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ABSTRACT

In non-regular cases when the regularity conditions does not hold, the Chapman-Robbins

(1951) inequality for the variance of unbiased estimators is well known, but the lower bound

by the inequality is not attainable. In this paper we extend the Kiefer type information

inequality applicable to the non-regular case to the asymptotic situation. And we apply it to

the case of a family of truncated distributions, in which the lower bound by the Kiefer type

inequality derived from an appropriate prior distribution is attained by the asymptotically

unbiased estimator. It also follows from the completeness of the sufficient statistic that the

lower bound is asymptotically best. Some examples are also given.

1. INTRODUCTION

Under suitable regularity conditions, the Cramér-Rao inequality is well known as the

fact that the variance of unbiased estimators can not be smaller than the lower bound. And

also the lower bound by the inequality is attainable. On the other hand, in the non-regular

cases when the regularity conditions do not always hold, some information inequalities like

the Chapman-Robbins inequality are known, but they are not generally attainable. For one-
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directional family of distributions with a parameter for which the support moves in the one

direction, the existence of zero variance unbiased estimator is also shown (see, e.g. Akahira

and Takeuchi (1995)). Related results are found in Akahira (1991, 1993), Barranco-Chamorro

et al. (2000, 2001). Further, from the Bayesian viewpoint, the information inequalities are

discussed by Vincze (1992), Akahira and Ohyauchi (2003, 2006), Ohyauchi (2004), Ohyauchi

and Akahira (2005), and others.

In this paper, from the Bayesian viewpoint we consider the information inequality for the

variance of asymptotically unbiased estimators, where the result of Kiefer (1952) is extended

to the asymptotic case. For a family of truncated distributions, the lower bound for the

variance by the Kiefer type inequality derived from an appropriate prior distribution is

attained by the asymptotically unbiased estimator. From the completeness of the sufficient

statistic it follows that the lower bound is asymptotically best. This is also regarded as a

solution of the inverse problem on the lower bound by the information inequality. Some

examples are also given.

2. THE ASYMPTOTIC BOUND BY THE KIEFER TYPE INFORMATION INEQUAL-

ITY

Suppose that X1, X2, · · · , Xn, · · · be a sequence of i.i.d. random variables with p.d.f.

p(x, θ) (with a σ-finite measure µ), where x ∈ X and θ ∈ Ω ⊂ R1 in which X is a sample

space and Ω is a parameter space. Let fX(x, θ) =
∏n

i=1 p(xi, θ), X n be a n-fold direct

product of X and µn be a direct product of µ. For each θ ∈ Ω, let

Ωθ,n :=

{
ω

∣∣∣∣ θ +
ω

n
∈ Ω

}
,

and λin (i = 1, 2) be prior probability measures on Ωθ,n. We define the prior mean w.r.t. λin

as

Ein(ω) =

∫
Ωθ,n

ωdλin(ω)

for i = 1, 2. Let θ̂n = θ̂n(X) be an estimator of θ based on the sample X := (X1, · · · , Xn).
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Let θ̂n be an asymptotically unbiased estimator of θ, i.e.

Eθ(θ̂n) = θ + bn(θ), θ ∈ Ω,

where bn(θ) = o(1/n). Here we assume the following condition.

(A1) There exist a positive number α and a function a(·) on Ω independent of n such that∣∣∣bn

(
θ +

ω

n

)∣∣∣ ≤ 1

n1+α
a

(
θ +

ω

n

)
for all ω ∈ Ωθ,n, and also there exists a constant M

(1)
θ independent of n such that∫

Ωθ,n

a
(
θ +

ω

n

)
dλin(ω) ≤ M

(1)
θ (i = 1, 2).

In a similar way to Kiefer(1952), we have the following.

Theorem 2.1 Let θ̂n be any asymptotically unbiased estimator of θ satisfying the condition

(A1). Then

Eθ

[
{θ̂n(X) − θ}2

]
≥

1
n2{E1n(ω) − E2n(ω)}2 + O

(
1

n2+α

)
∫
Xn

1
fX(x,θ)

{∫
Ωθ,n

fX

(
x, θ + ω

n

)
dλ1n(ω) −

∫
Ωθ,n

fX

(
x, θ + ω

n

)
dλ2n(ω)

}2

dµn(x)
(2.1)

for large n.

Proof. First we have∫
Xn

{θ̂n(x) − θ}
√

fX(x, θ)

{∫
Ωθ,n

fX

(
x, θ + ω

n

)
dλ1n(ω) −

∫
Ωθ,n

fX

(
x, θ + ω

n

)
dλ2n(ω)

fX(x, θ)

}
·
√

fX(x, θ)dµn(x)

=

∫
Xn

{θ̂n(x) − θ}
∫

Ωθ,n

fX

(
x, θ +

ω

n

)
dλ1n(ω)dµn(x)

−
∫
Xn

{θ̂n(x) − θ}
∫

Ωθ,n

fX

(
x, θ +

ω

n

)
dλ2n(ω)dµn(x)

=

∫
Ωθ,n

{
bn

(
θ +

ω

n

)
+

ω

n

}
dλ1n(ω) −

∫
Ωθ,n

{
bn

(
θ +

ω

n

)
+

ω

n

}
dλ2n(ω)

=
1

n
{E1n(ω) − E2n(ω)} +

∫
Ωθ,n

bn

(
θ +

ω

n

)
dλ1n(ω) −

∫
Ωθ,n

bn

(
θ +

ω

n

)
dλ2n(ω). (2.2)
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We also obtain by the condition (A1)∣∣∣∣∣
∫

Ωθ,n

bn

(
θ +

ω

n

)
dλin(ω)

∣∣∣∣∣ ≤
∫

Ωθ,n

∣∣∣bn

(
θ +

ω

n

)∣∣∣ dλin(ω) ≤
∫

Ωθ,n

a
(
θ + ω

n

)
n1+α

dλin(ω)

≤ M
(1)
θ

n1+α
(2.3)

for i = 1, 2. By the Schwarz inequality we have from (2.2) and (2.3)[
1

n
{E1n(ω) − E2n(ω)} + O

(
1

n1+α

)]2

≤
∫
Xn

{θ̂(x) − θ}2fX(x, θ)dµn(x)

·
∫
Xn

1

fX(x, θ)

{∫
Ωθ,n

fX

(
x, θ +

ω

n

)
dλ1n(ω) −

∫
Ωθ,n

fX

(
x, θ +

ω

n

)
dλ2n(ω)

}2

dµn(x),

which yields the inequality (2.1). Thus we complete the proof.

In particular, letting θ ∈ Ωθ,n and λ2n({0}) = 1, we have from (2.1)

Eθ

[
{θ̂n(X) − θ}2

]
≥ sup

λ1n

1
n2{E1n(ω)}2 + O

(
1

n2+α

)
Jλ1n(θ)

(2.4)

for large n, where

Jλ1n(θ) := Eθ

[{
hθ

λ1n
(X)

fX(X, θ)

}2
]
− 1 (2.5)

with

hθ
λ1n

(x) :=

∫
Ωθ,n

fX

(
x, θ +

ω

n

)
dλ1n(ω).

The inequality (2.4) is an extension of the Kiefer inequality. Since

Eθ

[
{θ̂n(X) − θ}2

]
= Vθ(θ̂n) + b2

n(θ) = Vθ(θ̂n) + O

(
1

n2(1+α)

)
,

it follows from (2.4) that

Vθ(θ̂n) ≥ sup
λ1n

1
n2{E1n(ω)}2

Jλ1n(θ)
+ O

(
1

n2+α

)
(2.6)
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for large n, where Vθ(·) denotes the variance.

3. APPLICATIONS TO A FAMILY OF TRUNCATED DISTRIBUTIONS

Suppose that X1, X2, · · · , Xn, · · · be i.i.d. random variables according to the left-truncated

distribution with a p.d.f. (w.r.t. the Lebesgue measure)

p(x, θ) =

C(θ)eS(x) for x > θ,

0 for x ≤ θ,

where θ ∈ Ω ⊂ R1, and C(θ) is the normalizing constant. Assume that S(x) is differentiable

in x on R1. Then the joint p.d.f. of X is given by

fX(x, θ) =

Cn(θ)e
Pn

i=1 S(xi) for x(1) > θ,

0 for x(1) ≤ θ,

where x(1) := min1≤i≤n xi. Suppose that Ω = (0,∞). Then

Ωθ,n = {ω|ω > −nθ}.

Since

fX(x, θ)

fX

(
x, θ + ω

n

) =

{
C(θ)

C
(
θ + ω

n

)}n

for ω > 0, we take

dλ1n

dω
= kn(θ)

{
C(θ)

C
(
θ + ω

n

)}n

(3.1)

for ω > 0 as a prior density for λ1n, where kn(θ) is the normalizing constant. Here we put

Din(θ) :=

∫ ∞

0

ωi

{
C(θ)

C
(
θ + ω

n

)}n

dω (3.2)

for i = 0, 1. Then

E1n(ω) =

∫ ∞

0

ωdλ1n(ω) = {D0n(θ)}−1

∫ ∞

0

ω

{
C(θ)

C
(
θ + ω

n

)}n

dω = {D0n(θ)}−1 D1n(θ),

(3.3)

hθ
λ1n

(x) :=

∫ ∞

0

fX

(
x, θ +

ω

n

)
dλ1n(ω) = Cn(θ) {D0n(θ)}−1 n(x(1) − θ)e

Pn
i=1 S(xi). (3.4)

5



From (2.5) and (3.4) we obtain

Jλ1n(θ) + 1 = Eθ

[{
hθ

λ1n
(X)

fX(X, θ)

}2
]

= {D0n(θ)}−2

∫ ∞

0

· · ·
∫ ∞

0

Cn(θ)e
Pn

i=1 S(xi)n2(x(1) − θ)2dx1 · · · dxn

= {D0n(θ)}−2 Eθ

[{
n(X(1) − θ)

}2
]
, (3.5)

where X(1) := min1≤i≤n Xi. From (2.6), (3.3) and (3.5) we have for any estimator satisfying

the condition (A1)

Vθ(θ̂n) ≥ {D0n(θ)}−2 D2
1n(θ)

n2
{
(D0n(θ))−2 Eθ

[
n2(X(1) − θ)2

]
− 1

} + O

(
1

n2+α

)
=:

1

n2
Bn(θ) + O

(
1

n2+α

)
(3.6)

for large n.

Now, we obtain by the mean value theorem{
C(θ)

C
(
θ + ω

n

)}n

= exp
[
n

{
log C(θ) − log C

(
θ +

ω

n

)}]
= e−C′(ξ)/C(ξ),

where θ < ξ < θ + (ω/n). Here, we assume the following condition.

(A2) There exists a positive constant M
(2)
θ such that

exp

{
−C ′(ξ)

C(ξ)
ω

}
≤ exp

(
−M

(2)
θ ω

)
for all ω > 0.

Then it follows from (3.2) and the Lebesgue convergence theorem that for large n

D0n(θ) =

∫ ∞

0

e−
C′(ξ)
C(ξ)

ωdω =
C(θ)

C ′(θ)
+ o(1), (3.7)

D1n(θ) =

∫ ∞

0

ωe−
C′(θ)
C(θ)

ωdω =

{
C(θ)

C ′(θ)

}2

+ o(1). (3.8)
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On the other hand, we have for t > 0

Pθ

{
n(X(1) − θ) ≤ t

}
= 1 −

[
1 −

{
C(θ)

∫ θ+ t
n

θ

eS(x)dx

}]n

. (3.9)

Since ∫ θ+ t
n

θ

eS(x)dx =
1

C(θ)
− 1

C
(
θ + t

n

) ,

it follows from (3.9) that

Pθ

{
n(X(1) − θ) ≤ t

}
= 1 −

{
C(θ)

C
(
θ + t

n

)}n

,

for t > 0, which implies that the p.d.f. of Tn := n(X(1) − θ) is

fTn(t, θ) =


C(θ)eS(θ+ t

n)
{

C(θ)

C(θ+ t
n)

}n−1

for t > 0,

0 for t ≤ 0.

(3.10)

By the mean value theorem we have

fTn(t, θ) =


C(θ)eS(θ+ t

n) exp
{
−n−1

n
· C′(ξ)

C(ξ)
t
}

for t > 0,

0 for t ≤ 0,

(3.11)

where θ < ξ < θ + (t/n). Then it follows from the condition (A2) that fTn(t, θ) converges

pointwise to

fT (t, θ) =


C(θ)eS(θ) exp

{
−C′(θ)

C(θ)
t
}

for t > 0,

0 for t ≤ 0,

which is the p.d.f. of a random variable T , as n → ∞. Further, we assume the following

condition.

(A3) For any t > 0, there exists Kθ(t) such that
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eS(θ+ t
n) ≤ Kθ(t)

and ∫ ∞

0

Kθ(t)t
i exp

(
−1

2
M

(2)
θ t

)
dt < ∞

for i = 0, 2.

From the conditions (A2), (A3) and (3.11) it follows that fTn(t, θ) is dominated by the

function

f0(t, θ) := C(θ)Kθ(t) exp

(
−1

2
M

(2)
θ t

)
for t > 0. Hence

lim
n→∞

Eθ

[
n(X(1) − θ)

]
= Eθ(T ) =

C(θ)

C ′(θ)
, (3.12)

lim
n→∞

Eθ

[{
n(X(1) − θ)

}2
]

= Eθ(T
2) = 2

{
C(θ)

C ′(θ)

}2

. (3.13)

It is seen from (3.12) that X(1) is not asymptotically unbiased estimator. So, we consider a

bias-adjusted estimator

θ̂∗n(X) := X(1) −
C(X(1))

nC ′(X(1))
,

which yields

θ̂∗n(X) = X(1) −
C(θ)

nC ′(θ)
− 1

n2

{
1 − C(ξ)C ′′(ξ)

(C ′(ξ))2

}
n(X(1) − θ), (3.14)

where |ξ − θ| < |X(1) − θ|. Since Tn = n(X(1) − θ), it follows that

Eθ

[
n(θ̂∗n − θ)

]
= Eθ(Tn) − C(θ)

C ′(θ)
− 1

n
Eθ

[{
1 − C(ξ)C ′′(ξ)

(C ′(ξ))2

}
Tn

]
. (3.15)

In order to evaluate Eθ(θ̂
∗
n) up to the order o(1/n), we have from (3.10)

fTn(t, θ) = C(θ)eS(θ)e−
C′(θ)
C(θ)

t

{
1 +

α(θ)

n
t − β(θ)

n
t2 + o

(
1

n

)}
,

8



where

α(θ) = S ′(θ) +
C ′(θ)

C(θ)
, β(θ) =

1

2
(log C(θ))′′ .

Then

Eθ(Tn) =
C(θ)

C ′(θ)
+

2

n

(
C(θ)

C ′(θ)

)2 {
α(θ) − 3β(θ)

(
C(θ)

C ′(θ)

)}
+ o

(
1

n

)
.

From (3.15) we obtain

Eθ

[
n(θ̂∗n − θ)

]
=

2

n

(
C(θ)

C ′(θ)

)2 {
α(θ) − 3β(θ)

(
C(θ)

C ′(θ)

)}
− 1

n
Eθ

[{
1 − C(ξ)C ′′(ξ)

(C ′(ξ))2

}
Tn

]
+ o

(
1

n

)

=
1

n
a0(θ) + o

(
1

n

)
(say). (3.16)

Here, by the Schwarz inequality we have

|a0(θ)| ≤ 2

(
C(θ)

C ′(θ)

)2 ∣∣∣∣α(θ) − 3β(θ)

(
C(θ)

C ′(θ)

)∣∣∣∣
+

(
Eθ

[{
1 − C(ξ)C ′′(ξ)

(C ′(ξ))2

}2
])1/2 (

Eθ(T
2
n)

)1/2
. (3.17)

From (3.13) it follows that for given ε > 0 and large n

Eθ

(
T 2

n

)
≤ 2

(
C(θ)

C ′(θ)

)2

+ ε.

Put

a1(θ) := 2

(
C(θ)

C ′(θ)

)2 ∣∣∣∣α(θ) − 3β(θ)

(
C(θ)

C ′(θ)

)∣∣∣∣
+

(
Eθ

[{
1 − C(ξ)C ′′(ξ)

(C ′(ξ))2

}2
])1/2 {

2

(
C(θ)

C ′(θ)

)2

+ ε

}1/2

. (3.18)

Here, we assume the following condition.
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(A1)∗ There exists a constant M∗
θ such that∫ ∞

0

a1

(
θ +

ω

n

)
dλ1n(ω) ≤ M∗

θ .

Then it follows from (3.16) to (3.18) that the condition (A1)∗ implies (A1), and θ̂∗n becomes

an asymptotically unbiased for θ. It also follows from (3.13) and (3.14) that for large n

Eθ

[{
n(θ̂∗n − θ)

}2
]

= Eθ

(
T 2

n

)
−

{
C(θ)

C ′(θ)

}2

+ o(1)

=

{
C(θ)

C ′(θ)

}2

+ o(1) (3.19)

From (3.6), (3.7), (3.8) and (3.13) we obtain

Bn(θ) =
1

n2

{
C(θ)

C ′(θ)

}2

+ o

(
1

n2

)
(3.20)

for large n. On the other hand it follows from (3.19) that

Vθ(θ̂
∗
n) =

1

n2

{
C(θ)

C ′(θ)

}2

+ o

(
1

n2

)
,

hence, under the conditions (A1)∗, (A2) and (A3), the asymptotically unbiased estimator θ̂∗n

is shown to be asymptotically efficient in the sense that it attains the bound Bn(θ) by the

inequality (3.6).

Next we show that the bound (3.20) is asymptotically best. In the case of the left-

truncated distribution, it is seen that the uniformly minimum variance unbiased (UMVU)

estimator based on the complete sufficient statistic X(1) := min1≤i≤n Xi is given by θ̂∗n (see

Lwin (1975), and Voinov and Nikulin (1993)). The variance of the UMVU estimator θ̂∗n

asymptotically coincides with the bound (3.20) derived from the prior density (3.1). Hence

the bound (3.20) is seen to be asymptotically best. The fact is also grasped as a solution of

the inverse problem on the lower bound by the information inequality.

In a similar way to the above, it is possible to discuss the case of a family of right-

truncated distributions using the statistic X(n) := max1≤i≤n Xi.
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4. EXAMPLES

In this section, we give examples on truncated normal and Weibull distributions.

Example 4.1 Suppose that X1, X2, · · · , Xn, · · · be a sequence of i.i.d. random variables

according to the left-truncated normal distribution with a p.d.f.

p(x, θ) =


C(θ)e−x2/2 for x > θ,

0 for x ≤ θ,

where θ ∈ (0,∞), and

C(θ) =
1√

2π{1 − Φ(θ)}

with the cumulative distribution function (c.d.f.) Φ of the standard normal distribution

N(0, 1). Putting

g(θ) :=
C ′(θ)

C(θ)
=

φ(θ)

1 − Φ(θ)

with the p.d.f. φ of N(0, 1). Since g(θ) is a monotone increasing function on the interval

(0,∞), letting M
(2)
θ = g(θ) in the condition (A2), it is satisfied. Since S(x) = −x2/2, it

follows that

eS(θ+ t
n) = e−

1
2(θ+ t

n)
2

≤ 1.

Letting Kθ(t) ≡ 1 in the condition (A3), we have∫ ∞

0

ti exp

{
−1

2
g(θ)t

}
dt < ∞

for i = 0, 2, hence (A3) is satisfied. Since

lim
θ→0

C(θ)

C ′(θ)
=

√
π

2
, lim

θ→∞

C(θ)

C ′(θ)
= 0,

lim
θ→0

(log C(θ))′′ = lim
θ→0

φ(θ) {φ(θ) − θ (1 − Φ(θ))}
{1 − Φ(θ)}2 =

8

π
, lim

θ→∞
(log C(θ))′′ = 1,

lim
θ→0

S ′(θ) = lim
θ→0

(−θe−θ2/2) = 0, lim
θ→∞

S ′(θ) = 0
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it follows that C(θ)/C ′(θ), (log C(θ))′′ and S ′(θ) are bounded on (0,∞). Since(
C(θ)

C ′(θ)

)′

= 1 − C(θ)C ′′(θ)

(C ′(θ))2 =
−φ(θ) + θ (1 − Φ(θ))

φ(θ)
,

it follows that

lim
θ→0

(
C(θ)

C ′(θ)

)′

= −1, lim
θ→∞

(
C(θ)

C ′(θ)

)′

= 0,

which implies that (C(θ)/C ′(θ))′ is also bounded on (0,∞). Then it follows from (3.18) that

a1(θ) is bounded on (0,∞), hence the condition (A1)∗ holds. Therefore

θ̂∗n(X) = X(1) −
1

nφ(X(1))

{
1 − Φ(X(1))

}
has the variance

Vθ(θ̂
∗
n) =

1

n2

{
1 − Φ(θ)

φ(θ)

}2

+ o

(
1

n2

)
for large n, which attains the bound Bn(θ) by the inequality (3.6).

Example 4.2 Suppose that X1, X2, · · · , Xn, · · · is a sequence of i.i.d. random variables

according to the left-truncated Weibull distribution with a p.d.f.

p(x, θ) =


Cr(θ)rx

r−1e−xr
for x > θ,

0 for x ≤ θ,

where θ ∈ (0,∞), r > 1 and Cr(θ) = eθr
. Let r be known. In a similar way to Example 4.1,

it is shown that the conditions (A1)∗, (A2) and (A3) are satisfied. Hence

θ̂∗n(X) = X(1) −
1

nrXr−1
(1)

has the variance

Vθ

(
θ̂∗n

)
=

1

n2θ2
+ o

(
1

n2

)
for large n, which attains the bound Bn(θ) by the inequality (3.6).
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In a similar way to the above, the right-truncated normal and Weibull cases can be

discussed.
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