

AN INFORMATION INEQUALITY FOR THE BAYES RISK IN A FAMILY OF UNIFORM DISTRIBUTION

著者	OHYAUCHI Nao, AKAHIRA Masafumi
journal or	ISTATISTIK, Journal of the Turkish Statistical
publication title	Association
volume	5
number	1
page range	1-5
year	2002
URL	http://hdl.handle.net/2241/119373

Vol. 5, No. 1, 2002, pp. 1-5

ISSN 1300-4077 | EISSN XXXX-XXXX | 02 | 1 | 01

AN INFORMATION INEQUALITY FOR THE BAYES RISK IN A FAMILY OF UNIFORM DISTRIBUTION

Nao OHYAUCHI and Masafumi AKAHIRA Institute of Mathematics, University of Tsukuba, Ibaraki 305-8571, JAPAN

Abstract: For a family of uniform distribution on the interval $[\theta - (1/2), \theta - (1/2)]$, the information inequality for the bayes risk of any estimator of θ is given under the quadratic loss and the uniform prior distribution on an interval [-c,c]. The lower bound for the Bayes risk is shown to be sharp. And also the lower bound for the limit inferior of Bayes risk as $c \to \infty$ is seen to be attained by the mid-range estimator.

Key words: Cramér-Rao inequality; Bayes Estimator; lower bound; mid-range

- 1. Introduction: In the paper, Vincze (1979) obtained Cramer-Rao type inequality in the non-regular case, and for the uniform distribution on the interval $[\theta-(1/2),\theta-(1/2)]$ got the lower bound for the variance of unbiased estimator with the right order of magnitude, but it was not sharp. Following ideas of Vincze (1979), Khatri (1980) gave a simple general approach to the non-regular Cramer-Rao bound. In the relation to Vincze (1979), Móri (1983) also obtained the lower bound for the limit inferior of the expected quadratic risk of unbiased estimators of θ under the uniform distribution on the interval [-c,c] as $c\to\infty$ and showed that it was sharp. In this paper, for a family of uniform distributions on $[\theta-(1/2),\theta-(1/2)]$, we obtain the information inequality for the Bayes risk of any estimator of θ under the quadratic loss and the uniform prior distribution on an interval [-c,c] by a somewhat different way of Mori (1983). We also show that the lower bound for the Bayes risk of any estimator of θ is sharp, and that the lower bound for the limit inferior of Bayes risk of any estimator of θ is attained by the mid-range, which involves the result for unbiased estimators of θ by Mori (1983). The related results to the above are found in Akahira and Takeuchi (1995).
- 2. An information inequality for the Bayes risk of any estimator: Suppose that X_1, X_2, \ldots, X_n are independent and identically distributed random variables according to the uniform distribution with a density $p(x,\theta)$ on the interval $[\theta-(1/2),\theta-(1/2)]$, where $-\infty < \theta < \infty$. Let n be fixed, and let $\widehat{\theta} = \widehat{\theta}(X)$ be an estimator of θ based on the sample $\mathbf{X} = (X_1, X_2, \ldots, X_n)$. Then we consider the Bayes risk $r_c(\widehat{\theta})$ of any estimator $\widehat{\theta}$ of θ under the quadratic loss and the uniform prior distribution on an interval [-c,c], where $-\infty < c < \infty$, i.e.

$$r_c\left(\widehat{\theta}\right) := \frac{1}{2c} \int_{-c}^{c} E_{\theta} \left[\left(\widehat{\theta} - \theta\right)^2 \right] d\theta.$$

Let $f(x,\theta) := \prod_{i=1}^{n} p(x_i,\theta)$ with $\mathbf{x} = (x_1, x_2, \dots, x_n)$. In order to get the Bayes estimator, i.e. to minimize $r_c(\widehat{\theta})$, it is enough to obtain the estimator minimizing

$$\int_{-c}^{c} \left\{ \widehat{\theta}(\mathbf{x}) - \theta \right\}^{2} f(\mathbf{x}, \theta) d\theta$$

for almost all x. Such an estimator is easily given by

$$\widehat{\theta}_{c}^{*}(\mathbf{X}) = \int_{-c}^{c} \theta f(\mathbf{X}, \theta) d\theta / \int_{-c}^{c} f(\mathbf{X}, \theta) d\theta.$$
 (1)

Here, we have

$$f(\mathbf{x}, \theta) = \begin{cases} 1 & \text{for } x_{(n)} - (1/2) \le \theta \le x_{(1)} + (1/2) \\ 0 & \text{otherwise,} \end{cases}$$
 (2)

where $x_{(1)} := \min_{1 \le i \le n} x_i$ and $x_{(n)} := \max_{1 \le i \le n} x_i$. Let $\underline{\theta} := X_{(n)} - (1/2)$, $\overline{\theta} := X_{(1)} + (1/2)$. From (1) and (2) we have

$$\widehat{\theta}_{c}^{\star}(\mathbf{X}) = \begin{cases}
\frac{1}{2} (\underline{\theta} + c) & \text{for } -c < \underline{\theta}, \ \underline{\theta} \le c \le \overline{\theta}, \\
\frac{1}{2} (\underline{\theta} + \overline{\theta}) & \text{for } -c < \underline{\theta}, \ \overline{\theta} < c, \\
\frac{1}{2} (\overline{\theta} - c) & \text{for } \underline{\theta} \le -c \le \overline{\theta}, \ \overline{\theta} < c \\
0 & \text{otherwise,}
\end{cases} \tag{3}$$

$$= \widehat{\theta}_{c}^{\star}(\theta, \overline{\theta}) \text{ (say)},$$

where 0/0 = 0 and c > 1/2. Then we have following.

Theorem 1. The information inequality for the Bayes risk of any estimator $\hat{\theta}$ of θ is given by

$$r_{c}\left(\widehat{\theta}\right) = \frac{1}{2c} \int_{-c}^{c} E_{\theta} \left[\left(\widehat{\theta} - \theta\right)^{2}\right] d\theta$$

$$\geq \frac{1}{2(n+1)(n+2)} - \frac{1}{2c(n+1)(n+2)(n+3)} = A_{0}(c) \quad (say), \tag{4}$$

where c>1/2, and the lower bound is sharp, that is, $\widehat{\theta}_c^*$ attains the bound.

Proof 1. The joint density function $f_{\theta,\overline{\theta}}$ of $(\underline{\theta},\overline{\theta})$ is given by

$$f(\mathbf{x}, \theta) = \begin{cases} n(n-1)(y-z+1)^{n-2} & \text{for } y \le \theta \le z, \ 0 \le z-y \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

Then we have

$$r^* \cdot = \int_{-c}^{c} E_{\theta} \left[\left\{ \widehat{\theta}_{c}^* - \theta \right\}^{2} \right] d\theta$$

$$= \int \int_{y \leq \theta \leq z, \ 0 \leq z - y \leq 1} \int_{-c}^{c} \left\{ \widehat{\theta}_{c}^* \left(y, z \right) - \theta \right\}^{2} f_{\underline{\theta}, \overline{\theta}}^{\theta} \left(y, z \right) d\theta dy dz.$$

Since

$$\begin{split} &\int_{|\theta| \leq c, \ y \leq \theta \leq z} \left(\widehat{\theta}_c^* - \theta\right)^2 f_{\underline{\theta}, \overline{\theta}}^{\theta} \left(y, z\right) d\theta \\ &= \widehat{\theta}_c^{*2} \int_{|\theta| \leq c, \ y \leq \theta \leq z} f_{\underline{\theta}, \overline{\theta}}^{\theta} \left(y, z\right) d\theta - 2\widehat{\theta}_c^* \int_{|\theta| \leq c, \ y \leq \theta \leq z} \theta f_{\underline{\theta}, \overline{\theta}}^{\theta} \left(y, z\right) d\theta \\ &+ \int_{|\theta| \leq c, \ y \leq \theta \leq z} \theta^2 f_{\underline{\theta}, \overline{\theta}}^{\theta} \left(y, z\right) d\theta \\ &= n \left(n - 1\right) \left(y - z + 1\right)^{n - 2} \left(\widehat{\theta}_c^{*2} \int_{|\theta| \leq c, \ y \leq \theta \leq z} d\theta - 2\widehat{\theta}_c^* \int_{|\theta| \leq c, \ y \leq \theta \leq z} \theta d\theta \\ &+ \int_{|\theta| \leq c, \ y \leq \theta \leq z} \theta^2 d\theta \right) \\ &= n \left(n - 1\right) \left(y - z + 1\right)^{n - 2} \left(I_1 \widehat{\theta}_c^{*2} - 2I_2 \widehat{\theta}_c^* + I_3\right) \\ &= G_n \left(y, z\right) \ (say), \end{split}$$

where

$$\begin{split} I_1 &:= \min \left\{ c, z \right\} - \max \left\{ -c, y \right\}, \\ I_2 &:= \frac{1}{2} \left[\left(\min \left\{ c, z \right\} \right)^2 - \left(\max \left\{ -c, y \right\} \right)^2 \right], \\ I_3 &:= \frac{1}{3} \left[\left(\min \left\{ c, z \right\} \right)^3 - \left(\max \left\{ -c, y \right\} \right)^3 \right]. \end{split}$$

Next we obtain

$$r^* = \left(\int_{-c}^{1-c} \int_{z-1}^{-c} + \int_{-c}^{1-c} \int_{-c}^{z} + \int_{1-c}^{c} \int_{z-1}^{z} + \int_{c}^{1+c} \int_{z-1}^{-c} \right) G_n(y, z) \, dy dz$$

$$= \left(\int \int_{J_1} + \int \int_{J_2} + \int \int_{J_3} + \int \int_{J_4} \right) G_n(y, z) \, dy dz \quad (5)$$

Repeating integration by parts we have

$$J_{1} = \int_{-c}^{1-c} \int_{z-1}^{-c} n(n-1)(y-z+1)^{n-2} \left\{ \frac{1}{4} (z-c)^{2} (z+c) - \frac{1}{2} (z-c) (z^{2}-c^{2}) + \frac{1}{3} (z^{3}+c^{3}) \right\} dydz$$

$$= \frac{1}{2(n+1)(n+2)(n+3)},$$
(6)

$$J_{2} = \int_{-c}^{1-c} \int_{-c}^{z} n(n-1)(y-z+1)^{n-2} \left\{ \frac{1}{4} (y+z)^{2} (z-y) - \frac{1}{2} (y+z) (z^{2}-c^{2}) + \frac{1}{3} (z^{3}+c^{3}) \right\} dydz$$

$$= \frac{1}{2(n+1)(n+2)} - \frac{1}{(n+1)(n+2)(n+3)},$$
(7)

$$J_{3} = \int_{1-c}^{c} \int_{z-1}^{z} n(n-1)(y-z+1)^{n-2} \left\{ \frac{1}{4} (y+z)^{2} (z-y) - \frac{1}{2} (y+z) (z^{2}-y^{2}) + \frac{1}{3} (z^{3}+c^{3}) \right\} dydz$$

$$= \frac{1}{2(n+1)(n+2)},$$
(8)

$$J_{4} = \int_{c}^{1+c} \int_{z-1}^{c} n(n-1)(y-z+1)^{n-2} \left\{ \frac{1}{4} (c+y)^{2} (c-y) - \frac{1}{2} (c+y) (c^{2}-y^{2}) + \frac{1}{3} (c^{3}-y^{3}) \right\} dydz$$

$$= \frac{1}{2(n+1)(n+2)(n+3)}.$$
(9)

From (5) to (9) we have

$$r^* = \frac{c}{(n+1)(n+2)} - \frac{1}{(n+1)(n+2)(n+3)}. (10)$$

Since $\widehat{\theta}_c^*$ minimize the Bayes risk $r_c\left(\widehat{\theta}\right)$, it follows from (10) that for any estimator $\widehat{\theta}$ of θ

$$r_{c}\left(\widehat{\theta}\right) = \frac{1}{2c} \int_{-c}^{c} E_{\theta} \left[\left(\widehat{\theta} - \theta\right)^{2}\right] d\theta$$

$$\geq \frac{1}{2c} r^{*} = \frac{1}{2(n+1)(n+2)} - \frac{1}{2c(n+1)(n+2)(n+3)}.$$

Thus we complete the proof.

COROLLARY 1. For any estimator $\widehat{\theta}$ of θ

$$\underline{\lim}_{c \to \infty} r_c\left(\widehat{\theta}\right) \ge \frac{1}{2(n+1)(n+2)} \tag{11}$$

The proof of Corollary is straightforward from the Theorem. The lower bound () is easily seen to be attained by mid-range $\widehat{\theta}_0 := (X_{(1)} + X_{(2)})/2$.

REMARK 1. The inequality of the Corollary is same as one for any unbiased estimator given by Móri (1983).

3. Comparison of the lower bounds: In this section we compare the lower bound $A_0(c)$ with Móri's one. Let

 $\mathcal{I}_c := -A_0(c) + \frac{c^2}{3}.$ (12)

In the proof of the Theorem in the paper, Móri (1983) showed that for any unbiased estimator $\widehat{\theta}$ of θ

 $r_{c}\left(\widehat{\theta}\right) = \frac{1}{2c} \int_{-c}^{c} V_{\theta}\left(\widehat{\theta}\right) d\theta \ge \frac{c^{4}}{9\mathcal{I}_{c}} - \frac{c^{2}}{3} = M\left(c\right) \text{ (say)},\tag{13}$

where c > 1/2. But the lower bound M(c) is not sharp, as is mentioned in the paper. From (12) and (13) it seen that

$$M(c) > A_0(c)$$
 for $c > 1/2$.

here, note that $A_0(c)$ is the lower bound for the Bayes risk for any estimator and M(c) is one for any unbiased estimator. And also we have

$$M(c) = A_0(c) + \frac{3}{4c^2(n+1)^2(n+2)^2} + O\left(\frac{1}{c^3}\right) c \to \infty,$$

hence

$$\lim_{c \to \infty} M(c) = \lim_{c \to \infty} A_0(c) = \frac{1}{2(n+1)(n+2)}.$$

For a family of uniform distribution on $[\theta - (\tau/2), \theta + (\tau/2)]$ with a scale τ as a nuisance parameter, we also have a similar information inequality to (4) as follows. For any estimator $\widehat{\theta}$ of θ

$$R_{c}\left(\widehat{\theta}\right) = \int_{-c}^{c} E_{\theta} \left[\left(\frac{\widehat{\theta} - \theta}{\tau}\right)^{2} \right] d\theta$$

$$\geq \frac{1}{2(n+1)(n+2)} - \frac{\tau}{2c(n+1)(n+2)(n+3)},$$
(14)

and

$$\underline{\lim}_{c \to \infty} R_c\left(\widehat{\theta}\right) \ge \frac{1}{2(n+1)(n+2)}.$$
(15)

In particular, letting $\tau = 1$, we have the inequality (4) from (14). When c tends to infinity, from (15) we have the same lower bound as (11).

4. Comments: In the previous section we obtain the lower bound for the Bayes risk of estimators under the quadratic loss and the uniform prior distribution on an interval [-c,c], where c>1/2, and show that the bound is sharp. Recently Akahira and Takeuchi (2001) shows that for small c>0 the Bayes risk of any estimator in the interval of θ values of length 2c and centered at θ_0 can not be smaller than that of $\widehat{\theta}_0 = (X_{(1)} + X_{(n)})/2$. More precisely they prove that for any estimator $\widehat{\theta} = \widehat{\theta}(X)$ based on the sample X of size n

$$\lim_{c\to 0} \lim_{n\to\infty} \frac{n^2}{2c} \int_{\theta_0-c}^{\theta_0+c} E_{\theta} \left[\left(\widehat{\theta} - \theta \right)^2 \right] d\theta \ge \frac{1}{2}$$

and the lower bound is attained by $\hat{\theta}_0$. This means that in a sense asymptotically the estimator $\hat{\theta}_0$ can be regarded as uniformly best one.

References

- [1] Akahira M. and Takeuchi K., (1995), Non-Regular Statistical Estimator. Lecture Notes in Statistics 107, Springer, New York.
- [2] Akahira M. and Takeuchi K., (2001), Information inequalities in a family of uniform distributions, Ann. Inst. Statist. Math., 53, 427-435.
- [3] Khatri, C.G., (1980), Unified treatment of Cramér-Rao bound for the non-regular density functions, J.Statist. Plann. Inference 4, 75-79.
- [4] Móri T.F., (1983), Note on the Cramér-Rao in the nonregular case: The family of uniform distribution, J.Statist. Plann. Inference 7, 353-358.
- [5] Vincze I., (1979), Note on the Cramér-Rao in the nonregular case, In: Contributions to Statistics, The J. Hájeck Memorial Volume, Prague, 253-262