (Frank, 2006; Harauz and van Heel, 

1986; van Heel et al., 2000).  The aligned particles were further classified using the same 

classification algorithm as above.  For each average image, an Euler angle of the reprojection 

image was assigned so as to show the best correlation to the average.  These steps were repeated 

until the 3D model became stable.  During these iterations, the Echo-correlated method was used 

to optimize the Euler angles of class average images.  To assess the resolution of the resultant 3D 

density map, the data was divided into odd and even subsets.  Using the subsets, two independent 

3D reconstructions were computed without masking.  These two 3D density maps were compared 

by FSC (Harauz and van Heel, 1986) at the threshold of 0.5, using IMAGIC-5 (van Heel et al., 

1996).   

 

3. Results   



68 
 

In highly-purified MG23 preparations, predominant particles of the large-sized group were about 

17-19 nm in length and 14-16 nm in width, and appeared to have 6-fold symmetry.  The minor 

particles had a smaller size (about 13-17 nm in length and 6-8 nm in width) and asymmetrical 

structures, which appeared to be a component of the predominant particle.  For this small-sized 

group, the final reconstruction included 1,699 particle images (99% of the selected images).  The 

surface representation demonstrates that this structure was roughly crescent-shaped, 14 nm in 

height, 11 nm in side length, and 6 nm in narrow side length (Fig. 14b).  Representative raw 

images are presented (Fig. 14c, first row), with their corresponding class averages (Fig. 14c, 

second row) and with surface representations and reprojections (Fig. 14c, third and fourth rows).  

The almost random orientations of the particles on the grid surface are also shown by a plot of the 

Euler angles of the 117 adopted class averages (Fig. 15a).  According to the FSC function, the 

resolution limit was 3.6 nm by the correlation coefficient of 0.5 criterion (Fig. 15b).   

 

4. Discussion   

EM observations detected a large symmetrical particle as the predominant component and a small 

asymmetric assembly as the second major component in highly purified MG23 preparations.  

Because the MG23 preparations after affinity purification and size fractionation using sucrose 

gradient centrifugation were shown to be highly purified with SDS-PAGE, the concomitance of 

the large and small particles likely suggests that MG23 continuously disassembles and 

reassembles.  These transitions in channel building may underlie the unusual gating behavior of 

MG23, and allow rapid cationic flux across intracellular membrane systems (Venturi et al., 2011).  
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It was considered that the smaller particles constitute a partial domain of the large bowl-shaped 

assembly.   

However, it is unlikely that these larger and smaller structures observed using EM represent 

hexameric and monomeric MG23, respectively.  This is because the MG23 monomer at 23 kDa, 

composed of 210 amino acids, is too small for the EM observation (Nishi et al., 1998; Venturi et 

al., 2011).  It was therefore proposed that the crescent-shaped particle is a hexameric minimum 

structural subunit of MG23, and that multiple subunits subsequently constitute a larger assembly 

such as the bowl shaped structure.  With the available data, it was not possible to determine the 

exact number of crescent-shaped subunits that would make up the full particle, but biochemical 

and structural analysis points to a number composed of two to six subunits.  Fitting of more than 

six crescent-shaped subunits to the bowl-shaped structure seemed impossible.  A docking of six 

crescent-shaped subunits is presented as the most plausible model (Fig. 14d).  The 3D map of the 

crescent-shaped subunit was contoured at an isosurface containing a volume corresponding to 

138 kDa (23 kDa × 6), and the bowl-shaped particle at 828 kDa (138 kDa × 6), assuming a 

hexagonal assembly of the crescent-shaped subunit.  However, this simulation could not exclude 

other possibilities of subunit construction in the bowl-shaped particle.   
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Figure 14. 3D reconstruction of MG23 particles in the smaller-sized group   

(a) Raw EM images of recombinant MG23 particles.  After adsorption to the glow-discharged 

carbon film, negatively stained samples were imaged by EM.  (b) Surface representations of the 

small-sized MG23 particle group structure from top (left) and oblique (right) views.  Dimensions 

of the smaller-sized crescent-shaped molecule were 14 nm (height), 11 nm (wide side length), 

and 6 nm (narrow side length).  The multiple subunits of this structure were considered to 

subsequently constitute a larger assembly (Fig. 14d).  (c) First row, representative raw images; 

second row, corresponding class averages; third row, surface representations; and fourth row, 

projections of the 3D reconstruction.  Consistency among data sets was very high in size, shape, 

and inner structure, indicating successful 3D reconstruction from the original images of 

recombinant MG23 particles.  (d) Proposed configuration of the six-subunit assembly.  In this 

model, the large bowl-shaped structure (full-MG23 particle) was fitted with the six crescent-

shaped subunits (putative hexameric subunit).  This configuration assumes that each subunit is 

located longitudinally at 60-degree intervals (left panels).  Volume of the full-MG23 was 

contoured at 828 kDa (yellow mass with red outline) assuming a hexagonal assembly of the 138 

kDa (23 kDa x 6) hexameric subunit, and superimposed to the subunit assembly (right panels).  

The outlines from the top resemble each other, but in the side view, the crescent-shaped subunits 

are somewhat longer and narrower than would ideally fit the fully assembled MG23 particle.  The 

discrepancy in fitting may suggest the conformational changes of each subunit during assembling 

into full-MG23 particles.  Scale bars are 10 nm.   
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Figure 15. Euler angle distribution and FSC function of the crescent-shape MG23 particles   

(a) Surface projection of Euler angles of the 117 adopted class averages shows that the MG23 

particles in the small-sized group were almost randomly oriented on the grid surface.  Red 

crosses indicate their positions were on the far side of the globe.  (b) According to the FSC 

function (solid line), the resolution limit of the particle was shown to be 3.6 nm by the correlation 

coefficient 0.5 criterion.  The noise curve of 3σ (broken line) is also shown as a comparison.   
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Part V: SPA structure determination of NaChBac 

 

1. Introduction 

NaChBac from Bacillus halodurans is the first functionally characterized bacterial NaV channel 

(Ren et al., 2001), and shares key physiological properties with its mammalian homologues, 

including voltage-dependent activation, inactivation, and pharmacological sensitivity (Mio et al., 

2010).  Experiments suggest that NaChBac assembles as a homotetramer to exert its channel 

function.  Each subunit has 6 transmembrane segments, and the 24-transmembrane-type 

mammalian NaV channel is supposed to be evolved from such a protein by repeated gene 

duplication.  The molecular weight estimated from the amino acid sequence is 33 kDa for the 

monomer and 134 kDa for the tetramer (Mio et al., 2010).  The study of NaV channels facilitates 

potential clinical applications.  Their  mutations underlie several clinical disorders, such as 

inherited epilepsy, migraine, periodic paralysis, cardiac arrhythmia, and chronic pain syndromes 

(Ryan and Ptacek, 2010).  NaV channels are molecular targets of drugs used in local anesthesia 

and in the treatment of genetic and sporadic NaV channelopthies in the brain, skeletal muscles 

and heart (Mantegazza et al., 2010).  The various channel properties and structural simplicity of 

bacterial NaV channels are suitable for a model system of structure-function analysis (Irie et al., 

2012; Koishi et al., 2004; Ren et al., 2001; Zhang et al., 2012).   

 

2. Materials and Methods   

2.1. Expression, purification, and transmission electron microscopy of NaChBac   
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The entire sequence of NaChBac was subcloned with an N-terminal FLAG tag to the pCI vector 

(Promega).  The NaChBac protein was expressed in HEK293 cells, solubilized using 20 mM n-

dodecyl β-D-maltoside and purified with anti-FLAG affinity gel (Sigma) followed by Superdex 

200 size-exclusion chromatography (GE Healthcare) (Mio et al., 2010).  Purified proteins were 

adsorbed to thin carbon films rendered hydrophilic by glow discharge in low-pressure air and 

supported by copper mesh grids.  Samples were washed with 10 drops of double-distilled water, 

negatively stained with 2% uranyl acetate solution for 30 seconds twice, blotted, and dried in air.  

Micrographs of negatively stained particles were taken by a JEOL 100CX transmission electron 

microscope (JEOL, Tokyo, Japan) at x52,100 magnification with 100 kV acceleration voltage.  

Images were recorded on SO163 film (Eastman Kodak, Rochester, NY) developed with a D19 

developer (Kodak) and digitized with a Scitex Leafscan 45 scanner (Leaf system Inc., 

Westborough, MA) at a pixel size of 1.921 Å (specimen level).   

2.2. Automated particle selection and image preprocessing in the NaChBac study   

The NaChBac particle selection procedure was same as the MG23 study, except that the initial 

library of 657 particles was manually divided into subframes with dimensions of 128 x 128 pixels, 

without using the auto-accumulation method (Ogura and Sato, 2004b).  A library of 10,947 

images was created from 40 micrographs.  A band pass filter was applied to the particle library; 

the low-frequency cutoff was 221.3 Å and the high-frequency cutoff was 9.6 Å at each cycle.  

The size of the particle images was reduced to 64 x 64 pixels (a pixel size of 3.842 Å at the 

specimen level) for the optimization and evaluation of 2D averaging by IC-EOS in Part II.   

2.3. 3D Reconstruction of the NaChBac particle   
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The 3D reconstruction method described in the MG23 study was used again for the NaChBac 

particles, with several minor modifications.  For the initial 2D averaging using “alignment-by-

classification” (Dube et al., 1993), the number of clusters for MSA classification was 200, and 

the iteration steps were repeated for 30 cycles.  After the completion of this stage, the averages 

were examined to test the presumption of symmetry by MSA symmetry analysis (Costa et al., 

2006; Dube et al., 1993).  Among the putative top images, a set of particles and their averages 

showed highly 4-fold-symmetrical features.  This result is consistent with the homo-tetrameric 

subunit stoichiometry of NaChBac.  Therefore, 4-fold symmetry was imposed in the following 

computation.  In the projection matching, 188 images were generated by the 3D forward 

projection, the particles were classified according to their assigned Euler angles instead of MSA 

classification (Bretaudiere and Frank, 1986), and the particles within each class were further 

aligned relative to the class average.  To reduce the bias of the current 3D density map, intra-class 

alignment was repeated for a fixed number of times (3-5 times) (Ludtke et al., 2004).  The 

iteration steps of projection matching were repeated until the 3D model became stable (15-30 

cycles).   

 

3. Results   

Most NaChBac particles were bullet- or square-shaped with round corners (Fig. 16a).  The 

variation in shape was interpreted to reflect different orientations of the same molecule on the 

grid.  The square-shaped particles seemed to imply top views of the tetrameric form 

(perpendicular to the membrane); the bullet-shapes would be side views.  Putative side views 
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clearly showed asymmetry with respect to the membrane; one end was wider and the other 

narrower.   

The final 3D reconstruction of the NaChBac molecule included 5,348 particles, 48.9% of all the 

picked-up images.  For surface representation, the 3D map was contoured at an isosurface 

containing a volume corresponding to 241 kDa: 180 % of the tetrameric NaChBac mass (33 kDa 

* 4 = 134 kDa, Mio et al., 2010) calculated from the amino acid composition.  The surface 

representation depicts a squared bell-shaped molecule with a pointed bottom tip and a boat-tail 

top (Fig. 16b).  Viewed from the top, NaChBac was a square with a side length of 95 Å and a 

diagonal length of 115 Å.  The height estimated from the side views was 144 Å.  Representative 

raw images are presented (Fig. 16c, first row), with their corresponding class averages (Fig. 16c, 

second row) and with surface representations and reprojections (Fig. 16c, third and fourth rows).  

Reprojections from the final density map were consistent with raw images and class averages, 

reflecting successful reconstruction from the original particle images.  A plot of the Euler angles 

of particles assigned into188 equally distributed angles showed the nearly random orientation of 

NaChBac on the grid surface (Fig. 17a).  According to the FSC function, the resolution limit for 

the reconstruction was 14.7 Å by the correlation coefficient of 0.5 criterion (Fig. 17b).   

 

4. Discussion   

Recent publications of X-ray crystal structures of bacterial NaV channels have begun to reveal the 

kinetics of their central ion-conducting pore modules (extracellular funnel, selectivity filter, 

central cavity, and intracellar activation gate) and of voltage-sensing domains (NavAb from 

Arcobacter butzleri, Payandeh et al., 2011; Payandeh et al., 2012; NavRh, Zhang et al., 2012).  
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The structure of their crytosolic C-terminal region was not determined, although it was located in 

the crystal lattice (Payandeh et al., 2011).  The crystal structure of the C-terminal region of 

NavSuIP from Sulfitobacter pontiacu was independently published (Irie et al., 2012).   

In the preliminary structure determination of NaChBac, the obtained dimensions were highly 

consistent with the crystal structures of NavAb (PDB code: 3RVY, Payandeh et al., 2011) and 

NavSulP (PDB code: 3VOU, Irie et al., 2012), lending plausibility to the reconstruction.  

However, the cytosolic C-terminal coiled-coil structure, which is a conserved amino acid 

sequence, was not clearly resolved in the density map.  Variation of the particles is the likely 

explanation, blurring structural details in the density map and lowering its resolution.  The 

variations could be caused by domain flexibility of the whole ion channel or by negative staining.  

In SPA, crystal packing can be avoided.  However, deformation and uneven staining of particles 

can occur in negative staining, and ion channels have highly flexible domains, which may change 

conformation between the open and closed states (Maruyama et al., 2007).  Therefore, it was 

necessary to classify these 3D variations in the particle library, and IC-EOS was developed as a 

solution to this problem.   
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Figure 16. 3D reconstruction of NaChBac particles   

(a) Raw EM images of NaChBac particles.  (b) Surface representations of the reconstructed 

density map from top, bottom, and two side views.  Dimensions were 144 Å (height), 95 Å (side 

length), and 115 Å (diagonal length at the widest region).  (c) First row, representative 

constituent particle images; second row, corresponding class averages; third row, surface 

representations of the 3D reconstruction; and fourth row, projections of the 3D reconstruction.  

High consistency among data sets indicates successful 3D reconstruction from the original 

images of NaChBac particles.  Scale bars are 100 Å.   
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Figure 17. Euler angle distribution and FSC function of the NaChBac reconstruction   

(a) Surface projection of Euler angles of 5,348 particles assigned into 188 equally distributed 

angles shows that particles were almost randomly oriented on the grid surface.  The size and 

color of each circle indicate the number of particles (indicated by the color bar at the bottom) 

assigned to the corresponding Euler angle coordinates.  (b) According to the FSC function (solid 

black line), the resolution limit of the NaChBac particle was 14.7 Å by the correlation coefficient 

0.5 criterion.  The noise curve of 3σ (broken red line) is also shown as a comparison.   
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General Conclusion 

 

The brain, like other biological organs, has structural hierarchy, from the whole brain to nervous 

tissue, neurons, organelles, macromolecular assemblies, and macromolecules.  EM covers the 

size range of smaller objects where the resolution of conventional optical microscopy is not 

sufficient due to the diffraction limit of light.  As shown by detailed structural studies of cells, 

organelles, and viruses, the current achievements of biology as well as brain science would be 

impossible without EM.   

Until recently, preponderance of EM studies in biology had been concluded with qualitative 

descriptions of sample images, except for the quantitative data related to distances, sizes, or 

numbers of particles in the images.  Over the past few decades, other types of measurements also 

attempted to form an accurate 3D representation of biological objects.  These attempts have been 

steadily spreading in the EM field, and a group of researchers recently organized the field of 

Three-Dimensional Electron Microscopy (3DEM).  The reconstruction of 3D structure from EM 

images reveals not only shape but also interior density variations, since transmission images 

reflect the density of a biological specimen, much like X-ray imaging.   

Macromolecular assemblies are in the size range of 50-500 nm, suitable for EM observation but 

beyond the resolution of conventional optical microscopy (Frank, 2006).  Particles of a 

macromolecular assembly have identical structures, by functional necessity, and exhibit identical 

views in the EM when placed on the sample holder in the same orientation.  Averaging methods 

for these particle images can reduce the noise level.  This allows lower electron dosages, which 

can help prevent radiation damage.  These issues were the impetus for the development of SPA.   
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Currently, SPA is not used as widely as crystallography for the structure study of proteins, 

mainly because of the resolution.  However, the likelihood of successful crystallization is still 

unpredictable for a new protein, though sophisticated methods for inducing crystallization are 

available now.  In addition, crystal packing may assume only a small range of the possible 

physiologically relevant conformations of proteins.  The large size of the complexes formed in 

multiple associations and their likely dynamic variability in the functional context takes most of 

these complexes out of the reach of crystallography, and leaves SPA as one of the few techniques 

of structural investigation (Abbott, 2002), especially for ion channels.   

In recent years, it has become possible to associate the 3D density distribution of a protein 

reconstructed by SPA quantitatively to the relevant atomic models from crystallography (e.g. 

Ludtke et al., 2004; Ludtke et al., 2008).  This provides a way of resolving very large structures 

to atomic-level resolution.  Components of a macromolecular assembly can often be induced to 

form crystals suitable for crystallography, but it is not always true for the entire assembly because 

of its size or inherent flexibility.  On the other hand, it is frequently possible to obtain the entire 

structure of such an assembly at near-atomic resolution using SPA, while leaving the molecular 

interactions unconstrained.  By matching the atomic model of the component determined by 

crystallography to the SPA structure of the entire macromolecule, high positional accuracies 

beyond the SPA resolution can be obtained, and atomic resolution within the large structure can 

be reached, or at least approximated.  Similarly, electron tomography can be undertaken for 

objects whose structures show considerable individual variability.  This method is suitable for the 

size ranges from bacteria to organelles, and the whole cell.  There are now numerous examples 

for spherical viruses whose structure has been explored by SPA using this combinational 

approach.  At least in principle, atomic-level visualizing and modeling have become possible for 
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a cell and a primitive organism in their entirety, and the same can be said for a neuron in the 

hierarchy of the brain structure.   

Thus, it is desirable to disseminate SPA and make structure analysis a routine procedure in 

relevant biological research.  For this, an easy-to-use SPA system for biologists should be 

developed, and the system should ultimately be fully automated.  The system should require less 

experience of analysis and less knowledge of multiple disciplines to master.  To make such a 

system, the “know-how” of SPA practice should be integrated into a software system and should 

be hidden from users as a black box.  With a carefully designed user interface and an automated 

search for the best parameter settings, users will be free from figuring out unnecessary parameter 

setting for their analysis purpose.  Three points of IC-EOS reduce user labor in SPA workflow 

optimization and make automation possible; (1) automating the convergence decision of a 

workflow, (2) showing statistical decisions that rate workflow optimization differences, and (3) 

automating the selection of the workflow in the most-well-balanced optimization state, by 

comprehensive decisions using the voting method with convergence evaluation and fluctuation.  

This establishment of easy-to-understand, quantitative criteria for the convergence evaluation of 

workflows is a step toward the full automation of SPA.   

However, as long as analysis depends on human image recognition and experience, it is not 

possible to make the system fully automated.  In the present study, I demonstrate that the use of 

numerical computation methods is effective for assessing the behavior and characteristics of 

workflow for 2D averaging.  The statistics and the fluctuations of the five base measurements, as 

energy functions of the workflow, allowed software to evaluate results without the aid of any 

human.   
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My future research will attempt further automation of SPA by applying IC-EOS to the refinement 

of 3D structures.  This is the next important iterative workflow after 2D averaging.  The basic 

principle of IC-EOS and its five base measurements are not limited to 2D averaging.  The only 

necessary modification is to convert these measurements to 3D analogues, for example 

introducing FSC instead of FRC as a resolution measurement.  The assessment of IC-EOS 

effectiveness in 3D refinement should provide additional evidence that the quality of the initial 

2D averages strongly influences the resolution of the final 3D structure.   

Cryo-EM studies with IC-EOS should follow to further improve the structural resolution of ion 

channels.  In this thesis, a negatively stained sample was used as the first attempt to assess the 

effectiveness of IC-EOS, because its relatively high contrast makes the duration of analysis 

shorter and the evaluation of results easier.  Negative staining is still used in high-resolution EM 

of macromolecules as an important first step in identifying characteristic views and assessing if a 

molecule is suitable for SPA (Frank, 2006).  Therefore, it is still important to know the detailed 

behavior and characteristics of 2D averaging with negatively stained data relative to condition 

variations.  However, deformation and varied staining of particles are inevitable and introduce 

additional 3D variations.  These variations make the interpretation of results more complicated, 

and limit achievable resolution.  On the other hand, cryo-EM preserves a close-to-native state of 

fully hydrated proteins.  Therefore, even with the extremely low contrast of the particle images 

from cryo-EM, it is possible to reach a much higher resolution than with negative staining 

method.  Because of these differences, I expect that the behaviors of SPA workflows with cryo-

EM images will be different from those with negatively stained EM images.   

The combination of multiple 3D structure determination methods can also be applied to obtain 

the atomic resolution of ion channels in multiple conformations.  With these atomic models, their 
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mechanical and electrostatic actions can be explained at a molecular level, and they can be 

understood as nano-machines.  These findings fill in details of signaling mechanisms in cells and 

further the intercellular signal transaction of neural networks.  This will facilitate a bottom-up 

approach to brain research, and SPA occupies a critical position in this combinational approach.   

Through the further expansion of IC-EOS, I aim ultimately to develop a fully-automated SPA 

system for the high-resolution structure determination of ion channels; a system which does not 

rely on the experience and vast, diverse knowledge of the analyst.  Using this system, I hope to 

advance SPA structure determination toward atomic-level resolution, to determine a larger 

number of ion channels, and finally to reveal brain mechanisms from the molecular level.   
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Abbreviations 

 

2D: Two-Dimensional   

3D: Three-Dimensional   

NMR: Nuclear Magnetic Resonance   

SPA: Single Particle Analysis   

EM: Electron Microscopy   

SNR: Signal-to-Noise Ratio   

CCC: Cross-Correlation Coefficient   

FSC: Fourier Shell Correlation   

FRC: Fourier Ring Correlation   

IC-EOS: Integrated Convergence-Evaluation Oriented System   

RMSD: Root-Mean-Square Deviation   

TIC-variance: Total Intra-Class variance   

SD: Standard Deviation   

NaV channel: Voltage-gated sodium channel   

NaChBac: A bacteria-derived NaV channel   
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MRA: Multi-Reference Alignment   

CTP ratio: Class-To-Particle ratio   

GroEL: A chaperon protein   

PDB: Protein Data Bank   

MG23: Mitsugumin 23; a voltage-dependent, cation-conducting channel   

SR: Sarcoplasmic Reticulum   

ER: Endoplasmic Reticulum   

MSA: Multivariate Statistical Analysis   

Echo-correlated method: Echo-Correlated 3D Reconstruction with simulated annealing   


