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REAL HYPERSURFACES OF A NONFLAT COMPLEX
SPACE FORM IN TERMS OF THE RICCI TENSOR

By
U-Hang K1 and Setsuo NAGAr

Abstract. We know the fact that there are no real hypersurfaces
with parallel Ricci tensors in a nonflat complex space form (cf. [5]).
In this paper we investigate real hypersurfaces in a nonflat complex
space form using some conditions of the Ricci tensor S which are
weaker than VS = 0. We characterize Hopf hypersurfaces of a non-
flat complex space form.

0 Introduction

A Kaéhler manifold of constant holomorphic sectional curvature ¢ is called
a complex space form, which is denoted by M,(c). A complete and simply
connected complex space forms are isometric to a complex projective space CP,,
a complex Euclidean space C”" or a complex hyperbolic space CH, as ¢ >0,
c=0or ¢c<0.

Let M be a real hypersurface of M,(c). Then M has an almost contact
metric structure (¢,¢,7,g) induced from the complex structure J and the Kéhler
metric of M,(c) (for details see §1). The structure vector £ is said to be principal
if A = of is satisfied, where A4 is the shape operator of M and o = 7(A4&). A real
hypersurface is said to be a Hopf hypersurface if the structure vector & of M is
principal.

Typical examples of real hypersurfaces in CP, are homogeneous ones which
are orbits under subgroups of PU(n + 1). The complete classification of them was
obtained by Takagi [10] as follows:

TueoreM T [10]. Let M be a homogeneous real hypersurface of CP,. Then
M is a tube of radius r over one of the following Kdéhler submanifolds:
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(41) a hyperplane CP,_y, where 0 <r <%,

(42) a totally geodesic CPy (1 <k <n-—2), where 0 <r <3,

(B) a complex quadric Qn_1, where 0 <r <%,

(C) CPy x CP(,_y), where 0 <r <% and n>5 is odd,

(D) a complex Grassmann Gy sC, where 0 <r <% and n=29,

(E) a Hermitian symmetric space SO(10)/U(S), where 0 <r < § and n = 15.

Also Berndt [1] classified all Hopf real hypersurfaces in CH, with constant
principal curvatures as follows:

THEOREM B [1]. Let M be a real hypersurface of CH,. Then M has constant
principal curvatures and & is principal if and only if M is locally congruent to one
of the following:

(4o) a self-tube, that is, a horosphere,

(A1) a geodesic hypersphere, or a tube over a hyperplane CH,_;,
(A2) a tube over a totally geodesic CHy (1 <k <n-2),

(B) a tube over a totally real hyperbolic space RH,,.

Let V and S be the Levi-Civita connection and the Ricci tensor of M, re-
spectively. There are many studies about Ricci tensors of real hypersurfaces (cf.
(2], [3), [4], [5], [6), [7], [8], [9]). Very important fact is that there are no real
hypersurfaces with parallel Ricci tensors S (that is, VxS = 0 for each vector field
X tangent to M) in My(c), ¢#0, n>3 (cf. [5]). Especially, there exist no
Einstein real hypersurfaces M in M,(c), ¢ # 0, n > 3. So, it is natural to in-
vestigate real hypersurfaces M by using some conditions (on the derivatives of S)
which are weaker than VS =0.

Recently, the first author, Hwang and Kim proved the following theorem:

THeOREM 0.1. Let M be a real hypersurface in a nonflat complex space form.
If the Ricci tensor S of M satisfies VeS =0, Vyg,eS =0 and SE = g(S¢, )¢, then
M is locally congruent to one of the homogeneous real hypersurfaces of Theorem T
and Theorem B.

In this paper we pay particular attention to the fact that for each Hopf hyper-
surface M in M,(c), ¢ # 0 the characteristic vector & of M is an eigenvector of
the Ricci tensor S of M. So it is natural to consider a problem that if the vector ¢
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is an eigenvector of the Ricci tensor S of a real hypersurface M in M,(c), ¢ # 0,
is M a Hopf hypersurface?

The purpose of this paper is to eatablish the following theorem which gives a
partial answer to this problem:

THEOREM 4.1. Let M be a real hypersurface in M,(c), ¢ > 0. If it satisfies
ViveeS = 0 and at the same time satisfies S& = ol for some constant g, then M is a
Hopf hypersurface.

The authors would like to express their sincere gratitude to the referee for his
valuable comments.

1 Preliminaries

Let M be a real hypersurface immersed in a complex space form (M,(c), G)
with almost complex structure J and the Kahler metric G of constant holomorphic
sectional curvature ¢, and let C be a unit normal vector field on M. The
Riemannian connection V in M,(c) and V in M are related by the following
formulas for any vector fields X and Y on M:

VyX =VyX +g(4Y,X)C, (1.1)
VxC=—AX, (1.2)

where g denotes the Riemannian metric on M induced from that G of M,(c) and
A is the shape operator of M in M,(c). An eigenvector X of the shape operator
A is called a principal curvature vector. Also an eigenvalue A of 4 is called a
principal curvature. It is known that M has an almost contact metric structure
induced from the almost complex structure J on M,(c), that is, we define a tensor
field ¢ of type (1,1), a vector field &, an 1-form # on M by g(¢X,Y) = G(JX,Y)
and g(¢,X) =n(X) = G(JX,C). Then we have

PX =-X+nX)E, g(&E) =1, ¢=0 (1.3)

From (1.1) we see that
(Vx§)Y =n(Y)4X — g(AX, Y)¢, (14)
Vil = gAX. (1.5)

Since the ambient space is of constant holomorphic sectional curvature c,
equations of the Gauss and Codazzi are respectively given by
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R(X,Y)Z = {9(Y,2)X - g(X,2)Y +9(#Y, Z)¢X — 9(¢X, Z)¢Y

—29($X, V)PZ} + g(AY,Z)AX — g(AX,Z)AY,  (1.6)
(VxA)Y = (VrAX = 2 {n(X)$Y —n(V)gX 294X, V)e}  (17)

for any vector fields X, ¥ and Z on M, where R denotes the Riemannian
curvature tensor of M. We shall denote the Ricci tensor of type (1,1) by S. Then
it follows from (1.6) that

SX=§{(2n+ )X = 39(X)¢} + hAX — 42X, (1.8)
where h = trace 4. Further, using (1.5), we obtain
3
(VxS)Y = —2c{g(¢pAX, Y)E +n(Y)gAX} + (Xh)AY

+ (hI — A)(VxA)Y — (VxA)AY, (1.9)

where I is the identity map.

To write our formulas in convention forms, we denote « = 5(A&), B = n(A4%¢),
u* =f —a? and Vf by the gradient vector field of a function f on M. In the
following, we use the same terminology and notation as above unless otherwise
stated.

If we put U = V¢, then U is orthogonal to the structure vector field €. Then
it is, using (1.3) and (1.5), seen that

U = —AL + oL, (1.10)

which shows that g(U, U) =  — o2, By the definition of U, (1.3) and (1.5) it is
verified that

g(Vx&, U) = g(4%¢, X) — ag(AE, X). (1.11)

Now, differentiating (1.10) covariantly along M and using (1.4) and (1.5), we
find

n(X)g(AU + Vo, Y) + g(4X,Vy U)
which enables us to obtain

(VeA)E = 24U + Va (1.13)
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because of (1.7). From (1.12) we also have
VeU = 30AU + adE — BE + ¢Va, (1.14)

where we have used (1.3), (1.5) and (1.11).
If A — g(AE E)E # 0, then we can put

Al = ol + uW, (1.15)

where W is a unit vector field orthogonal to ¢. Then from (1.10) it is seen that
U = u¢W and hence g(U,U) = u?, and W is also orthogonal to U. Thus, we
see, making use of (1.5), that

Hg(VxW,¢) = g(4U, X). (1.16)

2 Real Hypersurfaces Satisfying S& = g(S¢&,&)¢

Let M be a real hypersurface of a nonflat complex space form M,(c). If it
satisfies

S¢=g(8¢,¢)¢, (2.1)
then we have by (1.8)

A%E = hAE + (B — ha)g, (2.2)

where we have put g(S¢,¢) = o,

B—ha==(n-1)-o0. (2.3)

N o

In what follows we assume that u# 0 on M, that is, £ is not a principal
curvature vector field and we put Q = {pe M |u(p) # 0}. Then Q is an open
subset of M, and from now on we discuss our arguments on Q.

From (1.15) and (2.2), we see that

AW = pé+ (h— o)W (2.4)
and hence
A’W = hAW + (B — h) W (2.5)

because of u # 0.
Now, differentiating (2.4) covariantly along Q, we find

(VxAYW + AVY W = (Xp)é + uVxE+ X (h— o)W + (h—a)Vx W.  (2.6)

By taking the inner product with W in the last equation, we obtain



516 U-Hang K1 and Setsuo NaGal

g(VxA)W, W) = —=29g(AX,U) + Xh — Xo

2.7)

since W is a unit vector field orthogonal to £. We also have by applying ¢ to

(2.6)
wg(Vx AW, &) = (h—20)g(AU, X) + u(X ),

(2.8)

where we have used (1.16), which together with the Codazzi equation (1.7) gives

UYWAY = (h—20)AV = ZU + uVi,

W(VeA)W = (h—20)AU — 2 U+ uvu
Replacing X by & in (2.6) and taking account of (2.10), we find
(h - 20)AU — 2 U+ 1V + p{ AV W — (h— a)Ve W)

= WEWE + WU + p(Eh — E) W
By the way, from ¢U = —uW we have
9(AU, X)E — ¢V U = (X)W + uVx W.
Replacing X by ¢ in this and using (1.10) and (1.14), we get
UVeW =34U — aU + Vo — (¢a)é — (Ep) W,
which implies
Wao=E¢p

From the last equations, it follows that
342U — 2hAU+AVa+%V/? — WV + (ah y —§> U

=2u(Wa)l + u(Ch)W — (h — 2a)(S0)¢,
which enables us to obtain
EB = 20(Ea) + 2u(Wa).
Differentiating (2.2) covariantly and making use of (1.5), we get
(VxA)AE + A(Vx A)E + A*pAX — hApAX
= (Xh)AL + h(VxA), + X (B — ha)l + (B — ho)pA X,

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)



Real hypersurfaces of a nonflat complex space form 517
which together with (1.7) implies that
(X)) —uX)(X)} + 5 (h - @)g(9Y, X) - g(444X, Y)

+g(A*PAY, X) + 2hg(¢pAX, AY) — (B — ha){g(¢AY,X) — g(¢AX, Y)}
=g(AY,(VxA)E) — g(AX, (VyA)E) + (Yh)g(AE, X) — (Xh)g(AE, Y)
+ Y(B = ho)n(X) — X (B — hoa)yn(Y), (2.17)

where we have defined an 1-form u by u(X) = g(U, X) for any vector field X. If
we replace X by uW to the both sides of (2.17) and take account of (1.13), (2.4),
(2.5), (2.8) and (2.9), then we obtain

(30 — 2h) A2 U+2<h2+ﬁ 2ho + )AU+(h—a)<ﬁ—ha-—§)U

= uAVu+ (ah — B)Va — % (h— «)VB + u*Vh
— W(Wh) A& — pW (B — ha)E. (2.18)
Using (1.15), the equation (2.16) can be written as
A(VxA)E + (o — h)(VxA)E + u(Vx )W
= (Xh)AE + X (B — ha)é + (B — ho)pAX + hAJAX — A*pAX.

Thus, replacing X by «& + uW in this and making use of (1.5), (1.13), (1.15) and
(2.7)-(2.9), we find

2hA? U+2<ah B - hz—Z>AU+( 20— hf+= h——coc)U

— g(AE,Vh)AE — —AV/>’+ (h 20)Vf + fVer
— u*Vh+ g(AE, V(B — ha))E. (2.19)

3 Real Hypersurfaces Satisfying Vyy.:S =0 and S¢ = g(S¢&, &)<

We continue now, our arguments under the same hypothesis S¢ = g(S¢, £)¢
as in section 2. Furthermore, suppose that Vyy,:S = 0, that is, VS = 0 since we
now suppose that u # 0.

Then, by replacing X by W, we have from (1.9)
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2 elh— ) W(X)E +1(X)0) + WWRAY + uh(V e A)Y
=puA(VwA)Y — u(VwA)AY, (3.1)

where we have used (1.5) and (2.4). If we replace Y by W and make use of (2.7)
and (2.9), then we find

(Wh)AthAU—gU—ZAZU—I—%Vﬂ—oth-I—AVh—AVoc (3.2)

because of u # 0.
In the following we assume that o is constant on M and then f — ho =
constant. In this case we notice here that the following fact:

REMARK 3.1. A—a#0 on Q.

In fact, if not, then we have =« and hence f — «? = constant, because
o = constant. Thus (3.2) implies Wh = Wa =0 and hence

2A2U=ocAU—:2€-U. (3.3)

Further, (2.14) and (2.18) turns out respectively to
242U — 204U + (a2 - 45> U = —AVo + (C0) AE, (3.4)
aA2U+2<ﬁ—a2+§>AU:o. (3.5)

It is, using (3.3)—(3.5), verified that « # 0 on this set.
Combining (3.3) with (3.5), we see that

aAU=2(a2—ﬁ—§>U (3.6)
and thus AU = vU because of o # 0, where we have put
5 ¢
av=2a—ﬁ—z (3.7)

From this and (3.3), we obtain
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v2+/3——a2+-§—=0. (3.8)

Therefore v = constant # 0 because of (3.3). Hence it is, using (3.7), seen that
o = constant and thus

3v2—2txv+a2——ﬂ—§=0,

which together with (3.7) and (3.8), produces a contradiction. Consequently
h—a+#0 on Q is proved. In what follows we assume that 4 —a # 0 is satisfied
everywhere.

Differentiating (2.1) covariantly, we find

(VxS)E + SVx& = oVxé
because o = constant is assumed, which together with hypothesis VS = 0 yields
SVwé = aVyié. (3.9)

By the way we have uVwé = (h—a)U with the aid of (1.5) and (2.4), (3.9)
implies SU = oU because of Remark 3.1. Hence (1.8) leads to

A2U=hAU+<[>’—hcx+%c)U. (3.10)

From (2.3) we have
VB = aVh + hVa. (3.11)
Thus (2.15) is reduced to
2u(Wa) = (h - 20)(Ea) + a(Eh). (3.12)
Using (1.15), (3.10) and (3.12), the equation (2.14) turns out to be

AU +2(8 - ha + ¢)U = (éh)Aé—AVaJrhVoc—%Vﬁ. (3.13)
From (2.19) and (2.10), we also find
(2/3 — 2ho+ §>AU + {h(hoc By 2 (30— 8h)} U + g(A¢,Vh)A¢

= %AV/? — pVo + <oc — %h) VB + u2Vh. (3.14)
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Because of (3.2) and (3.10), we see that
(Wh)AW = —hAU — 2(8 — ha + c)U+AVh—AVoc+%Vﬂ— aVh,

which together with (3.10) and (3.11) gives
AVh = (Wh)AW + (Eh)AL. (3.15)

Making use of (3.13) and (3.15), we have from (3.14)
(48 — 4ho + b + ) AU + @ca - 20h> U
= o(Wh)AW — {(o — h) (&) + 2u(Wh)} AL
- (2ah—2/3—%h2> Vo + (zﬁ-%m)%. (3.16)
If we use (2.2), (2.5) and (3.10), then above equation implies

%c{(4ﬁ—-4hcx+h2+c)AU+ (gca—%h) U}

= (zah -28— —;—h‘Z) {A4?Vo — hAVo — (B — ha)Va}
+ (2/3 - %m) {A?Vh — hAVh — (B — ha)Vh},
which together with (3.15) yields
%c{(4ﬁ ~ dho+ K+ VAU + 5 (3a - 4h)U}
= (Zah — 28— %hz) {A4?VYo — hAVa — (B — ha)Va}
+<2ﬂ—%ha> (B — ha){(Wh)W + (ER)E — Vh}. (3.17)
On the other hand, we have from (3.13)

A?Va — hAVo + (hz+2ﬂ—2hoc+2c)AU+h<,B—ha+%c> U

= (A% S AV,
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where we have used (3.10), or using (3.11) and (3.14),
A?Va — hAVo + (B — ha)Va

- <4ha—4ﬁ—h2—g-c)AU+§~(5h—3oc)U

- %;ﬂw + </¥ - %ha) Vh+ (ER)A%E — g(AE,VR)AE.  (3.18)

If we take the inner product £ with this and make use of (1.15) and (2.2), then we
obtain

uc(Wh) = (?_hoc -2 - %h2> (éa) + <2ﬁ - -;—hoc - OLZ) (&h). (3.19)
Substituting (3.18) into (3.17) and taking account of (3.16), we find

%c{cAU+%(3a—4h)U+ (h—a) <2ah—2/3—-;-h2> U}

= h(h = &)(B — ha){Vh — (En)E — (Wh)W}. (3:20)

Applying A to both sides of this and using (3.10) and (3.15), we have

{%(305—211) + (h—oc)(Zozh—2ﬂ—%h2> }AU+c<ﬁ—/m+§c> U=0. (321)

LemMmA 3.1. Let M be a real hypersurface of My,(c) (¢ #0). If it satisfies
VwS =0 and S& = o& for some constant o, then we have

AU = AU (3.22)
on Q, where 2} = g(AU,U).

Proor. Let Qg be a set of points in M such that ||[AU — AU|| # 0 on Q and
suppose that Qo be nonempty. If f —ha+3c # 0, then we have from (3.21)

1
§(3a —2h) + (h—a) <2ah - 2,8——2-h2> £0
and hence (3.22) is valid. Thus it is, using (3.21), seen that
3
ﬁ—hoc+zc=0 (3.23)

and therefore A(h? —ah —c) =0 on Q). So we have
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W —oah—c=0 (3.24)

on . In fact, if not, then we have 4 = 0. Thus (3.10) and (3.23) are respectively
to

AU =0, /5’+%c=0‘

Hence (3.13) becomes 2(f + ¢)U + AVa = 0. But, by (3.14) we have Va = aU.
Combining the last two equations, we obtain S+ ¢ =0, a contradiction. Thus
(3.24) is accomplished.

Differentiating (3.24), and using (3.23), we find

2hVh = aVh + hVa = V. (3.25)
From this and (3.15) we obtain
AVB = 2h{(Wh)AW + (Eh) AL}, (3.26)
If we take account of (3.23)—(3.26), then (3.14) turns out to be
—cAU + 2 (Bo— 5h)U = (h — o)(Eh)AE — u(Wh)AE + h(Wh) AW
+ (U + oh — ¢)Vh — fVa. (3.27)
On the other hand, we have from (3.13)
h2AU +§hU = (o — B)(ER)AE + (o — 2h) (WR)AW + cVh
because of (3.24)—(3.26). Comparing with the last two equations, it follows that
(h* — c)AU +%c(a —hU
= (a0 — h)(Wh)AW — u(Wh)AE + (f — o + ah)Vh — fVa.

Applying this by 24 and making use of (2.2), (2.5) and (3.23), we find

{hz(h2 —¢)+ %ch(a - h)}AU

= (e — h)(Wh){hAW _ %CW} _ Lh(Wh) (hAé —%cé)

+ h(f — o + ah)AVh — fhAVa,
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which together with (3.15) and (3.23)—(3.25) implies that

{(ah + ¢)ah — ECZ}AU
— (o — h)(Wh) (hAW - %cW) — Lh(Wh) (hAé -%c£)

3
+ Zc(h — ){(Wh)AW + (Eh)ALY. (3.28)
Furthermore, using (2.2) and (2.5), we have from (3.28)
3

(och+c)och—zc AU =0

because U is orthogonal to & and W. Hence we have
3 23,
(o + co)h + co —5¢ =0

on . Since ¢ # 0, it follows that

3.2 .2
_gct—ca

— T (3.29)

From this and (3.24) we have 12a* 4 52ca? —9¢> =0 on €. So we see that
Vo =0 and hence VA=0 because of (3.29). Thus (3.27) becomes AU =
%(30( —5h)U on Q. Therefore Qy is void. This completes the proof. |

LemMMa 3.2. Under the same assumptions as those stated in Lemma 3.1, we
have (a =0, Wa =0, ¢h=0 and Wh=0 on Q.

Proor. As in the proof of Lemma 3.1, it-is sufficient to show that the
following two cases:

Case 1. f—ha+32c=0 and h? —he— ¢ =0,

Case 2. §(3a —2h) + (h— o) (2uh — 28 — 1 h?) # 0.

Case 1: By taking the inner product with & in (3.14), we obtain

ulh — a)(Wh) = (20(2 ~ 3ha+ %c) (eh) + <ha - Zc) ). (3.30)

From (3.19) we have
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L Wh) = --;- (ha: — 20)(88) + 5 (3hoc— 202~ 36)(Eh). (3.31)

Using (3.24), (3.30) and (3.31), we are led to
{(€h)?* + (£0)*}(25ho + 14¢ — 3a2) = 0. (3.32)
So, on the set of points satisfying 25ha + 14c — 302 # 0,
th=¢Ex=0.
On account of Remark 3.1 and (3.30), we deduce that
Wh = 0.

Further, from (3.12), we get Wa =0 since u # 0.
If 2ho+ 14c — 30®> =0, then « # 0 since ¢ # 0. So, we have

_ 302 — 14¢

h 25a

(3.33)

Combining this with (3.24), we see that
(302 — 14¢)? — 2542 (30® — 14¢) — 625¢0® = 0.

Therefore we have Vo= 0. So we have VA =0 by (3.33).
Case 2: Putting f — ho+32c=c’, (3.21) is reduced to

{—;-(301——2/1)4—(h—a)(%c—%'—%h2>}AU+cc’U:0,

From this we have

—2cc’

AU=4U, 4= c(3a—2h) + (h— a)(3c — 4c’ — h2)~

Therefore we are led to the following equation by (3.10):
(4c' + m?){(4c" + h*)o* — 2h(4c" + h*)oa+ R (4c’ + h*) — *} = 0. (3.34)

If 4c’ 4+ h? = 0, then & = constant. So, using (3.19), we are led to o = 0 since
¢ # 0. Furthermore, from (3.12), we have Wa =0.
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If 4¢’ +h? #0, then from (3.34) we have
(4c’ 4+ h*)e? — 2h(4c’ + hY)a + K2 (4c' + k%) — 2 = 0.

Differentiating both sides of (3.35), we obtain

(o« — h)(4c’ + h*)Vo + {ha® — (4c’ + h?)o + 2h(2¢" + h*)}Vh = 0.

By taking the inner products with £ in (3.14), we obtain

uo(Wh) — uh(Wa) = <—a2 + ho + 2¢’ — %c) (Eh)

(hoc —2¢ + 20 h2> (o).
By our assumption (3.19) is reduced to
uo( Wh) = ( ho — o 4+ 2¢' — )(éh) < h? +2¢' — >(af<x).

Using (3.36) and (3.37), we obtain

2u(h? 4+ 2¢") (o — h)(Wh)
2 I 2 I 2 / 3 2
= {—Zh(h +4c o+ (b +4c )(h + ha + 2¢ —§c> —c }(éh)
2 ! ! 3 2
+ (h* +4c )<ha—2c +§c—h )(éoc).
Making use of (3.35), we have from (3.38) and (3.39)

[—2(112 +2¢")o3 + 2h(30 + 7)o + {-4h4 - <8c’ + %c) h? + cz}oc
+ (3¢ — 4c'h(h? + 2&)} (Eh) — {h2 (2h2 - %c + 8c’>o¢
+ h(c? — 10c'h? — 2h* 4 3ch? — 8¢™ + 6cc’)}(éa) =0.

From (3.36) we have

(o — h)(h? + 4c") (&) + {ha® — (4c" + 3o+ 2h(2¢" + h*)}(ER) = 0.

From (3.40) and (3.41) we obtain
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(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)



526 U-Hang K1 and Setsuo NAGAI
{(&n)” + ()}

X {(oc — h)(h? + 4c’){—2(h2 +2¢" e + 2h(3H + 7c")o®
— 4hto — (8(:’ 4 %c) h?o 4 o+ (3¢ — 4cYh(h* + 2c’)}
+ {ha? — (4c’ + 3h¥)a 4 2h(2¢" + h2)}{h2 <2h2 — %c + 8c’>a

+ h(c? — 10c’h? — 2h* 4 3ch® — 8¢™ + 6&:)}] =0. (3.42)

If (£h)* + (£a)* # 0, then from (3.42) we have
(—12h%¢" — 2h* — 16¢"%)a*

+ (-%lﬂc + 72hc” + 58h3c’ + 10115) o’
+ <2hzc2 + 3h%c + %hzc +4c¢’'c? — 88¢'h*

— 6h* — 14h® — 24¢'h? — 128¢%h? + 6c’ch2> o2
+ (—18c’ch — 8¢'c*h + 6h° + 62¢'h® — 3c2h — 2h3c?

+24¢”h + 10h” + 88¢'h® — 9ch® — %ch5 + 30c’h3)a

+ 6¢'ch* + 4c'c?h? — 4h® — 24¢'h® — 32¢'h* 4+ 2¢%h* +3¢h® = 0. (3.43)
Using Sylvester’s elimination method to (3.35) and (3.43), we deduce that

(=24cc’ —7c? +16¢")h? + (=576¢"c + T2¢'c + 384¢" — 48¢”

+21¢% 4 36¢> — 120¢'c¢2)h' + f(h) = 0, (3.44)

where f(h) is the polynomial of 4 of degree < 16. (We use a computer to
calculate this.)

We can check that the coefficients of h?® and A'® does not vanish simul-
teneously since ¢ # 0. (We use a computer to check this.)

By the above argument, we know that (3.44) is a non-trivial algebraic
equation of 4. So, we arrive at A = constant. From (3.41), we have &a = 0. These
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are contradictions. So, we have fo=¢h=0. Furthermore, using (3.12) and
(3.39), we arrive at Wo = Wh = 0. We have thus proved the lemma. B

4 Proof of the Theorem

We continue our discussion under the same assumption of § 3. First, we prove
the following two lemmas:

LemMma 4.1. Let A be a principal curvature corresponding to U. Then A does
not vanish identically on Q = {p e M| u(p) # 0}.

Proor. From Lemma 3.1 and (3.10) the following equation holds on Q:

22:2h+[3—ha+%c. (4.1)

By Lemma 3.2, (3.15) becomes
AVh =0, A(Uh)=0. (4.2)

Because of Lemma 3.1 and Lemma 3.2, (3.13) and (3.16) are reduced respectively
to

{hA+2(B —ha+c)}U = —AVoc—!—%(hVoc— aVh), (4.3)

U = (mh -26— %h2> Vo + (2/3 - %m) Vh, (4.4)

where we define 6 by 6 = (48 — 4ho + h® + ¢)A + 3 cu — 2ch.
From (3.11) and Lemma 3.2, we have £f = 0. Therefore it is seen, using
Lemma 3.2, that

0 =0.
From this and Lemma 3.1, we see, making use of (4.4), that
0du(é,X)=0 (4.5)

for any vector fields X on Q, where u is defined by u(X) = g(U, X), and exterior
derivation du of u is given by

du(&, X) = 3 {8u(X) - Xu(&) — (&, XD},
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On the other hand, using (1.15) and AU = AU, the equation (1.14) turns out
to be

VeU = p(o— 3A)W — u*é + ¢V,
which together with (1.11) and (2.2) implies that
du(&, X) = (h = 3A)uw(X) + g(¢Ve, X), (4.6)

where w(X) = g(W,X).
If =0, then by (3.1) we have

B —ha= _Z?;C' 4.7)

Thus (4.3) and (4.4) becomes respectively
cU = —=2A4Va + hVo — aVh, (4.8)
(3ca — 4ch)U = (3¢ — h*)Va — (3¢ — ho)Vh. (4.9)

Because of Lemma 3.1 and (4.2), we see, using (4.9), that
(3¢ — h*)AVa = 0. (4.10)
If the set of points satisfying AVa # 0 is not empty, then on that set we have
h = constant
because of (4.10). So, from (4.9), we are led to
Vo =0.
This is a contradiction. So, we obtain
AVa=0 on Q. (4.11)
Thus (4.7) becomes
cU = hVo — aVh.
So, we have
au(é,X)=0
because of Lemma 3.2. Therefore (4.6) means that
dVa = pu(h =32 W.

Since o =0, it follows that
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Vo= hU. (4.12)
So, from (4.8), we have
aVh = (h* —¢)U. (4.13)
Combining last two equations with (3.2) and (3.11), we obtain
AVB =0, AVu=0.
Thus (2.18) with AU =0 and (4.7) implies

—gc(h —o)U = %cVoc —%(h — a){aVh + hVa}

+ <hoc - i-c - a2>Vh. (4.14)

Substituting (4.12) and (4.13) in the right-hand side of (4.14), we are led to

(h—a) =c. (4.15)
Combining this with (4.12) and (4.13), we have

alh—a)=0.
Since & — a # 0, we have

a=0. (4.16)

So, (4.12) implies that 2 = 0. These are contradictions. We have thus proved the
lemma. |

LemMa 4.2. 6=0 on Q.

Proor. If not, then from (4.5) we have

du(é,X) =0.
By (4.6), we obtain
Vo= (h—3A)U. (4.17)
Hence (4.3) is reduced to
aVh = {h? — TAh + 64> — 4(B — ha + ¢)} U. (4.18)

Applying A to both sides of (4.18), we have
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4(B — ha) = h* — Thi + 62% — 4c

since AVA=0 and 1#0 on Q.
Combining (4.19) with (4.1), we are led to

22 =3+ h* — ¢ =0.
Differentiating both sides of (4.20), we obtain
(42 —=3h)VA+ (2h —3A)Vh = 0.
On the other hand, from (4.1) we have
(224 — h)VA = AVh.

Combining (4.22) with (4.21), we are led to

(h—2)?Vi=0.
Furthermore, we have

Vi=0

since & # A by (4.20) and ¢ # 0. So, from (4.22) we obtain

Vh=0
since 4 # 0 by Lemma 4.1. Thus (4.4) becomes

(4ﬂ—4hoc+h2+c)l+%coc—2ch = (h—32) <2ah—2ﬁ—%h2).

Differentiating both sides of (4.24), we have
Voa=0

since ¢ # 0.
From (4.4), (4.23) and (4.25), we are led to

0=0.

This is a contradiction. We have thus proved the lemma.

Finally, we prove

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

THEOREM 4.1. Let M be a real hypersurface in M,(c), ¢ > 0. If it satisfies
VyveeS = 0 and at the same time satisfies SE = ol for some constant o, then M is a

Hopf hypersurface.
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Proor. By Lemma 4.2 and (4.1), we have

A(4A% = 4hA+ h? — 2¢) = % (4h — 3a),

(2ah -28 - -;—h2> Vo + (2,8 - %m) Vh=0.
Applying A to both sides of (4.27) and using (4.2), we obtain
<2ah - 28— %hz)Aw =0.
Now, suppose that AVa 5 0, then we have
1.,
2ah—2ﬂ—§h =0.

From this and our auumption ¢ = constant, we have

Vh=0.
Differentiating both sides of (4.1), we obtain

(h—=24)Vi=0.

From (4.28) and (4.29), we are led to

Vi=0.
Thus from (4.26) we see that

Va = 0.
This contradicts to AVa = 0. So, we have

AVa =0, Ua=0

since A # 0.
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(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

Using (4.2) and (4.31) and applying U to both sides of (4.3), we have

hA+2(f —ha+c) =0.
From (4.1) and (4.32), we obtain

1

Az—lhl—zc.

)

Substituting (4.33) to both sides of (4.26), we are led to

(4.32)

(4.33)
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a=h+24 (4.34)

since ¢ # 0.
Combining (4.34) with (4.32), we have

9(U, U)=/)’~a2=~7/12—§c<0.

This is a contradiction. The theorem is now proved by all the above arguments.
|
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