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Motivated by the recent experiments indicating a spin-unpolarized ν = 0 quantum Hall state in graphene, we
theoretically investigate the ground state based on the many-body problem projected onto the n = 0 Landau
level. For an effective model with the on-site Coulomb repulsion and antiferromagnetic exchange couplings, we
show that the ground state is a doubly degenerate spin-resolved chiral condensate in which all the zero-energy
states with up spin are condensed into one chirality, while those with down spin to the other. This can be exactly
shown for an Ising-type exchange interaction. The charge gap due to the on-site repulsion in the ground state is
shown to grow linearly with the magnetic field, in qualitative agreement with the experiments.
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I. INTRODUCTION

One of the most typical features of graphene is the quantum
Hall effect with quantized Hall plateaus at filling factors ν =
±2,±6,±10, . . . , a sequence that hallmarks Dirac electrons
in magnetic fields. Then we can pose a question: is there
anything special occurring right at the Dirac point (at which the
Landau level filling is ν = 0)? Soon after the observation of the
quantum Hall sequence, experiments have indeed discovered
new conductivity plateaus at ν = 0,±1,±4 for strong enough
magnetic fields.1,2 The new plateaus have naturally been
drawing considerable theoretical attention.3–18 A particular
interest is this might be a manifestation of many-body effects
in graphene, which is an unusually clean system. Specifically,
special attention has been paid to the ν = 0 situation, where
experiments have observed unusual behaviors distinct from
other fillings. Namely, the ν = 0 state exhibits an unexpected
insulating behavior with exponentially diverging longitudinal
resistivity, which suggests that the system undergoes a Mott
transition at half filling.19 Moreover, recent experiments on
high quality samples on hBN substrates have revealed a
spin-unpolarized aspect of the ν = 0 state, along with a
suggestive energy gap growing linearly with the perpendicular
magnetic field B.20,21 The latter finding should provide an
important clue to the theoretical understanding of the ν = 0
state, since the linear B dependence is incompatible with a
naive estimation based on the Dirac field model in continuum
space (as opposed to the honeycomb lattice model), where a
many-body gap due to the Coulomb interaction should scale
as e2/lB ∝ √

B with lB = √
h̄/eB being the magnetic length.

While it has been proposed that the lattice effect leads to a
linear dependence of the gap,4,9,10 the spin-unpolarized nature
of the ν = 0 state has yet to be fully understood.

This has motivated us here to theoretically investigate the
spin-unpolarized ν = 0 state with a special emphasis on the
chiral symmetry. The symmetry is indeed a fundamental aspect
of the graphene honeycomb lattice, and plays a crucial role
in the peculiar electronic properties of graphene already in
the one-body problem. Namely, the doubled Dirac cones are
guaranteed by the chiral symmetry, which can be called a two-
dimensional analog of the Nielsen-Ninomiya’s theorem in the

(3 + 1)-dimensional gauge theory. In a perpendicular magnetic
field, the chiral symmetry affects most remarkably the n = 0
Landau level (LL), where the δ-function-like density of states
is topologically protected even in disordered systems as long
as the disorder respects the chiral symmetry.22 The chiral
symmetry should also exert important effects for many-body
problems in the n = 0 LL. This is because we can characterize
many-body states by the chiralities of filled zero modes. For
a spin-split n = 0 LL, the ground state is exactly shown to
be a chiral condensate doublet with a finite energy gap.18,23

While the total Chern number for the chiral condensate is zero,
because the contribution from the Dirac sea (negative-energy
states) cancels the zero-mode Chern number, its topological
nature is shown to appear as edge states with a characteristic
bond order, which can be considered as an example of the
bulk-edge correspondence in topological systems.24 In this
paper, we shed light on the spin-unpolarized nature of the
ν = 0 state, by extending the picture of the chiral condensate
to accommodate the spin degree of freedom. Based on a
lattice model with on-site repulsive interaction and also a
nearest-neighbor exchange coupling, the many-body ground
state is shown to be a doubly degenerate spin-resolved chiral
condensate, in which all the zero-energy states with up spin
are condensed into one chirality, while those with down spin
to the other. We have shown this exactly for an Ising-type
exchange interaction, which is adiabatically continued to the
isotropic case. The charge gap due to the on-site repulsion in
the ground state turns out to grow linearly with the magnetic
field, in qualitative agreement with the experiments.21

II. PROJECTION ONTO THE n = 0 LANDAU LEVEL

To describe the many-body problem in the n = 0 LL,
we consider a projected Hamiltonian, H̃ = P (Ht + HU +
HJ )P −1, with P denoting the projection onto the n = 0 LL.
The kinetic part is given by a tight-binding Hamiltonian,

Ht = −t
∑
〈ij〉

∑
s=↑↓

eiθij c
†
iscjs + H.c., (1)
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where t > 0 is the hopping between nearest-neighbor sites
〈ij 〉, and c

†
is creates an electron with spin s at i. The

perpendicular magnetic field is introduced with the Peierls
phase θij , which is chosen so that the magnetic flux piercing
a unit hexagon equals φ = 1

2π

∑� θij in units of the flux
quantum φ0 = h/e. For a torus geometry with N unit cells,
the flux in the string gauge25 (which enables us to treat smaller
fields) reads φ = M/N with an integer M .

We then turn on electron-electron interactions, whose
leading contribution is the on-site interaction,

HU = U
∑

i

c
†
i↑ci↑c

†
i↓ci↓, (2)

with a repulsion U > 0. Matrix elements of the (direct and
exchange) Coulomb interaction, on the other hand, strongly
depend on the LL index, where the short-range part is
dominant in the n = 0 LL. Moreover, the long-range part
of the interaction should be screened on an ultraflat hBN
substrate. Thus we include only the dominant nearest-neighbor
interaction in the form of an exchange interaction,

HJ = J
∑
〈ij〉

[
α
(
Sx

i Sx
j + S

y

i S
y

j

) + Sz
i S

z
j − 1

4
ninj

]
, (3)

whose physical meaning is discussed below. As we shall see,
this acts to lift the degeneracy in the multiplet, resulting
in a spin-unpolarized ground state. In Eq. (3), the factor
α tunes the anisotropy in the exchange interaction, varying
between the Ising (α = 0) and the spherical (α = 1) limits. We
ignore the Zeeman effect, since it is much smaller than the
other energy scales.

To derive the effective Hamiltonian in the n = 0 LL, we
first diagonalize the kinetic term, Eq. (1). Due to the chiral
symmetry, {Ht,�} = 0 with � being the chiral operator, a
one-body state ψε at energy ε is related to its chiral partner as
ψ−ε = �ψε. Thus a special situation arises in the n = 0 LL,
where particle and hole states are degenerate. As a result, there
appears 2M zero modes in the string gauge. By reconfiguring
these zero modes, one obtains a chiral basis,

ψ = (ψ1+, . . . ,ψM++,ψ1−, . . . ,ψM−−), (4)

where {ψk±} with k = 1, . . . ,M± are eigenstates of the chiral
operator satisfying �ψk± = ±ψk±. M± is the degeneracy of
the zero modes with chirality ±; hence M+ + M− = 2M .
While the kinetic energy is quenched in the n = 0 LL, the
information on the kinetic part is encoded in the properties
of the chiral zero modes. A simplest example is the fact
that chirality designates the sublattice on which a zero mode
resides, i.e., ψk+(−) has nonzero amplitudes only on sublattice
•(◦).26 In fact, this is a key to an exact treatment of the ground
state as we shall see.

In terms of the chiral basis (4), the projection onto the
n = 0 LL is defined by a mapping c

†
is 	→ c̃

†
is ≡ (c†sψψ†)i , with

a row vector c
†
s = (c†1s , . . . ,c

†
2Ns) and a projection matrix ψψ†.

Note that c̃
†
is no longer obeys the canonical anticommutation

relations, since the chiral basis Eq. (4) is not complete.
Alternatively, we can introduce creation operators of the
zero modes, d†

ks± ≡ c
†
sψk±, which satisfy the anticommutation

relations

{dksχ ,d
†
ls ′χ ′ } = δklδss ′δχχ ′ , (5)

{dksχ ,dls ′χ ′ } = {d†
ksχ ,d

†
ls ′χ ′ } = 0. (6)

With these fermions we can rewrite the projected Hamiltonian
as H̃ = H̃U + H̃J with

H̃U =
∑
klmn

∑
χ=±

Uχ

klmnd
†
k↑χd

†
l↓χdm↓χdn↑χ , (7)

H̃J =
∑
klmn

∑
s=↑↓

Jklmn

2
d
†
ks+d

†
ls̄−(αdms−dns̄+ − dms̄−dns+), (8)

where s̄ = ↑(↓) for s = ↓(↑) and the pseudopotentials are
defined as

U±
klmn = U

∑
i

(ψk±)∗i (ψl±)∗i (ψm±)i(ψn±)i , (9)

Jklmn = J
∑

〈i∈•,j∈◦〉
(ψk+)∗i (ψl−)∗j (ψm−)j (ψn+)i . (10)

From this form we can identify the meaning of the J term:
in a magnetic field we have Landau’s quantization, so that
the kinetic energy is quenched in the n = 0 LL. We then
end up with an infinitely strongly correlated system, so that
we cannot proceed as, e.g., in the ordinary Hubbard model
with an expansion in t/U arising from a Coulomb matrix
element as a next leading interaction after U . However, an
exchange interaction between Landau basis functions should
exist, whose magnitude can be calculated from first principles
in terms of graphene Landau wave functions if so desired. We
can thus interpret J introduced in Eq. (3) as representing the
exchange interaction in Eq. (10).

When a many-body state is constructed by occupying the
chiral zero modes, the total chirality is conserved, since H̃

commutes with the operator,

G =
∑
s=↑↓

(
M+∑
k=1

d
†
ks+dks+ −

M−∑
k=1

d
†
ks−dks−

)
. (11)

This enables us to diagonalize H̃ separately in a subspace for
each sector in the total chirality.

III. SPIN-RESOLVED CHIRAL CONDENSATE

To discuss the many-body problem, the exchange inter-
action with an Ising anisotropy is a useful starting point for
elucidating the true ground state. At half filling, the projected
Hamiltonian for α = 0 is rewritten, up to a constant, as

H̃ = U

2

∑
i

c̃
†
i↑c̃

†
i↓c̃i↓c̃i↑ + J

4

∑
〈ij〉

∑
s

c̃
†
is c̃j s̄ c̃

†
j s̄ c̃is + C.c.,

(12)

which is invariant for the charge conjugation (C.c.), c̃is ↔ c̃
†
is .

Since the Hamiltonian (12) is semipositive definite 〈H̃ 〉 � 0, a
state destructed by H̃ is the ground state for the system. Such a
ground state can be constructed as a doubly degenerate chiral
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condensate,

|Gss̄〉 =
M+∏
k=1

d
†
ks+

M−∏
l=1

d
†
ls̄−|D<〉 (s = ↑,↓), (13)

where |D<〉 denotes the Dirac sea of the negative energy
states. In Eq. (13), the zero modes with up-spin form a
chiral condensate with chirality +(−), while those with
down-spin a chiral condensate with chirality −(+). From the
correspondence between the chirality and sublattices, we can
readily check that |G↑↓〉 and |G↓↑〉 are indeed destructed
by c̃i↓c̃i↑, c̃

†
j s̄ c̃is , and their charge conjugates in Eq. (12). If

we restrict ourselves to the case of M+ = M−, which holds
when the two sublattices contain the same number of sites,
the ground state falls upon the sector of total chirality χtot ≡
〈G〉 = 0, in sharp contrast to the spinless case,18,23 where
the ground state is a chiral condensate with fully polarized
chirality. Although |Gss̄〉 forms a lattice-scale staggered spin
order in the n = 0 LL, the ground state is not a simple
Néel state, since the two chiral condensates form a doublet
� = (|G↑↓〉,|G↓↑〉) even for a finite system, and can be mixed
through a unitary transformation � = �ωω with ω ∈ U (2).
Note that since the chiral condensate has no double occupancy
on a site, it can be considered as the ground state for the t-J
model, which coincides with the strong U limit of the present
model.

The excited states above the ground state can be obtained
by numerically diagonalizing the projected Hamiltonian H̃ .
In Fig. 1, we show the energy spectrum in the Ising limit
α = 0 for φ = 1/300, M = 3, U/t = 10, and J/t = 1. Here
we have classified the spectrum according to the total chirality
χtot, which takes even numbers as χtot = 0,±2,±4, . . . ,±2M .
Let us first focus on the sector of χtot = 0, where the chiral
condensate (13) is indeed obtained as the doubly degenerate
ground state as expected from the above discussion. For J �
U , the low-energy excitations in the central sector are created
by spin flipping, so that the Ising anisotropy opens a finite gap
above the ground state. This makes the Chern number of the
chiral condensate doublet well defined and thereby allows us
to calculate the Hall conductivity with the Niu-Thouless-Wu
formula,27

σxy = e2

h

1

ND

C, C = 1

2πi

∫
Tr dA, (14)

where ND = 2 is the ground state degeneracy and A = �†d�

is the non-Abelian Berry connection for multiplets.28 Since
the Hall conductivity does not distinguish the spin degree of
freedom, the Chern number of the chiral condensate trivially
doubles the result in the spinless case.18,23 Thus, from the sum
rule for the Chern number, the Hall conductivity is analytically
calculated as σxy = 0, which corresponds to the Hall plateau
at zero around the half filling ν = 0.1

IV. CHARGE GAP AND THE SPHERICAL LIMIT

If we now turn to the other sectors of χtot in the energy
spectrum, we immediately notice that the entire picture of the
spectrum has a reflectional symmetry with respect to χtot = 0,
which reflects the invariance of H̃ against global chirality
flipping. More importantly, the bottoms of different sectors

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

-6 -4 -2  0  2  4  6

E 
/ t

χtot

ΔC

FIG. 1. (Color online) Energy spectrum classified according to
the total chirality χtot in the Ising limit α = 0, for M = 3,φ =
1/300,U/t = 10, and J/t = 1. The spectrum is symmetric about
χtot = 0, and the bottoms of different sectors exhibit a linear increase
with |χtot| as indicated by dashed lines.

delineate a linear increase with |χtot|, as indicated with the
dashed lines in Fig. 1, which is a key result in the present work.
This can be understood by considering the on-site repulsion
between the zero modes. Since all the zero modes are singly
occupied in the ground state (13), single flips in the chirality
inevitably involve a double occupancy of zero modes, which
opens a gap �C in the neighboring sector. The behavior of
the charge gap becomes clearer by taking a closer look at the
lowest-energy states in the sector of χtot = ±2. The degeneracy
of them is numerically determined to be 4M2, which suggests
that they can be written as∣∣Ekl

ss ′χ
〉 = d

†
ks ′,−χdls ′χ |Gss̄〉, (s ′,χ ) = (s,+),(s̄,−) (15)

for various zero-mode indices k and l. Note that this is
reminiscent of the projected single-mode approximation.29–31

Using Eq. (15), we can analytically obtain the charge gap as

�′
C ≡ 〈

Ekl
ss ′χ

∣∣H̃ ∣∣Ekl
ss ′χ

〉 =
(

U + 3

2
J

)
φ (16)

in the Landau gauge (see the Appendix), where the chi-
ral condensate has a uniform local density of states,
〈Gss̄ |

∑
s ′ c̃

†
is ′ c̃is ′ |Gss̄〉 = φ. Within numerical error, Eq. (16)

reproduces the numerical result for �C , which is obtained
from the difference between the ground energies in the sectors
of χtot = 0 and χtot = ±2. Note that, while a φ-linear gap
is obtained even for J = 0 from Eq. (16), finite J has been
crucial for the exact treatment of the spin-unpolarized ground
state (13) and the charge gap �′

C .
The charge gap is important in analyzing the experimental

results for the ν = 0 state. Since at half filling an electric
current has to be accompanied by double occupancies of lattice
sites, the transport measurement should reflect the charge gap
above the ground state. More explicitly, the current operator
defined in the projected subspace,

Iij = i
∑
kl

(ψk+)∗i (ψl−)j
∑

s

d
†
ks+dls− + H.c., (17)

has nonzero matrix elements only between neighboring sectors
of χtot, while no electric current is carried by the low-energy
excitations within one sector. Experimentally, the energy
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FIG. 2. (Color online) Charge gap �C in the spherical limit α = 1
against the magnetic flux φ for U/t varied from 2 to 10 with M = 3
and J/t = 1. For comparison, the analytic result, �′

C ∝ φ, in the
Ising limit (16) is also shown with dashed lines.

gap observed at ν = 0 displays a linear dependence on the
magnetic field B,21 rather than a dependence, e2/lB ∝ √

B,
for a long-range Coulomb interaction. Thus the charge gap
∝ B for the chiral condensate (16) agrees qualitatively with
the experiments.

Next we move on to a natural question of what happens
when the Ising anisotropy is made spherical. In this case spin
flipping occurs in the exchange Hamiltonian (8). In Fig. 2, we
plot the result for �C against φ in the spherical limit α = 1,
where U/t is varied from 2 to 10 and the other parameters
are the same as in Fig. 1. We can see that the gap still grows
approximately linearly with φ.32 This suggests that the linear B

dependence essentially derives from the on-site repulsion, and
does not depend on the detail of the exchange interaction. Note
that the charge gap in Fig. 2 is slightly smaller than the Ising
result [Eq. (16); the dashed lines], since the spin flipping in
Eq. (8) decreases the exchange energy. Assuming U = 10 eV
and J = 5 eV in Eq. (16), we can estimate the charge gap to be
�C (K) ∼ 2.6B (T). The linear B dependence agree with the
experimental results,21 although the size of the theoretical gap
is smaller by a factor of 5. However, B-linear gap itself persists,
as displayed in Fig. 3, even when the on-site interaction [first
term on the right-hand side of Eq. (12)] is made finite ranged
by adding

H̃V = 1

2

∑
i �=j

∑
ss ′

Vij c̃
†
is c̃is c̃

†
js ′ c̃js ′ (18)

with an off-site interaction

Vij =
{

V
|i− j | |i − j | � lc

a
,

0 otherwise,
(19)

where V > 0 and lc/a is a cutoff in units of the interatomic
distance a � 0.142 nm. Thus the B dependence is not
restricted to the on-site interaction as long as lc < lB and
V is sufficiently smaller than U . Inclusion of long-range
interactions beyond lB will be an intriguing extension of the
present problem, where it is expected that the behavior of

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  0.002  0.004  0.006  0.008  0.01

Δ C
 / 
t

φ

lc / a = 0
1
2

FIG. 3. (Color online) Influence of finite-range interactions on
�C is shown for U/t = 10, V/t = 1, and various values of the cutoff
distance, lc, in the off-site interaction. The other parameters are the
same as in Fig. 2.

the gap would cross over to �C ∝ √
B as observed in recent

experiments in suspended (hence less screened) graphene.33

Finally, we discuss how the chiral condensate (13) evolves
in the spherical limit α = 1. Exact diagonalization for α = 1
shows that the ground state is spin singlet, i.e., the ground state
is spin unpolarized in both the Ising and spherical limits in
our model. This suggests that they are adiabatically connected
when the value of α is varied. We have calculated the adiabatic
flow of the energy spectrum in Fig. 4, which shows that they are
indeed connected. Namely, while the Ising gap above the chiral
condensate closes at α = 1 for large systems, the charge gap
remains open irrespective of the anisotropy in the exchange
coupling as shown in Fig. 4(b). Thus, under the selection rule
of Eq. (17) which projects out the low-energy spin excitations,
the charge gap is adiabatically connected between the two
limits. The robustness of the charge gap suggests that the chiral
condensate captures the essence of the true ground state.

V. SUMMARY

We have theoretically investigated the spin-unpolarized
aspect of the ν = 0 quantum Hall state in graphene based
on the many-body problem in the n = 0 Landau level tak-
ing into account on-site repulsive interaction and nearest-
neighbor exchange interaction. In the Ising limit of the
exchange coupling, the ground state is exactly shown to
be a spin-resolved chiral condensate, and the charge gap
above the ground state grows linearly with the magnetic field.
The spin-unpolarized nature and the linear B dependence of
the charge gap are retained when the exchange interaction is
made isotropic, and the result qualitatively agrees with the
recent experiments.20,21
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the sectors of χtot = 0 and χtot = ±2 (a) and the charge gap (b). The
parameters are the same as in Fig. 1.
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APPENDIX: CHARGE GAP ABOVE THE CHIRAL
CONDENSATE

In this Appendix, we analytically calculate the eigenenergy
of the excited state (15) to show that the charge gap above the
chiral condensate (13) scales linearly with φ. To this end we
first note that the chiral condensate has a uniform local density
of states (LDOS) around zero energy as

〈Gss̄ |
∑
s ′

c̃
†
is ′ c̃is ′ |Gss̄〉 = (ψψ†)ii ≡ n0, (A1)

with the projection matrix ψψ†. This can be exactly shown in
the Landau gauge, where the system retains the translational
and sublattice symmetries in uniform magnetic fields. The
uniform value n0 can be readily obtained as follows. For a half-
filled system composed of N unit cells, the electron density on
a site equals 1/2N per state. For a magnetic flux φ = M/N

(M: integer) the n = 0 LL is 2M-fold degenerate for each spin.

Thus the LDOS is equal to the flux as

n0 = 1

2N
2M = φ. (A2)

It should be noted that the string gauge25 enables us to
investigate smaller magnetic fields than in the Landau gauge,
but the translational symmetry is broken. While this implies
that the LDOS is slightly dependent on the position i, the
deviation is negligibly small in large systems, or equivalently,
in small magnetic fields treated in the numerical calculation in
this paper.

Thus we calculate the eigenenergy of the excited state for
the uniform LDOS n0 = φ. When the on-site and exchange
Hamiltonians are operated on the excited state, most terms
vanish due to the relations c̃i↓c̃i↑|Gss̄〉 = 0, etc., and also due
to the fact that the chiral zero mode has nonzero amplitudes
only on one sublattice. Hence we have

H̃U

∣∣Ekl
ss ′χ

〉 = U
∑

i

(ψψ†)ii(ψk,−χ )i c̃
†
is ′dls ′χ |Gss̄〉 (A3)

= Uφ
∣∣Ekl

ss ′χ
〉
, (A4)

H̃J

∣∣Ekl
ss ′χ

〉 = 3

4
J

∑
i∈•

(ψψ†)jj (ψk,−χ )i c̃
†
is ′dls ′χ |Gss̄〉|j∈◦

+ 3

4
J

∑
j∈◦

(ψψ†)ii(ψlχ )∗j d
†
ks ′,−χ c̃js ′ |Gss̄〉|i∈•

(A5)

= 3

2
Jφ

∣∣Ekl
ss ′χ

〉
, (A6)

where we have exploited the anticommutation relations,

{c̃is ,c̃
†
js ′ } = (ψψ†)ij δss ′ , {c̃is ,d

†
ks ′χ } = (ψkχ )iδss ′ , (A7)

{c̃is ,c̃js ′ } = {c̃†is ,c̃†js ′ } = 0. (A8)

Combining Eqs. (A4) and (A6), we arrive at the expression for
the charge gap (16) that is linearly dependent on φ.
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