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Abstract: Noise statistics of phase-resolved optical coherence tomogra-
phy (OCT) imaging are complicated and involve noises of OCT, correlation
of signals, and speckles. In this paper, the statistical properties of phase shift
between two OCT signals that contain additive random noises and speckle
noises are presented. Experimental results obtained with a scattering tissue
phantom are in good agreement with theoretical predictions. The perfor-
mances of the dual-beam method and conventional single-beam method are
compared. As expected, phase shift noise in the case of the dual-beam-scan
method is less than that for the single-beam method when the transversal
sampling step is large.
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OCIS codes: (110.4500) Optical coherence tomography; (120.5050) Phase measurement;
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1. Introduction

Phase-resolved optical coherence tomography (OCT) is a powerful extension to several func-
tional imaging. For example, cross-sectional flow images are obtained by using the Doppler
phase shift caused by the motion of blood cells [1–7], the cross-sectional biomechanical prop-
erty can be mapped by detecting local deformation from the phase of OCT [8–10], and the
local photothermal effect can be detected [11–14]. Because these methods are based on the
OCT technique [15], they allow three-dimensional high-resolution imaging.

To evaluate the quality of phase-resolved OCT images, a generalized formulation of the phase
shift noise would be a powerful technique. Several previous works have addressed the phase
shift noise by considering simple additive noise [16] and/or decorrelation of signals because of
scanning of a probing beam [17,18]. However, they lack the contribution of speckle noise; the
fluctuation of a signal in a turbid tissue image results in a varying instantaneous signal-to-noise
ratio (SNR). Hence, the simple additive noise model with a constant signal intensity is not valid.

Recently, our and other groups introduced the dual-beam-scan Doppler detection method,
where two probing beams are separated along the scanning direction, to increase the sensitivity
to motion [19–21]. This dual-beam-scan Doppler method measures phase shift between two
OCT signals obtained with two probing beams. Because the detection scheme and signal pro-
cessing of this technique differ from those of conventional phase-resolved OCT, evaluation of
its performance is difficult.

In this paper, statistics of phase-resolved OCT imaging with additive, speckle, and decorre-
lation noises are addressed. The statistics of generalized phase-resolved OCT are formulated
in Section 2. The essential parameter is correlation coefficient between two OCT signals and
described with specifications of OCT (Section 2.2). The performances of Doppler OCT with
conventional single-beam and dual-beam methods are presented in Section 3 according to the
formulation in Section 2. We evaluate the performances of phase-resolved Doppler OCT. Phase-
resolved imaging performances are compared between the dual-beam-scan and conventional
single-beam methods in phantom tissue experiments (Section 4).

2. Statistics of phase-resolved OCT

Here, we describe the statistics of phase-resolved OCT; i.e., phase shift and correlation between
two complex OCT signals. Standard deviation of the phase shift is formulated with the support
of previous studies in the field of synthetic aperture radar [22, 23]. The population correlation
coefficient between two OCT signals is an essential parameter of the statistics of the phase
shift. This correlation coefficient is described with specifications of OCT. The statistics of the
real estimator of the phase shift are then addressed and a parameter, the effective number of
independent samples, is described. Notations of symbols are listed in table 1.

2.1. Statistics of phase shift

The statistics of phase-resolved OCT with additive, speckle, and decorrelation noises are de-
scribed here. A statistical model with speckle, where the OCT signals vary randomly, is as-
sumed. It is then shown that the effect of additive noise in complex OCT signals can be ex-
pressed as a part of decorrelation.

For phase-resolved imaging, the phase shift between two complex OCT signals is used. By
considering the two measurements as random variablesG1,G2, phase shift is calculated as a
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Table 1. List of notations

Symbols Descriptions
∆φ0 population phase shift between two OCT signals
∆φ realization of phase shift
σ∆φ population standard deviation of phase shift

σ∆φSS population standard deviation of phase shift with a static tissue; i.e., noise of
phase-resolved flow imaging

S∆φ sample standard deviation of phase shift
ˆ∆φ0 Maximum likelihood estimation (MLE) of phase shift
ν number of independent realizations

σ ˆ∆φ0
population standard deviation of phase shift (MLE)

ρ population correlation coefficient of detected OCT signals
ρs population correlation coefficient of OCT signals

ρs,SS population correlation coefficient of OCT signals with a static tissue
ρη1,η2 population correlation coefficient of scattering process between two channels
ρh1,h2 population correlation coefficient of point spread functions between two chan-

nels
ρg2 population correlation coefficient of 2nd order detected OCT signals

ρg2,SS population correlation coefficient of 2nd order detected OCT signals with a
static tissue

r sample correlation coefficient
ρ̂s estimation for correlation coefficient of OCT signals
h the point spread function of OCT system

SNR signal-to-noise ratio of OCT system
ESNR representativeSNRof two OCT signals
ENIS effective number of independent realizations

phase term of the Hermitian product of two measured OCT signals;

∆φ = arg[g∗1g2], (1)

whereg1 andg2 are respectively realizations ofG1 andG2. Here, the measured OCT signalsG1

andG2 are the sum of complex signalsS1 andS2 and additive noisesN1 andN2, respectively.

G1 = S1+N1, G2 = S2+N2. (2)

An realization of OCT signals is the sum of interference signals from scatterers in a coherent
detection volume:

s= aR∑
m

amexp[−i2kc(zm− z0)], (3)

wheream is the amplitude of scattered light from them-th scatterer, andzm is the axial location
of them-th scatterer.aR is the amplitude of the reference light,kc is the central wave number of
a broadband light source, andz0 is the depth at zero delay of the interferometer. By assuming
that the scatterers’ distribution is random and the density is high compared with resolutions of
OCT, the OCT signal is random in space and exhibits fully developed speckle. Hence,S1 and
S2 can be considered as zero-mean complex circular Gaussian variables.

By considering that the additive noisesN1 andN2 are zero-mean complex circular Gaussian
variables and independent of each other and the signalsS1 andS2, the measured signalsG1 and
G2 are also zero-mean complex circular Gaussian variables. The statistical properties of the
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product of two complex zero-mean circular Gaussian variables have been studied in the field of
synthetic aperture radar [22, 23] and it is known that the probability density function (PDF) of
the sample phase shift∆φ (Eq. (1)) can be expressed as

p∆Φ(∆φ |ρ ,∆φ0) =
1−ρ2

2π

{

β (π
2 + sin−1 β )
[1−β 2]3/2

+
1

1−β 2

}

, (4)

whereβ = ρ cos(∆φ −∆φ0). Additionally,

ρei∆φ0 =
E[G∗

1G2]
√

E[|G1|2]E[|G2|2]
, (5)

whereE[·] is the expectation operator. Equation (5) indicates that the parametersρ and∆φ0

are the amplitude and phase of the population complex correlation coefficient for the measured
signals, respectively.∆φ0 represents the population phase shift.

The expectation and standard deviation of the sample phase shift∆φ are described as

E[∆φ ] =
ρ sin∆φ0

√

1−ρ2cos2 ∆φ0
cos−1(ρ cos∆φ0), (6)

σ∆φ =

√

1−ρ2

1−β ′2

[

π2

4
−π sin−1 β ′+(sin−1 β ′)2

]

+
π2

12
− Li2(ρ2)

2
, (7)

whereβ ′ = ρ cos∆φ0 and Li2 is Euler’s dilogarithm. The estimators of the expectation and
standard deviation are the arithmetic mean and sample standard deviation:

∆φ =
1
N

N

∑
n=1

∆φn, (8)

S∆φ =

√

1
N

N

∑
n=1

(

∆φn−∆φ
)2
, (9)

whereN is the number of realizations.

2.2. Correlation coefficient of OCT signals

The correlation coefficientρ is an essential parameter for defining the statistics of the phase
shift. Hence, it determines the performance of phase-resolved OCT. Here, the generalized for-
mulation of correlation coefficientρ of OCT is described and can be applied to both conven-
tional and dual-beam-scan OCT. The estimations of correlation coefficients are then presented.

The parameterρ can be described as the following according to the definition of measured
signalsG1,G2 (Eq. (2));

ρ =
ρs

√

(

1+SNR−1
1

)(

1+SNR−1
2

)

, (10)

where

ρs =
|E[S∗

1S2]|
√

E[|S1|2]E[|S2|2]
. (11)

Equation (11) gives the correlation coefficient between two OCT signalsS1 and S2 and
SNRi = E[|Si |2]/E[|Ni|2] (i=1,2) are the expected signal-to-noise ratios of each measurement.
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As mentioned in the following section (Section 2.2),ρs is decreased by means of the displace-
ment of the sampling location on tissue, tissue deformation, scattering, and also, in the case of
dual-beam-scan OCT, differences in the system properties between two detections. It can be
understood that the denominator of Eq. (10) represents the degree of decorrelation caused by
additive random noise. For simplicity, here we define a representative of the SNR as

1
1+ESNR−1 ≡ 1

√

(

1+SNR−1
1

)(

1+SNR−1
2

)

. (12)

Note that the previously presented formula for decorrelation noise of Doppler OCT (Eq. (10)
in [18]) is identical to Eq. (4) whenρ = α2: i.e., the correlation coefficient depends only on
transversal sampling displacement, and∆φ0 = 0. However, the current model presented here
includes the effects of both additive noise and speckle noise. The measured OCT signalG is
assumed to be the sum of the varying signalSand noiseN. The effect of speckle on phase shift
might be accounted for by the varying instantaneous signal-to-noise ratio of each realization
|s|2/|n|2.

The correlation coefficient between two OCT signalsρs is defined by referring to previous
studies [24–26]. For generalization, two OCT signals are assumed to be detected in two inde-
pendent channels. Here, the OCT signals (Eq. (3)) can be redescribed as a time series of two
channels;

s1(t1) = η1∗h1(r1(t1)), s2(t2) = η2∗h2(r2(t2)). (13)

This equation is the convolution (*) of the point spread function (PSF) of each channelh(rL)
and the complex reflectivity distribution of a sampleη(rL). rL = (xL,yL,zL) is the laboratory
coordinate. The coordinater consists of a lateral location of a probing beam and a depth of the
sample from zero delay of the interferometer.r is a function of time since it will change with
beam scanning and motion of objects.

The population correlation coefficient of OCT signals in Eq. (11) and population phase shift
∆φ0 can be described from the signal cross-correlation coefficient between realizationss1, s2:

ρse
i∆φ0 ≡ ρS1,S2(t1, t2) =

E[s∗1(t1)s2(t2)]
√

E[|s1(t1)|2]E[|s2(t2)|2]
. (14)

Considering Gaussian beam profiles and a Gaussian coherence function of the light source,
PSFs are expressed as

hχ(xL,yL,zL) ∝ e
−2

x2
L

w2
χ e

−2
y2
L

w2
χ e−

∆k2
χ z2L
8 e−2ikcχ (zL−z0) (χ = 1,2), (15)

wherewχ is the beam spot radius at 1/e2 of the χ-th channel.∆k is the full width at 1/e2 of
a Gaussian spectrum of a light source in unit of wavenumber. Then, the population correlation
coefficient of OCT signalsρs and population phase shift∆φ0 are obtained by substituting Eq.
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(15) and (13) into Eq. (14):

ρs ≈ρη1,η2

× 2w1w2

w2
1+w2

2

√

2∆k1∆k2

∆k2
1+∆k2

2

×e
−2

x′(t1,t2)2+y′(t1,t2)2
w2

1+w2
2 e

− ∆k2
1∆k2

2
∆k2

1+∆k2
2

z′(t1,t2)2
8

×e
− 8(kc1−kc2)

2

∆k2
1+∆k2

2

×e
−4

k2
c1∆k2

2+k2
c2∆k2

1
∆k2

1+∆k2
2

D(
t2+t1

2 )(t2−t1)
,

(16)

∆φ0 ≈−2
kc1∆k2

2+ kc2∆k2
1

∆k2
1+∆k2

2

z′(t1, t2), (17)

whereρη1,η2 denotes the correlation coefficient of the scattering process between two channels
and (x′(t1, t2),y′(t1, t2),z′(t1, t2)) = r2(t2)− r1(t1) is the displacement of the sampling point
between two channels caused by motions of the sample and/or beam scan.D(t) is the diffusivity
at timet owing to the diffusion process. Note that the shift between spectra of the two channels
kc1− kc2 decreases the correlation coefficient.

In the case of solid tissues (no diffusion and no deformation), the correlation coefficient can
be defined as:

ρs,SS≡ ρη1,η2

∣

∣ρh1,h2(r
′(∆t))

∣

∣ , (18)

wherer ′(∆t) = r2(t +∆t)− r1(t) andρh1,h2 is the correlation coefficient of PSFs of the two
channels:

ρh1,h2(r
′) =

2w1w2

w2
1+w2

2

√

2∆k1∆k2

∆k2
1+∆k2

2

e
−2x′2+y′2

w2
1+w2

2 e
− ∆k2

1∆k2
2

∆k2
1+∆k2

2

z′2
8

e
− 8(kc1−kc2)

2

∆k2
1+∆k2

2 e
−2i

kc1∆k2
2+kc2∆k2

1
∆k2

1+∆k2
2

z′

. (19)

The estimation of the parameterρ is the sample correlation between realizationsg1 andg2:

r =

∣

∣

∣
g∗1(t1)g2(t2)

∣

∣

∣

√

|g1(t1)|2 |g2(t2)|2
. (20)

Because the sample correlationr is a biased estimation forρ , a large number of realizations are
required for accurate estimation.

According to Eq. (10), the correlation coefficient of the OCT signalρ̂s can be estimated as

ρ̂s = (1+ ˆESNR
−1
)r

=

∣

∣

∣
g∗1(t1)g2(t2)

∣

∣

∣

√

[

|g1(t1)|2−|n1|2
][

|g2(t2)|2−|n2|2
]

,
(21)

where ˆESNRis the estimation of the representative SNR (Eq. (12)):

1+ ˆESNR
−1

=

√

√

√

√

√

|g1(t1)|2 |g2(t2)|2
[

|g1(t1)|2−|n1|2
][

|g2(t2)|2−|n2|2
] . (22)
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The mean power of noise|nχ |2 will be estimated from the noise floor level of the OCT system
without any tissue.

2.3. Maximum likelihood estimation of phase shift

The mean of phase shift∆φ (Eq. (8)) is a biased estimator for∆φ0. According to the expectation
(Eq. (6)), the mean estimator results in large offset of the estimation from the population pa-
rameter∆φ0 when it is close to the boundaries of phase measurement range [27]. The maximum
likelihood estimation (MLE) of parameter∆φ0 will be used for better estimation. The MLE of

population phase shift∆φ0 with ν independent realizationsg(κ)1 andg(κ)2 (κ = 1, ...,ν) is [23]

ˆ∆φ0 = arg

[

ν

∑
κ=1

g(κ)∗1 g(κ)2

]

. (23)

The PDF of the MLE for phase shift becomes [22,23]

p ˆ∆Φ0
( ˆ∆φ0|ρ ,∆φ0) =

Γ(ν + 1
2)(1−ρ2)ν ρ cos( ˆ∆φ0−∆φ0)

2
√

πΓ(ν)[1−ρ2cos2( ˆ∆φ0−∆φ0)]ν+1/2

+
(1−ρ2)ν

2π 2F1

(

ν,1;
1
2

;ρ2cos2( ˆ∆φ0−∆φ0)

)

,

(24)

where2F1 is Gauss hypergeometric function.
The phase shift noise of the MLEσ ˆ∆φ0

is characterized by first- and second-order moments

E[ ˆ∆φ0], E[ ˆ∆φ0
2
] as

σ ˆ∆φ0
=

√

E
[

ˆ∆φ0
2
]

−E
[

ˆ∆φ0
]2
. (25)

The moments of ˆ∆φ0 can be numerically calculated using Eq. (24). However, the calculation
cost is high. To reduce the computation time, approximations of the moments have been found.
The moments of ˆ∆φ0 can be expressed by the summation of an infinite series as shown in
Appendix A. The decrement of the higher-order term from the previous term in the series is
from about 10 to more than 90 %. Hence, asymptotic expressions of expectation, variance,
and other statistics ofˆ∆φ0 can be obtained by taking the first several ten terms of the series.
Summing up to the∼ 30-th order provides a good approximation. The only exception is the
case whenν → ∞ or ρ → 1, where the summation does not asymptotically converge to the real
value. However, it is a rare case in real experiments and can thus be ignored.

2.4. Practical estimators

The MLE of phase shift ˆ∆φ0 has been shown as Eq. (23). However, in the real case, it is almost
impossible to acquire several independent samples for a single location.

Frequently, spatial averaging around the point of interest in an image is applied [4, 28]. The
extension of the MLE to a spatial moving average is

ˆ∆φ0 = arg

[

I

∑
i

J

∑
j

L

∑
l

g∗1(x1+i ,y1+ j ,z1+l )g2(x1+i ,y1+ j ,z1+l )

]

, (26)

where(I ,J,L) is the size of the three-dimensional averaging window. In the averaging window,
a tissue should be homogeneous and statistical parameters constant; i.e., the temporal changes
between two signals and detection conditions should be equivalent. That means that motion
of the sample and scanning speed of the probing beam should be constant and deformation
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of objects is equivalent inside the window. The problem is that the realizations, the Hermitian
products within a moving window, are not independent of each other. The detection regions of
each realization partially overlap owing to the spatial extent of the PSF. Hence, the number of
independent realizations is not equal to the number of realizations within the windowν 6= IJL.

To estimate the moments of the estimated phase shift and the sample correlation coefficient,
the effective number of independent samples (ENIS) within an averaging window should be
known. Taking the analogy of synthetic aperture radar [29], the ENIS can be defined using the
cross-correlation coefficient between Hermitian products as

ENIS=
I

1+2∑I−1
i=1

I−l
I ρ2

g2(i∆x,0,0)

J

1+2∑J−1
j=1

J−l
J ρ2

g2(0, j∆y,0)

× L

1+2∑L−1
l=1

L−l
L ρ2

g2(0,0, l∆z)
,

(27)

where(∆x,∆y,∆z) is the spatial separation between neighboring pixels in the image along each
direction.ρg2(i∆x,0,0) is the correlation coefficient between two Hermitian products with the
displacement ofi image pixels in thex-direction;

ρg2(i∆x,0,0) =

|E[G∗
1(x1)G2(x1)G1(x1+i)G∗

2(x1+i)]−E[G∗
1(x1)G2(x1)]E[G1(x1+i)G∗

2(x1+i)]|
√

E[|G∗
1(x1)G2(x1)−E[G∗

1(x1)G2(x1)]|2]
√

E[|G∗
1(x1+i)G2(x1+i)−E[G∗

1(x1+i)G2(x1+i)]|2]
.

(28)

In the case of solid tissues, the correlation coefficient can be described by expanding the
fourth-order moment in Eq. (28) [30] and using Eq. (18):

ρg2,SS(i∆x, j∆y, l∆z) =
1

(1+ESNR−1)2

∣

∣ρ∗
h1,h1

(i∆x, j∆y, l∆z)ρh2,h2(i∆x, j∆y, l∆z)
∣

∣ , (29)

ρh1,h1 andρh2,h2 are the auto-correlation coefficients of each channel;

∣

∣ρ∗
h1,h1

(i∆x, j∆y, l∆z)ρh2,h2(i∆x, j∆y, l∆z)
∣

∣ = e
−w2

1+w2
2

w2
1w2

2
[(i∆x)2+( j∆y)2]

e−
(l∆z)2

16 (∆k2
1+∆k2

2). (30)

3. Performance of flow imaging with phase-resolved OCT

Here, the statistical properties of phase-resolved OCT investigated in the previous sections are
used to analyze phase-resolved Doppler OCTs. The theoretical performances of conventional
phase-resolved Doppler OCT and dual-beam-scan Doppler OCT [19, 20, 31] are investigated.
Experimental data are acquired to validate the statistical analysis. The comparison of phase-
resolved OCTs is then discussed.

Phase-resolved imaging is a common method for cross-sectional flow imaging by OCT. The
phase shift between OCT signals at different time points is caused by axial movements of
samples, and expressed as

∆φ f low = 2nkcV∆t cosθ , (31)

where symbols are defined as follows:V, the velocity of moving tissue;θ , Doppler angle;∆t,
the time delay between the two time points; andn, the refractive index of the sample.

The sensitivity of flow imaging is defined by the minimum detectable flow in images. This
minimum detectable flow can be defined as the velocity corresponding to the random variation
of the phase shift for surrounding solid tissue.

vmin = K
σ∆φSS

∆t
, (32)
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whereσ∆φSS indicates a standard deviation of the spatial distribution of the phase shift for the
surrounding solid tissue.K = 1/2nkccosθ is a factor depending on the tissue and system fea-
tures. Equation (32) clearly shows that longer time delay and smaller phase shift noise increase
the sensitivity of flow imaging. To compare the phase-resolved flow imaging performances of
conventional Doppler OCT and dual-beam-scan OCT, phase noise in each method is defined in
the following sections.

3.1. Conventional phase-resolved Doppler OCT

Conventional Doppler OCT uses a single probe beam and single detection channel, and applies
auto-correlation processing to obtain the phase shift. In this case,h1 = h2 andη1 = η2. Under
this condition, the signal correlation coefficient with a static tissue is obtained from Eqs. (18)
and (19) as

ρ (SB)
s,SS = e

− x′2b +y′2b
w2 , (33)

where(x′b,y
′
b) is the transversal displacement of a probing beam between two measurements.

In the case of inter-line Doppler [2],x′2b + y′2b → ∆x2, which is the transversal sampling step
between adjacent axial lines.

By substituting Eq. (33) into Eqs. (10) and (29) and using Eqs. (7), (25), and (27) with
∆φ0 = 0, the phase shift noise in a static tissue is obtained as

σ (SB)
∆φSS

=















σ∆φ
∣

∣

ρ= e−δx2

1+1/ESNR(SB)

(IJL = 1)

σ ˆ∆φ0

∣

∣

∣

ρ= e−δx2

1+1/ESNR(SB) ,ν=ENISI−1,J,L
(IJL >= 2)

, (34)

whereδx = ∆x/w is the fractional sampling step between two adjacent axial lines. Since a
single-line-shifted image is used to calculate phase shifts, the window size may be reduced by
1 to maintain the same spatial resolution. Note that theESNRalso affects theENISas shown
by Eq. (29).

3.2. Dual-beam-scan Doppler OCT

The polarization-multiplexing dual-beam-scan Doppler method detects two OCT signals using
different polarization states at the same location of the static tissue [19]. Hence, the signal
correlation coefficient with a static tissue can be obtained from Eqs. (18) and (19) as

ρ (DB)
s,SS = ρPol.

2w1w2

w2
1+w2

2

√

2∆k1∆k2

∆k2
1+∆k2

2

e
− 8(kc1−kc2)

2

∆k2
1+∆k2

2 , (35)

whereρη1,η2 ≡ ρPol. is the correlation coefficient between the scattering process with two dif-
ferent polarization states of probing beams. It is shown that an increasing difference in the PSFs
of the two channels decreases the signal correlation coefficient. The same light source, iden-
tical performances of detectors, and the same optical setup for two channels are required to

maximize the performance of the dual-beam method. In the ideal case,ρ (DB)
s,SS = ρPol..

By substituting Eq. (35) into Eqs. (10) and (29) and using Eqs. (7), (25), and (27) with
∆φ0 = 0, phase shift noise in a static tissue can be described.

σ (DB)
∆φSS

=



















σ∆φ
∣

∣

ρ=
ρ(DB)
s,SS

1+1/ESNR(DB)

(IJL = 1)

σ ˆ∆φ0

∣

∣

∣

ρ=
ρ(DB)
s,SS

1+1/ESNR(DB) ,ν=ENISI ,J,L

(IJL >= 2)
. (36)
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4. Evaluation of phase shift noise

To validate and demonstrate the phase-resolved OCT analysis, an experiment using static tissue
was conducted. The behaviors of the phase shift noise in phase-resolved OCT and dual-beam-
scan OCT are compared.

4.1. Experimental setup and method

A dual-beam-scan OCT (DB-OCT) system was used for experiments of both single-beam and
dual-beam Doppler OCT. The comparison between two different methods is eased by using sin-
gle system because the conditions and system parameters are identical except the probe beam
power. The details of the system were described in a previous work [32]. The ophthalmic lens
was removed for tissue phantom imaging. A superluminescent diode with central wavelength
of 840 nm and spectral bandwidth of 50 nm was used. Polarization optics (i.e., a Faraday rota-
tor and a quarter waveplate) are introduced to avoid phase retardation due to birefringence of
samples. The beam spot radius on tissue was estimated to be 16.5µm using optical simulation
software (ZEMAX, Radiant Zemax, LLC, Redmond, WA). The axial resolution was measured
to be about 9.5µm (full-width at half maximum, -6 dB width) in air. Theoretically, this corre-
sponds to 4 log2/∆kFWHM = 4

√
2log2/∆k. In this system, two probing beams are divided from

the same light source and pass through common optics in the sample arm. It is thus assumed

thatρ (DB)
s,SS ≈ ρPol..

The scattering phantom was made by fixing 1 % soybean oil lipid emulsion (Intralipos®20%,
Otsuka Pharmaceutical Factory Inc., Japan) with 10 % porcine gelatin (G2500, Sigma-Aldrich
Corp., St. Louis, MO).

Phase-resolved OCT imaging was performed with 256 axial lines/frame and different frac-
tional sampling stepsδx from 0.1 to 2.

The conventional single-beam Doppler OCT system can use power of two beams into single
probe beam. To emulate the single-beam Doppler method using this DB-OCT system, the two
detected OCT signals are summed after a bulk motion correction as

g(xi ,zl ) = gH(xi ,zl )+gV(xi ,zl )exp[−i∆φch(xi)], (37)

wheregH andgV are measured OCT signals from the two polarization channels of DB-OCT,
and∆φch(xi) = arg[∑l g∗H(xi ,zl )gV(xi ,zl )] is the phase difference between two channels at each
line estimated by taking the argument of summed Hermitian products along the axial direction
[33]. Hence, theESNRof the single-beam method is theoretically twice that of the dual-beam
method;ESNR(SB) = 2ESNR(SB). Two signalsg1 andg2 are assigned asg1 , gH(xi ,zl ),g2 ,

gV(xi ,zl ) in the case of the dual-beam method andg1 , g(xi ,zl ),g2 , g(xi+1,zl ) in the case
of the single-beam method using Eq. (37). The sample phase differences of the dual-beam and
single-beam methods are calculated and analyzed.

4.2. Results

Figure 1 is a cross-sectional OCT image of the scattering phantom. The phase-resolved phan-
tom images with several fractional sampling steps are shown in Fig.2. A part of an image with
a constant image depth was assigned as a region of interest (ROI) for analysis as indicated by
a yellow box in Fig.1 (256 lines× 10 pixels). A set of 100 B-scans are acquired and each
statistics are measured every B-scan. The final measurements of statistics are averages of 100
realizations.

As expected from Eq. (7), the phase shift noise can be characterized by the correlation co-
efficient of measured signalsρ . In Fig.3, sample standard deviations of sample phase shiftS∆φ
of dual-beam and emulated single-beam methods are plotted against the sample correlationr
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Fig. 1. A cross-sectional OCT image of the tissue phantom. The yellow box indicates the
ROI of phase shift analysis.
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Fig. 2. Phase-resolved images with dual-beam-scan (right column; a, c, e) and emulated
conventional phase-resolved (left column; b, d, f) methods. The fractional sampling step
was set to be (a), (b) 0.84, (c), (d) 0.43, (e), (f) and 0.1.
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Fig. 3. Scatter plot of phase shift noise vs correlation coefficient. The solid curve shows the
population standard deviation of phase shift (Eq. (7)).
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Fig. 4. Phase shift noise vs fractional sampling stepδx.

obtained using Eqs. (20) and (9). The solid curve is the line calculated with Eq. (7) at∆φ0 = 0.
Experimental and theoretical results are in good agreement.

To compare the dual-beam and single-beam methods, phase shift noiseS∆φ is plotted against
the fractional sampling stepδx in Fig.4. Each curve represents expected phase shift noise
(standard deviation of the phase shift, Eq. (7)) for the dual-beam and single-beam methods.
The correlation coefficientρPol. in the dual-beam method was estimated to be 0.91 by averag-

ing the estimationρPol.,n = (1+1/ ˆESNR
(DB)
n )rn of eachn-th measurement, where we assume

ρ (DB)
s ≈ ρPol. and use Eq. (21). ˆESNR

(DB)
is the sample representative SNR of the dual-beam

method calculated using Eq. (22) as approx. 11 dB. The population representative SNRESNR
is set to 11 dB for the dual-beam method and 14 dB for the single-beam method. As expected,
phase shift noise is almost constant for all fractional sampling steps in the dual-beam method,
because two signals are obtained at the same position on the sample no matter the magnitude
of the fractional sampling step. The phase shift noise is significantly small compared with that
for the single-beam method at largeδx. The transitional point of the fractional sampling step
where the magnitudes of phase shift noise become identical between single-beam and dual-
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Fig. 5. The transitional pointδxc (Eq. (38)) is plotted. In the upper region, the dual-beam
method exhibits less phase shift noise than that of the single-beam method.

beam methods is

δxc =

√

− ln

[

ρPol.
ESNR(DB)

ESNR(SB)

ESNR(SB)+1

ESNR(DB)+1

]

=

√

− ln

[

ρPol.
ESNR(SB)+1

ESNR(SB)+2

]

.

(38)

If the fractional step is larger than thisδx, the dual-beam method provides superior performance
in terms of phase noise compared with the conventional single-beam method.

This is plotted as Fig.5 forρPol. = 0.91. When the fractional sampling step is larger thanδxc,
the dual-beam method exhibits less phase shift noise. Whenδx< δxc, the single-beam method
is better. Andδxc is larger asESNRdecreases. These characteristics can be easily understood
as follows. In the case of smallerδxc and lowerESNR, phase shift noise caused by additive
random noise is dominant. Since the single-beam method exhibits a larger SNR by a factor of
2, the phase shift noise of the single-beam method is less than that of the dual-beam method.

In Fig.4, the predicted phase shift noise is greater than the experimental results at largeδx in
the case of the single-beam method. This would be explained by elongation of the beam profile
[34]. A broadened beam profile increases the signal correlation coefficientρs and decreases the
phase shift noise.

The phase shift noise against theESNRis shown in Fig.6. To virtually change theESNR,
complex circular Gaussian noise is numerically generated and added to complex OCT data. The
phase shift noise decreases as theESNRincreases. However, the phase shift noise approaches
an asymptotic value.

In the high-ESNRregime, decorrelation phase shift noise is dominant. The equivalent rep-
resentative SNR of a signal correlation coefficientESNRρs can be described by equating
ρs = 1/(1+ESNR−1

ρs
) as

ESNRρs =
ρs

1−ρs
. (39)

When theESNRis larger than thisESNRρs, theESNRis no longer a dominant limitation of
phase noise but the signal correlationρs is. In the case of the current dual-beam system, the
ESNRρs|ρs=ρPol. ≈ 10.6 dB and phase shift noise approachesσ∆φ |ρ=ρPol. ≈ 0.63 radians in the
high-ESNR regime.
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Fig. 7. Profiles of the correlation coefficients of the Hermitian products with displacement
along (a) the lateral direction and (b) the axial direction. In each figure, the horizontal axis is
fractional displacementiδx= i∆x/w andlδz= l∆z/ζ , wherei andl are the displacements
in the number of pixels along lateral and axial directions, respectively.δx = 0.22 andδz=
0.52. Solid curves are the expected correlation coefficients from Eq. (29).

4.2.1. Averaged phase shift noise

In practical applications, spatial complex averaging (Eq. (26)) is used to enhance the contrast of
phase-resolved images. The performances with averaging in conventional and dual-beam-scan
phase-resolved flow imaging are compared in this section.

First, estimations of the correlation coefficient of the Hermitian productρg2 are evaluated
becauseρg2 is essential to the estimation of the effective number of independent samplesENIS
(Eq. (27)). The Hermitian productg∗1g2 was calculated for the single B-scan image and the
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Fig. 8. Phase shift noise vs effective number of independent samples.

spatial autocorrelation was obtained in the ROI according to the spatial displacement steps∆x
and∆z, which correspond to the spatial lengths according to the single pixel. Figure 7 shows
the profiles of estimatedρg2,SS. The horizontal axis of each plot is normalized by the beam spot
radius,w = 16.5µm, and the axial resolution defined as half width ate−2 of axial PSF,ζ = 4/∆k
= 9.5µm/

√
2log2 = 8.1µm. The solid curves in each plot show the expected profiles from Eqs.

(29) by substitutingρ (DB)
s,SS = ρPol. andρ (SB)

s,SS = e−δx2
. Here,ρPol. and theESNRwere calculated

from data obtained in the experiment. They show that the experimental data and estimation
using Eq. (29) are in good agreement.

The suppression of phase shift noise by the moving average is shown in Fig.8. The effective
number of independent samples within the windowENIS is calculated using Eq. (27). Solid
curves show the approximate phase shift noise numerically simulated using Eqs. (25), (43),
and (44) by summing series up to the 50-th order. The experimental results and numerical
estimations are in good agreement for largeδx.

When the fractional sampling step is very small, (i.e.,δx< 0.2), measured results with lateral
averaging deviate from predicted values. Perhaps under this condition, the OCT signals do not
significantly differ between the two axial lines. The phase shift estimationσ ˆ∆φ0

does not obey
Eq. (24). When correlation coefficientρs is close to 1, phase shift∆φ0 is constant. In addition,
if δx is small, the Hermitian products extracted along the lateral direction can be considered
as a sum of a constant phasor and a random phasor. If this assumption is valid, the phase shift
noise will decrease by the square root of the number of averaged realizations. In fact, the noise
suppression ratio under this condition is close to1√

N
, whereN is the number of sampling points

in the lateral averaging window.
In order to compare dual-beam and single-beam methods, phase shift noise with lateral mov-

ing average was calculated where the window size is up to the optical resolution. The window
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Fig. 9. Phase shift noise vs fractional sampling step with averaging using a constant window
size.

sizes for each method are as follows.

I (DB) =

{

⌊ 2
δx⌋

2
δx ≥ 1,

1 otherwise
(40)

I (SB) =

{

⌊ 2
δx⌋−1 2

δx ≥ 2,

1 otherwise.
(41)

These phase shift noises and correspondingENISscalculated from Eqs. (27), (40), and (41) are
plotted in Fig.9. Since the window size must be an integers (Eqs. (40) and (41)), the population
standard deviation of the MLE of phase shiftσ ˆ∆φ0

and estimated effective numberENISexhibit
discontinuous values alongδx as shown by solid curves in Fig.9. The transitional point of the
fractional sampling step is nearly the same as that without averaging. However, the phase shift
noise of the dual-beam method at small fractional sampling step is reduced and approaches that
of the single-beam method.

5. Discussions

The essential factor that explains the phase shift noise in phase-resolved OCT is the correlation
coefficient of measured OCT signals. The phase shift noise relying on the SNR can be treated
as the decorrelation of measured signals caused by additive noise. Hence, the phase shift noises
derived from additive noise and structural decorrelation are unified. The presented statistical
model accounts for the spatial variation of the instantaneous SNR; i.e., speckle. The introduced
statistics well describe the imaging performance of phase-resolved OCT.

In the formulation of the correlation coefficient of OCT signals (Eq. (14)), we did not con-
sider an effect of displacement of objects during integration of photons at a detector [24]. This
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effect will result in changes of population parameters in the presented statistical model; i.e.,
∆φ0 andρs. The further alterations for the presented study according to the previous work will
provide a statistical analysis tool of phase-resolved OCT that is more accurate.

In this study, we compared the dual-beam Doppler method and the inter-line single-beam
Doppler method. When the transversal sampling is coarse, the phase shift noise of the dual-
beam method is less than that of the conventional Doppler method as expected. This indicates
that there is a great advantage in the case of systems with high spatial resolution. The imaging
speed and/or imaging range can be increased by increasing the transversal sampling step as a
level of phase shift noise is low.

Recently, Doppler methods with dedicated scanning protocols have been employed to in-
crease the time delay and increase the flow sensitivity [35–37]. With high-dense transversal
sampling, it is predicted that the single-beam method will surpass the dual-beam method. How-
ever, repeatability of a beam scanning mechanism and/or sample fluctuation perhaps limit the
advantage [37]. As shown in Fig.3, a small reduction of the correlation coefficient will result in
a rapid increase of the phase shift noise. On the other hand, the dual-beam-scan method can be
used with a simple raster scanning protocol.

For vasculature imaging in optical coherence angiography, squared Doppler phase shifts are
calculated to contrast vessels [4]. The response to flow can be defined by the second moment

of the phase shift estimationE
[

∆̂φ2
]

. Since the lateral motion of samples reduces the correla-

tion coefficient between OCT signals at different time points and hence increasesE
[

∆̂φ2
]

, the

squared Doppler phase shift imaging is expected to be sensitive to not only axial motion but
also lateral movement.

6. Conclusion

The statistical properties of phase-resolved OCT imaging were described. The investigated
statistics of phase-resolved OCT were validated by evaluating phase shift noise measured with a
static tissue phantom. Flow imaging performances of dual-beam-scan phase-resolved Doppler
OCT and the conventional single-beam method were compared and discussed using the pre-
sented statistics. The dual-beam method exhibited lower phase shift noise for coarse transver-
sal sampling than the single-beam method. The presented statistics of phase-resolved OCT are
useful in investigating, comparing, and designing phase-resolved OCT systems.

Appendix A. Moments of the maximum likelihood estimate of phase shift

From the moment generating function, then-th order moment of the sample phase shift is
obtained as

E
[

ˆ∆φn
0

]

=(−1)n/2 πncos(nπ
2 )

n+1

+2
∞

∑
l=1

{

(−1)l ρ l Γ
(

l
2 +1

)

Γ
(

l
2 +ν

)

2F1
(

l
2,

l
2 −ν +1;l +1;ρ2

)

πΓ(ν)Γ(l +1)

×
[

∂ n

∂sn

sinh(πs)[scos(l∆φ0)− l sin(l∆φ0)]

l2+ s2

]
∣

∣

∣

∣

s→0

}

.

(42)

The first and second moments are then obtained by settingn as 1 and 2 in Eq. (42):

E
[

ˆ∆φ0
]

=−
∞

∑
l=1

2(−ρ)l sin(l∆φ0)Γ( l
2 +1)Γ( l

2 +ν)2F1[
l
2,

l
2 −ν +1;l +1;ρ2]

lΓ(ν)Γ(l +1)
, (43)
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E
[

ˆ∆φ0
2
]

=
π2

3
+

∞

∑
l=1

4(−ρ)l cos(l∆φ0)Γ( l
2 +1)Γ( l

2 +ν)2F1[
l
2,

l
2 −ν +1;l +1;ρ2]

l2Γ(ν)Γ(l +1)
. (44)
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