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ABSTRACT 

To examine whether polymorphic mtDNA mutations that do not induce significant respiration 

defects regulate phenotypes of tumor cells, we used mouse transmitochondrial tumor cells 

(cybrids) with nuclear DNA from C57BL/6 (B6) strain and mtDNA from allogenic C3H 

strain. The results showed that polymorphic mutations of C3H mtDNA in the cybrids induced 

hypoxia sensitivity, resulting in a delay of tumor formation on their subcutaneous inoculation 

into B6 mice. Therefore, the effects of polymorphic mutations in normal mtDNA have to be 

carefully considered, particularly when we apply the gene therapy to the embryos to replace 

their pathogenic mtDNA by normal mtDNA. 

 

Key words: Transmitochondrial cybrids; Mouse C3H mtDNA; Polymorphic mtDNA 

mutations; Tumor phenotypes; Hypoxia sensitivity 

 

1. INTRODUCTION 

Accumulation of the mtDNA with pathogenic mutations that induce significant mitochondrial 

respiration defects can be responsible for mitochondrial diseases (Wallace, 2005; Taylor and 

Turnbull, 2005), and is involved in aging and age-associated disorders (Jacobs, 2003; Loeb et 

al., 2005; Taylor and Turnbull 2005; Wallace, 2005; Khrapko and Vija, 2008). Moreover, 

accumulation of somatic mutations in mtDNA with age can also be involved in tumor 

development, since some of the somatic mtDNA mutations induce mitochondrial respiration 

defects, resulting in upregulation of aerobic glycolysis (the Warburg effects) (Taylor and 

Turnbull 2005; Wallace, 2005). Our previous studies showed that specific mtDNA mutations 

regulate tumor phenotypes as a consequence of overproduction of the reactive oxygen species 



 3 

(ROS) and the resultant induction of genetic instability (Ishikawa et al., 2008; Imanishi et al., 

2011; Hashizume et al., 2012).  

As animal models for these mtDNA-based disorders, our previous studies generated 

transmitochondrial mito-miceΔ carrying mtDNA with a pathogenic deletion mutation 

(ΔmtDNA) (Inoue et al., 2000; Nakada et al., 2001), and succeeded in generation of their 

healthy progeny via nuclear transplantation from one-cell embryos into enucleated oocytes 

with normal mtDNA (Sato et al., 2005). Subsequently, the nuclear transplantation was applied 

in primate (Tachibana et al., 2009) and human embryos (Craven et al., 2010; Tachibana et al., 

2013; Paull et al., 2013). However, one of the most important problems that have to be solved 

before applying the nuclear transplantation technology to human cases is the influence of 

polymorphic mutations in normal mtDNA from the oocyte donors on the phenotypes of the 

progeny, even when the polymorphic mtDNA mutations do not induce significant respiration 

defects. In fact, some polymorphic mutations in mouse mtDNA were proposed to affect on 

age-related hearing loss (Johnson et al., 2001), learning retardation (Roubertoux et al., 2003), 

delay of cell proliferation (Moreno-Loshuertos et al., 2006), and defects in behaviour 

(Sharpley et al., 2012).  

Our previous study (Ishikawa et al., 2010) revealed a novel role of polymorphic mutations in 

mtDNA: innate immune system in C57BL/6 (B6) strain mice can recognize polymorphic 

mutations in mtDNA from allogenic NZB strain mice, resulting in suppression of tumor 

formation of transmitochondrial tumor cells with NZB mtDNA (P29mtNZB cybrids) in B6 

mice. The P29mtNZB cybrids possessed syngenic B6 strain-derived nuclear DNA from P29 

tumor cells but possessed mtDNA from allogenic NZB strain mice. On the contrary, 

P29mtC3H cybrids with allogenic C3H mtDNA were able to form tumors, but showed 

latency periods to form detectable tumor masses longer than those of P29mtB6 cybrids with 

syngenic B6 mtDNA. 
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This study addressed to the issue of how polymorphic mutations in mtDNA from allogenic 

C3H strain induce the delay of tumor formation of P29mtC3H cybrids under the skin of B6 

mice.  

 

2. MATERIALS AND METHODS 

2.1 Cell lines and cell culture. 

Transmitochondrial tumor cybrids P29mtB6 and P29mtC3H, which were obtained in our 

previous report (Ishikawa et al., 2010), were grown in normal medium [DMEM + pyruvate 

(0.1 mg/ml) + uridine (50 mg/ml) + 10% FBS] in either normoxia (21% O2) or hypoxia (7% 

O2). For treatment with N-acetylcysteine (NAC) (Sigma), cybrids were grown in normal 

medium supplemented with 20 mM NAC for 48 h. 

2.2 Mouse strains. 

Mice of the inbred strain B6 were obtained from CLEA Japan, Inc. The B6mtC3H mice were 

generated in our previous study (Kasahara et al., 2006). They showed normal lifespan and no 

detectable abnormalities (Hashizume et al., 2012). The immunodeficient B6 Rag2−/−/γc−/− 

mice were provided by S. Koyasu and S. Nagai (Keio University School of Medicine, 

Shinju-ku, Tokyo, Japan). These mice share B6 nuclear DNA background. The mice were 

cared for in accordance with the Guide for the Care and Use of Laboratory Animals. 

Experiments using these mice were approved by the Animal Care and Use Committee of 

University of Tsukuba and the Research Institute National Center for Global Health and 

Medicine. 

2.3 Assay of tumor formation and metastasis.  
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For testing tumor formation phenotypes, 5 × 106 cells or 5 × 103 cells in 100 µl PBS were 

inoculated subcutaneously into the back of 5-week-old male B6 mice. Maximum (a) and 

minimum (b) diameters and height (h) of tumors were recorded twice per week. The volume 

of each tumor (V) was calculated according to the formula: V = πabh/6. To examine 

spontaneous metastasis, 5 × 106 cells in 100 µl PBS were injected s.c. into the back of 

5-week-old male B6 mice. The recipient mice were sacrificed when the tumor volume 

reached 500 mm3, and their lungs were removed, and then parietal nodules were counted. 

2.4 Estimation of doubling times. 

Growth capacity was determined by plating 1 × 104 cells on 6-well plates in 2 ml of the 

normal medium, incubated at 37°C for 5 days, and performing cell counts at daily intervals.  

2.5 Cell invasion assay.  

The invasive ability of the cells was assayed using cell culture inserts (8 µm pore size) for 

24-well plates coated with Matrigel, according to the manufacturer's instructions (Becton, 

Dickinson). Total numbers of 2.5 × 104 cells were seeded and incubated for 24 h at 37°C. 

Then, the number of invaded cells on the lower surface of the membrane was counted under a 

light microscope. Each experiment was performed in triplicate.  

2.6 Cell migration assay.  

The ability of cell migration was detected using non-coated cell culture inserts (8 µm pore 

size) for 24-well plates according to the manufacturer's instructions (Becton, Dickinson). For 

testing cell migration, 1.25 × 104 cells were seeded, and after incubation for 24 h at 37°C, the 

number of migrated cells on the lower surface of the membrane was counted under a light 

microscope. Each experiment was performed in triplicate.  

2.7 Histological analysis.  
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Cytochemical analysis for cytochrome c oxidase (COX) activity was carried out based on the 

procedures as described previously (Seligman et al., 1968) with slight modifications (Mito et 

al., 2013). 

2.8 Measurement of mitochondrial ROS. 

Mitochondrial ROS generation was estimated using MitoSOX-Red mitochondrial superoxide 

indicator (Invitrogen) and Amplex Red Hydrogen Peroxide/Peroxidase Assay kit (Invitrogen). 

In mitochondrial superoxide measurement, cells were incubated with 5 µM MitoSOX-Red for 

20 min at 37°C in serum-free DMEM, washed twice with serum-free DMEM, and then 

immediately analyzed with a FACSCalibur Flow Cytometer (Becton Dickinson). The 

hydrogen peroxide (H2O2) levels in isolated mitochondria from the cybrids were measured 

using the HRP-linked fluorometric assay. Isolated mitochondria (10-20 µg in 50 µl volume) 

were added to 96 well plate in triplicates with a total reaction volume of 100 µl of reaction 

buffer containing 0.1 U/ml HRP, and 50 µM Amplex Red reagents. Fluorescence was 

measured using a Spectra Max 190 Absorbance Microplate Reader (Molecular Devices) at 

room temperature. The H2O2 concentrations were calculated from standard curve and 

normalized with per mg protein. 

2.9 Measurement of lactate. 

Cells were seeded at 5 × 104 cells/well of a 12-well plate and cultured for 24 h. The amounts 

of lactates in the cell medium were estimated using an F-kit L-Lactic acid (Roche, Basel, 

Switzerland). 

2.10 SDS-PAGE and Western blotting 

Cells were lysed in 1% Nonidet P-40, 150 mM NaCl, 10% glycerol, 2 mM EDTA, 20 mM 

Tris-HCl (pH 8.0), 1 mM dithiothreitol, 1 mM phenylmethylsulfonyl fluoride (PMSF), 

protease inhibitor mixture (Roche Diagnostics GmbH, Mannheim, Germany) and phosphatase 
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inhibitor cocktail (PhosSTOP, Roche) for 20 min on ice. After centrifugation at 10,000g for 

10 min at 4℃, the supernatants were used for further analyses. Protein concentration in the 

supernatants was determined by the method of Bradford using bovine serum albumin (BSA) 

as a standard. Proteins were resolved by SDS-PAGE under reducing conditions and the 

resolved proteins were transferred electrophoretically to Immobilon-P Transfer Membrane 

(Merck Millipore, Japan). After incubating with 10% BSA in TBS-T (150 mM NaCl, 50 mM 

Tris-HCl (pH 7.4), 0.05% Tween 20) for at least 1 h at room temperature, the membrane was 

incubated with polyclonal antibody for the appropriate time, washed extensively with TBS-T, 

and then incubated with horseradish peroxidase-conjugated goat anti-rabbit IgG. 

Anti-p-IkBα(S32), anti-IkB, anti-pAKT (S473), anti-AKT, anti-pAMPKα (T172), 

anti-AMPKα and anti-LC3B were obtained from Cell Signaling Technology (Japan), and 

anti-BCL-2, anti-BCL-XL, anti-MCL-1, anti-BAX, and anti-β-actin were from Santa Cruz 

Biotechnology Inc. (Santa Cruz, CA). Anti-α-tubulin was obtained from Sigma-Aldrich. 

Monoclonal anti-HIF-1α antibody was obtained from Novus Biologicals, Littleton, CO, USA. 

Proteins were detected using Amersham ECL Western blotting detection reagents (GE 

Healthcare, Buckinghamshire, UK). 

2.11 Assay of hypoxia viability. 

Hypoxia viability was determined by plating 1 × 105 cells on 6-well plates in 2 ml of medium 

and cultured at 37°C for 5 days in hypoxic conditions (< 0.1% O2) using an Anaero Pack (SGI, 

A-07). After incubation, live cells (l) and dead cells (d) were counted using trypan blue. 

Hypoxia viability (hv) was estimated according to the formula: hv = l/(l+d) 

2.11 Statistical analysis. 

The data were analyzed with a Student’s t test. All values are the mean ± S.D., and P values < 

0.05 were considered to be statistically significant. 
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3. RESULTS 

3.1 Identification of candidate mtDNA mutations inducing a delay of tumor formation. 

First, we confirmed a delay of tumor formation of P29mtC3H cybrids in B6 mice using 

P29mtB6 and P29mtC3H cybrids obtained in our previous study (Ishikawa et al., 2010). The 

longer latency periods of P29mtC3H cybrids than those of P29mtB6 cybrids were emphasized 

on inoculation of lower numbers of the cybrids into B6 mice (Fig. 1A). Moreover, the latent 

periods observed on inoculation of 5 × 106 P29mtC3H cybrids corresponded to those 

observed on inoculation of 5 × 103 P29mtB6 cybrids, suggesting the significant suppression 

of tumor formation of P29mtC3H cybrids in B6 mice. On the contrary, no substantial 

differences between P29mtB6 and P29mtC3H cybrids were observed in tumor growth curves 

(Fig. 1A). Moreover, both cybrids formed no metastatic nodules in the lungs on their 

inoculation under the skin of B6 mice. They also showed similar tumor-related phenotypes, 

such as, doubling times (Fig. 1B), invasion (Fig. 1C), and migration (Fig. 1D) under the 

culture conditions.  

Then, we carried out sequence analysis for determination of mutations in C3H mtDNA 

responsible for the delayed tumor formation. Registered mtDNA sequences of B6 and C3H 

strains (Bayona-Bafaluy et al., 2003) revealed that four mutations, which are supposed to be 

polymorphic, are present in C3H mtDNA (Table 1). Of the four mutations, one is a missense 

mutation in the COX3 (cytochrome c oxidase subunit 3) gene, one is a silent mutation in the 

ND3 (NADH dehydrogenase subunit 3) gene, and the remaining two are insertion mutations 

in poly-T and poly-A tracts of the tRNAArg gene. However, sequences of B6 mtDNA and C3H 

mtDNA in our cybrids may be different from the registered reference sequences (Kasahara et 

al., 2006). Therefore, we determined the whole mtDNA sequences of the cybrids, and found 

that mtDNA sequences of P29mtB6 and P29mtC3H are slightly different from the registered 

mtDNA sequences of B6 and C3H strains (Table 1): in addition to a missense mutation in the 

COX3 gene, two missense mutations were present in the ND2 (NADH dehydrogenase subunit 
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2) and in the ND5 (NADH dehydrogenase subunit 5) genes, whereas no mutations were 

detectable in the tRNAArg gene (Table 1). Thus, the three missense mutations in the COX3, 

ND2, and ND5 genes can be responsible for the delay of tumor formation of P29mtC3H 

cybrids. 

3.2 Effects of the absence of the immune systems in the B6 mice on the latent periods.  

First, we examined the possibility that immune systems in B6 mice are responsible for the 

delay of tumor formation. Our previous study (Ishikawa et al., 2010) showed that the innate 

immune system in B6 strain mice could recognize and suppress tumor formation of 

P29mtNZB cybrids with NZB mtDNA. Thus, the delay of tumor formation of P29mtC3H 

cybrids with C3H mtDNA in B6 mice also can be caused by innate and/or acquired immune 

systems of B6 mice. To test this idea, P29mtC3H cybrids were inoculated into the B6 

Rag2–/–/γc–/– mice, which are deficient in both acquired and innate immune systems due to 

deficiency of recombination-activating gene (Rag2–/–) and the common cytokine receptor 

gamma chain (γc–/–), and have no T cells, B cells, natural killer cells, and functional dendritic 

cells. However, the latent periods of P29mtC3H cybrids did not change substantially even in 

the immunodeficient B6 Rag2–/–/γc–/– mice (Fig. 2A). 

To confirm this idea, P29mtC3H cybrids were inoculated into B6mtC3H congenic mice, 

which possess B6 nuclear genetic background but possess mtDNA from allogenic C3H mice. 

The results showed that the latent periods of tumor formation of P29mtC3H cybrids did not 

change substantially, even when the cybrids were injected into B6mtC3H mice, which share 

the same nuclear and mitochondrial genomes as those of the cybrids (Fig. 2B). These 

observations, together with the results shown in Fig. 2A, suggested that the delay of tumor 

formation of P29mtC3H cybrids in B6 mice would not be caused by immunological 

recognition of polymorphic mutations in C3H mtDNA, but probably by some abnormalities 

of mitochondrial respiratory function. 
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3.3 Comparison of respiration-related phenotypes between P29mtB6 and P29mtC3H cybrids. 

Even if the mutations in C3H mtDNA do not induce detectable respiration defects by 

biochemical analysis (Ishikawa et al., 2010), some abnormalities related to respiratory 

functions may be detectable. Therefore, we used P29mtB6 and P29mtC3H cybrids, and 

compared respiration-related phenotypes, such as cytochrome c oxidase (COX) activity, ROS 

and lactate production, and hypoxia sensitivity. 

Of the three missense mutations (C4794T in the ND2, G9348A in the COX3, and T12048C in 

the ND5 genes), one G9348A mutation in the COX3 gene can be a candidate mutation 

responsible for the delay of tumor formation of P29mtC3H cybrids, since G9348A mutation 

occurred in a site highly conserved throughout animals (Table 2). However, cytochemical 

analysis showed that COX activity was not reduced in P29mtC3H cybrids (Fig. 3A). In 

contrast, overproduction of mitochondrial ROS (superoxide) was observed in P29mtC3H 

cybrids (Fig. 3B). Moreover, overproduction of ROS (H2O2) from mitochondria was 

confirmed by using mitochondrial fraction from P29mtC3H cybrids (Fig. S1), and thus can be 

involved in delayed tumor formation in B6 mice (Fig. 1A).   

In addition, we examined the possibility that decreased glycolysis of P29mtC3H cybrids 

resulted in the delayed tumor formation, since it has been proposed that the Warburg effect 

(increased glycolysis under normoxia) confers advantage of tumor growth under low O2 

condition (hypoxia). In fact, cybrids must survive and start growing under hypoxia on their 

inoculation under the back skin of B6 mice. Considering that the amounts of lactates reflect 

glycolytic activity, we estimated them, and found that lactates were not reduced in P29mtC3H 

cybrids (Fig. 3C), suggesting that the Warburg effects were not involved in this phenotype.  

Another possibility to explain the delayed tumor formation of P29mtC3H cybrids is that they 

are sensitive to hypoxia, and require long latent periods to start growing under hypoxia. To 

examine this possibility we compared the hypoxia survival between P29mtB6 and P29mtC3H 



 11 

cybrids in hypoxic condition (< 0.1% O2). The results showed that P29mtC3H cybrids are 

more sensitive to hypoxia than P29mtB6 cybrids (Fig. 3D). These observations suggest that 

either ROS overproduction (Fig. 3B and Fig. S1) or hypoxia sensitive phenotype (Fig. 3D) 

exclusively observed in P29mtC3H cybrids would be responsible, at least in part, for the 

delay of tumor formation (Fig. 1A).  

3.4 Effects of the pretreatment of the cybrids with NAC or hypoxia on latent periods. 

To examine the idea that ROS overproduction may result in the delay of tumor formation of 

P29mtC3H cybrids (Fig. 1A), they were pretreated with N-acetyl cysteine (NAC), one of the 

antioxidants, to exclude ROS, and then inoculated into B6 mice. As expected, NAC 

pretreatment reduced the amounts of ROS (Fig. 3B), but did not affect on the latency periods 

of tumor formation (Fig. 4A). Thus, ROS overproduction would not be involved in expression 

of the phenotype (Fig. 1A). 

Then, we examined another possibility that P29mtC3H cybrids are sensitive to hypoxia (Fig. 

3D), and thus require longer times than P29mtB6 cybrids for hypoxia adaptation. Hypoxic 

condition (< 0.1% O2) used to examine hypoxia survival (Fig. 3D) is not appropriate for 

hypoxia adaptation and subsequent inoculation of the cybrids, because the cybrids eventually 

die in < 0.1% O2. Therefore, 7% hypoxia was used for hypoxia adaptation to obtain sufficient 

number of the adapted cybrids for inoculation. For this, we pretreated the cybrids under 7% 

hypoxia for 21 days, which corresponded to the latent periods for tumor formation of 

P29mtC3H cybrids (Fig. 1A), and then inoculated them under the back skin of B6 mice to test 

the effect of hypoxia pretreatment on the latent periods. By pretreatment of P29mtC3H 

cybrids under the hypoxia for 21 days, their latent periods were changed about 10 days shorter 

than those of untreated cybrids, while those of P29mtB6 cybrids did not change substantially 

(Fig. 4B). These observations suggest that some polymorphic mutations in C3H mtDNA 

induce a hypoxia sensitive phenotype, resulting in expression of long latent periods to adapt 

to hypoxic conditions under the skin of B6 mice. 
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To examine molecular mechanisms that explain the hypoxia sensitive phenotype of 

P29mtC3H cybrids, we compared the expression of the genes related to hypoxia, apoptosis, 

and autophagy between P29mtB6 and P29mtC3H cybrids. The results showed that enhanced 

expression of HIF-1α and phosphorylated AMPK (p-AMPK) was observed in P29mtC3H 

cybrids (Fig. 5). However, hypoxia adaptation did not suppress enhanced expression of 

HIF-1α and p-AMPK (Fig. 5), indicating that it would not directly regulate the delay of tumor 

formation of P29mtC3H cybrids (Fig. 1A). 

  

4. DISCUSSION 

Our previous study (Ishikawa et al., 2010) revealed that polymorphic mutations in mtDNA 

from allogenic NZB strain mice were recognized by innate immune system in B6 mice, 

resulting in complete suppression of tumor formation of P29mtNZB cybrids. In contrast, 

P29mtC3H cybrids with allogenic C3H mtDNA were able to form tumors in B6 mice, 

although they showed longer latency periods to form detectable tumor masses than those of 

P29mtB6 cybrids with mtDNA from syngenic B6 strain mice. Because the retarded tumor 

formation found in P29mtC3H cybrids is also important as one of the tumor-related 

phenotypes, this study focused on the mechanisms of the retarded tumor formation observed 

in P29mtC3H cybrids. 

We identified three missense mutations in C3H mtDNA by comparison of the whole mtDNA 

sequences between P29mtB6 and P29mtC3H cybrids, and addressed to the issue of how these 

mutations induce the retardation of tumor formation of P29mtC3H cybrids in B6 mice. The 

results suggested that the retardation was not due to the immunological recognition of 

P29mtC3H cybrids by host B6 immune systems or to ROS overproduction, but to the 

induction of the sensitivity to hypoxia. Probably, missense mutations in C3H mtDNA (Table 

1) induce slight respiration defects that are not sufficient to be detected by our procedures, 
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resulting in expression of hypoxia sensitivity and of long periods for P29mtC3H cybrids to 

adapt to the hypoxic conditions under the skin of B6 mice. However, the mechanisms of how 

the C3H mtDNA mutations induce hypoxia sensitivity and delayed tumor formation are 

complicated, and we could not at present explain the precise mechanisms. 

It has been proposed that polymorphic mutations in poly-A tracts (10A repeats) of the tRNAArg 

gene found in the cybrids with mtDNA from NZB strain mice and from NIH3T3 cells 

induced overproduction of ROS (Moreno-Loshuetros et al., 2006). Although P29mtC3H 

cybrids with mtDNA from C3H strain also overproduced ROS, our mtDNA sequence data 

(Table 1) showed that both mtDNAs from P29mtB6 and P29mtC3H cybrids shared the same 

poly-A tracts (9A repeats) in the tRNAArg gene. Moreover, pretreatment of P29mtC3H cybrids 

with an antioxidant (NAC) did not affect on the prolonged latent periods for tumor formation 

(Fig. 4A). Thus, ROS overproduction in P29mtC3H cybrids would not be caused by 

mutations in the tRNAArg gene, and would not be responsible for the delay of tumor formation.  

This study revealed that polymorphic mutations in mtDNA affect on a tumor-related 

phenotype. Involvement of polymorphic mtDNA mutations in expression of tumor 

phenotypes was proposed based on the evidence that most mtDNA mutations found in tumors 

were polymorphic mutations (Loeb et al., 2005; Wallace, 2005). Moreover, polymorphic 

mtDNA mutations were proposed to affect on age-related hearing loss (Johnson et al., 2001), 

learning retardation (Roubertoux et al., 2003), and a delay of cell proliferation 

(Moreno-Loshuertos et al., 2006). Furthermore, our previous study (Ishikawa et al., 2010) 

revealed a novel role of polymorphic mutations in mouse mtDNA by showing that the innate 

immune system in B6 strain mice can recognize and suppress tumor formation of P29mtNZB 

cybrids with mtDNA introduced from allogenic NZB strain mice.  

Therefore, we have to be careful for polymorphic mutations as well as pathogenic mutations 

in human mtDNA, particularly when we carry out transplantation of tissues differentiated 

from iPS cells, and nuclear transplantation to human oocytes for the gene therapy of 
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mitochondrial diseases. For example, the mtDNA in iPS cells might accumulate such somatic 

mutations that can be recognized by innate immune systems or induce hypoxia sensitivity 

during the aging of the donors, resulting in expression of some unexpected disorders in 

transplanted tissues. Moreover, one of the most important problems that have to be resolved 

before applying the nuclear transplantation technology (Craven et al., 2010; Tachibana et al., 

2013) to the human oocytes from mothers with mitochondrial diseases is the influence of 

polymorphic mutations in mtDNA of the oocyte donors on the phenotypes of the progeny, 

even when the polymorphic mutations do not induce significant respiration defects.  
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FIGURE LEGENDS 

Fig. 1. Comparison of tumor-related phenotypes between P29mtB6 and P29mtC3H cybrids. 

(A) Tumor formation of the cybrids. Total numbers of 5 × 106 or 5 × 103 cells were inoculated 

under the back skin of B6 mice. Data are represented as mean values with S.D. (n = 6). (B) 

Doubling times of the cybrids under normal culture condition. Each experiment was 

performed in triplicate. (C) Cell invasion assay of the cybrids. Total numbers of 2.5 × 104 

cells were seeded on the membrane, and the numbers of cells invaded through Matrigel 

basement membrane extract was counted using a modified Boyden chamber. Each experiment 

was performed in triplicate. (D) Migration assay of the cybrids. Total numbers of 1.25 × 104 

cells were seeded on the membrane, and the number of migrated cells on the lower surface of 

the membrane was counted under a light microscope. Each experiment was performed in 

triplicate.  

Fig. 2. Effects of absence of the immunological recognitions in the host B6 mice on the latent 

periods of tumor formation. Total numbers of 5 × 106 cells were inoculated under the skin of 

(A) B6 Rag2–/–/γc–/– mice, and (B) B6mtC3H mice to study the involvement of the immune 

systems in the tumor formation phenotypes of the cybrids (n = 6). The B6 Rag2–/–/γc–/– mice 

are severe combined immunodeficiency models that have macrophages and granulocytes, but 

no T cells, B cells, natural killer (NK) cells, or functional dendritic cells (DCs). The 

B6mtC3H mice are immunologically identical to P29mtC3H cybrids in their sharing the same 

nuclear and mitochondrial genetic backgrounds. 

Fig. 3. Comparison of respiration-related phenotypes between P29mtB6 and P29mtC3H 

cybrids. (A) Cytochemical analysis of COX activity. ρ0 P29 cells represent mtDNA-less (ρ0) 

P29 cells, in which COX staining was not observed due to the absence of mtDNA and the 

resultant loss of COX activity. Scale bars, 100 µm. (B) Estimation of ROS (Mitochondrial 
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superoxide) levels in the cybrids before and after their pretreatment with an antioxidant 

N-acetylcysteine (NAC) for 48 h. We used 20mM NAC treatment, since our previous study 

(Ishikawa et al., 2008) showed that the concentration was sufficient to scavenge ROS and 

suppress ROS-induced metastasis. Relative ROS levels were expressed as mean fluorescence 

intensity. Data are represented as mean values with S.D. (n = 3). *P < 0.05, **P < 0.01. (C) 

Estimation of lactate levels in culture medium. Data are represented as mean values with S.D. 

(n = 3). (D) Viability of the cybrids under hypoxia. Sensitivity to hypoxia was determined by 

cultivation of the cells at 37°C for 5 days under hypoxic conditions (< 0.1% O2). Data are 

represented as mean values with S.D. (n = 3). *P < 0.05, **P < 0.01. 

Fig. 4. Effects of the pretreatment of the cybrids with NAC or hypoxia on their latent periods 

for tumor formation. (A) NAC pretreatment. The cybrids were inoculated under the skin of 

B6 mice after their pretreatment with 20mM NAC for 48 h, and host B6 mice were 

furthermore given 60 mM NAC in drinking water ad libitum. (B) Hypoxia pretreatment. The 

cybrids were inoculated under the skin of B6 mice after their pretreatment with hypoxia for 

21 days. The retardation of tumor formation exclusively observed in P29mtC3H cybrids (Fig. 

1A) was improved by their pretreatment with hypoxia but not with NAC. 

Fig. 5. Examination of the genes related to the retardation of the tumor formation observed in 

P29mtC3H cybrids. Western blot analysis was carried out about the genes associated with 

hypoxia, apoptosis, and autophagy. The gene products associated with hypoxia were 

examined under normoxia (N), and then those of HIF-1α and p-AMPK overexpressed in 

P29mtC3H cybrids were also examined after hypoxia adaptation under 7% O2 for 21 days 

(H). 

Fig. S1. H2O2 concentrations in isolated mitochondria from cybrids. H2O2 concentrations 

were calculated from standard curve and normalized with per mg mitochondrial protein. Data 

are represented as mean values with S.D. (n = 3). *P < 0.05.  
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Identification of candidate polymorphic mutations in mtDNA inducing a delay of tumor formation in P29mtC3H cybrids.
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Table 2
Evolutionary conservation of the polymorphic mutations found in mtDNA from P29mtC3H cybrids.
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